WO2011142059A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2011142059A1
WO2011142059A1 PCT/JP2011/000212 JP2011000212W WO2011142059A1 WO 2011142059 A1 WO2011142059 A1 WO 2011142059A1 JP 2011000212 W JP2011000212 W JP 2011000212W WO 2011142059 A1 WO2011142059 A1 WO 2011142059A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
semiconductor
semiconductor chip
wafer
hole
Prior art date
Application number
PCT/JP2011/000212
Other languages
English (en)
French (fr)
Inventor
新井 良之
井上 大輔
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011142059A1 publication Critical patent/WO2011142059A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/564Details not otherwise provided for, e.g. protection against moisture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02218Material of the housings; Filling of the housings
    • H01S5/0222Gas-filled housings

Definitions

  • the present invention relates to a chip size package type semiconductor device and a manufacturing method thereof.
  • a chip size package type semiconductor device in which a cover member is attached to a semiconductor chip and a gap between the semiconductor chip and the cover member is a hollow part is spreading in the market.
  • Typical products include various image sensors for small devices such as mobile phones, and light receiving ICs mounted on optical pickups of optical disk drives.
  • the above hollow structure can also be applied to devices generally called MEMS (Micro Electro Mechanical Systems) such as a pressure sensor and an acceleration sensor.
  • MEMS Micro Electro Mechanical Systems
  • Patent Document 1 discloses a light receiving semiconductor device compatible with a blue laser.
  • a gap between the cover member (a glass plate in Patent Document 1) and a light receiving region formed on the semiconductor chip is a hollow portion, and the hollow portion is a spacer member (a sealing portion made of an adhesive in Patent Document 1). ).
  • Patent Document 1 in order to solve the problem that moisture penetrates into the hollow portion and condensation occurs on the hollow portion side of the cover member and obstructs the reception of the laser beam, a groove that zigzags is provided in the spacer member. A structure for ventilating the outside of the semiconductor device and the hollow portion is disclosed.
  • Patent Document 2 and Patent Document 3 disclose a structure in which a through hole is provided in a cover member and the hollow portion and the outside of the semiconductor device are ventilated.
  • these semiconductor devices disclosed in Patent Documents 1 to 3 have a conductor for conducting a functional element formed on the semiconductor chip and the outside of the semiconductor device.
  • This conductor is formed in a shape penetrating the semiconductor chip in Patent Document 1 and Patent Document 2, and is formed in a shape along the side surface of the semiconductor chip in Patent Document 3.
  • Patent Documents 1 to 3 are manufactured at the wafer level to reduce the cost.
  • the semiconductor device obtained in this way has the following problems.
  • the spacer member that surrounds the hollow portion in the gap between the semiconductor chip and the cover member is an adhesive made of resin. Even if the spacer member is not a resin, an adhesive is used to bond it to the semiconductor chip or the cover member. In general, the volatile component is vaporized by the heat history after bonding, and the adhesive remains in the hollow portion. According to the analysis by the inventors of the present application, this gas is generated by 80% in the adhesive curing of the cover member and 20% in the subsequent insulating film forming step.
  • FIG. 10 is a schematic diagram for explaining a problem that occurs in a conventional semiconductor device.
  • the semiconductor device 900 shown in the figure receives the laser beam A incident on the light receiving region 901. At this time, when the gas molecules B composed of the volatile components of the adhesive resin are captured by the laser light A, a state C in which the gas molecules B aggregate is generated. When the state C in which the gas molecules B aggregate is a foreign substance, the light receiving sensitivity of the semiconductor device 900 is deteriorated.
  • Patent Document 1 discloses a structure in which a groove is provided in a spacer member for the purpose of preventing dew condensation so that the outside can be vented.
  • this groove meanders zigzag, and it is difficult for foreign matter generated by the mechanism shown in FIG. 10 to be removed from the hollow portion to the outside through this groove.
  • processing such a groove into individual spacer members has a disadvantage of increasing costs. This is because the spacer member needs to be completely removed in a specific region in order to form a hollow portion.
  • the above groove processing is a partial removal processing with a part of the spacer member remaining. This is because it is difficult to perform seed removal processing at the same time.
  • the cover member needs to transmit light in a specific region, and accordingly, a position where the through hole is arranged is restricted. This is because if light is incident on the through hole, the light is scattered and obstructs the incidence on the semiconductor chip.
