WO2011142448A1 - 印刷機および印刷方法 - Google Patents

印刷機および印刷方法 Download PDF

Info

Publication number
WO2011142448A1
WO2011142448A1 PCT/JP2011/061019 JP2011061019W WO2011142448A1 WO 2011142448 A1 WO2011142448 A1 WO 2011142448A1 JP 2011061019 W JP2011061019 W JP 2011061019W WO 2011142448 A1 WO2011142448 A1 WO 2011142448A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent
ink
layer
unit
radiation
Prior art date
Application number
PCT/JP2011/061019
Other languages
English (en)
French (fr)
Inventor
山本 隆治
和司 貴船
Original Assignee
大日本スクリーン製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本スクリーン製造株式会社 filed Critical 大日本スクリーン製造株式会社
Priority to JP2012514840A priority Critical patent/JP5805633B2/ja
Priority to US13/697,327 priority patent/US8851658B2/en
Publication of WO2011142448A1 publication Critical patent/WO2011142448A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/005Arrays characterized by the distribution or form of lenses arranged along a single direction only, e.g. lenticular sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2107Ink jet for multi-colour printing characterised by the ink properties
    • B41J2/2114Ejecting transparent or white coloured liquids, e.g. processing liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/21Ink jet for multi-colour printing
    • B41J2/2132Print quality control characterised by dot disposition, e.g. for reducing white stripes or banding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/24Stereoscopic photography by simultaneous viewing using apertured or refractive resolving means on screens or between screen and eye
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/06Veined printings; Fluorescent printings; Stereoscopic images; Imitated patterns, e.g. tissues, textiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/0045After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using protective coatings or film forming compositions cured by mechanical wave energy, e.g. ultrasonics, cured by electromagnetic radiation or waves, e.g. ultraviolet radiation, electron beams, or cured by magnetic or electric fields, e.g. electric discharge, plasma

