WO2011145160A1 - 排煙脱硫装置と燃焼システムと燃焼方法 - Google Patents
排煙脱硫装置と燃焼システムと燃焼方法 Download PDFInfo
- Publication number
- WO2011145160A1 WO2011145160A1 PCT/JP2010/007554 JP2010007554W WO2011145160A1 WO 2011145160 A1 WO2011145160 A1 WO 2011145160A1 JP 2010007554 W JP2010007554 W JP 2010007554W WO 2011145160 A1 WO2011145160 A1 WO 2011145160A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- desulfurization
- gas
- combustion
- oxygen
- absorption liquid
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C9/00—Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
- F23C9/003—Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber for pulverulent fuel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
- B01D53/501—Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
- B01D53/504—Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C9/00—Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J15/00—Arrangements of devices for treating smoke or fumes
- F23J15/003—Arrangements of devices for treating smoke or fumes for supplying chemicals to fumes, e.g. using injection devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J15/00—Arrangements of devices for treating smoke or fumes
- F23J15/006—Layout of treatment plant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J15/00—Arrangements of devices for treating smoke or fumes
- F23J15/02—Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
- F23J15/04—Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23L—SUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
- F23L7/00—Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
- F23L7/007—Supplying oxygen or oxygen-enriched air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/40—Alkaline earth metal or magnesium compounds
- B01D2251/404—Alkaline earth metal or magnesium compounds of calcium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/60—Inorganic bases or salts
- B01D2251/602—Oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2215/00—Preventing emissions
- F23J2215/10—Nitrogen; Compounds thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2215/00—Preventing emissions
- F23J2215/20—Sulfur; Compounds thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2215/00—Preventing emissions
- F23J2215/50—Carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2215/00—Preventing emissions
- F23J2215/60—Heavy metals; Compounds thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2217/00—Intercepting solids
- F23J2217/10—Intercepting solids by filters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2219/00—Treatment devices
- F23J2219/40—Sorption with wet devices, e.g. scrubbers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23J—REMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES
- F23J2900/00—Special arrangements for conducting or purifying combustion fumes; Treatment of fumes or ashes
- F23J2900/15061—Deep cooling or freezing of flue gas rich of CO2 to deliver CO2-free emissions, or to deliver liquid CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/32—Direct CO2 mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E20/00—Combustion technologies with mitigation potential
- Y02E20/34—Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
Definitions
- the present invention SO 2 (sulfur oxides in the combustion exhaust gas is provided in the thermal power boiler plant for removing mercury with performing oxyfuel recovering CO 2 in the combustion exhaust gas in a subsequent CO 2 recovery apparatus
- SO 2 sulfur oxides in the combustion exhaust gas
- the present invention relates to a wet flue gas desulfurization apparatus (hereinafter sometimes simply referred to as a desulfurization apparatus), a combustion system including the same, and a combustion method.
- the boiler plant for thermal power generation includes a boiler 13, a denitration device 14, a heat exchanger 15, a dust collection device 16, a desulfurization device 3, a CO 2 recovery device 17, a circulation line 18, an oxygen production device 19, and an oxygen supply line. 20 etc.
- the boiler 13 generates exhaust gas by oxyfuel combustion of a fuel 25 such as coal supplied through a fuel supply system. At this time, oxygen is supplied from the oxygen supply line 20 or the like by the oxygen production apparatus 19.
- NOx nitrogen oxide contained in the gas discharged from the boiler 13 is decomposed.
- the gas discharged from the denitration device 14 is adjusted to 200 ° C. to 160 ° C. by the heat exchanger 15.
- the dust is removed from the gas by the dust collector 16. Part of the gas removed by the dust collector 16 is introduced into the desulfurizer 3 to remove SO 2 . Moreover, CO 2 recovering apparatus 17 recovers CO 2 from flue gas to remove SO 2. A part of the dust-removed gas passes through the circulation line 18, is reheated to 200 ° C. by the heat exchanger 15, and then is supplied to the boiler 13.
- the desulfurization apparatus 3 mainly includes a spray nozzle 4 for spraying the desulfurization absorption liquid 6, an absorption liquid circulation pump 5 for feeding the desulfurization absorption liquid 6 to the spray nozzle 4, a desulfurization absorption section 26 having a mist eliminator 8, and a desulfurization absorption liquid 6. It comprises a supply section 9 for oxidizing sulfurous acid gas generated in the inside, a stirrer 10 for stirring the desulfurized absorbent 6, an absorbent reservoir 11 for storing the desulfurized absorbent 6 and oxidizing sulfurous acid. .
- the desulfurization apparatus 3 of the conventional system removes sulfur oxides such as SO 2 contained in the boiler exhaust gas 1 by spraying an alkaline absorbing liquid containing limestone and the like.
- sulfurous acid components such as calcium sulfite (hereinafter sometimes simply referred to as sulfurous acid) generated by absorbing SO 2 in the boiler exhaust gas 1
- Sulfurous acid is recovered as gypsum by being oxidized.
- Oxidizing gas (oxidized air) 27 supplied to the absorbing liquid reservoir 11 is dispersed in the desulfurized absorbing liquid 6 as bubbles, rises toward the liquid surface 6a, and oxidizes sulfurous acid until reaching the liquid surface 6a. Contribute to. After reaching the liquid surface 6a, the gas for oxidation 27 hardly contributes to the oxidation reaction of sulfurous acid when moving to the gas phase 6b of the desulfurization absorption part 26.
- oxidizing gas (oxidized air) 27 into the desulfurized absorbent 6 oxidation is performed in order to relatively increase the contact area between the oxidized air 27 and the desulfurized absorbent 6 and to increase the residence time.
- the air 27 is miniaturized as much as possible.
- the point that the CO 2 concentration in the exhaust gas 2 is lowered due to this is not taken into consideration.
- the CO 2 concentration contained in the exhaust gas 1 supplied to the inlet of the desulfurizer 3 is 90%
- the CO 2 concentration contained in the exhaust gas 2 at the outlet of the desulfurizer 3 is about It decreases to about 80%. Therefore, there is a problem that the CO 2 recovery efficiency in the CO 2 recovery device 17 is lowered.
- air N 2 : 79%, O 2 : 21%) is used as the oxidizing gas 27, the oxidizing gas 27 is mixed into the desulfurizer outlet exhaust gas 2 and the CO 2 concentration is reduced by about 10%. Therefore, the CO 2 recovery rate in the CO 2 recovery device 17 is reduced by about 5%.
- mercury contained in the coal 25 is released into the exhaust gas.
- Part of this mercury is in the form of mercury chloride or the like in the process of exhaust gas treatment, and is taken into the desulfurization absorption liquid 6.