  • the through hole does not interfere with the incidence of light on the semiconductor chip, and is accurately placed at a predetermined position on the semiconductor chip. Need to align. Accordingly, since a highly accurate recognition device for alignment is required, the manufacturing cost increases.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor device that has high reliability and high practicality and can be manufactured at low cost, and a manufacturing method thereof.
  • a semiconductor device includes a semiconductor chip having at least one semiconductor element formed on a surface thereof, a spacer member having a frame structure provided on the semiconductor chip, and the spacer member.
  • a cover member provided on the semiconductor chip, the spacer member, and the cover member form at least one hollow portion facing the at least one semiconductor element, It has at least 1 through-hole which reaches the said hollow part from a back surface or a side surface.
  • the at least one through hole may reach from the back surface of the semiconductor chip to the hollow portion.
  • the at least one through hole may penetrate from the side surface of the semiconductor chip to the hollow portion.
  • the at least one through hole may communicate the at least one hollow portion with an external space of the semiconductor device.
  • the gas and foreign matter generated in the hollow portion during use of the semiconductor device can be discharged to the outside, so that the reliability when the generated semiconductor device is used can be improved.
  • the at least one through hole may include a plurality of through holes, and the plurality of through holes may be arranged along an inner wall of the spacer member.
  • a through conductor that penetrates the semiconductor chip in the thickness direction and is electrically connected to the semiconductor element may be provided.
  • a through hole providing a conductor for electrical connection between the semiconductor chip and the outside can be formed simultaneously with the through hole for ventilation between the hollow portion and the outside. The cost can be reduced.
  • the at least one semiconductor element may be composed of a plurality of semiconductor elements.
  • the at least one hollow portion may be composed of a plurality of hollow portions, and each of the plurality of semiconductor elements may be arranged corresponding to each of the plurality of hollow portions.
  • the inner wall area of the spacer member surrounding each hollow portion is reduced, and the effect of reducing the amount of gas that volatilizes from the spacer base material and remains in the hollow portion is obtained. Reliability can be improved.
  • the at least one semiconductor element may be a light receiving element, and the cover member may be translucent.
  • the at least one semiconductor element may be a light emitting element, and the cover member may have a light transmitting property.
  • a method of manufacturing a semiconductor device comprising: a semiconductor chip having at least one semiconductor element formed on a surface; a spacer member having a frame structure provided on the semiconductor chip; and a spacer member provided on the spacer member.
  • the semiconductor chip, the spacer member, and the cover member form at least one hollow portion facing the at least one semiconductor element, the semiconductor chip from the back surface
  • the gas generated by volatilization from the spacer member and remaining inside the hollow portion can be discharged to the outside in the manufacturing process, so that a highly reliable semiconductor device is manufactured at a low cost at the wafer level. be able to.
  • the manufacturing method of the semiconductor device may manufacture a plurality of the semiconductor devices by performing the step (B) after the step (A).
  • a step of thinning the wafer by uniformly removing the surface of the assembled wafer opposite to the spacer base material side. May be included.
  • the manufacturing time can be shortened and the cost can be reduced.
  • a plurality of the semiconductor devices are put into an airtight structure chamber and depressurized from the atmospheric pressure, so that the plurality of gas molecules filled in the plurality of hollow portions are pluralized. You may include the process discharged
  • the semiconductor device manufacturing method may manufacture a plurality of the semiconductor devices by performing the step (A) after the step (B).
  • the through hole is formed before the hollow portion is formed by integrating the wafer, the spacer member, and the cover member, and damage to the hollow portion that may occur when the through hole is formed.
  • a semiconductor device with improved reliability which has a higher air permeability than the structure of the prior art, can be prevented against gas generated by volatilization from the spacer member and remaining inside the hollow portion. It can be manufactured at low cost at the level.
  • the step (A) includes a step of forming a plurality of holes formed from the front surface of the wafer to a predetermined depth and not penetrating to the back surface of the wafer, and a back surface of the wafer after the step of forming the holes. Forming the plurality of through holes by exposing bottoms of the plurality of holes by uniformly removing the plurality of holes.
  • the manufacturing time can be shortened and the cost can be reduced.