Definitions

  • the present invention relates to a printing machine and a printing method for forming a printed matter having a concavo-convex shape on a printing surface, and more specifically, for example, so-called 3D printing in which a lenticular lens is formed on a printing surface, and concavo-convex formation on a printing surface.
  • the present invention relates to a printing machine and a printing method for performing pseudo emboss printing.
  • 3D printing in which a lenticular lens is formed on a printing surface and pseudo-emboss printing in which irregularities are formed on a printing surface have been proposed.
  • 3D printing refers to a printed material in which a lenticular lens is formed on a printing surface to give a stereoscopic effect to the image, or the image is made different depending on the viewing angle.
  • Patent Documents 1 and 2 are known.
  • Pseudo-embossed printing is intended to express a three-dimensional feeling or a high-quality feeling by forming irregularities on the printing surface
  • Patent Document 3 is known. These are all intended to form a structure having a predetermined shape on the printing surface by a printing technique. Since these structures formed in the printing process are desirably solidified at an early stage from the viewpoint of productivity, ultraviolet curable ink is used for printing, and solidification is performed by irradiating ultraviolet rays after printing. Is called.
  • the present invention has been made in view of the above problems, and performs transparent structure formation such as lenticular lens formation and pseudo-emboss printing for 3D printing even on paper having ink permeability such as plain paper. Therefore, it is an object of the present invention to provide a printing machine and a printing method that can prevent bleeding on the back surface and a strange odor due to ink.
  • the invention according to claim 1 is an undercoating step of forming a thin undercoat layer using a radiation curable transparent ink on a printing paper having a property of penetrating the radiation curable ink, and radiation is applied to the formed undercoat layer.
  • Undercoat curing process that solidifies by irradiation, transparent structure formation process that forms a desired transparent structure using a radiation-curable transparent ink on the solidified undercoat layer, and then irradiation with additional radiation
  • a transparent structure curing step for curing the transparent structure is an undercoating step of forming a thin undercoat layer using a radiation curable transparent ink on a printing paper having a property of penetrating the radiation curable ink, and radiation is applied to the formed undercoat layer.
  • Undercoat curing process that solidifies by irradiation
  • transparent structure formation process that forms a desired transparent structure using a radiation-curable transparent ink on the solidified undercoat layer, and then irradiation with additional radiation
  • the invention according to claim 2 is the printing method according to claim 1, wherein the transparent structure is a lenticular lens or pseudo emboss.
  • the transparent structure curing step in the printing method according to the first or second aspect, is irradiated with a relatively weak radiation so that the transparent structure is in a semi-cured state and is shaped. It is characterized by comprising a first curing step, and a second curing step for completely curing the transparent structure by irradiating relatively strong radiation after the first curing step.
  • the invention according to claim 4 is the printing method according to claim 1, wherein the undercoat layer has a thickness of 10 ⁇ m or less.
  • the invention according to claim 5 is a printing machine, and relatively moves a discharge unit that discharges fine droplets of radiation-curable transparent ink toward a substrate, and the discharge unit and the substrate.
  • a moving mechanism a curing unit that irradiates the transparent ink applied to the base material from the ejection unit to cure the transparent ink; and a printing control that controls the ejection unit, the movement mechanism, and the curing unit.
  • the printing control unit supplies a predetermined amount of transparent ink to the base material, and then irradiates the transparent ink with radiation to cure the transparent structure on the base material.
  • the transparent structure formation control unit for forming the transparent structure and the base material are supplied with a smaller amount of transparent ink than the predetermined amount in the transparent structure formation control unit, and then the transparent ink is irradiated with radiation. And cured on the substrate
  • a subbing layer formation control unit for forming an undercoat layer of transparent ink characterized in that it comprises a.
  • the invention according to claim 6 is a printing machine, wherein the first supply unit that supplies the radiation curable transparent ink to the substrate and the transparent ink supplied by the first supply unit are irradiated with radiation to be cured.
  • An undercoat layer forming unit that has a first curing unit and forms an undercoat layer of transparent ink; a second supply unit that discharges fine droplets of radiation curable transparent ink toward the substrate; and the second supply unit.
  • a transparent structure forming part that has a second curing part that cures the discharged transparent ink by irradiating with radiation, and that forms a transparent structure using the transparent ink; and the undercoat layer forming part and the transparent structure forming part A moving mechanism that moves relative to the substrate; and a printing control unit that controls the undercoat layer forming unit, the transparent structure forming unit, and the moving mechanism, and the printing control unit includes: Base material by transparent structure forming part A transparent structure formation control unit that supplies a predetermined amount of transparent ink to the transparent ink and then forms a transparent structure on the substrate by irradiating and curing the transparent ink, and forming the transparent structure An amount of the transparent ink smaller than the predetermined amount by the control unit is supplied to the base material by the undercoat layer forming unit, and then the transparent ink is irradiated with radiation to be cured and is applied onto the base material.
  • An undercoat layer formation control unit for forming an undercoat layer of transparent ink.
  • the invention according to claim 7 is the printing machine according to claim 5, wherein the transparent structure has a lens layer including a spacer layer and a microlens layer, and the microlens layer is formed.
  • the intensity of the radiation irradiated from the cured portion is smaller than the intensity of the radiation irradiated from the cured portion when forming the spacer layer.
  • the invention according to claim 8 is the printing machine according to claim 6, wherein the transparent structure has a lens layer including a spacer layer and a microlens layer, and the microlens layer is formed.
  • the printing machine wherein the intensity of radiation irradiated from the second curing unit is smaller than the intensity of radiation irradiated from the second curing unit when the spacer layer is formed.
  • the invention according to claim 9 is the printing machine according to claim 5 or 6, further comprising another discharge unit that discharges fine droplets of colored ink toward the substrate to form an image layer. It is further provided with the feature.
  • the printing machine and the printing method of the present invention it is possible to perform transparent structure formation such as lenticular lens formation and pseudo-emboss printing for 3D printing even on plain paper such as plain paper. And there is no occurrence of bleeding on the back surface or odor due to UV ink.
  • FIG. 1 is a front view of an ink jet printer according to a first embodiment. It is a figure which shows the internal structure of a head unit. It is a figure which shows the flow of formation of a lens layer. It is sectional drawing which shows the formation process of a lens layer. It is sectional drawing which shows the formation process of a lens layer. It is sectional drawing which shows the formation process of a lens layer. It is sectional drawing which shows the formation process of a lens layer. It is sectional drawing which shows the formation process of a lens layer. It is a front view of the inkjet printer which concerns on 2nd Embodiment. It is a front view of the inkjet printer which concerns on 3rd Embodiment. It is a figure which shows the internal structure of a head unit.
  • FIG. 1 is a front view showing an ink jet printer 1 as a printing machine according to a first embodiment of the present invention.
  • the ink jet printer 1 performs color printing by an ink jet method on a (+ Z) main surface 91 (hereinafter, referred to as “upper surface 91”) of a base material 9 (for example, plain paper) that is permeable to ink.
  • the base material 9 on which the image is printed is used for, for example, a catalog or a magazine, particularly a cover.
  • an inkjet printer 1 includes a holding unit 2 that holds a base material 9, a head unit 3 that discharges ink droplets toward the base material 9, and a head moving mechanism 4 that moves the head unit 3. And a print control unit 5 for controlling each operation of these components.
  • the head moving mechanism 4 includes a main scanning mechanism 41 that moves the head unit 3 in the X direction, which is the main scanning direction, and a Y direction that is perpendicular to the X direction and horizontal (hereinafter referred to as “sub-scanning direction”). ) Is provided.
  • the print control unit 5 includes an undercoat layer control unit 51 that controls an operation for forming an undercoat layer 94, which will be described later, and a transparent structure that controls an operation for forming the lens layer 95 of the lenticular lens that is a transparent structure. And a body formation control unit 52.
  • FIG. 2 is a diagram showing an internal configuration of the head unit 3.
  • the cover 30 of the head unit 3 is drawn with a broken line.
  • the head unit 3 has a discharge unit 31 (hereinafter referred to as “transparent ink discharge unit 31”) that discharges transparent ink microdroplets toward the substrate 9, and colored ink microdroplets toward the substrate 9.
  • Another discharge section 32 (hereinafter referred to as “colored ink discharge section 32”) for discharging, and two curing sections 33 disposed on both sides in the X direction of the transparent ink discharge section 31 and the colored ink discharge section 32 are provided.
  • the transparent ink discharge unit 31 is arranged on the ( ⁇ X) side of the colored ink discharge unit 32 and has a plurality of discharge ports from which transparent ink is discharged.
  • the colored ink discharge unit 32 includes four discharge mechanisms 32 a to 32 d arranged in the X direction, and each of the discharge mechanisms 32 a to 32 d has a plurality of discharge ports, like the colored ink discharge unit 32.
  • the discharge mechanism 32a located closest to the (+ X) side in FIG. 2 discharges K (black) colored ink
  • the discharge mechanism 32b on the ( ⁇ X) side of the discharge mechanism 32a uses C ( (Cyan) colored ink is discharged
  • the ( ⁇ X) side discharge mechanism 32c of the discharge mechanism 32b discharges M (magenta) color ink
  • the ( ⁇ X) side discharge mechanism 32d of the discharge mechanism 32c is Y ( Yellow) colored ink is ejected.
  • Transparent ink is radiation curable flexible ink, and colored ink is also radiation curable ink.
  • the curing unit 33 cures the transparent ink and the colored ink by irradiating the transparent ink and the colored ink applied on the substrate 9 from the transparent ink ejection unit 31 and the colored ink ejection unit 32 with radiation.
  • an ultraviolet curable ink is used as the transparent ink and the colored ink, and an ultraviolet ray is emitted as the radiation as the curing part 33.
  • an electron beam curable ink is used to cure the curing part. What emits an electron beam as 33 may be used.
  • the base material 9 that is a printing object is plain paper that is permeable to ink, and a multi-viewpoint image is printed on the surface in advance.
  • a cross section of the substrate 9 is shown in FIG.
  • the multi-viewpoint image constitutes a 3D image corresponding to the lenticular lens to be formed, and is printed in advance with a general ink, for example, an oily or water-based ink, using another printing machine, and dried.
  • the ink in the printed portion permeates the base material 9 to form an image layer 93 as shown in FIG.
  • the print controller 5 controls each part according to the flow shown in FIG. That is, first, the transparent ink is discharged from the transparent ink discharge portion 31 to the whole substrate 9 to perform printing so as to have a thin and uniform thickness (step S1).
  • the transparent ink penetrates into the base material 9 (including the image layer 93) as shown in FIG. 4B, and forms an undercoat layer 94 on the surface of the base material 9.
  • the undercoat layer 94 is completely cured by irradiating with ultraviolet rays through the curing unit 33 that passes immediately after the ejection for forming the undercoat layer 94 (step S2).
  • the undercoat layer 94 has a very thin thickness, for example (less than 10 ⁇ m), and is formed only in the vicinity of the surface of the substrate 9, so that it can be completely cured by ultraviolet irradiation from above.