- Mercury taken into the desulfurization absorption liquid 6 may be released into the gas phase 6b of the desulfurization absorption part 26 again in the form of metallic mercury or the like (hereinafter also referred to as re-release) depending on conditions. For this reason, the re-released mercury scatters and reaches the downstream CO 2 recovery unit 17 together with the desulfurization unit outlet exhaust gas 2.
- the CO 2 recovery device 17 has a process of compressing the exhaust gas 2, and there is a concern that the corrosion of the component equipment is accelerated in the presence of mercury. In addition, it is not preferable that harmful mercury is released outside the plant system or into the atmosphere.
- the above-mentioned problems of the present invention are solved by the following solving means.
- the invention according to claim 1 includes a desulfurization absorption part (26) for bringing the treated exhaust gas (1) and the desulfurization absorption liquid (6) containing lime into gas-liquid contact, and the desulfurization absorption liquid (6) after the gas-liquid contact. And a desulfurization absorption liquid reservoir (11) for storing the desulfurization absorption liquid reservoir (11), wherein the desulfurization absorption liquid reservoir (11) is partitioned by a wall surface so as to be blocked from outside air.
- an oxidizing gas supply unit (9) for supplying an oxidizing gas that oxidizes sulfurous acid in the desulfurized absorbent (6) through the wall surface, and a position higher than the liquid level of the desulfurized absorbent (6).
- An oxidant gas discharge part (12) for discharging excess oxidant gas to the outside, and the desulfurization absorption part (26) is a desulfurization absorption liquid of the desulfurization absorption liquid reservoir (11) The position is lower than the liquid level in (6) and is away from the wall surface on which the oxidizing gas supply unit (9) is provided.
- Which is a wet flue gas desulfurization apparatus characterized by having a serial desulfurization absorbing liquid reservoir (11) water seal tube provided lower end opening toward the center of the (7b) of (7).
- Invention of Claim 2 is discharged
- the wet flue gas desulfurization device (3) and the CO 2 recovery device (17) described above are arranged and branched from the exhaust gas flow path before purification treatment by the wet flue gas desulfurization device (3) to the combustion device (13).
- An oxygen supply line (18) for recirculating exhaust gas and supplying oxygen produced by the oxygen production apparatus (19) to the oxidizing gas supply section (9) of the wet flue gas desulfurization apparatus (3) ( 21) and the oxidation gas of the wet flue gas desulfurization apparatus (3) is provided.
- Discharging portion (12) is a combustion system, characterized in that connected the to the circulation line (18).
- oxygen is produced by the oxygen production device (19), and the obtained oxygen is used for combustion of fuel by the combustion device (13), and the exhaust gas discharged from the combustion device (13) is used.
- pre-heat treatment of combustion air, dust collection treatment and desulfurization treatment with the wet flue gas desulfurization apparatus (3) according to claim 1 CO 2 recovery treatment is performed, and the exhaust gas before the wet flue gas desulfurization treatment is Recirculating to the combustion device (13), supplying oxygen produced by the oxygen production device (19) to the absorption liquid reservoir (11) of the wet flue gas desulfurization device (3) as an oxidizing gas
- the combustion method is characterized in that the oxidizing gas from the oxidizing gas discharge section (12) of the wet flue gas desulfurization apparatus (3) is returned to the combustion apparatus (13).
- the gas phase 6 b of the absorption liquid reservoir 11 of the desulfurization apparatus 3 is separated from the desulfurization absorption part 26 by the partition wall 7 a of the water seal tube 7.
- the desulfurization absorption liquid 6 is sucked from the absorption liquid reservoir 11 by the absorption liquid circulation pump 5 and sprayed to the desulfurization absorption section 26 through the spray nozzle 4. Circulates outside the wall.
- Mercury in the combustion exhaust gas discharged along with the combustion of coal may be absorbed by the absorbent of the desulfurization device 3 and re-released into the gas phase depending on conditions. As described above, in the coal fired boiler 13 (see FIG. 3), the re-released mercury scatters together with the exhaust gas 2 at the outlet of the desulfurization device 3 and reaches the subsequent CO 2 recovery device 17 or outside the plant system or the atmosphere. It is necessary to take measures so that it is not released directly into the inside.
- the flow of the absorbing liquid that falls from the desulfurization absorption portion 26 of the desulfurization apparatus 3 and flows into the water seal tube 7 is a one-way flow from the top to the bottom, and the water seal tube 7 has a characteristic that the settling speed of the absorbing liquid in the inside of 7 is fast, and bubbles do not easily rise. Further, since the water seal tube 7 is inserted near the bottom of the absorption liquid reservoir 11 below the water surface, the absorption liquid in the desulfurization device 3 can be easily caused to flow down to the absorption liquid reservoir 11.
- the absorbed liquid contributes to the stirring of the desulfurized absorbent 6 in the absorbent reservoir 11, it is possible to reduce the number of the stirrers 10 or to reduce the size of the stirrer 10 and to expect cost reduction. Further, even if mercury moves into the oxidizing gas 27 and is re-released into the gas phase, it can be prevented from being scattered together with the desulfurizer outlet exhaust gas 2 and reaching the downstream CO 2 recovery device 17.
- the mercury re-released here is oxidized gas outlet pipe 12 It can be easily removed by the mercury removing device 23 connected to the. Therefore, the re-released mercury will not diffuse outside the atmosphere / system.
- the oxidizing gas 27 supplied to the absorbing liquid reservoir 11 is a high oxygen concentration gas produced by the oxygen producing device 19, the amount of supplied gas is reduced as compared with the case where the oxidizing gas is air. Or the capacity of the blower can be reduced, and the liquid level 6a of the desulfurization absorption liquid reservoir 11 can be prevented from rising and overflowing out of the desulfurization absorption liquid reservoir 11.
- the oxidizing gas 27 that supplies oxidizing air from the oxidizing gas supply unit 9 is a high oxygen concentration gas produced by the oxygen producing apparatus 19, the supply amount as the oxidizing gas can be greatly reduced. That is, the amount of gas supply corresponding to components other than oxygen, such as nitrogen that does not contribute to the oxidation reaction, can be reduced.
- the agitator 10 used in the desulfurization absorption liquid reservoir 11 is also facilitated.
- the oxidizing gas may be released into the exhaust gas through the lower end opening of the desulfurization absorber 26 (the lower end opening 7b of the water seal tube 7), the amount is reduced and the exhaust gas is difficult to dilute. Furthermore, the surplus oxygen released to the gas phase 6b without being used for the oxidation of sulfurous acid is returned to the circulation line of the oxyfuel combustion system and can be used as a combustion gas in the boiler 13. Therefore, the oxygen generated by the oxygen production apparatus 19 can be effectively used without waste.