  • a plurality of the semiconductor devices are put into an airtight structure chamber and depressurized from the atmospheric pressure, whereby a plurality of gas molecules filled in the plurality of hollow portions are converted into a plurality of gas molecules.
  • a step of filling an insulator into at least some of the plurality of through holes formed in the step (B) may be included.
  • the surface state of the inner wall of the through hole can be protected and stabilized, and the reliability of the semiconductor device can be improved.
  • it may further include a step of filling a conductor into at least some of the plurality of through holes formed in the step (B).
  • the semiconductor device and the manufacturing method thereof of the present invention it is possible to realize a semiconductor device that has high reliability and high practicality and can be manufactured at low cost, and a manufacturing method thereof.
  • FIG. 1A is a schematic plan view showing a state in which the semiconductor device according to Embodiment 1 of the present invention is viewed from above.
  • FIG. 1B is a schematic cross-sectional view showing the configuration of the A-A ′ cross section in FIG. 1A.
  • FIG. 1C is a schematic plan view illustrating a state where the semiconductor device is viewed from the back surface.
  • FIG. 2 is a schematic plan view showing a state where the semiconductor device according to the modification of the first embodiment of the present invention is viewed from above.
  • FIG. 3A is a schematic plan view showing a state in which the semiconductor device according to Embodiment 2 of the present invention is viewed from above.
  • FIG. 3B is a schematic cross-sectional view showing the configuration of the B-B ′ cross section in FIG. 3A.
  • FIG. 3C is a schematic cross-sectional view showing a modified example of the configuration taken along the line B-B ′ in FIG. 3A.
  • FIG. 4 is a schematic plan view showing the semiconductor device according to the third embodiment of the present invention as viewed from above.
  • FIG. 5 schematically shows a manufacturing process of the semiconductor device according to the fourth embodiment.
  • FIG. 6 is a top view showing the structure of the resin in the step shown in FIG.
  • FIG. 7 is a top view showing a resin structure in the manufacturing process of the semiconductor device according to the fifth embodiment.
  • FIG. 8 is a diagram showing a singulation process.
  • FIG. 9 is a diagram schematically showing a manufacturing process of the semiconductor device according to the sixth embodiment.
  • FIG. 10 is a schematic diagram for explaining a problem that occurs in a conventional semiconductor device.
  • the semiconductor device includes a semiconductor chip having at least one semiconductor element formed on the surface, a spacer member having a frame structure provided on the semiconductor chip, and a cover member provided on the spacer member
  • the semiconductor chip, the spacer member, and the cover member form at least one hollow portion facing at least one semiconductor element, and the semiconductor chip reaches at least the hollow portion from the surface other than the hollow portion side. It has one through hole.
  • the semiconductor device according to the present embodiment has high reliability and high practicality, and can be manufactured at low cost.
  • FIG. 1A is a schematic plan view showing a state of the semiconductor device according to the first embodiment of the present invention as viewed from above
  • FIG. 1B is a schematic cross-sectional view showing the configuration of the AA ′ cross section in FIG. 1A
  • FIG. 1C is a schematic plan view illustrating a state where the semiconductor device is viewed from the back surface. Note that FIG. 1A is partially depicted as a perspective view for the sake of explanation.
  • the semiconductor device 100 exemplified here is assumed to be a light receiving IC used for pickup of an optical disk drive.
  • the semiconductor device 100 generally includes a semiconductor chip 110, a spacer member 120, and a cover member 130.
  • the semiconductor chip 110 is formed with a functional element 111 formed on one surface (main surface / front surface) and an electrode pad 112 electrically connected thereto.
  • the functional element 111 is a so-called light receiving element, which converts the intensity and position of incident light into an electric signal, amplifies it, and outputs it to the electrode pad 112.
  • the functional element 111 is roughly divided into three locations, each of which is an aggregate of small regions.
  • a plurality of electrode pads 112 are provided, and each has a function of outputting an electric signal converted / amplified from light, a function of receiving power supply, and a function of a ground.
  • the semiconductor chip 110 has a through hole 113 and a through hole 114 formed by etching.
  • An insulating film (not shown) is formed along the inner walls of the through holes 113 and 114 and along the back surface of the semiconductor chip 110.
  • the through hole 114 is filled with the conductor 140 through the insulating film.