  • steps S1 and S2 are executed substantially simultaneously by the operation in which the main scanning in the X direction and the sub scanning in the Y direction of the transparent ink discharge unit 31 and the curing unit 33 are repeated.
  • the operations for forming the undercoat layer 94 are controlled by the undercoat layer formation control unit 51 in the print control unit 5 shown in FIG.
  • the undercoat layer 94 is drawn so that the transparent ink completely penetrates into the base material 9 (including the image layer 93) and is formed only in the inside. May form a thin layer made of only transparent ink on the surface of the substrate 9. Even in that case, the solidification of the transparent ink on the surface of the substrate 9 is performed without any problem.
  • the image layer 93 is formed on the surface of the substrate 9.
  • a lens layer 95 of a lenticular lens having a thickness of about 300 ⁇ m is formed.
  • the lens layer 95 includes a spacer layer 96 having a substantially uniform thickness (about 150 ⁇ m) over the entire area, and a microlens layer 97 (see FIG. 5) disposed on the spacer layer 96.
  • fine droplets of transparent ink are applied on the undercoat layer 94 (including the image layer 93) formed on the substrate 9, and as shown in FIG. 4C, the main body 960 of the spacer layer 96 is obtained. Is formed (step S10).
  • the main body 960 is cured by being irradiated with ultraviolet rays by the curing unit 33 (see FIG. 2) (step S11).
  • steps S11 and S12 are also performed substantially simultaneously by the operation in which the main scanning in the X direction and the sub-scanning in the Y direction of the transparent ink discharge unit 31 and the curing unit 33 are repeated.
  • the surface of the main body 960 has irregularities because the center of the position where the fine droplets of the transparent ink have landed rises more than the surroundings.
  • the transparent ink may be discharged and cured a plurality of times at each position of the image layer 93 as necessary. That is, steps S10 and S11 may be repeated a plurality of times.
  • a fine droplet of transparent ink is applied to the main body 960 over almost the entire surface.
  • the fine droplets of the transparent ink applied on the main body 960 spread around and flow into the recesses on the surface of the main body 960 to form the surface layer 961 of the spacer layer 96 (step S1). S12).
  • the surface of the surface layer 961 is a smooth surface located at the same height from the upper surface 91 of the substrate 9 over the entire surface.
  • Step S13 the transparent ink applied on the main body 960 is not irradiated with ultraviolet rays from the curing unit 33, but the strength is small enough that the fluidity of the transparent ink is not lost (that is, the main body 960).
  • the ultraviolet ray may be irradiated at an intensity smaller than the intensity of the ultraviolet ray irradiated when the is formed.
  • one or a plurality of discharge openings corresponding to one cylindrical lens 971 is set as the discharge opening group, and the ( ⁇ Y The head unit 3 is main-scanned in a state where the discharge of the transparent ink from the even-numbered discharge port group is stopped while discharging the transparent ink from the odd-numbered discharge port group from the side. Then, by irradiating the transparent ink applied on the spacer layer 96 from the odd-numbered ejection port group with ultraviolet rays from the curing unit 33, as shown in FIG. 5B, in the main scanning direction (X direction). A plurality of extending cylindrical lenses 971 are formed (step S14).
  • the plurality of cylindrical lenses 971 are arranged in the Y direction while being separated from each other, and the distance in the Y direction between two adjacent cylindrical lenses 971 (that is, the distance in the Y direction of the region where the spacer layer 96 is exposed) is: It is approximately equal to the width of the cylindrical lens 971 in the Y direction.
  • step S14 since the intensity of the ultraviolet rays irradiated from the curing unit 33 is smaller than the intensity of the ultraviolet rays irradiated from the curing unit 33 when the main body 960 of the spacer layer 96 is formed, the ultraviolet rays are discharged onto the spacer layer 96.
  • the resulting transparent ink is cured to some extent but has fluidity (hereinafter referred to as “semi-cured state”). For this reason, a plurality of dots of transparent ink arranged in the X direction in an area corresponding to one cylindrical lens 971 are combined (that is, they become familiar with adjacent dots).
  • the surface of the cylindrical lens 971 is prevented from being uneven in the X direction, which is the longitudinal direction of the cylindrical lens 971, and becomes a smooth curved surface. Further, since the dots of the semi-cured transparent ink spread in the Y direction, the width in the Y direction of the fine droplets of the transparent ink ejected from the transparent ink ejection unit 31 is made smaller than the design width of the cylindrical lens 971.
  • the intensity of the ultraviolet light irradiated from the curing part 33 in step S14 is about 5% to 20% (more preferably) of the intensity of the ultraviolet light irradiated from the curing part 33 when the spacer layer 96 is formed. Is about 5% to 10%).
  • the head unit 3 is scanned in a state where the discharge of the transparent ink from the transparent ink discharge unit 31 is stopped, and the cylindrical lens 971 in a semi-cured state is scanned from the curing unit 33.
  • Ultraviolet rays are irradiated and the cylindrical lens 971 is cured (step S15).
  • step S15 the intensity of the ultraviolet ray irradiated from the curing unit 33 is larger than the intensity of the ultraviolet ray in step S14, and is equal to the intensity of the ultraviolet ray when the spacer layer 96 is formed.
  • steps S14 and S15 may be repeated a plurality of times as necessary in order to make the cylindrical lens 971 have a predetermined thickness.
  • the transparent ink discharge unit 31 switches the discharge port group for discharging the transparent ink (steps S16 and S17). That is, the discharge of the transparent ink from the odd-numbered discharge port group from the ( ⁇ Y) side is stopped, and the discharge of the transparent ink is started from the even-numbered discharge port group. Then, returning to step S14, the second steps S14 and S15 are performed, and as shown in FIG. 5D, between the plurality of cylindrical lenses 971 formed by the first steps S14 and S15. A plurality of cylindrical lenses 971 are formed on the spacer layer 96, and the formation of the microlens layer 97 is completed as shown in FIG.
  • step S14 to S16 that is, the formation of the lens layer 95 is completed.
  • the cylindrical lens 971 formed at the second time is in contact with the adjacent cylindrical lens 971 formed at the first time in the Y direction.
  • a lens layer 95 made of transparent ink is formed on the image layer 93 on the substrate 9.
  • the operations for forming these lens layers 95 are controlled by the transparent structure formation control unit 52 in the print control unit 5.
  • the lens layer 95 is a lenticular lens having a thickness of about 300 ⁇ m, and includes a spacer layer 96 formed on the image layer 93 with a predetermined thickness, and a microlens layer 97 disposed on the spacer layer 96. .
  • the thickness of the spacer layer 96 is approximately uniform over the entire area of the lens layer 95, and is about 150 ⁇ m in the present embodiment.
  • the microlens layer 97 includes a plurality of cylindrical lenses 971 arranged in a predetermined arrangement direction (Y direction).
  • the transparent ink is discharged from the transparent ink discharge portion 31 to the entire base material 9. Since the undercoat layer 94 is formed on the surface of the base material 9 and the undercoat layer 94 is irradiated with ultraviolet rays and completely cured, the base material 9 is transparent for forming a lenticular lens thereafter. Even if a large amount of ink is supplied, the transparent ink does not penetrate into the base material 9 and contributes to the formation of the lenticular lens on the surface of the base material 9.
  • the undercoat layer 94 only needs to have a thickness that can prevent the transparent ink at the time of lenticular lens formation from penetrating the base material 9 more than necessary.
  • the undercoat layer 94 is drawn thicker than the image layer 93.
  • the undercoat layer 94 may be thinner.
  • the spacer layer 96 is provided between the microlens layer 97 and the image layer 93, so that the space between the surface of the plurality of cylindrical lenses 971 and the image layer 93 is provided.
  • the plurality of cylindrical lenses 971 of the microlens layer 97 can be easily focused on the image layer 93. Thereby, the image of the image layer 93 can be clearly seen through the lens layer 95.
  • a lenticular lens having a plurality of cylindrical lenses 971 having a desired surface shape without being affected by the surface shape of the image layer 93 that is, The lens layer 95
  • the intensity of ultraviolet rays irradiated from the curing portion 33 when forming the microlens layer 97 is irradiated from the curing portion 33 when forming the main body portion 960 of the spacer layer 96.
  • Less than the intensity of ultraviolet light thereby, the surface of the cylindrical lens 971 is prevented from being uneven in the longitudinal direction, and the uniformity of the height of the cylindrical lens 971 in the longitudinal direction is improved.
  • the transparent ink immediately after being discharged onto the main body 960 of the spacer layer 96 is not irradiated with ultraviolet rays (or the main body 960 is formed). In this case, the thickness of the spacer layer 96 can be made constant with high accuracy. As a result, the cylindrical lens 971 can be easily formed. Furthermore, the visual effect imparted to the image on the substrate 9 can be improved.
  • the surface layer 961 may be omitted as long as the surface can be made approximately smooth when forming the main body 960.
  • the intensity of the ultraviolet ray irradiated from the curing unit 33 when forming the microlens layer 97 is set smaller than the intensity of the ultraviolet ray irradiated from the curing unit 33 when forming the spacer layer 96.
  • the ink jet printer 1 is used for forming the lens layer 95 on various base materials 9.
  • the transparent ink used for forming the lens layer 95 is a flexible ink, it is possible to suppress the deformation of the base material 9 from being inhibited by the lens layer 95. Therefore, the ink jet printer 1 is particularly suitable for forming the lens layer 95 on the thin sheet-like (that is, film-like) base material 9 that is easily deformed as used for wrapping a car body such as an automobile or a train.
  • the base material 9 that is a printing object is a substrate on which a multi-viewpoint image is printed in advance by another printing machine or the like.
  • the viewpoint image can also be printed.
  • the color ink discharge unit 32, the curing unit 33, and the head moving mechanism 4 are controlled by the print control unit 5, and the color ink discharge unit 32 discharges the color ink (+ X).
  • the colored ink is cured by irradiating the colored ink discharged onto the substrate 9 from the ( ⁇ X) side curing section 33 that moves continuously in the direction and moves with the colored ink ejection section 32.
  • the colored ink discharge unit 32 moves by a predetermined distance in the (+ Y) direction after reaching the (+ X) side of the base material 9. Subsequently, the colored ink discharge unit 32 continuously moves in the ( ⁇ X) direction, and the colored ink discharged onto the base material 9 is cured by the ultraviolet rays from the (+ X) side curing unit 33.
  • the colored ink discharge section 32 moves by a predetermined distance in the (+ Y) direction after reaching the ( ⁇ X) side of the substrate 9.
  • the main scanning in the X direction and the sub scanning in the Y direction of the colored ink discharge unit 32 and the curing unit 33 are repeated, and as shown in FIG.
  • An image layer 93 made of colored ink is formed on the upper surface 91.
  • the thickness of the colored ink used for printing the multi-viewpoint image is set such that it can be completely cured by ultraviolet irradiation.
  • the colored ink is ejected from the head unit 3 to form the image layer 93 on the substrate 9, and the transparent ink is ejected from the head unit 3 to form the lens layer 95.
  • the image layer 93 on the substrate 9 and the transparent ink ejection part 31 of the head unit 3 can be easily aligned with high accuracy.
  • the positioning of the lens layer 95 with respect to the image layer 93 is realized easily and with high accuracy.
  • the printing of the multi-viewpoint image may be performed as follows, after the image is printed on the entire base material 9, and then the lenticular lens may be formed on the entire base material 9.
  • the color ink ejection unit 32 ejects colored ink to print an image while the head unit continuously moves in the (+ X) direction, and then the head unit moves transparently in the ( ⁇ X) direction.
  • the ink discharge unit 31 discharges transparent ink to perform undercoat layer formation and undercoat layer curing, and then the head unit moves in the (+ Y) direction.
  • FIGS. 6A to 6C are cross-sectional views showing the size and surface shape of the cylindrical lens 971 when the size of the microdroplet of the transparent ink is changed.
  • the parallel droplets are not attached to the micro droplet 99 (the same applies to FIG. 7).