- the present invention has the following effects. (1) Since the sulfurous acid oxidizing gas 27 produced in the desulfurization absorption liquid 6 is not mixed into the desulfurization apparatus outlet gas 2, the CO 2 concentration in the gas at the inlet of the CO 2 recovery apparatus 17 decreases. This is effective in preventing the CO 2 recovery rate from being lowered. (2) It is possible to prevent metallic mercury re-released from the desulfurization absorbing liquid 6 from being mixed into the desulfurization apparatus outlet gas 2. In addition, there is an effect of preventing mercury released again from the desulfurization absorbing liquid 6 from being released to the outside of the system / atmosphere and outflowing to a subsequent CO 2 recovery device.
- FIG. 2 is an arrow view taken along the line A-A ′ in FIG. 1 (FIG. 2A) and a square cross section (FIG. 2B). It is a figure which shows the structure of the oxyfuel combustion system of one Example of this invention. It is a figure which shows the structure of the oxyfuel combustion system of one Example of this invention. It is a figure which shows the structure of the oxyfuel combustion system of one Example of this invention. It is a figure which shows the structure of the oxyfuel combustion system of one Example of this invention. It is a figure which shows the structure of the oxyfuel combustion system of one Example of this invention. It is a figure which shows the structure of the oxyfuel combustion system of a prior art. It is a figure which shows the structure of the desulfurization apparatus of a prior art.
- the structure of the desulfurization apparatus in the oxyfuel combustion system of a present Example is shown in FIG.
- the desulfurization apparatus 3 has an integral structure composed of a desulfurization absorption part 26 and an absorption liquid reservoir part 11, and the lower end of the desulfurization absorption part 26 is provided below the water surface (liquid surface 6 a) of the absorption liquid in the desulfurization absorption liquid reservoir part 11.
- a water-sealed tube 7 is formed.
- the desulfurization absorption unit 26 includes an empty region where a desulfurization reaction is performed by the boiler exhaust gas 1 introduced into the desulfurization apparatus 3 and the desulfurization absorption liquid 6 ejected from the spray nozzle 4, and an absorption liquid in which the desulfurization absorption liquid 6 stays.
- the inside of the water seal tube 7 to be inserted into the reservoir 11 and the water phase region up to the lower end opening 7b.
- the absorbent reservoir 11 is a liquid to which the desulfurized absorbent 6 flowing out of the water seal tube 7 is convected.
- the region consisting of the phase 6a and the gas phase 6b is referred to.
- the desulfurization apparatus 3 mainly includes a spray nozzle 4 that sprays the desulfurization absorbent 6 on the upward flow of the boiler exhaust gas 1, an absorption liquid circulation pump 5 that supplies the desulfurization absorbent 6 to the spray nozzle 4, and a desulfurization absorbent that flows down.
- the cross-sectional area of the lower end opening part of the desulfurization absorption part 26 is set to be equal to or smaller than the cross-sectional area of the absorption liquid reservoir part 11, and the water seal tube 7 having the opening part 7 b is provided at the lower end part of the desulfurization absorption part 26.
- the lower end opening 7b of the water seal tube 7 is provided at a position lower than the liquid surface (liquid surface) 6a of the desulfurized absorbent at the time of desulfurization operation of the absorbent reservoir 11. Further, the lower end opening 7b is opened near the center of the desulfurization absorption liquid reservoir 11 which is separated from the side wall surface of the absorption liquid reservoir 11 provided with the oxidation gas supply 9, and the oxidation gas supply 9 is open to the bottom of the water seal tube 7 in the absorption liquid reservoir 11.
- the oxidizing gas outlet pipe 12 communicates with the outside through the gas phase 6 b in the absorbing liquid reservoir 11 from the side wall of the absorbing liquid reservoir 11, it is included in the absorbing liquid in the absorbing liquid reservoir 11.
- the oxidizing gas 27 that was not used for the oxidation of sulfurous acid was discharged outside the system without being mixed into the exhaust gas 2 from the exhaust gas desulfurizer.
- FIG. 2A shows a structure in which the water seal tube 7 and the desulfurization absorption liquid reservoir 11 are circular in a plan view as an embodiment showing a cross-sectional view taken along the line AA ′ in FIG. Show.
- the droplet sprayed from the spray nozzle 4 passes through the water seal tube 7 and is supplied to the absorbent 6 in the desulfurized absorbent reservoir 11.
- An oxidizing gas 27 is supplied from the oxidizing gas supply unit 9 to the absorbing liquid 6.
- FIG. 2B shows an example in which the cross-sectional view taken along the line AA ′ in FIG. 1 is a case where the water seal tube 7 and the desulfurized absorbent reservoir 11 are not circular in plan view, for example, a square. The case of the shape of is shown.
- the oxidizing gas 27 is mixed into the desulfurization apparatus outlet exhaust gas 2.
- the desulfurization apparatus 3 having the water-sealed tube 7 of the present invention surplus oxidizing gas 27 that is not used for the oxidation of sulfurous acid generated in the desulfurization absorption liquid is mixed into the desulfurization apparatus outlet exhaust gas 2. Therefore, it is possible to prevent the CO 2 concentration at the inlet of the CO 2 recovery device 17 from decreasing. Therefore, it is possible to prevent the CO 2 recovery rate of the CO 2 recovery device 17 from decreasing.
- a mercury removing device 23 was connected to the oxidizing gas outlet pipe 12.
- a gas containing high-concentration oxygen that has not been used for oxidation is released from the oxidizing gas outlet pipe 12 to the atmosphere.
- metallic mercury is re-released due to the influence of sulfurous acid generated in the desulfurized absorbent 6 when desulfurized.
- the mercury removing device 23 connected to the oxidizing gas outlet pipe 12 is released into the atmosphere by collecting metal mercury with, for example, a gold chip (metal that forms mercury and amalgam and is fixed, for example, gold (Au)). Can be prevented.
- the desulfurization absorption portion 26 of the desulfurization apparatus 3 is configured to be supported immediately above the absorption liquid reservoir portion 11 by a steel structure or the like (not shown). It is not limited to the structure arrange
- the oxidizing gas 27 may be juxtaposed as long as the oxidizing gas 27 is configured not to easily flow out to the desulfurization absorbing portion 26 side through the water seal tube 7.
- FIG. 1 An embodiment of a combustion system using the desulfurization apparatus 3 of the present invention is shown in FIG.
- the present embodiment shows a system configuration including an exhaust gas treatment system when the oxidizing gas 27 of the desulfurization apparatus 3 shown in FIG.