  • the conductor 140 is electrically connected to the electrode pad 112 and is electrically connected to the electrode bump 150 through a rewiring (not shown) formed on the back surface of the semiconductor chip 110 via the insulating film. . That is, the semiconductor chip 110 can be electrically connected to the outside (not shown) from the electrode pad 112 via the conductor 140 and the electrode bump 150 in the through hole 114.
  • the rewiring as a conductor is provided via the insulating film, and the protective film 160 is coated to protect it from the external environment.
  • the protective film 160 is removed in the electrode bump 150 and the through hole 113.
  • FIG. 1C among the electrode bumps 150 arranged in a grid pattern, one electrode bump inside one row from the outermost periphery is missing, which is for showing the first terminal of the semiconductor device 100. .
  • the positions where the electrode bumps are missing need not be the positions corresponding to the inner electrode bumps in the row direction and the column direction one by one in the electrode bumps arranged in a grid as shown in FIG. 1C. It may be a position corresponding to one inner electrode bump in either the row direction or the column direction.
  • a frame-shaped spacer member 120 is joined to the main surface of the semiconductor chip 110 along the outer periphery thereof, and a cover member 130 is joined to the surface of the spacer member 120 opposite to the semiconductor chip 110. Since the semiconductor device 100 is a light receiving IC, the cover member 130 has translucency.
  • the inside of the frame-shaped spacer member 120 forms a hollow portion sandwiched between the semiconductor chip 110 and the cover member 130, and the functional element 111 and the through hole are formed in a region facing the hollow portion 170 of the semiconductor chip 110. 113 are arranged. Since the through-hole 113 opens to both the hollow portion 170 and the outside of the semiconductor device 100, the atmosphere can be conducted between the hollow portion and the outside through the through-hole 113.
  • the spacer member 120 is disposed on the electrode pad 112 in FIG. 1A, the electrode pad 112 may be disposed in a region facing the hollow portion 170.
  • the semiconductor device 100 includes a semiconductor chip 110 having a plurality of functional elements 111 formed on the surface, a spacer member 120 having a frame structure provided on the semiconductor chip 110, a spacer A cover member 130 provided on the member 120.
  • the semiconductor chip 110, the spacer member 120, and the cover member 130 form a hollow portion 170 facing the plurality of functional elements 111.
  • a plurality of 113 through-holes reaching the hollow portion 170 from the back surface or the side surface are provided.
  • the plurality of through holes 113 are arranged in a matrix at substantially equal intervals in a region facing the hollow portion 170 of the semiconductor chip 110.
  • the through hole 113 has a function of releasing a volatile component from the spacer member 120 generated in the manufacturing process of the semiconductor device 100 to the outside. As described above, almost all of the gas generated from the spacer member 120 is generated in the manufacturing process of the semiconductor device 100. Therefore, if the gas generated in the manufacturing process can be sufficiently discharged, then the through hole 113 is blocked and it is not always necessary to vent. Although it is reasonable to use the protective film 160 as a closing method, other members may be filled in the through-hole 113 in accordance with reliability or other requirements.
  • Si As the material of the semiconductor chip 110, Si is assumed in the first embodiment, but a compound such as SiC, SiGe, GaAs, or GaN may be used depending on the function of the semiconductor device 100.
  • a light receiving element is assumed in the first embodiment.
  • This is an image sensor such as a CCD (Charge Coupled Device), an image sensor such as an infrared sensor, and a microlens array, a laser, or the like thereof.
  • a pressure sensor such as a MEMS, or an IDT (Interdigital / Transducer) electrode such as a micro gyroscope or a SAW filter.
  • the functional element 111 corresponds to a semiconductor element of the present invention.
  • SiO 2 As the material of the insulating film formed on the inner walls of the through holes 113 and 114 and on the back surface of the semiconductor chip 110, SiO 2 is assumed, but nitrides such as Si 3 N 4 and glass materials such as PSG and BPSG are also used. It can be used.
  • the conductor 140 is made of Cu, Al, Ti, Ni, Au, Ag and other metals and their alloys, Si-containing alloys, various solder alloys, and conductive pastes in which these particles are dispersed and blended in an organic binder. Can be used.
  • the shape of the conductor 140 is a plug filled in the through hole 114, but this is formed on the inner wall of the insulator by a method such as plating, such as a through hole or a via hole in an organic substrate. A film may be formed.