  • 6 (A) to 6 (C) depict that the discharge port group corresponding to one cylindrical lens 971 includes three discharge ports, and three micro droplets 99 indicated by solid lines in the drawing. Thus, one cylindrical lens 971 indicated by a broken line is formed.
  • the micro droplet 99 in FIG. 6A is the smallest and the micro droplet 99 in FIG. 6C is the largest.
  • the cylindrical lens 971 in FIG. 6A is the smallest (that is, the height from the image layer 93 is low), and the curvature at the center in the Y direction that is the width direction is also the smallest.
  • the cylindrical lens 971 in FIG. 6C is the largest, and the curvature at the center in the Y direction is the largest.
  • each cylindrical lens 971 is formed by a micro droplet 99 of transparent ink of the same size, but each cylindrical lens 971 is as shown in FIG. In addition, it may be formed by fine droplets of a plurality of types of transparent ink.
  • micro droplets 99a to 99c of transparent inks having different sizes ejected at respective positions on the image layer 93 are drawn in a circle. Actually, these micro droplets 99a to 99c are combined to form a cylindrical lens 971 having a surface shape indicated by a broken line.
  • the small droplets 99 a and 99 b of the transparent ink ejected to a position close to the planned position to be the surface of the cylindrical lens 971 are reduced so that the surface of the cylindrical lens 971
  • the number of transparent ink microdroplets necessary for forming each cylindrical lens 971 can be increased without significantly increasing the number of the transparent ink.
  • the lens 971 can be formed with high shape accuracy.
  • FIG. 8 is a front view showing an inkjet printer 1a according to the second embodiment.
  • the sub scanning mechanism for moving the head unit 3 in the Y direction, which is the sub scanning direction, from the ink jet printer 1 shown in FIG. ) Side is provided with a holding unit moving mechanism 45 that moves the holding unit 2 in the sub-scanning direction.
  • the other configuration of the inkjet printer 1a is the same as that of the inkjet printer 1 shown in FIGS. 1 and 2, and the same reference numerals are given to the corresponding configurations in the following description.
  • the base material 9 is replaced with the sub-scan of the head unit 3 performed for each main scan of the head unit 3.
  • the holding unit 2 is moved in the sub-scanning direction by a predetermined distance.
  • Other operations are the same as those in the first embodiment.
  • the lens layer 95 including the undercoat layer 94, the spacer layer 96, and the microlens layer 97 is formed on the image layer 93 on the substrate 9, thereby A visual effect can be easily given to the image on the material 9.
  • FIG. 9 is a front view showing an ink jet printer 1b according to the third embodiment.
  • the ink jet printer 1b includes a head unit 3a, a feed mechanism 4a that moves the base material 9 in the ( ⁇ X) direction below the head unit 3a (on the ( ⁇ Z) side), and a print control unit 5.
  • the feeding mechanism 4 a has two belt rollers 47 connected to a motor (not shown) and a belt 48 hung between the two belt rollers 47. Further, on the (+ X) side and the ( ⁇ Z) side of the feed mechanism 4a, a supply unit 61 that holds the roll-shaped base material 9 (supply roll) is provided, and the ( ⁇ X) side and (( On the ⁇ Z) side, a winding unit 62 for holding the roll-shaped substrate 9 (winding roll) is provided.
  • the base material 9 drawn out from the supply unit 61 is held on the belt 48 which is a holding unit, passes along with the belt 48 below the head unit 3a, moves to the ( ⁇ X) side, and takes up the winding unit 62. It is wound up by.
  • the term “base material 9” refers to a part in the middle of conveyance (that is, a part of the base material 9 on the belt 48).
  • FIG. 10 is a diagram showing an internal configuration of the head unit 3a.
  • the cover 30 of the head unit 3a is drawn with a broken line.
  • a colored ink discharge section 32 having four discharge mechanisms 32a to 32d is arranged on the most (+ X) side of the head unit 3a, and on the ( ⁇ X) side of the colored ink discharge section 32, a curing section that emits ultraviolet rays.
  • 33a is arranged.
  • a transparent ink discharge part 31x (first discharge part) is provided on the ( ⁇ X) side of the hardening part 33a, and a hardening part 33x (first hardening part) that emits ultraviolet light to the ( ⁇ X) side of the transparent ink discharge part 31x. Is placed.
  • the transparent ink discharge portion 31x and the curing portion 33x are for forming an undercoat layer as will be described later, and constitute an undercoat layer forming portion. Further, four transparent ink ejection portions 31a to 31d (second ejection portions) are arranged on the ( ⁇ X) side of the curing portion 33x, and ultraviolet rays are disposed on the ( ⁇ X) side of the transparent ink ejection portions 31a to 31d. Are disposed six curing portions 33b to 33g (second curing portions). These transparent ink discharge portions 31a to 31d and curing portions 33b to 33g are for forming a lenticular lens and constitute a transparent structure forming portion.
  • the four ejection mechanisms 32a to 32d of the colored ink ejection unit 32, the transparent ink ejection units 31a to 31d and 31x, and the curing units 33a to 33g and 33x extend over the entire width of the substrate 9 (ie, Y
  • the color ink and the transparent ink are ejected over the entire width of the base material 9 passing under the head unit 3a and irradiated with ultraviolet rays.
  • the formation process of the printed matter 90 by the inkjet printer 1b is substantially the same as that of the first embodiment, the formation process will be described below with reference to FIGS. In the following description, attention will be paid to a part of the base material 9, and processing for the part will be described in order.
  • colored ink is ejected from the colored ink ejection unit 32 onto the substrate 9 moving in the ( ⁇ X) direction, and the colored ink is completely irradiated by irradiating the colored ink with ultraviolet rays from the curing unit 33a. It hardens
  • transparent ink is discharged from the transparent ink discharge portion 31x to the base material 9 for forming an undercoat layer.
  • the portion where the image layer 93 is formed is formed of a radiation curable (ultraviolet curable) colored ink, but it is a halftone image and the colored ink layer is not formed without any gaps. It is necessary to form an undercoat layer also on the portion where the image layer 93 is present, and transparent ink is ejected over the entire portion where the lenticular lens is formed. Then, the transparent ink is cured by the ultraviolet rays irradiated from the curing portion 33x, and the undercoat layer 94 is completely cured. The operation for forming the undercoat layer 94 is controlled by the undercoat layer formation control unit 51 in the print control unit 5.
  • the transparent ink is discharged from the transparent ink discharge portion 31a onto the image layer 93 and the undercoat layer 94, and the transparent ink is cured by the ultraviolet rays irradiated from the curing portion 33b, so that the main body portion 960 of the spacer layer 96 is formed. (See FIG. 4C).
  • transparent ink is ejected from the transparent ink ejection unit 31 b onto the main body 960.
  • the transparent ink applied on the main body portion 960 is exposed to the surroundings before being cured by being irradiated with ultraviolet rays.
  • the surface layer 961 is cured by irradiation with ultraviolet rays from the curing portion 33c, and a spacer layer 96 (see FIG. 5A) having a smooth surface and a substantially uniform film thickness is formed.
  • the spacer layer 96 When the spacer layer 96 is formed, transparent ink is ejected from the transparent ink ejection part 31c, and relatively weak intensity (5% to 10% of the intensity of ultraviolet rays from the curing parts 33b, 33c, 33e, 33g). In this case, a plurality of semi-cured cylindrical lenses 971 (see FIG. 5B) arranged every other line are formed. Then, the semi-cured cylindrical lens 971 is cured by irradiating the semi-cured cylindrical lens 971 with ultraviolet light at a normal intensity from the cured portion 33e.
  • the transparent ink is ejected from the transparent ink ejection part 31d between the already formed cylindrical lenses 971, and has a relatively weak intensity from the curing part 33f (intensity equal to the intensity of ultraviolet rays from the curing part 33).
  • a plurality of cylindrical lenses 971 in a semi-cured state are formed by ultraviolet rays.
  • these cylindrical lenses 971 are cured by the normal intensity ultraviolet rays from the curing portion 33g, and the formation of the microlens layer 97 is completed (that is, the formation of the lens layer 95 is completed).
  • the operation for forming these lens layers 95 is controlled by the transparent structure formation control unit 52 in the print control unit 5.
  • the colored ink discharge unit 32 and the transparent ink discharge units 31a to 31d and 31x are moved to the respective positions on the substrate 9 by one movement of the substrate 9 in the ( ⁇ X) direction. Passing through the position only once completes printing on the substrate 9. That is, printing (so-called one-pass printing) that does not involve movement of the head unit 3a and the base material 9 in the Y direction is performed.
  • the lens layer 95 including the spacer layer 96 and the microlens layer 97 is formed on the image layer 93 on the substrate 9 to thereby form the substrate 9 on the substrate 9. A visual effect can be easily given to an image.
  • the interval from the portion 33x is made as narrow as possible, and the time from the discharge of the transparent ink from the transparent ink discharge portion 31 and the transparent ink discharge portion 31x to the irradiation of the ultraviolet rays to the transparent ink is as short as possible.
  • the interval between the transparent ink discharge portion 31 x and the curing portion 33 x is drawn to the same extent as the others, but actually, the interval between the other transparent ink discharge portion or the colored ink discharge portion and the curing portion is larger. It is desirable to make it shorter and adjacent if possible.
  • another transparent portion is also provided between the other (X) -side curing portion 33 and the colored ink discharge portion 32a.
  • An ink discharge unit 31 is provided, and the curing unit 33 and the transparent ink discharge unit 31 are adjacent to each other so that the curing unit 33 can irradiate ultraviolet rays immediately after the transparent ink is discharged according to the scanning direction of the head unit 3.
  • the curing portion 33x that emits the highest output ultraviolet light.
  • the hardened portions 33 and 33 are also used with high output, and particularly when the undercoat layer 94 is solidified, it is used with high output.
  • lenticular lenses are formed for 3D printing, but other transparent structures can be formed for pseudo emboss printing, for example.
  • a transparent structure that becomes pseudo-emboss may be printed with a transparent ink instead of a lenticular lens at a necessary place on a printing object.
  • the undercoat layer 94 is illustrated as being formed on the entire surface of the substrate 9. However, the undercoat layer may be formed only on a necessary portion where lenticular lens formation or pseudo-emboss printing is to be performed.
  • the transparent ink and the colored ink may be, for example, ink that is cured by irradiation with visible light (photons) or ink that is cured by irradiation with electron beams (electrons). That is, various inks may be used as long as they can be quickly cured by irradiation with radiation such as electromagnetic waves or particle beams.
  • the colored ink ejection unit 32 may eject ink of a color other than black, cyan, magenta, and yellow (for example, light cyan, light magenta, white).
  • both the undercoat layer and the transparent structure are formed by the ink jet method, but the present invention is not necessarily limited thereto.
  • the undercoat layer may be formed by supplying it by printing it at a required position using a plate printing method using ultraviolet curable ink, or it may be supplied by applying it to the entire surface of the substrate by a roller coating method.
  • the undercoat layer may be formed.
  • the head unit and the base material 9 may be relatively moved by various types of moving mechanisms. In other words, at least one of the head unit and the substrate 9 may be moved relative to the other.
  • the head moving mechanism 4 that moves the head unit 3 in the X direction and the Y direction corresponds to the moving mechanism.
  • the head moving mechanism 4 that moves the head unit 3 in the X direction and the holding unit moving mechanism 45 that moves the base material 9 in the Y direction together with the holding unit 2 correspond to the moving mechanism described above.
  • the feeding mechanism 4a that moves the base material 9 in the X direction corresponds to the moving mechanism.
  • the ink jet printer is suitable for printing on a sheet-like or plate-like flexible substrate formed of paper, cloth, plastic, or the like, but the present invention is particularly suitable for radiation curable inks that are permeable. It is suitable for 3D printing on paper, cloth, etc. and pseudo emboss printing.
  • the colored ink ejection unit may be omitted from the head unit, and only the lens layer 95 may be formed.
  • the image layer 93 is formed on the substrate 9 by another printing apparatus, and the lens layer 95 is formed after the image layer 93 and the head unit are aligned by the ink jet printer.