- a high concentration of oxygen (for example, a gas having an oxygen concentration of 95% or more obtained by separating nitrogen from air) is supplied from the oxygen production device 19 to the oxidizing gas supply unit 9 of the desulfurization device 3.
- the gas containing oxygen that was not used for oxidation was supplied from the oxidizing gas outlet pipe 12 to the circulation line 18.
- the starting point of the circulation line 18 may be anywhere on the exhaust gas flow path from the denitration device 14 to the CO 2 recovery device 17 in FIG. 3, and the heat exchanger 15 does not have to be interposed.
- the oxygen supply line 20 is connected to the circulation line 18 from the oxygen production apparatus 19, the connection portion is not limited to the circulation line 18.
- the circulation line 18 is not limited to a single one, but may be a plurality of systems, or may be branched and connected to a supply system to the fuel 25, and oxygen produced by the oxygen production device 19 as combustion gas for the boiler 13. And the combustion exhaust gas may be used, and the present invention is not limited to this embodiment.
- the oxygen concentration in the air is about 21%, so extra gas such as N 2 contained in the air that is not used for oxidation is supplied. Since many bubbles are contained in the desulfurized absorbent 6 of the absorbent reservoir 11, the liquid level of the absorbent becomes high and it is easy to overflow outside the apparatus. If it is going to avoid this, the size of the absorption liquid storage part 11 will become large, and installation cost will increase.
- the supply amount of oxygen can be reduced to about 1/5 compared to the supply amount of air, and the desulfurization of the absorbing liquid reservoir 11 is performed. Bubbles in the absorbing liquid 6 are reduced, and the height of the liquid surface 6a is also reduced. Therefore, the size of the absorbing liquid reservoir 11 can be made smaller than that of the conventional desulfurization apparatus 3, and the equipment cost of the desulfurization apparatus 3 can be reduced.
- the SO 2 concentration in the exhaust gas 1 at the inlet of the desulfurization apparatus 3 is 500 to 10,000 ppm, O 2 used for oxidation of sulfurous acid contained in the desulfurization absorbent 6 with respect to the amount of O 2 used for combustion. Is 0.2 to 2.5%.
- the amount of the oxidation gas 27 supplied to the desulfurization absorption liquid 6 reaches the liquid surface 6 a of the absorption liquid reservoir 11 and shifts to the gas phase 6 b. Inevitable.
- an excessive oxidizing gas is supplied from the oxidizing gas supply part 9 as compared with the stoichiometrically required amount of oxygen. There is a need to.
- oxygen is supplied from the oxidizing gas supply unit 9, there is a waste that the excessive supply is discharged together with the exhaust gas discharged from the desulfurization apparatus 3.
- a mercury removing device 23 is connected to the oxidizing gas outlet pipe 12 to remove metallic mercury, so that the metallic mercury re-released from the desulfurized absorbent 6 is not recirculated, and CO 2 It is possible to prevent impurities from being mixed into the recovery device 17. Note that the mercury re-released into the gas phase 6b of the absorbing liquid reservoir 11 is returned to the circulation line 18 even when the mercury removing device 23 is omitted, so that it can be prevented from being released to the atmosphere or outside the system.
- FIG. 4 shows another embodiment in which the desulfurization device 3 and the absorption liquid reservoir 11 shown in FIG. 1 are incorporated in an oxyfuel combustion system.
- the exhaust gas treatment apparatus mainly includes a boiler 13, a denitration apparatus 14, a heat exchanger 15, a dust collection apparatus 16, a desulfurization apparatus 3, a CO 2 recovery apparatus 17, a circulation line 18, an oxygen production apparatus 19, an oxygen supply line 20, and the like. Is done.
- the boiler 13 oxidizes a fuel 25 such as coal to generate exhaust gas.
- oxygen is supplied to the boiler 13 from the oxygen supply line 20 or the like by the oxygen production apparatus 19.
- NOx nitrogen oxide contained in the gas discharged from the boiler 13 is decomposed.
- the temperature of the gas discharged from the denitration device 14 is adjusted to 200 ° C. to 160 ° C. by the heat exchanger 15, and soot dust is removed by the dust collector 16.
- a part of the dust-removed gas is supplied to the desulfurization device 3, and then SO 2 is removed, and the CO 2 recovery device 17 recovers CO 2 .
- FIG. 5 shows the configuration of an exhaust gas treatment system in the case where the oxidizing gas 27 of the desulfurization apparatus 3 of the prior art shown in FIG. 5 may be the desulfurization absorption tower shown in FIG.
- the supply amount of oxygen can be reduced to about 1/5 of the supply amount of air, so that a blower is unnecessary.
- the capacity of the blower can be reduced, the equipment cost of the desulfurization apparatus 3 can be reduced.
- the air is not mixed in the exhaust gas, it is possible to prevent a reduction in the CO 2 concentration of the exhaust gas boiler 13 outlet.
- FIG. 1 Another embodiment of the oxyfuel combustion system of the present invention is shown in FIG.