  • the conductor 140 corresponds to the through conductor of the present invention.
  • solder alloys As the material of the electrode bump 150, various solder alloys can be applied.
  • the material of the protective film 160 may be an organic material such as a resin, or may be an inorganic material similar to the above insulating film.
  • the spacer member 120 is assumed to be an adhesive made of an epoxy resin, silicon resin, acrylic resin, or the like, but this may be metal, glass, or rubber. However, even in that case, in order to join the semiconductor chip 110 and the cover member 130, it is necessary to intervene some adhesive on the joining surfaces. There are various methods for the adhesive in that case, but the above-mentioned resin-based adhesives are advantageous from the viewpoints of cost, damage to products, and management reasons on the production line.
  • cover member 130 glass is assumed in the first embodiment, but an organic material such as plastic or a metal material such as Al may be used depending on the purpose of the semiconductor device 100.
  • an antireflection film may be provided on both sides or one side. Further, in accordance with the arrangement of the functional elements 111, a part thereof may be translucent and the other regions may be light-shielding.
  • the electrical connection between the semiconductor chip 110 and the outside is via the conductor 140 in the through hole 114, which is on the side surface of the semiconductor chip 110 as shown in Patent Document 3. It may be via a provided conductor. This is because the effect of the through hole 113 is not particularly affected. However, since the manufacturing cost increases, it is preferable to form the through holes 113 and 114 simultaneously.
  • the semiconductor device 100 includes the semiconductor chip 110, the spacer member 120 having a frame structure provided on the semiconductor chip 110, and the cover member 130 provided on the spacer member 120.
  • the semiconductor chip 110, the spacer member 120, and the cover member 130 form a hollow portion 170, and the semiconductor chip 110 penetrates the semiconductor chip 110 in the thickness direction and reaches the hollow portion 170.
  • Through-hole 113 the semiconductor chip 110, the spacer member 120, and the cover member 130.
  • the spacer member 120 when the spacer member 120 is bonded to the semiconductor chip 110 or the cover member 130, or the gas volatilized from the adhesive component of the spacer member 120 generated in accordance with the thermal history during the subsequent manufacturing process or actual use,
  • the semiconductor device 110 can be discharged from the hollow portion 170 to the outside of the semiconductor device 100 through the through-hole 113 formed in the semiconductor chip 110. Therefore, when the semiconductor device 100 is used, the gas volatilized from the adhesive component of the spacer member 120 remaining in the hollow portion 170 does not aggregate. Therefore, it is possible to suppress deterioration of the light receiving sensitivity of the semiconductor device 100. For this reason, the reliability and practicality of the semiconductor device 100 can be improved.
  • the through-hole 113 is formed in the semiconductor chip 110, it is not necessary to make the cover member 130 and the semiconductor chip 110 rough surfaces with high accuracy at the time of manufacture. This eliminates the need for a highly accurate recognition device for alignment, and can be manufactured at low cost.
  • the plurality of through holes 113 are substantially equidistant in a region facing the hollow portion 170 of the semiconductor chip 110.
  • the arrangement form of the plurality of through holes 113 is not limited to this.
  • FIG. 2 is a schematic plan view showing a state where the semiconductor device according to the modification of the first embodiment of the present invention is viewed from above.
  • the semiconductor device 101 of this modification example illustrated in FIG. 2 differs from the semiconductor device 100 illustrated in FIG. 1A only in the arrangement form of the plurality of through holes 113.
  • description of the same points as the semiconductor device 100 will be omitted, and only different points will be described.
  • the through hole 113 of the semiconductor device 101 is disposed along the outer peripheral portion of the hollow portion 170, that is, along the inner wall of the spacer member 120. Since outgas is generated from the resin of the spacer member 120, by providing a plurality of through holes 113 along the inner wall of the spacer member 120, the outgas diffusion near the functional element 111 is suppressed, and the outgas is efficiently discharged outside the package. It can be released. Therefore, also in the semiconductor device 101 according to the present modification, performance deterioration due to outgas does not occur, and a highly reliable hollow structure package can be realized.
  • the semiconductor device according to the present embodiment is substantially the same as the semiconductor device 100 according to the first embodiment, but the through hole formed in the semiconductor chip penetrates from the surface to the side surface of the semiconductor chip. The point is different.