Abstract

 この発明は、浸透性がある用紙に対してレンチキュラーレンズ形成や擬似エンボス印刷などの透明構造体形成を行う印刷機および印刷方法を提供するものでであり、インクジェットプリンタは、放射線硬化型インクが浸透する特性を有する基材9に対して、放射線硬化型透明インクを用いて薄い下塗り層94を形成する下塗り工程と、形成した下塗り層94に放射線を照射して完全固化させる下塗り硬化工程と、固化した下塗り層94の上に放射線硬化型透明インクを用いて所望の透明構造体としてのスペーサ層96、マイクロレンズ層97を形成する透明構造体形成工程と、その後さらに放射線を照射して、形成した透明構造体スペーサ層96,マイクロレンズ層97を硬化させる透明構造体硬化工程と、を行う。

Description

印刷機および印刷方法
 本発明は、印刷面上に凹凸形状を有する印刷物を形成するための印刷機および印刷方法に関し、さらに詳しくは、例えば印刷面上にレンチキュラーレンズを形成するいわゆる3D印刷や、印刷面に凹凸を形成する擬似エンボス印刷を行うための印刷機および印刷方法に関する。
 従来より、印刷面上にレンチキュラーレンズを形成するいわゆる3D印刷や、印刷面に凹凸を形成する擬似エンボス印刷が提案されている。3D印刷とは、印刷面上にレンチキュラーレンズを形成して画像に立体感を付与したり、見る角度によって画像を異ならせるようにした印刷物を指し、特許文献1や特許文献2が知られている。擬似エンボス印刷とは、印刷面に凹凸を形成して立体感や高級感などを表現しようとするもので、特許文献3が知られている。これらはいずれも印刷技術によって印刷面に所定の形状の構造物を形成しようとするものである。そして、印刷工程において形成したこれらの構造物は、生産性の点から早期に固化することが望ましいので、印刷には紫外線硬化型インクを用い、印刷後に紫外線を照射して固化するといったことが行われる。
特開平11-188866号公報 特開2007-144635号公報 特開2009-113430号公報
 上述のような3D印刷や擬似エンボス印刷では、インクによって印刷面に所定の形状の構造物を形成するために、その構造物を形成するのに必要な量のインクを印刷面に供給しなければならず、一般的な絵柄を印刷する場合と比べて多量のインクを印刷面に供給することになる。ところで、紫外線硬化型のインクを用いて上述のような印刷を行う場合に、印刷対象物として普通紙を用いると、多量に供給したインクが紙の内部にまで浸透してしまう。そうなると、印刷後にその表面に紫外線を照射してインクを硬化させようとしても、紙の内部にまで浸透したインクには紫外線が到達せず、インクが完全に硬化されず、紙の裏面への滲みや硬化が不完全なインクによる異臭が発生してしまうことになる。
 本発明は、上記課題に鑑みなされたものであり、普通紙のようにインクの浸透性がある用紙であっても3D印刷のためのレンチキュラーレンズ形成や擬似エンボス印刷などの透明構造体形成を行うことができ、裏面への滲みやインクによる異臭が発生してしまうことがない印刷機および印刷方法を提供することを目的としている。
 請求項1に記載の発明は、放射線硬化型インクが浸透する特性を有する印刷紙に対して、放射線硬化型透明インクを用いて薄い下塗り層を形成する下塗り工程と、形成した下塗り層に放射線を照射して完全固化させる下塗り硬化工程と、固化した下塗り層の上に放射線硬化型透明インクを用いて所望の透明構造体を形成する透明構造体形成工程と、その後さらに放射線を照射して、形成した透明構造体を硬化させる透明構造体硬化工程と、を備えたことを特徴とする印刷方法である。
 請求項2に記載の発明は、請求項1記載の印刷方法において、前記透明構造体が、レンチキュラーレンズまたは擬似エンボスであることを特徴とする。
 請求項3に記載の発明は、請求項1または2に記載の印刷方法において、前記透明構造体硬化工程は、比較的弱い放射線を照射して、透明構造体を半硬化状態としてその形を整える第1硬化工程と、その第1硬化工程の後に、比較的強い放射線を照射して、前記透明構造体を完全硬化させる第2硬化工程と、を備えることを特徴とする。
 請求項4に記載の発明は、請求項1に記載の印刷方法において、前記下塗り層は厚み10μm以下であることを特徴とする。
 請求項5に記載の発明は、印刷機であって、放射線硬化型透明インクの微小液滴を基材に向けて吐出する吐出部と、前記吐出部と前記基材とを相対的に移動させる移動機構と、前記吐出部から前記基材に付与された前記透明インクに放射線を照射して前記透明インクを硬化させる硬化部と、前記吐出部、前記移動機構および前記硬化部を制御する印刷制御部と、を備え、前記印刷制御部は、前記基材に対して所定量の透明インクを供給し、その後その透明インクに対して放射線を照射して硬化させて前記基材上に透明構造体を形成する透明構造体形成制御部と、前記基材に対して、前記透明構造体形成制御部における前記所定量よりも少ない量の透明インクを供給し、その後その透明インクに対して放射線を照射して硬化させて前記基材上に透明インクの下塗り層を形成する下塗り層形成制御部と、を備えることを特徴とする。
 請求項6に記載の発明は、印刷機であって、放射線硬化型透明インクを基材に供給する第1供給部および該第1供給部で供給された透明インクに放射線を照射して硬化させる第1硬化部を有し、透明インクによる下塗り層を形成する下塗り層形成部と、放射線硬化型透明インクの微小液滴を基材に向けて吐出する第2供給部および該第2供給部で吐出された透明インクに放射線を照射して硬化させる第2硬化部を有し、透明インクによる透明構造体を形成する透明構造体形成部と、前記下塗り層形成部および前記透明構造体形成部を、前記基材に対して相対的に移動させる移動機構と、前記下塗り層形成部、前記透明構造体形成部および前記移動機構を制御する印刷制御部と、を備え、前記印刷制御部は、前記透明構造体形成部により基材に対して所定量の透明インクを供給し、その後その透明インクに対して放射線を照射して硬化させて前記基材上に透明構造体を形成する透明構造体形成制御部と、前記透明構造体形成制御部による前記所定量よりも少ない量の透明インクを、前記下塗り層形成部により前記基材に対して供給し、その後その透明インクに対して放射線を照射して硬化させて前記基材上に透明インクの下塗り層を形成する下塗り層形成制御部と、を備えることを特徴とする。
 請求項7に記載の発明は、請求項5に記載の印刷機であって、前記透明構造体は、スペーサ層とマイクロレンズ層から成るレンズ層を有し、前記マイクロレンズ層を形成する際に前記硬化部から照射される放射線の強度が、前記スペーサ層を形成する際に前記硬化部から照射される放射線の強度よりも小さいことを特徴とする。
 請求項8に記載の発明は、請求項6に記載の印刷機であって、前記透明構造体は、スペーサ層とマイクロレンズ層から成るレンズ層を有し、前記マイクロレンズ層を形成する際に前記第2硬化部から照射される放射線の強度が、前記スペーサ層を形成する際に前記第2硬化部から照射される放射線の強度よりも小さいことを特徴とする印刷機。
 請求項9に記載の発明は、請求項5または6に記載の印刷機であって、有色インクの微小液滴を前記基材に向けて吐出して画像層を形成するもう1つの吐出部をさらに備えることを特徴とする。
 本発明の印刷機および印刷方法によれば、普通紙のようにインキの浸透性がある用紙であっても3D印刷のためのレンチキュラーレンズ形成や擬似エンボス印刷などの透明構造体形成を行うことができ、裏面への滲みやUVインクによる異臭が発生してしまうことがない。
第1の実施の形態に係るインクジェットプリンタの正面図である。 ヘッドユニットの内部構成を示す図である。 レンズ層の形成の流れを示す図である。 レンズ層の形成工程を示す断面図である。 レンズ層の形成工程を示す断面図である。 レンズ層の形成工程を示す断面図である。 レンズ層の形成工程を示す断面図である。 第2の実施の形態に係るインクジェットプリンタの正面図である。 第3の実施の形態に係るインクジェットプリンタの正面図である。 ヘッドユニットの内部構成を示す図である。
 図1は、本発明の第1の実施の形態に係る印刷機としてのインクジェットプリンタ1を示す正面図である。インクジェットプリンタ1は、インキに対して浸透性を有する基材9(例えば普通紙)の(+Z)側の主面91(以下、「上面91」という。)上にインクジェット方式にてカラー印刷を行う装置である。画像が印刷された基材9は、例えば、カタログあるいは雑誌の特に表紙等に用いられる。
 図1に示すように、インクジェットプリンタ1は、基材9を保持する保持部2、インクの微小液滴を基材9に向けて吐出するヘッドユニット3、ヘッドユニット3を移動させるヘッド移動機構4、および、これらの構成の各動作等を制御する印刷制御部5を備える。ヘッド移動機構4は、ヘッドユニット3を主走査方向であるX方向に移動させる主走査機構41、および、ヘッドユニット3をX方向に垂直かつ水平なY方向(以下、「副走査方向」という。)へと移動させる副走査機構42を備える。また、印刷制御部5は、後述する、下塗り層94形成のための動作を制御する下塗り層制御部51と、透明構造体であるレンチキュラーレンズのレンズ層95形成のための動作を制御する透明構造体形成制御部52とを有する。
 図2は、ヘッドユニット3の内部構成を示す図である。図2では、ヘッドユニット3のカバー30を破線にて描いている。ヘッドユニット3は、透明インクの微小液滴を基材9に向けて吐出する吐出部31(以下、「透明インク吐出部31」という。)、有色インクの微小液滴を基材9に向けて吐出するもう1つの吐出部32(以下、「有色インク吐出部32」という。)、および、透明インク吐出部31および有色インク吐出部32のX方向の両側に配置される2つの硬化部33を備える。透明インク吐出部31は、有色インク吐出部32の(-X)側に配置され、それぞれから透明インクが吐出される複数の吐出口を有する。
 有色インク吐出部32は、X方向に配列される4つの吐出機構32a~32dを備え、吐出機構32a~32dはそれぞれ、有色インク吐出部32と同様に、複数の吐出口を有する。有色インク吐出部32において、図2中の最も(+X)側に位置する吐出機構32aはK(ブラック)の有色インクを吐出し、吐出機構32aの(-X)側の吐出機構32bはC(シアン)の有色インクを吐出し、吐出機構32bの(-X)側の吐出機構32cはM(マゼンタ)の有色インクを吐出し、吐出機構32cの(-X)側の吐出機構32dはY(イエロー)の有色インクを吐出する。
 透明インクは放射線硬化型の可撓性インクであり、有色インクも放射線硬化型のインクである。硬化部33は、透明インク吐出部31および有色インク吐出部32から基材9上に付与された透明インクおよび有色インクに放射線を照射して透明インクおよび有色インクを硬化させる。本実施の形態では、透明インクおよび有色インクとして紫外線硬化型インクが利用され、硬化部33としては放射線として紫外線が出射されるものを用いるが、例えば、電子ビーム硬化型インクを用いて、硬化部33として電子ビームを出射するものを用いても良い。
 次に、図3ないし図5を参照しつつ、印刷面上にレンチキュラーレンズを形成する3D印刷の方法を説明する。ここでは印刷対象物である基材9はインキに対して浸透性を有する普通紙であって、あらかじめその表面に多視点画像が印刷してある。この基材9の断面を図4(A)に示す。多視点画像はこれから形成するレンチキュラーレンズに対応して3D画像を構成するもので、事前に他の印刷機等を用いて一般的なインク、例えば油性または水性インクで印刷して乾燥させてあり、その印刷部分におけるインクは図4(A)に示すように基材9に浸透して画像層93となっている。
 この図4(A)に示す基材9に対してインクジェットプリンタ1によってレンチキュラーレンズを形成するために、図3に示すフローに従い印刷制御部5が各部の制御を行う。すなわち、まず基材9全体に対して透明インク吐出部31から透明インクを吐出して薄く均等な厚みとなるよう印刷を行う(ステップS1)。この透明インクは図4(B)に示すように基材9(画像層93を含む)に対して浸透してゆき、基材9の表面に下塗り層94を形成する。そしてその下塗り層94形成のための吐出を行った直後に通過する硬化部33によって紫外線を照射し、下塗り層94を完全に硬化させる(ステップS2)。ここでは下塗り層94はごく薄い厚み、例えば(10μm以下)でかつ基材9の表面近傍部分にのみ形成されるので、上方からの紫外線照射によって完全に硬化させることができる。なお、このステップS1とS2は透明インク吐出部31および硬化部33のX方向への主走査、および、Y方向への副走査が繰り返される動作により実質的にはほぼ同時に実行される。そして、これらの下塗り層94形成のための動作(ステップS1およびS2)は、図1に示す印刷制御部5における下塗り層形成制御部51により制御される。また、この下塗り層94は図4(B)では透明インクが基材9(画像層93を含む)の内部に完全に浸透してその内部にのみ形成されるように描いているが、実際には基材9の表面にも透明インクのみからなる薄い層を形成する場合もある。その場合でも、基材9の表面の透明インクの固化は問題なく行われる。また、画像層93が基材9の表面に形成される場合も同じである。
 次に厚さが約300μmのレンチキュラーレンズのレンズ層95を形成する。レンズ層95は、全域に亘っておよそ均一な厚さ(約150μm)のスペーサ層96と、スペーサ層96上に配置されるマイクロレンズ層97(図5参照)を備える。まず、基材9上に形成された下塗り層94(画像層93を含む)の上に透明インクの微小液滴が付与され、図4(C)に示すように、スペーサ層96の本体部960が形成される(ステップS10)。続いて硬化部33(図2参照)により紫外線が照射されることにより、本体部960を硬化させる(ステップS11)。なお、このステップS11とS12も、透明インク吐出部31および硬化部33のX方向への主走査、および、Y方向への副走査が繰り返される動作により実質的にはほぼ同時に実行される。本体部960の表面は、透明インクの微小液滴が着弾した位置の中心が周囲よりも盛り上がるため、凹凸を有している。ここでは、スペーサ層96を所定の厚さにするために、必要に応じて、画像層93の各位置に複数回の透明インクの吐出および硬化が行われてもよい。すなわちステップS10とS11とを複数回繰り返してもよい。