- oxygen is supplied from an oxygen production apparatus 19 to an oxidizing gas supply section 9 provided in the absorbing liquid reservoir section 11 of the desulfurization apparatus 3 of the present invention shown in FIG. 1, and an oxidizing gas outlet pipe 12 is connected to a circulation line 18. It is the structure connected to. Thereby, by supplying the surplus oxidizing oxygen discharged from the oxidizing gas outlet pipe 12 to the circulation line 18, it is possible to reuse the surplus oxidizing oxygen when the coal is oxygen-burned in the boiler 13. The consumption of oxygen produced by the oxygen production apparatus 19 can be minimized.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Environmental & Geological Engineering (AREA)
- Biomedical Technology (AREA)
- Treating Waste Gases (AREA)
- Chimneys And Flues (AREA)
- Gas Separation By Absorption (AREA)
Abstract
Description
図7に示す火力発電用ボイラプラントは、ボイラ13、脱硝装置14、熱交換器15、集塵装置16、脱硫装置3、CO2回収装置17、循環ライン18、酸素製造装置19及び酸素供給ライン20等から構成される。
脱硝装置14では、ボイラ13から排出されたガスに含まれるNOx(窒素酸化物)を分解する。脱硝装置14から排出されたガスは熱交換器15で200℃~160℃に調整する。
除塵されたガスの一部は循環ライン18を通り、熱交換器15で200℃まで再加熱された後、ボイラ13に供給する構成となっている。
酸化用ガス(酸化空気)27を脱硫吸収液6の中に供給する際には、該酸化空気27と脱硫吸収液6との接触面積を相対的に大きくし、滞留時間を長くするために酸化空気27をなるべく微細化するようにしている。しかし、液表面6aに到達した後、脱硫吸収部26の気相6bに移行する酸化空気27が生じるのは不可避である。
したがって、吸収液溜め部11の吸収液6中における亜硫酸の酸化反応を十分に行わせるためには、化学量論的に必要な酸素の量に比べ、大過剰の酸化用ガス(酸化空気)27を酸化用ガス供給部9から供給する必要がある。このため、酸化用ガス(酸化空気)27のうち、かなりの量が排ガス2の中に放出され、排ガス2が希釈される。
例えば、脱硫装置3の入口に供給される排ガス1の中に含まれるCO2濃度が90%の場合、酸化空気による希釈のため、脱硫装置3の出口の排ガス2に含まれるCO2濃度は約80%程度まで低下する。したがって、CO2回収装置17におけるCO2回収効率が低下するという問題があった。例えば、酸化用ガス27として空気(N2:79%、O2:21%)を用いた場合、該酸化用ガス27が脱硫装置出口排ガス2に混入し、CO2濃度が10%程度低下するため、CO2回収装置17でのCO2回収率は5%程度低下することになる。
このため、再放出された水銀が脱硫装置出口排ガス2とともに後段のCO2回収装置17に飛散・到達する。CO2回収装置17には排ガス2を圧縮する工程を有しており、水銀の存在下、構成機器の腐食が加速度的に進行する懸念がある。このほか、有害な水銀がプラント系外、大気に放出されることも好ましくない。
請求項1記載の発明は、被処理排ガス(1)と石灰分を含む脱硫吸収液(6)とを気液接触させる脱硫吸収部(26)と前記気液接触後の脱硫吸収液(6)を貯留する脱硫吸収液溜め部(11)とを備えた湿式排煙脱硫装置であって、前記脱硫吸収液溜め部(11)は、内部が外気と遮断されるように壁面で区画されており、該壁面を貫通して脱硫吸収液(6)中の亜硫酸分を酸化する酸化用ガスを供給する酸化用ガス供給部(9)と、脱硫吸収液(6)の液面よりも高い位置に設けられ、余剰の酸化用ガスを外部へ排出するための酸化用ガス排出部(12)とを有し、前記脱硫吸収部(26)は、前記脱硫吸収液溜め部(11)の脱硫吸収液(6)の液面よりも低い位置であって、前記酸化用ガス供給部(9)が設けられた壁面から離れた前記脱硫吸収液溜め部(11)の中央寄りに下端開口部(7b)を設けた水封管(7)を有することを特徴とする湿式排煙脱硫装置である。
本発明の作用を分かりやすくするため、図1と図3に示す構成例で説明する。
脱硫装置3の吸収液溜め部11の気相6bは水封管7の隔壁7aにより脱硫吸収部26と隔離されている。
脱硫吸収液6は、吸収液循環ポンプ5により吸収液溜め部11から吸引され、スプレノズル4を通じて脱硫吸収部26へ噴射されており、吸収液溜め部11では攪拌機10により、主に水封管7の壁面外側を循環している。このため脱硫装置3の脱硫吸収部26から落下して水封管7に流入する脱硫吸収液6の流れが上側から下側に向けて一方向に流れるので、水封管7の内部での脱硫吸収液6の沈降速度が早く、気泡が上昇しにくいという特性がある。
このため、脱硫装置3の吸収液中で生成する亜硫酸の酸化用ガス27が脱硫装置出口排ガス2に混入するのを防止し、脱硫装置3の後段に配置されるCO2回収装置17(図3参照)の入口におけるCO2濃度が低下することを防止でき、高効率なCO2回収ができる。
また、水銀が酸化用ガス27中に移動するなどして気相中に再放出されても、脱硫装置出口排ガス2とともに飛散して後段のCO2回収装置17に到達することを抑制できる。
吸収液溜め部11に供給する酸化用ガス27を酸素製造装置19で製造した高酸素濃度ガスにすれば、酸化用ガスを空気とした場合よりも供給ガス量が減少するので、酸化用空気ブロワを削減もしくは、ブロワを小容量にでき、さらに脱硫吸収液溜め部11の液面6aが上昇し、脱硫吸収液溜め部11の外へ溢流する等の問題が生じるのを防止できる。
酸化空気を酸化用ガス供給部9から供給する酸化用ガス27を酸素製造装置19で製造した高酸素濃度ガスにすれば、酸化用ガスとしての供給量を大幅に削減できる。即ち、少なくとも空気から酸化反応に寄与しない窒素等、酸素以外の成分に相当する量のガス供給量を削減できる。
さらに、脱硫吸収液溜め部11で用いる攪拌機10による気泡の攪拌・微細化も進みやすくなる。
さらに、亜硫酸の酸化に利用されず、気相6bに放出された余剰の酸素は、酸素燃焼システムの循環ラインに戻し、ボイラ13での燃焼用ガスとして利用できる。したがって、酸素製造装置19で生成した酸素を無駄なく有効利用できる。
(1)脱硫吸収液6の中に生成する亜硫酸の酸化用ガス27が脱硫装置出口ガス2の中に混入することがないため、CO2回収装置17の入口のガス中のCO2濃度が低下するのを防止し、CO2の回収率の低下を防止する効果がある。
(2)脱硫吸収液6から再放出する金属水銀が脱硫装置出口ガス2中に混入するのを防止することができる。また、脱硫吸収液6から再放出した水銀の系外・大気への放出、後段のCO2回収装置への流出を防ぐ効果がある。
(3)亜硫酸の酸化用ガスに高濃度な酸素を用いて、亜硫酸の酸化に利用されなかった余剰の酸素を燃焼装置13へ供給する循環ライン18に供給することで、酸化用ガスに空気を用いた場合よりも、供給ガス量を低減できる。したがって、ガス供給動力を低減できる。あわせて、脱硫吸収液面の上昇を防止して、吸収液溜め部のサイズをコンパクト化でき、設備コストを低減できる。また、過剰に供給した酸素をボイラ13の燃焼ガスに利用できるため、余分な酸素を使うことがなく、設備コスト低減の効果がある。
従来技術と共通する構成、作用については説明を省略する。
本実施例の酸素燃焼システムにおける脱硫装置の構成を図1に示す。