  • the length of the through hole can be made shorter than the thickness of the semiconductor chip, and even when the semiconductor chip is thick, the through hole can be shortened, and the manufacturing cost can be reduced.
  • FIG. 3A is a schematic plan view showing a state of the semiconductor device according to the second embodiment of the present invention as viewed from above, and FIG. 3B is a schematic cross-sectional view showing the configuration of the BB ′ cross section in FIG. 3A.
  • FIG. 3A a part is drawn as a perspective view for explanation.
  • the semiconductor device 200 shown in FIGS. 3A and 3B is substantially the same as the semiconductor device 100 according to the first embodiment, but instead of the through hole 113, the semiconductor chip 110 is penetrated obliquely with respect to the thickness direction. By doing so, a different point is that a through hole 213 reaching from the side surface of the semiconductor chip 110 to the hollow portion 170 is formed. Further, the through hole 213 is disposed along the inner wall of the spacer member 120. In other words, the through-hole 213 is opened in the peripheral portion of the region in contact with the hollow portion 170 on the surface of the semiconductor chip 110. Further, in place of the functional element 111, the functional element 211 is arranged at the center of the surface of the semiconductor chip 110.
  • the first difference from the first embodiment is that in the first embodiment, the through holes 113 are arranged in a lattice pattern at equal intervals in the semiconductor chip 110, but in the second embodiment, the through holes 113 are penetrated.
  • the holes 213 are arranged along the inner wall of the spacer member 120 facing the hollow portion 170.
  • the semiconductor chip 110 converts the light intensity into an electric signal by the light receiving element (functional element 211), and then amplifies the electric signal and outputs it to the outside A circuit to do this is necessary.
  • a plurality of such circuits are required depending on the resolution of the light receiving element, but it is desirable to arrange them in a specific area so that there is no difference in characteristics between the circuits.
  • the through holes 213 are arranged in a planar manner at random or at equal intervals in such a circuit region, there is a concern that variations in electrical characteristics will increase. Accordingly, it is not dependent on the arrangement of the functional elements 211, and the through holes 213 are arranged corresponding to the arrangement of the functional elements 211 rather than arranging the through holes 213 at regular intervals or irregularly. desirable.
  • the through holes 213 shown in FIGS. 3A and 3B are arranged in the peripheral region of the semiconductor chip 110 along the electrode pads 112.
  • the through hole 213 is disposed along the inner wall of the spacer member 120.
  • the through-hole 213 is opened in the peripheral part of the region facing the hollow part 170 on the surface of the semiconductor chip 110.
  • the second difference from the first embodiment is that the through-hole 213 opens on the side surface of the semiconductor chip 110. As shown in FIG. 3B, the through hole 213 is formed straight with a certain angle with respect to the main surface and the side surface of the semiconductor chip 110.
  • the through-hole 213 formed in the semiconductor chip 110 extends from the surface to the side surface of the semiconductor chip 110 as compared with the semiconductor device 100 according to the first embodiment. To penetrate. Specifically, the through hole 213 reaches the hollow portion 170 by being formed obliquely with respect to the thickness direction of the semiconductor chip 110.
  • the through hole 113 is opened on the back surface of the semiconductor chip 110, when the underfill is injected into the gap with the substrate when the semiconductor device 100 is mounted on the substrate, the through hole 113 is blocked. It will be.
  • the semiconductor device 200 according to the present embodiment has the through-hole 213 opened on the side surface. Therefore, even if an underfill is used when mounting on the substrate, the hollow portion 170 and the outside of the semiconductor device 200 There is an advantage that ventilation is maintained.
  • the through hole 213 is opened in the peripheral portion of the region facing the hollow portion 170 on the surface of the semiconductor chip 110.
  • the length of the through hole 213 can be designed to be short, so that it can be manufactured at low cost.
  • the through hole 213 is provided between the main surface and the side surface of the semiconductor chip 110 as in the present embodiment, the opening position on the main surface side is arranged along the inner wall of the spacer member 120. If so, since the length of the through-hole 213 to be drilled can be designed shorter than in the case where it is not, it is very advantageous in terms of manufacturing cost.
  • through hole 213 may be bent instead of straight.
  • FIG. 3C is a schematic cross-sectional view showing a modified example of the configuration in the B-B ′ cross section in FIG. 3A.