 続いて、ステップS11における硬化部33からの紫外線の照射が停止された後、透明インクの微小液滴が本体部960上におよそ全面に亘って付与される。本体部960上に付与された透明インクの微小液滴は周囲に広がり、図5(A)に示すように、本体部960の表面の凹部に流入してスペーサ層96の表層961となる(ステップS12)。表層961の表面は、全面に亘って基材9の上面91から同じ高さに位置する平滑面となる。そして、透明インクの吐出が停止され、硬化部33から紫外線が照射されて本体部960上の表層961が硬化することにより、表面が平滑で膜厚がおよそ均一なスペーサ層96が画像層93上に形成される(ステップS13)。なお、ステップS12では、本体部960上に付与された透明インクに対する硬化部33からの紫外線の照射は行われないが、透明インクの流動性が失われない程度に小さい強度(すなわち、本体部960が形成される際に照射される紫外線の強度よりも小さい強度)にて紫外線が照射されてもよい。
 次に、透明インク吐出部31(図2参照)において、1つのシリンドリカルレンズ971(図5参照)に対応する1つまたは複数の吐出口を吐出口群として、透明インク吐出部31の(-Y)側から奇数番目の吐出口群から透明インクを吐出しつつ、偶数番目の吐出口群からの透明インクの吐出を停止した状態で、ヘッドユニット3が主走査される。そして、奇数番目の吐出口群からスペーサ層96上に付与された透明インクに硬化部33から紫外線が照射されることにより、図5(B)に示すように、主走査方向(X方向)に伸びる複数のシリンドリカルレンズ971が形成される(ステップS14)。複数のシリンドリカルレンズ971は互いに離間しつつY方向に配列され、隣接する2つのシリンドリカルレンズ971の間のY方向の距離(すなわち、スペーサ層96が露出している領域のY方向の距離)は、シリンドリカルレンズ971のY方向の幅におよそ等しい。
 ステップS14では、硬化部33から照射される紫外線の強度が、スペーサ層96の本体部960が形成される際に硬化部33から照射される紫外線の強度よりも小さいため、スペーサ層96上に吐出された透明インクは、ある程度硬化しているが流動性も有している状態(以下、「半硬化状態」という。)となる。このため、1つのシリンドリカルレンズ971に対応する領域にてX方向に配列された透明インクの複数のドットが結合する(すなわち、隣接するドットと馴染む。)。これにより、シリンドリカルレンズ971の表面が、シリンドリカルレンズ971の長手方向であるX方向にて凸凹になってしまうことが防止されて平滑な曲面となる。また、半硬化状態の透明インクのドットはY方向にも広がるため、透明インク吐出部31から吐出される透明インクの微小液滴のY方向の幅は、シリンドリカルレンズ971の設計幅よりも小さくされる。本実施の形態では、ステップS14において硬化部33から照射される紫外線の強度は、スペーサ層96が形成される際に硬化部33から照射される紫外線の強度の5%~20%程度(より好ましくは、5%~10%程度)である。
 シリンドリカルレンズ971の表面形状が所望の形状となると、透明インク吐出部31からの透明インクの吐出が停止された状態でヘッドユニット3が走査され、半硬化状態のシリンドリカルレンズ971に硬化部33からの紫外線が照射され、シリンドリカルレンズ971が硬化する(ステップS15)。ステップS15において硬化部33から照射される紫外線の強度は、ステップS14における紫外線の強度よりも大きく、スペーサ層96の形成時における紫外線の強度に等しい。インクジェットプリンタ1では、シリンドリカルレンズ971を所定の厚さにするために、必要に応じて、ステップS14,S15が複数回繰り返されてもよい。
 続いて、透明インク吐出部31において、透明インクを吐出する吐出口群の切り替えが行われる(ステップS16,S17)。すなわち、(-Y)側から奇数番目の吐出口群からの透明インクの吐出が停止され、偶数番目の吐出口群から透明インクの吐出が開始される。そして、ステップS14に戻り、2回目のステップS14,S15が行われることにより、図5(D)に示すように、1回目のステップS14,S15により形成された複数のシリンドリカルレンズ971の間にてスペーサ層96上に複数のシリンドリカルレンズ971が形成され、図5(C)に示すようにマイクロレンズ層97の形成が終了する(すなわち、レンズ層95の形成が終了する。)(ステップS14~S16)。2回目に形成されたシリンドリカルレンズ971は、隣接する1回目に形成されたシリンドリカルレンズ971とY方向において接する。以上の工程により、図5(C)に示すように、基材9上の画像層93上に透明インクによるレンズ層95が形成される。なお、これらのレンズ層95形成のための動作(ステップS10~S17)は、印刷制御部5における透明構造体形成制御部52により制御される。レンズ層95は、厚さが約300μmのレンチキュラーレンズであり、画像層93上に所定の膜厚にて形成されるスペーサ層96、および、スペーサ層96上に配置されるマイクロレンズ層97を備える。スペーサ層96の厚さはレンズ層95の全域に亘っておよそ均一であり、本実施の形態では約150μmである。マイクロレンズ層97は、所定の配列方向(Y方向)に配列される複数のシリンドリカルレンズ971を有する。以上により、基材9、画像層93およびレンズ層95を備える印刷物90の形成が完了する。
 以上に説明したように、インクに対して浸透性のある基材9に対してインクジェットプリンタ1によってレンチキュラーレンズを形成するに際し、まず基材9全体に対して透明インク吐出部31から透明インクを吐出して基材9の表面に下塗り層94を形成し、その下塗り層94に対して紫外線を照射して完全に硬化させているので、その後に基材9に対してレンチキュラーレンズ形成のために透明インクを大量に供給しても、その透明インクは基材9には浸透せず基材9の表面でレンチキュラーレンズの形成に寄与する。従って、そのような大量の透明インクが基材9に浸透して裏面ににじんだり、基材9の内部に浸透したインクが完全固化せずに異臭をはなったりする不都合は発生しない。なおこの下塗り層94は、レンチキュラーレンズ形成時の透明インクが必要以上に基材9に浸透するのが阻止できる厚みであればよく、図4では画像層93よりも下塗り層94のほうが厚く描いてあるが、下塗り層94のほうが薄くてもよい。
 また、このようなインクジェットプリンタ1による印刷物90の形成では、マイクロレンズ層97と画像層93との間にスペーサ層96を設けることにより、複数のシリンドリカルレンズ971の表面と画像層93との間の厚さ方向の距離を大きくし、マイクロレンズ層97の複数のシリンドリカルレンズ971の焦点を画像層93上に容易に合わせることができる。これにより、レンズ層95を介して画像層93の画像を鮮明に見ることができる。また、マイクロレンズ層97を平滑なスペーサ層96の表面上に形成することにより、画像層93の表面形状の影響を受けることなく、所望の表面形状の複数のシリンドリカルレンズ971を有するレンチキュラーレンズ(すなわち、レンズ層95)を容易に形成することができる。その結果、画像に立体感を付与したり、見る角度によって画像を異ならせるといった視覚効果を、基材9上の画像に容易に付与することができる。
 インクジェットプリンタ1による印刷物90の形成では、マイクロレンズ層97を形成する際に硬化部33から照射される紫外線の強度が、スペーサ層96の本体部960を形成する際に硬化部33から照射される紫外線の強度よりも小さい。これにより、シリンドリカルレンズ971の表面が長手方向において凸凹になることが防止され、シリンドリカルレンズ971の高さの長手方向における均一性が向上する。また、スペーサ層96の表層961を形成する際に、スペーサ層96の本体部960上に吐出された直後の透明インクに対して紫外線の照射が行われない(あるいは、本体部960が形成される際に照射される紫外線の強度よりも小さい強度にて紫外線が照射される)ことにより、スペーサ層96の厚さを精度良く一定にすることができる。その結果、シリンドリカルレンズ971の形成を容易とすることができる。さらに、基材9上の画像に付与される視覚効果を向上することができる。
 なお、レンズ層95のスペーサ層96の形成において、本体部960の形成に際して表面をおよそ平滑にすることができるのであれば、表層961は省略されてもよい。この場合、マイクロレンズ層97を形成する際に硬化部33から照射される紫外線の強度は、スペーサ層96を形成する際に硬化部33から照射される紫外線の強度よりも小さく設定される。
 上述のように、インクジェットプリンタ1では、レンズ層95のマイクロレンズ層97およびスペーサ層96を透明インクを用いて容易に形成することができる。このため、インクジェットプリンタ1は、様々な基材9に対するレンズ層95の形成に利用されるが、特に、他の方法によりレンチキュラーレンズを形成することが比較的困難な、可撓性を有する板状またはシート状の基材9に対するレンズ層95の形成に特に適している。また、レンズ層95の形成に利用される透明インクが可撓性インクであるため、基材9の変形がレンズ層95により阻害されることが抑制される。したがって、インクジェットプリンタ1は、自動車や電車等の車体のラッピングに用いられるような容易に変形する薄いシート状(すなわち、フィルム状)の基材9に対するレンズ層95の形成に特に適している。
 なお、上記第1の実施形態では、印刷対象物である基材9として、あらかじめその表面に他の印刷機等にて多視点画像が印刷されたものを用いたが、本インクジェットプリンタ1によって多視点画像の印刷をも行うことができる。この場合、図3のステップS1の前に、有色インク吐出部32、硬化部33およびヘッド移動機構4が印刷制御部5により制御され、有色インク吐出部32が有色インクを吐出しつつ(+X)方向に連続的に移動し、有色インク吐出部32と共に移動する(-X)側の硬化部33から基材9上に吐出された有色インクに紫外線が照射されて有色インクが硬化する。有色インク吐出部32は、基材9の(+X)側への到達後、(+Y)方向に所定距離だけ移動する。続いて、有色インク吐出部32が(-X)方向に連続的に移動し、基材9上に吐出された有色インクは(+X)側の硬化部33からの紫外線により硬化する。有色インク吐出部32は、基材9の(-X)側への到達後、(+Y)方向に所定距離だけ移動する。インクジェットプリンタ1では、有色インク吐出部32および硬化部33のX方向への主走査、および、Y方向への副走査が繰り返されることにより、図4(A)に示すように、基材9の上面91上に有色インクによる画像層93が形成される。この場合、多視点画像の印刷に用いる有色インクもその厚みを紫外線照射によって完全硬化可能な程度とする。このようにインクジェットプリンタ1で、ヘッドユニット3から有色インクを吐出して基材9に対する画像層93の形成が行われ、ヘッドユニット3から透明インクを吐出してレンズ層95の形成が行われるようにすれば、レンズ層95を形成する際に、基材9上の画像層93とヘッドユニット3の透明インク吐出部31との位置合わせを容易かつ高精度に行うことができる。その結果、画像層93に対するレンズ層95の位置決めが容易かつ高精度に実現される。
 またこの多視点画像の印刷は、基材9の全体に先に画像印刷を行った後に、基材9の全体にレンチキュラーレンズの形成を行ってもよいし、次のように行うこともできる。すなわち、ヘッドユニットが(+X)方向に連続的に移動しつつ有色インク吐出部32が有色インクを吐出して画像印刷し、続いてヘッドユニットが(-X)方向に連続的に移動しつつ透明インク吐出部31が透明インクを吐出して下塗り層形成および下塗り層硬化を行い、その後ヘッドユニットが(+Y)方向に移動する。
 ところで、インクジェットプリンタ1においてマイクロレンズ層97が形成される際には、複数のシリンドリカルレンズ971の大きさ(幅や高さ)および表面形状に基づいて、透明インク吐出部31が印刷制御部5により制御され、透明インク吐出部31から吐出される透明インクの微小液滴の大きさが変更される。図6(A)ないし図6(C)は、透明インクの微小液滴の大きさが変更された場合のシリンドリカルレンズ971の大きさおよび表面形状を示す断面図である。図6(A)ないし図6(C)では、微小液滴99には平行斜線は付さない(図7においても同様)。図6(A)ないし図6(C)は、1つのシリンドリカルレンズ971に対応する吐出口群が3つの吐出口を備えるものとして描いており、図中において実線にて示す3つの微小液滴99により、破線にて示す1つのシリンドリカルレンズ971が形成される。
 図6(A)ないし図6(C)に示す各例では、図6(A)の微小液滴99が最も小さく、図6(C)の微小液滴99が最も大きい。このため、図6(A)のシリンドリカルレンズ971が最も小さく(すなわち、画像層93からの高さが低く)、また、幅方向であるY方向の中央における曲率も最も小さくなる。一方、図6(C)のシリンドリカルレンズ971が最も大きく、また、Y方向の中央における曲率も最も大きくなる。このように、複数のシリンドリカルレンズ971の大きさおよび表面形状に基づいて透明インクの微小液滴の大きさを変更することにより、様々な特性(例えば、異なる焦点距離)を有するシリンドリカルレンズ971を容易に形成することができる。