脱硫装置3は脱硫吸収部26と吸収液溜め部11からなる一体型構造であり、脱硫吸収部26の下端を脱硫吸収液溜め部11の吸収液の水面(液表面6a)下に設け、いわゆる水封管7を形成する。なお、脱硫吸収部26は、脱硫装置3に導入されるボイラ排ガス1とスプレノズル4から噴出される脱硫吸収液6とにより脱硫反応が行われる空塔領域と、脱硫吸収液6が滞留する吸収液溜め部11に挿入される水封管7内部であって、その下端開口部7bまでの水相領域を言い、吸収液溜め部11は水封管7から流出した脱硫吸収液6が対流する液相6aと気相6bからなる領域を言うこととする。
脱硫吸収部26の下端開口部の断面積を吸収液溜め部11の断面積以下とし、脱硫吸収部26の下端部に下方に開口部7bを有する水封管7を設けている。
また、下端開口部7bは、酸化用ガス供給部9が設けられた吸収液溜め部11の側壁面から離れた脱硫吸収液溜め部11の中央寄りに開口しており、また酸化用ガス供給部9の吸収液溜め部11内であって水封管7の底部に開口している。
また、図2(b)に、図1におけるA-A’線の断面矢視図を示す実施例として、水封管7や脱硫吸収液溜め部11が平面視で円形以外のケース、例えば四角の形状の場合を示す。 このように、特にA-A’線の矢視図の断面形状にこだわる必要はなく、水封管7の前記断面の面積が比較的小さい場合に酸化用ガス27が供給されるスペースが大きくなり、亜硫酸の酸化効率は高くなる。
酸化用ガス出口配管12に接続した水銀除去装置23は、例えば金チップ(水銀とアマルガムを形成し、固定される金属、例えば金(Au))で金属水銀を捕集することにより大気への放出を防止できる。
本発明の脱硫装置3を用いる燃焼システムの実施例を図3に示す。本実施例は図1に示した脱硫装置3の酸化用ガス27を高濃度な酸素とした場合の排ガス処理系を含むシステム構成を示したものである。
なお、前記循環ライン18の起点は図3の脱硝装置14からCO2回収装置17に至る排ガス流路上のいずれにあっても良く、途中に熱交換器15を介さなくとも良い。
したがって、吸収液溜め部11のサイズを従来型の脱硫装置3に比べて小さくでき、脱硫装置3の設備コストを低減することができる。
このとき、脱硫装置3の入口の排ガス1中のSO2濃度を500~10,000ppmとすると、燃焼に用いるO2の量に対して、脱硫吸収液6に含まれる亜硫酸の酸化に用いるO2の量は0.2~2.5%となる。
吸収液溜め部11の吸収液中における亜硫酸の酸化反応を十分に行わせるためには、化学量論的に必要な酸素の量に比べ、過剰な酸化用ガスを酸化用ガス供給部9から供給する必要がある。
従来の脱硫装置及び燃焼システムでは、仮に酸化用ガス供給部9から酸素を供給した場合、過剰に供給した分は脱硫装置3の出口排ガスとともに排出されてしまう無駄があった。
前記気相6bは酸化用ガス出口配管12に通じており、この配管12は循環ライン18に接続されているから、これらの経路を通じて脱硫装置3での余剰酸素は全て、ボイラ13での燃焼用ガスとして利用することができる。
こうして、酸素製造装置19から脱硫装置3に供給する酸素の量を最小限にできる。また、本実施例の脱硫系内で排ガス中に空気を供給しないことから、ボイラ13の出口の排ガスのCO2濃度が低下することを防止することができる。
なお、吸収液溜め部11の気相6b中に再放出された水銀は、水銀除去装置23を省略した場合でも、循環ライン18に戻されるので、大気や系外への放出は防止できる。
3 脱硫装置 4 スプレノズル
5 吸収液循環ポンプ 6 脱硫吸収液
7 水封管 8 ミストエリミネータ
9 酸化用ガス供給部 10 攪拌機
11 吸収液溜め部 12 酸化用ガス出口配管
13 ボイラ 14 脱硝装置
15 熱交換器 16 集塵装置
17 CO2回収装置 18 循環ライン
19 酸素製造装置 20 酸素供給ライン
21 酸素供給ライン 23 水銀除去装置
25 石炭等の燃料 26 脱硫吸収部
27 酸化用ガス(空気または酸素の気泡)
Claims (3)
- 被処理排ガス(1)と石灰分を含む脱硫吸収液(6)とを気液接触させる脱硫吸収部(26)と前記気液接触後の脱硫吸収液(6)を貯留する脱硫吸収液溜め部(11)とを備えた湿式排煙脱硫装置であって、
前記脱硫吸収液溜め部(11)は、内部が外気と遮断されるように壁面で区画されており、該壁面を貫通して脱硫吸収液(6)中の亜硫酸分を酸化する酸化用ガスを供給する酸化用ガス供給部(9)と、脱硫吸収液(6)の液面よりも高い位置に設けられ、余剰の酸化用ガスを外部へ排出するための酸化用ガス排出部(12)とを有し、
前記脱硫吸収部(26)は、前記脱硫吸収液溜め部(11)の脱硫吸収液(6)の液面よりも低い位置であって、前記酸化用ガス供給部(9)が設けられた壁面から離れた前記脱硫吸収液溜め部(11)の中央寄りに下端開口部(7b)を設けた水封管(7)を有すること
を特徴とする湿式排煙脱硫装置。 - 酸素製造装置(19)と、該酸素製造装置(19)で製造した酸素を用いて燃料を燃焼させる燃焼装置(13)と、該燃焼装置(13)から排出される排ガス流路に上流側から下流側に順次、脱硝装置(14)、前記燃焼装置(13)で用いる燃焼用ガスを予熱する熱交換器(15)、集塵装置(16)、請求項1記載の湿式排煙脱硫装置(3)及びCO2回収装置(17)を配置し、
湿式排煙脱硫装置(3)で浄化処理する前の排ガス流路から分岐させて前記燃焼装置(13)に排ガスを再循環させる循環ライン(18)を設け、
前記酸素製造装置(19)で製造した酸素を前記湿式排煙脱硫装置(3)の酸化用ガス供給部(9)に供給する酸素供給ライン(21)を設け、前記湿式排煙脱硫装置(3)の酸化用ガス排出部(12)を前記循環ライン(18)に接続したこと
を特徴とする燃焼システム。 - 酸素製造装置(19)で酸素を製造して、得られた酸素を燃焼装置(13)で燃料の燃焼に用い、該燃焼装置(13)から排出される排ガスを脱硝処理、燃焼用空気の予熱処理、集塵処理及び請求項1記載の湿式排煙脱硫装置(3)で脱硫処理した後、CO2回収処理をし、
湿式排煙脱硫処理前の排ガスを前記燃焼装置(13)に再循環させ、
前記酸素製造装置(19)で製造した酸素を前記湿式排煙脱硫装置(3)の吸収液溜め部(11)に酸化用ガスとして供給し、また、前記湿式排煙脱硫装置(3)の酸化用ガス排出部(12)からの酸化用ガスを前記燃焼装置(13)に戻すことを特徴とする燃焼方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012515650A JP5668244B2 (ja) | 2010-05-18 | 2010-12-27 | 排煙脱硫装置と燃焼システムと燃焼方法 |
AU2010353332A AU2010353332B2 (en) | 2010-05-18 | 2010-12-27 | Flue gas desulfurization device, combustion system and combustion method |
US13/697,118 US20130055937A1 (en) | 2010-05-18 | 2010-12-27 | Flue gas desulfurization device, combustion system and combustion method |
CA2809655A CA2809655A1 (en) | 2010-05-18 | 2010-12-27 | Flue gas desulfurization device, combustion system, and combustion method |
EP10851724A EP2572773A1 (en) | 2010-05-18 | 2010-12-27 | Flue gas desulfurization device, combustion system and combustion method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010114020 | 2010-05-18 | ||
JP2010-114020 | 2010-05-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011145160A1 true WO2011145160A1 (ja) | 2011-11-24 |
Family
ID=44991287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/007554 WO2011145160A1 (ja) | 2010-05-18 | 2010-12-27 | 排煙脱硫装置と燃焼システムと燃焼方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20130055937A1 (ja) |
EP (1) | EP2572773A1 (ja) |
JP (1) | JP5668244B2 (ja) |
AU (1) | AU2010353332B2 (ja) |
CA (1) | CA2809655A1 (ja) |
WO (1) | WO2011145160A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012076061A (ja) * | 2010-10-06 | 2012-04-19 | Ihi Corp | 酸素燃焼システムにおける排煙脱硫装置 |
US20130195728A1 (en) * | 2010-05-14 | 2013-08-01 | Houjie Sun | Wet flue gas desulfurization absorption tower for for power plant |
JP2013158735A (ja) * | 2012-02-07 | 2013-08-19 | Ihi Corp | 酸素燃焼システム用排煙脱硫装置及び酸素燃焼システム |
CN105879621A (zh) * | 2016-05-12 | 2016-08-24 | 大唐环境产业集团股份有限公司 | 一种实现近零排放的两段式双循环脱硫脱硝装置及方法 |
CN118371116A (zh) * | 2024-06-26 | 2024-07-23 | 宿迁启瑞环保科技有限公司 | 一种燃煤烟气除尘脱硫装置 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI125496B (fi) * | 2009-08-17 | 2015-10-30 | Valmet Technologies Oy | Menetelmä ja järjestely palamisolosuhteiden optimoimiseksi leijukerroskattilassa |
US10375901B2 (en) | 2014-12-09 | 2019-08-13 | Mtd Products Inc | Blower/vacuum |
CN104524933B (zh) * | 2014-12-17 | 2016-11-09 | 连云港东鼎实业有限公司 | 玻璃钢氧化空气输送管道 |
CN105169892B (zh) * | 2015-11-04 | 2017-10-13 | 江苏索普(集团)有限公司 | 熔硫废气洗净装置系统及其洗净工艺 |
CN107450614B (zh) * | 2017-08-09 | 2020-05-19 | 中国大唐集团科学技术研究院有限公司 | 石灰石/石灰湿法脱硫废水排放量实时精确控制系统 |
KR102059191B1 (ko) * | 2018-01-30 | 2019-12-24 | 두산중공업 주식회사 | 습식배연 탈황장치 및 이를 포함하는 배연처리 시스템 |
CN109432958A (zh) * | 2018-11-28 | 2019-03-08 | 江门市佐敦环保科技有限公司 | 一种含氨废气处理装置 |
CN109692551A (zh) * | 2019-01-25 | 2019-04-30 | 鲍可可 | 一种钙法烟气脱硫方法 |
CN111111384B (zh) * | 2019-11-12 | 2021-10-08 | 武汉华利浦防腐工程有限公司 | 一种盐酸再生排气系统 |
CN112090236A (zh) * | 2020-08-18 | 2020-12-18 | 湖南神农国油生态农业发展有限公司 | 一种护肤品生产设备的废气处理装置 |
CN112535939A (zh) * | 2020-11-24 | 2021-03-23 | 安徽格绿恩环保工程科技有限公司 | 一种污泥制砖用双碱法脱硫用循环式脱硫塔 |
CN113019098B (zh) * | 2021-03-03 | 2022-01-28 | 湛江开发区隆源矿业有限公司 | 一种工业烟气scr脱硝混合反应装置 |
CN113786680A (zh) * | 2021-10-12 | 2021-12-14 | 上海市计量测试技术研究院 | 一种工业废气中的二氧化碳吸附净化装置及其净化方法 |
CN114206475A (zh) * | 2021-11-11 | 2022-03-18 | 无锡星亿智能环保装备股份有限公司 | 废气塔 |
CN114669174A (zh) * | 2022-04-18 | 2022-06-28 | 江苏民生重工有限公司 | 一种节能高效逆流式氨法脱硫吸收塔 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0571726A (ja) | 1991-09-09 | 1993-03-23 | Kawasaki Heavy Ind Ltd | 燃焼ガスの処理方法及び装置 |
JPH05187609A (ja) | 1992-01-09 | 1993-07-27 | Mitsubishi Heavy Ind Ltd | 微粉炭焚きボイラの空気・排ガス系統 |
JPH0641826U (ja) * | 1991-02-07 | 1994-06-03 | 三菱重工業株式会社 | 亜硫酸ガス含有排ガス吸収塔 |
JPH08257347A (ja) * | 1995-03-22 | 1996-10-08 | Babcock Hitachi Kk | 湿式脱硫装置と方法 |
JPH09208277A (ja) * | 1996-01-31 | 1997-08-12 | Sumitomo Metal Ind Ltd | 石膏製造方法 |
JPH11290646A (ja) * | 1998-04-07 | 1999-10-26 | Babcock Hitachi Kk | 湿式排煙脱硫方法と装置 |
JP2001120948A (ja) * | 1999-10-27 | 2001-05-08 | Babcock Hitachi Kk | 湿式排ガス脱硫装置 |
JP2007147162A (ja) | 2005-11-28 | 2007-06-14 | Electric Power Dev Co Ltd | 酸素燃焼ボイラの燃焼制御方法及び装置 |
JP2007147161A (ja) | 2005-11-28 | 2007-06-14 | Electric Power Dev Co Ltd | 燃焼装置の排ガス処分方法及び装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4828486A (en) * | 1980-04-04 | 1989-05-09 | Babcock Hitachi Kabushiki Kaisha | Fluidized bed combustor and a method of operating same |
JPS597026U (ja) * | 1982-07-06 | 1984-01-18 | 石川島播磨重工業株式会社 | ガス吸収装置 |
US7771685B2 (en) * | 2007-04-26 | 2010-08-10 | Marsulex Environmental Technologies, Corp | Process and system for removing hydrogen sulfide and mercaptans in ammonia-based desulfurization systems |
DE102008009129A1 (de) * | 2008-02-14 | 2009-08-20 | Hitachi Power Europe Gmbh | Kohlekraftwerk und Verfahren zum Betrieb des Kohlekraftwerkes |
JP5178453B2 (ja) * | 2008-10-27 | 2013-04-10 | 株式会社日立製作所 | 酸素燃焼ボイラ及び酸素燃焼ボイラの制御方法 |
US8795416B2 (en) * | 2009-10-12 | 2014-08-05 | Babcock & Wilcox Power Generation Group, Inc. | Segregated in-situ forced oxidation wet flue gas desulfurization for oxygen-fired fossil fuel combustion |