 図6(A)ないし図6(C)に示す例では、各シリンドリカルレンズ971は同じ大きさの透明インクの微小液滴99にて形成されるが、各シリンドリカルレンズ971は、図7に示すように、複数種類の大きさの透明インクの微小液滴により形成されてもよい。図7では、画像層93上の各位置に吐出された互いに大きさが異なる透明インクの微小液滴99a~99cを円にて描いている。実際には、これらの微小液滴99a~99cは結合して、破線にて示す表面形状のシリンドリカルレンズ971となる。インクジェットプリンタ1では、シリンドリカルレンズ971を形成する際に、シリンドリカルレンズ971の表面となる予定の位置に近い位置に吐出される透明インクの微小液滴99a,99bを小さくし、シリンドリカルレンズ971の表面となる予定の位置から遠い位置に吐出される透明インクの微小液滴99cを大きくすることにより、各シリンドリカルレンズ971の形成に必要な透明インクの微小液滴の個数を大幅に増加させることなく、シリンドリカルレンズ971を形状精度良く形成することができる。
 次に、本発明の第2の実施の形態に係る印刷機としてのインクジェットプリンタについて説明する。図8は、第2の実施の形態に係るインクジェットプリンタ1aを示す正面図である。インクジェットプリンタ1aでは、図1に示すインクジェットプリンタ1からヘッドユニット3を副走査方向であるY方向に移動する副走査機構が省略され、基材9を保持する保持部2の下側((-Z)側)に、保持部2を副走査方向に移動する保持部移動機構45が設けられる。インクジェットプリンタ1aの他の構成は、図1および図2に示すインクジェットプリンタ1と同様であり、以下の説明では対応する構成に同符号を付す。
 インクジェットプリンタ1aによる画像層93およびレンズ層95(図4および図5参照)の形成では、ヘッドユニット3の1回の主走査毎に行われるヘッドユニット3の副走査に代えて、基材9が保持部2と共に所定の距離だけ副走査方向に移動される。その他の動作は、第1の実施の形態と同様である。インクジェットプリンタ1aでは、第1の実施の形態と同様に、下塗り層94、スペーサ層96およびマイクロレンズ層97を備えるレンズ層95を、基材9上の画像層93上に形成することにより、基材9上の画像に容易に視覚効果を付与することができる。
 次に、本発明の第3の実施の形態に係る印刷機としてのインクジェットプリンタについて説明する。図9は、第3の実施の形態に係るインクジェットプリンタ1bを示す正面図である。インクジェットプリンタ1bは、ヘッドユニット3a、ヘッドユニット3aの下方((-Z)側)にて基材9を(-X)方向に移動する送り機構4a、および、印刷制御部5を備える。
 送り機構4aは、図示省略のモータに接続された2つのベルトローラ47、および、2つのベルトローラ47の間に掛けられたベルト48を有する。また、送り機構4aの(+X)側かつ(-Z)側には、ロール状の基材9(供給ロール)を保持する供給部61が設けられ、送り機構4aの(-X)側かつ(-Z)側にはロール状の基材9(巻取ロール)を保持する巻取部62が設けられる。供給部61から引き出された基材9は、保持部であるベルト48上にて保持され、ベルト48と共にヘッドユニット3aの下方を通過して(-X)側へと移動し、巻取部62にて巻き取られる。以下の説明では、単に基材9という場合は搬送途上の部位(すなわち、ベルト48上の基材9の部位)を指すものとする。
 図10は、ヘッドユニット3aの内部構成を示す図である。図10では、ヘッドユニット3aのカバー30を破線にて描いている。ヘッドユニット3aの最も(+X)側には、4つの吐出機構32a~32dを備える有色インク吐出部32が配置され、有色インク吐出部32の(-X)側には、紫外線を出射する硬化部33aが配置される。硬化部33aの(-X)側には透明インク吐出部31x(第1吐出部)と、その透明インク吐出部31xの(-X)側に紫外線を出射する硬化部33x(第1硬化部)が配置される。この透明インク吐出部31xと硬化部33xは、後述するとおり下塗り層の形成用であり、下塗り層形成部を構成している。さらに硬化部33xの(-X)側には4つの透明インク吐出部31a~31d(第2吐出部)が配置され、透明インク吐出部31a~31dのそれぞれの(-X)側には、紫外線を出射する6つの硬化部33b~33g(第2硬化部)が配置される。これら透明インク吐出部31a~31dと硬化部33b~33gは、レンチキュラーレンズの形成用であり、透明構造体形成部を構成している。ここで、有色インク吐出部32の4つの吐出機構32a~32d、透明インク吐出部31a~31d、31x並びに、硬化部33a~33g、33xは、基材9の幅全体に亘って(すなわち、Y方向の全長に亘って)設けられており、ヘッドユニット3aの下方を通過する基材9の幅全体に亘って有色インクや透明インクが吐出されるとともに紫外線が照射される。
 インクジェットプリンタ1bによる印刷物90の形成工程は、第1の実施の形態とほぼ同様であるため、以下、図4および図5を参照しつつ当該形成工程について説明する。以下の説明では、基材9の一部に注目し、当該一部に対する処理を順に説明する。インクジェットプリンタ1bでは、まず、(-X)方向に移動する基材9に有色インク吐出部32から有色インクが吐出され、当該有色インクに硬化部33aから紫外線が照射されることにより有色インクが完全硬化して画像層93(図4(A)参照)が形成される。続いて、下塗り層形成のために、透明インク吐出部31xから基材9に対して透明インクが吐出される。画像層93が形成されている部分は放射線硬化型(紫外線硬化型)の有色インクによって形成されているが、網点画像であって有色インクの層が隙間無く形成されているわけではないので、この画像層93がある部分に対しても下塗り層を形成する必要があり、レンチキュラーレンズを形成する部分全体に対して透明インクが吐出される。そして、硬化部33xから照射される紫外線により透明インクが硬化して下塗り層94が完全硬化して形成される。これらの下塗り層94形成のための動作は、印刷制御部5における下塗り層形成制御部51により制御される。
 次に、透明インク吐出部31aから画像層93および下塗り層94上に透明インクが吐出され、硬化部33bから照射される紫外線により透明インクが硬化してスペーサ層96の本体部960が形成される(図4(C)参照)。続いて、本体部960上に透明インク吐出部31bから透明インクが吐出される。ヘッドユニット3では、透明インク吐出部31bと硬化部33cとの間のX方向の距離が比較的大きいため、本体部960上に付与された透明インクは、紫外線が照射されて硬化する前に周囲に広がり、本体部960の表面の凹部に流入して表層961となる。その後、表層961は、硬化部33cからの紫外線の照射により硬化し、表面が平滑で膜厚がおよそ均一なスペーサ層96(図5(A)参照)が形成される。
 スペーサ層96が形成されると、透明インク吐出部31cから透明インクが吐出され、硬化部33dから比較的弱い強度(硬化部33b,33c,33e,33gからの紫外線の強度の5%~10%程度)にて紫外線が照射されることにより、1本おきに配列された半硬化状態の複数のシリンドリカルレンズ971(図5(B)参照)が形成される。そして、半硬化状態のシリンドリカルレンズ971に硬化部33eから通常の強度にて紫外線が照射されることにより、半硬化状態のシリンドリカルレンズ971が硬化する。
 続いて、既に形成された複数のシリンドリカルレンズ971の間に透明インク吐出部31dから透明インクが吐出され、硬化部33fからの比較的弱い強度(硬化部33からの紫外線の強度に等しい強度)の紫外線により半硬化状態の複数のシリンドリカルレンズ971(図5(C)参照)が形成される。そして、これらのシリンドリカルレンズ971が硬化部33gからの通常の強度の紫外線により硬化し、マイクロレンズ層97の形成が終了する(すなわち、レンズ層95の形成が終了する)。なお、これらのレンズ層95形成のための動作は、印刷制御部5における透明構造体形成制御部52により制御される。
 このように、インクジェットプリンタ1bでは、基材9の(-X)方向への1回の移動により、有色インク吐出部32、および、透明インク吐出部31a~31d、31xが基材9上の各位置を1回だけ通過して基材9に対する印刷が完了する。すなわち、ヘッドユニット3aおよび基材9のY方向における移動を伴わない印刷(いわゆる、ワンパス印刷)が行われる。インクジェットプリンタ1bでは、第1の実施の形態と同様に、スペーサ層96およびマイクロレンズ層97を備えるレンズ層95を、基材9上の画像層93上に形成することにより、基材9上の画像に容易に視覚効果を付与することができる。
 なお、上記のいずれの実施形態においても、下塗り層94を形成するための透明インク吐出部31とその両側の硬化部33、33との間隔(図2参照)、あるいは透明インク吐出部31xと硬化部33xとの間隔(図10参照)をできる限り狭くして、透明インク吐出部31、透明インク吐出部31xからの透明インクの吐出から、その透明インクに対する紫外線の照射までの時間をできる限り短くするほうがよい。これはすなわち、吐出された透明インクの基材9への滲みこみができるだけ浅いうちに、早期に紫外線を照射して完全に固化させることが望ましいためである。図10では、透明インク吐出部31xと硬化部33xとの間隔は他と同じ程度に描いてあるが、実際には、他の透明インク吐出部や有色インク吐出部と硬化部との間隔よりもさらに短くして、できれば隣接させることが望ましい。また、図2に示すヘッドユニット3においては、例えば図示した透明インク吐出部31に加えて、もう一方の(X)側の硬化部33と有色インク吐出部32aとの間にももうひとつの透明インク吐出部31を設け、それぞれ硬化部33と透明インク吐出部31を隣接させ、ヘッドユニット3のスキャン方向に応じて、透明インク吐出後すぐに硬化部33が紫外線を照射できるようにすることが望ましい。また、吐出された透明インクの基材9への滲みこみができるだけ浅いうちに早期に完全に固化させるためには、硬化部33xは最も高出力の紫外線を出射するものを使用するのが望ましい。また硬化部33、33も高出力のものを使用し、特に下塗り層94を固化する際には高出力で使用する。
 このように、透明インクによってレンチキュラーレンズ形成あるいは擬似エンボス印刷を行ないたい場合に、その同じ透明インクによって下塗り層94を形成しておけば、下塗り層に多少の隙間や小さい穴が発生したとしても、その穴を通過するインクはごく少量であり、さほど深くまで浸透することは無く硬化するため、裏面へのにじみは阻止できる。
 以上、本発明の実施の形態について説明してきたが、本発明は上記実施の形態に限定されるものではなく、様々な変更が可能である。
 上記実施の形態はいずれも3D印刷のためのレンチキュラーレンズ形成を行うものであったが、それ以外の例えば擬似エンボス印刷のための透明構造体形成を行うこともできる。擬似エンボス印刷のためには、印刷対象物上の必要な場所に、レンチキュラーレンズに変えて、透明インクによって擬似エンボスとなる透明構造体を印刷して形成すればよい。図4、図5では基材9の全面に下塗り層94を形成しているように描いているが、レンチキュラーレンズ形成あるいは擬似エンボス印刷を行ないたい必要部分のみに下塗り層を形成すればよい。また、透明インクおよび有色インクは、例えば、可視光(光子)の照射により硬化するインクや電子ビーム(電子)の照射により硬化するインクであってもよい。すなわち、電磁波や粒子線である放射線の照射により速やかに硬化するものであれば、様々なインクが用いられてよい。また、有色インク吐出部32は、ブラック、シアン、マゼンタおよびイエロー以外の他の色(例えば、ライトシアン、ライトマゼンタ、ホワイト)のインクを吐出してもよい。
 また上記実施の形態では、下塗り層と透明構造体の両方をインクジェット方式で形成するものであったが、必ずしもそれに限らない。例えば、下塗り層は紫外線硬化型インクを用いて有版印刷方式で必要な位置に印刷することで供給して形成してもよく、またローラ塗布方式によって基材の全面に塗布することで供給して下塗り層を形成する構成であってもよい。また、インクジェットプリンタでは、様々な種類の移動機構により、ヘッドユニットと基材9とが相対的に移動すればよい。換言すれば、ヘッドユニットおよび基材9の少なくとも一方が他方に対して相対的に移動すればよい。上述のインクジェットプリンタ1では、ヘッドユニット3をX方向およびY方向に移動するヘッド移動機構4が当該移動機構に対応する。また、インクジェットプリンタ1aでは、ヘッドユニット3をX方向に移動するヘッド移動機構4、および、基材9を保持部2と共にY方向に移動する保持部移動機構45が上記移動機構に対応し、インクジェットプリンタ1bでは、基材9をX方向に移動する送り機構4aが上記移動機構に対応する。
 インクジェットプリンタは、紙や布、プラスチック等により形成されたシート状または板状の可撓性を有する基材への印刷に適しているが、本発明は特に放射線硬化型インクが浸透性を有する普通紙、布等への3D印刷や擬似エンボス印刷に好適である。また、インクジェットプリンタでは、ヘッドユニットから有色インク吐出部が省略され、レンズ層95の形成のみが行われてもよい。この場合、他の印刷装置にて基材9上に画像層93が形成され、インクジェットプリンタにて画像層93とヘッドユニットとの位置合わせが行われた後、レンズ層95の形成が行われる。
 1,1a,1b  インクジェットプリンタ
 4  ヘッド移動機構
 4a  送り機構
 5  印刷制御部
 9  基材
 31,31a~31d、31x  透明インク吐出部
 32  有色インク吐出部
 33,33a~33g、33x  硬化部
 41  主走査機構
 42  副走査機構
 45  保持部移動機構
 51  下塗り層形成制御部
 52  透明構造体形成制御部
 90  印刷物
 99,99a~99c  微小液滴
 93  画像層
 94  下塗り層
 95  レンズ層
 96  スペーサ層
 97  マイクロレンズ層
 971  シリンドリカルレンズ
 S1,2、11~S17  ステップ