JP5437151B2 (ja) * | 2010-04-27 | 2014-03-12 | バブコック日立株式会社 | 排煙脱硫装置及びこれを備えた酸素燃焼装置と方法 |
-
2010
- 2010-12-27 JP JP2012515650A patent/JP5668244B2/ja not_active Expired - Fee Related
- 2010-12-27 AU AU2010353332A patent/AU2010353332B2/en not_active Ceased
- 2010-12-27 WO PCT/JP2010/007554 patent/WO2011145160A1/ja active Application Filing
- 2010-12-27 CA CA2809655A patent/CA2809655A1/en not_active Abandoned
- 2010-12-27 EP EP10851724A patent/EP2572773A1/en not_active Withdrawn
- 2010-12-27 US US13/697,118 patent/US20130055937A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0641826U (ja) * | 1991-02-07 | 1994-06-03 | 三菱重工業株式会社 | 亜硫酸ガス含有排ガス吸収塔 |
JPH0571726A (ja) | 1991-09-09 | 1993-03-23 | Kawasaki Heavy Ind Ltd | 燃焼ガスの処理方法及び装置 |
JPH05187609A (ja) | 1992-01-09 | 1993-07-27 | Mitsubishi Heavy Ind Ltd | 微粉炭焚きボイラの空気・排ガス系統 |
JPH08257347A (ja) * | 1995-03-22 | 1996-10-08 | Babcock Hitachi Kk | 湿式脱硫装置と方法 |
JPH09208277A (ja) * | 1996-01-31 | 1997-08-12 | Sumitomo Metal Ind Ltd | 石膏製造方法 |
JPH11290646A (ja) * | 1998-04-07 | 1999-10-26 | Babcock Hitachi Kk | 湿式排煙脱硫方法と装置 |
JP2001120948A (ja) * | 1999-10-27 | 2001-05-08 | Babcock Hitachi Kk | 湿式排ガス脱硫装置 |
JP2007147162A (ja) | 2005-11-28 | 2007-06-14 | Electric Power Dev Co Ltd | 酸素燃焼ボイラの燃焼制御方法及び装置 |
JP2007147161A (ja) | 2005-11-28 | 2007-06-14 | Electric Power Dev Co Ltd | 燃焼装置の排ガス処分方法及び装置 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130195728A1 (en) * | 2010-05-14 | 2013-08-01 | Houjie Sun | Wet flue gas desulfurization absorption tower for for power plant |
JP2012076061A (ja) * | 2010-10-06 | 2012-04-19 | Ihi Corp | 酸素燃焼システムにおける排煙脱硫装置 |
JP2013158735A (ja) * | 2012-02-07 | 2013-08-19 | Ihi Corp | 酸素燃焼システム用排煙脱硫装置及び酸素燃焼システム |
CN105879621A (zh) * | 2016-05-12 | 2016-08-24 | 大唐环境产业集团股份有限公司 | 一种实现近零排放的两段式双循环脱硫脱硝装置及方法 |
CN118371116A (zh) * | 2024-06-26 | 2024-07-23 | 宿迁启瑞环保科技有限公司 | 一种燃煤烟气除尘脱硫装置 |
Also Published As
Publication number | Publication date |
---|---|
EP2572773A1 (en) | 2013-03-27 |
US20130055937A1 (en) | 2013-03-07 |
AU2010353332A1 (en) | 2012-11-22 |
JPWO2011145160A1 (ja) | 2013-07-22 |
AU2010353332B2 (en) | 2013-09-26 |
JP5668244B2 (ja) | 2015-02-12 |
CA2809655A1 (en) | 2011-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5668244B2 (ja) | 排煙脱硫装置と燃焼システムと燃焼方法 | |
US5674459A (en) | Hydrogen peroxide for flue gas desulfurization | |
JP6223654B2 (ja) | 排煙脱硫装置 | |
RU2459655C2 (ru) | Устройство и способ очистки дымовых газов | |
CN106659971A (zh) | 用于从排气中除去污染物的方法和装置 | |
WO2014156985A1 (ja) | 海水排煙脱硫装置とその運用方法 | |
JP5479741B2 (ja) | 湿式排煙脱硫装置 | |
JP4893617B2 (ja) | 水銀除去装置、及び水銀除去方法 | |
CN105311946A (zh) | 一种烟气脱硝脱硫洗涤系统及脱硝脱硫方法 | |
JP5234783B2 (ja) | 湿式排煙脱硫装置 | |
JP5437151B2 (ja) | 排煙脱硫装置及びこれを備えた酸素燃焼装置と方法 | |
WO2001021287A1 (en) | Flue gas scrubbing method and gas-liquid contractor therefor | |
CN105148698A (zh) | 锅炉烟气脱硫脱硝系统 | |
WO2014196458A1 (ja) | 海水脱硫装置及び海水脱硫システム | |
JP2001170444A (ja) | 湿式排煙脱硫装置 | |
KR20190091903A (ko) | 습식배연 탈황장치 | |
JP4719117B2 (ja) | 排ガス処理方法 | |
JP2007050334A (ja) | 排ガス浄化方法及び設備 | |
JP4933121B2 (ja) | 分離された洗浄液溜めを備えた燃焼排ガス用浄化装置 | |
JPH10118451A (ja) | 排煙処理装置及び排煙処理方法 | |
JP3842706B2 (ja) | 湿式排煙脱硫装置と方法 | |
JP2015208738A (ja) | 排煙脱硫装置 | |
CN118079624A (zh) | 烟气脱硫脱硝除尘一体反应塔及烟气一体化处理方法 | |
JP3498803B2 (ja) | 湿式排煙脱硫装置 | |
KR20060101290A (ko) | 본질적으로 수평인 통과 흐름을 구비하는 연도 가스 정화장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10851724 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012515650 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2809655 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13697118 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010851724 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2010353332 Country of ref document: AU Date of ref document: 20101227 Kind code of ref document: A |