Claims (9)

  1.  放射線硬化型インクが浸透する特性を有する印刷紙に対して、
     放射線硬化型透明インクを用いて薄い下塗り層を形成する下塗り工程と、
     形成した下塗り層に放射線を照射して完全固化させる下塗り硬化工程と、
     固化した下塗り層の上に放射線硬化型透明インクを用いて所望の透明構造体を形成する透明構造体形成工程と、
     その後さらに放射線を照射して、形成した透明構造体を硬化させる透明構造体硬化工程と、
    を備えたことを特徴とする印刷方法。
  2.  前記透明構造体は、レンチキュラーレンズまたは擬似エンボスであることを特徴とする請求項1記載の印刷方法。
  3.  前記透明構造体硬化工程は、
    比較的弱い放射線を照射して、透明構造体を半硬化状態としてその形を整える第1硬化工程と、
    その第1硬化工程の後に、比較的強い放射線を照射して、前記透明構造体を完全硬化させる第2硬化工程と、
    を備えることを特徴とする請求項1または2記載の印刷方法。
  4.  前記下塗り層は厚み10μm以下とすることを特徴とする請求項1に記載の印刷方法。
  5.  印刷機であって、
     放射線硬化型透明インクの微小液滴を基材に向けて吐出する吐出部と、
     前記吐出部と前記基材とを相対的に移動させる移動機構と、
     前記吐出部から前記基材に付与された前記透明インクに放射線を照射して前記透明インクを硬化させる硬化部と、
     前記吐出部、前記移動機構および前記硬化部を制御する印刷制御部と、
    を備え、
     前記印刷制御部は、
     前記基材に対して所定量の透明インクを供給し、その後その透明インクに対して放射線を照射して硬化させて前記基材上に透明構造体を形成する透明構造体形成制御部と、
    前記基材に対して、前記透明構造体形成制御部における前記所定量よりも少ない量の透明インクを供給し、その後その透明インクに対して放射線を照射して硬化させて前記基材上に透明インクの下塗り層を形成する下塗り層形成制御部と、
    を備えることを特徴とする印刷機。
  6.  印刷機であって、
     放射線硬化型透明インクを基材に供給する第1供給部および該第1供給部で供給された透明インクに放射線を照射して硬化させる第1硬化部を有し、透明インクによる下塗り層を形成する下塗り層形成部と、
     放射線硬化型透明インクの微小液滴を基材に向けて吐出する第2供給部および該第2供給部で吐出された透明インクに放射線を照射して硬化させる第2硬化部を有し、透明インクによる透明構造体を形成する透明構造体形成部と、
     前記下塗り層形成部および前記透明構造体形成部を、前記基材に対して相対的に移動させる移動機構と、
     前記下塗り層形成部、前記透明構造体形成部および前記移動機構を制御する印刷制御部と、
    を備え、
     前記印刷制御部は、
     前記透明構造体形成部により基材に対して所定量の透明インクを供給し、その後その透明インクに対して放射線を照射して硬化させて前記基材上に透明構造体を形成する透明構造体形成制御部と、
    前記透明構造体形成制御部による前記所定量よりも少ない量の透明インクを、前記下塗り層形成部により前記基材に対して供給し、その後その透明インクに対して放射線を照射して硬化させて前記基材上に透明インクの下塗り層を形成する下塗り層形成制御部と、
    を備えることを特徴とする印刷機。
  7.  請求項5に記載の印刷機であって、
     前記透明構造体は、スペーサ層とマイクロレンズ層から成るレンズ層を有し、
     前記マイクロレンズ層を形成する際に前記硬化部から照射される放射線の強度が、前記スペーサ層を形成する際に前記硬化部から照射される放射線の強度よりも小さいことを特徴とする印刷機。
  8.  請求項6に記載の印刷機であって、
     前記透明構造体は、スペーサ層とマイクロレンズ層から成るレンズ層を有し、
     前記マイクロレンズ層を形成する際に前記第2硬化部から照射される放射線の強度が、前記スペーサ層を形成する際に前記第2硬化部から照射される放射線の強度よりも小さいことを特徴とする印刷機。
  9.  請求項5または6に記載の印刷機であって、
     有色インクの微小液滴を前記基材に向けて吐出して画像層を形成するもう1つの吐出部をさらに備えることを特徴とする印刷機。
PCT/JP2011/061019 2010-05-14 2011-05-13 印刷機および印刷方法 WO2011142448A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012514840A JP5805633B2 (ja) 2010-05-14 2011-05-13 印刷機および印刷方法
US13/697,327 US8851658B2 (en) 2010-05-14 2011-05-13 Printer and printing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010111974 2010-05-14
JP2010-111974 2010-05-14

Publications (1)

Publication Number Publication Date
WO2011142448A1 true WO2011142448A1 (ja) 2011-11-17

Family

ID=44914499

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/061019 WO2011142448A1 (ja) 2010-05-14 2011-05-13 印刷機および印刷方法

Country Status (3)

Country Link
US (1) US8851658B2 (ja)
JP (1) JP5805633B2 (ja)
WO (1) WO2011142448A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20120535A1 (it) * 2012-11-06 2014-05-07 Vogue Service S A Macchinario multitesta per la creazione di immagini lenticolari e la stampa delle stesse su qualunque tipo di supporto.
WO2017199522A1 (ja) * 2016-05-18 2017-11-23 キヤノン株式会社 情報処理装置、画像形成装置、およびそれらの制御方法、プログラム
JP2018111211A (ja) * 2017-01-06 2018-07-19 株式会社ミマキエンジニアリング 印刷装置、印刷方法及び装飾物の製造方法
JP2018200410A (ja) * 2017-05-29 2018-12-20 株式会社ミマキエンジニアリング メディア及びメディアの製造方法
CN110831773A (zh) * 2017-07-05 2020-02-21 宝洁公司 在包装系统上印刷3d微光学图像的方法
JP2020124832A (ja) * 2019-02-04 2020-08-20 ミラクル工業株式会社 疑似ホログラム印刷物とその製造法
US10837903B2 (en) 2016-05-18 2020-11-17 Canon Kabushiki Kaisha Information processing apparatus, method of deriving reflection characteristics, program, and reflection characteristic profile

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140098167A1 (en) * 2012-10-09 2014-04-10 Zamtec Limited Method of high-speed printing for improving optical density in pigment-based inks
US9266352B2 (en) * 2013-08-23 2016-02-23 Xerox Corporation System and method for lenticular image printing and print media
US9575229B2 (en) 2014-03-19 2017-02-21 Nike, Inc. Article having a plurality of optical structures
US9348069B2 (en) 2014-03-19 2016-05-24 Nike, Inc. Article having a plurality of optical structures
CN104401002A (zh) * 2014-05-31 2015-03-11 福州大学 一种基于3d打印的曲面微透镜阵列制作方法
JP6674863B2 (ja) * 2016-08-10 2020-04-01 株式会社ミマキエンジニアリング 印刷装置及び印刷方法
EP3424739A1 (en) * 2017-07-05 2019-01-09 The Procter & Gamble Company Method of printing 3d-microoptic images on packaging systems
US11858284B2 (en) 2020-08-31 2024-01-02 Ricoh Company, Ltd. Information processing apparatus, printing system, image processing method, and recording medium
JP2022066696A (ja) * 2020-10-19 2022-05-02 セイコーエプソン株式会社 立体物印刷装置および立体物印刷方法
EP4091805A1 (en) * 2021-05-18 2022-11-23 Essilor International A method for improved coating of an optical article comprising optical elements

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011350A (ja) * 2001-07-05 2003-01-15 Seiko Epson Corp 立体画像形成装置および立体画像形成方法
JP2004306469A (ja) * 2003-04-08 2004-11-04 Seiren Co Ltd 紫外線硬化型インクを用いた布帛のインクジェット記録方法および記録装置
JP2006001153A (ja) * 2004-06-18 2006-01-05 Dainippon Printing Co Ltd レンチキュラーレンズ付き印刷物、印刷物の製造方法
JP2007144635A (ja) * 2005-11-24 2007-06-14 Konica Minolta Medical & Graphic Inc インクジェット記録装置
JP2009507692A (ja) * 2005-09-12 2009-02-26 エレクトロニクス、フォー、イメージング、インコーポレーテッド グラフィック用途用金属インクジェット印刷システム
WO2010021377A1 (ja) * 2008-08-21 2010-02-25 ローランドディー.ジー.株式会社 インクジェット式記録装置およびコンピュータプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3555420B2 (ja) 1997-12-25 2004-08-18 ブラザー工業株式会社 画像形成装置
JP2009113430A (ja) 2007-11-08 2009-05-28 Mitsubishi Heavy Ind Ltd オフセット印刷機及びオフセット印刷方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003011350A (ja) * 2001-07-05 2003-01-15 Seiko Epson Corp 立体画像形成装置および立体画像形成方法
JP2004306469A (ja) * 2003-04-08 2004-11-04 Seiren Co Ltd 紫外線硬化型インクを用いた布帛のインクジェット記録方法および記録装置
JP2006001153A (ja) * 2004-06-18 2006-01-05 Dainippon Printing Co Ltd レンチキュラーレンズ付き印刷物、印刷物の製造方法
JP2009507692A (ja) * 2005-09-12 2009-02-26 エレクトロニクス、フォー、イメージング、インコーポレーテッド グラフィック用途用金属インクジェット印刷システム
JP2007144635A (ja) * 2005-11-24 2007-06-14 Konica Minolta Medical & Graphic Inc インクジェット記録装置
WO2010021377A1 (ja) * 2008-08-21 2010-02-25 ローランドディー.ジー.株式会社 インクジェット式記録装置およびコンピュータプログラム

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20120535A1 (it) * 2012-11-06 2014-05-07 Vogue Service S A Macchinario multitesta per la creazione di immagini lenticolari e la stampa delle stesse su qualunque tipo di supporto.
WO2017199522A1 (ja) * 2016-05-18 2017-11-23 キヤノン株式会社 情報処理装置、画像形成装置、およびそれらの制御方法、プログラム
JP2017208703A (ja) * 2016-05-18 2017-11-24 キヤノン株式会社 情報処理装置およびその制御方法、プログラム
US10732103B2 (en) 2016-05-18 2020-08-04 Canon Kabushiki Kaisha Information processing apparatus, image forming apparatus, information processing method, and storage medium
US10837903B2 (en) 2016-05-18 2020-11-17 Canon Kabushiki Kaisha Information processing apparatus, method of deriving reflection characteristics, program, and reflection characteristic profile
JP2018111211A (ja) * 2017-01-06 2018-07-19 株式会社ミマキエンジニアリング 印刷装置、印刷方法及び装飾物の製造方法
JP2018200410A (ja) * 2017-05-29 2018-12-20 株式会社ミマキエンジニアリング メディア及びメディアの製造方法
CN110831773A (zh) * 2017-07-05 2020-02-21 宝洁公司 在包装系统上印刷3d微光学图像的方法
JP2020524097A (ja) * 2017-07-05 2020-08-13 ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company パッケージングシステム上に3dマイクロ光学画像を印刷する方法
JP2022044672A (ja) * 2017-07-05 2022-03-17 ザ プロクター アンド ギャンブル カンパニー パッケージングシステム上に3dマイクロ光学画像を印刷する方法
CN110831773B (zh) * 2017-07-05 2022-07-08 宝洁公司 在包装系统上印刷3d微光学图像的方法
JP2020124832A (ja) * 2019-02-04 2020-08-20 ミラクル工業株式会社 疑似ホログラム印刷物とその製造法

Also Published As

Publication number Publication date
US20130057608A1 (en) 2013-03-07
US8851658B2 (en) 2014-10-07
JPWO2011142448A1 (ja) 2013-07-22
JP5805633B2 (ja) 2015-11-04

Similar Documents

Publication Publication Date Title
JP5805633B2 (ja) 印刷機および印刷方法
US20210245421A1 (en) Liquid drop discharge system
JP5615822B2 (ja) インクジェットプリンタおよびインクジェット印刷方法
JP4026652B2 (ja) インクジェット記録装置及びインクジェット記録方法
JP6492742B2 (ja) 画像形成装置、画像形成方法およびプログラム
US9457607B2 (en) Image forming method
JP2011215202A (ja) インクジェットプリンタおよび印刷物
JP2007144635A (ja) インクジェット記録装置
WO2010126009A1 (ja) インクジェットプリンタ、印刷方法および印刷物
WO2015137478A1 (ja) 印刷装置及び印刷方法
JP2005144749A (ja) インクジェット記録装置
JP5668462B2 (ja) 印刷装置及び印刷方法
JP6375643B2 (ja) 画像形成装置及び画像形成方法
JP5682752B2 (ja) 記録装置
JP2015202689A (ja) 3次元造形物の製造方法及び3次元造形物の製造装置
US10220644B2 (en) Printing device and printing method
WO2011122123A1 (ja) インクジェットプリンタおよび印刷物
JP5682753B2 (ja) 記録装置
JP2012143958A (ja) 記録装置
JP2011215201A (ja) インクジェットプリンタおよび印刷物
JP4720497B2 (ja) 画像記録装置及び画像記録システム
JP2020093532A (ja) 液体吐出装置、プログラムおよび吐出制御方法
EP3666500B1 (en) A method of 3d ink jet printing
JP2018043360A (ja) インクジェットプリンタ
JP2008307696A (ja) 画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780704

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012514840

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13697327

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780704

Country of ref document: EP

Kind code of ref document: A1