  • the through hole 213 does not penetrate obliquely with respect to the thickness direction of the semiconductor chip 110, and a part of the through hole 213 is formed in the thickness direction of the semiconductor chip 110.
  • Another part of 213 may be formed in the main surface direction of the semiconductor chip 110. That is, you may have a bending part.
  • the semiconductor device according to the third embodiment is substantially the same as the semiconductor device 100 according to the first embodiment, except that a hollow portion is provided corresponding to each of the plurality of functional elements 111.
  • FIG. 4 is a schematic plan view showing a state where the semiconductor device according to the third embodiment of the present invention is viewed from above. Note that FIG. 4 is partially depicted as a perspective view for explanation.
  • a spacer member 320 capable of forming a plurality of hollow portions 370a to 370c is used instead of the spacer member 120.
  • the semiconductor chip 110 having a plurality of functional elements 111 formed on the surface, the spacer member 320, and the cover member 130 form a plurality of hollow portions 370a to 370c.
  • Each of the plurality of functional elements 111 corresponds to each of the plurality of hollow portions 370a to 370c and faces the corresponding hollow portion 370a to 370c.
  • each of the hollow portions 370a to 370c can be reduced. Since the inner wall area of the spacer member 120 surrounding the hollow portions 370a to 370c can be reduced by minimizing the volume of the hollow portions 370a to 370c as described above, the hollow portions 370a to 370c generated from the spacer member 120 are generated. The reliability of the semiconductor device 300 can be improved by reducing the amount of the gas component remaining in the semiconductor device 300.
  • the volume of the hollow portions 370a to 370c is reduced, the number of through holes 113 necessary for discharging the atmosphere in the hollow portions 370a to 370c can be reduced, and the manufacturing cost for forming the through holes 113 is reduced. Can be made.
  • the semiconductor device 300 shown in the third embodiment is, for example, a light receiving IC.
  • a hollow portion corresponding to each of elements having different functions such as a light emitting device and a light receiving IC is provided.
  • FIG. 5 is a diagram schematically showing a manufacturing process of the semiconductor device 100 according to the fourth embodiment.
  • the semiconductor devices 100 are manufactured as individual pieces, thereby manufacturing the plurality of individual semiconductor devices 100.
  • the process shown in FIG. 5A is a process of providing a resin 220 as a material of the spacer member 120 on a wafer 210 in which a plurality of functional elements 111 in the first embodiment are arranged in a plane at equal intervals. It is.
  • the resin 220 is photosensitive, and a sheet-like form may be pressure-bonded to the wafer 210 with a roller, or a liquid form may be attached to the wafer 210 by a method such as spin coating. It may be applied on top.
  • the wafer 210 corresponds to an aggregate of the semiconductor chips 110.
  • the step shown in FIG. 5B is a step of removing the predetermined region 220a of the resin 220 formed in the previous step.
  • the size and position of the predetermined region 220a to be removed are obtained by a photolithography method.
  • the functional element 111 (not shown) is exposed by removing the resin 220, but the residue of the resin 220 must be removed so as not to hinder its function. However, it should not be processed until the functional element 111 is damaged and its function is inhibited. Since the position of the hollow portion 170 follows the arrangement of the functional elements 111 on the wafer 210, in the case of the first embodiment, the resin 220 is processed into a lattice shape.
  • FIG. 6 is a top view showing the structure of the resin 220 in the step shown in FIG. As shown in the figure, the resin 220 is processed into a lattice shape.
  • the step shown in FIG. 5C is a step of bonding a cover base material 230 corresponding to an assembly of cover members 130 having substantially the same size as the wafer 210 to the resin 220 opened in the previous step.
  • a joining method a method in which a part of the resin 220 is melted by heat and is pressed and solidified is most practical.
  • the hollow portion 170 is completed.
  • the amount of the volatile component in the resin 220 vaporized and released into the hollow portion 170 is the largest in this step.
  • the step of forming the hollow portion 170 shown in FIGS. 5A to 5C is preferably performed in a clean and dry environment, and particularly performed under an inert gas atmosphere such as vacuum or nitrogen. desirable. Moreover, since joining strength increases by performing plasma irradiation with respect to a joint surface before joining, it is preferable.
  • the step shown in FIG. 5D is a step of forming through holes 113 and 114 from the back side of the wafer 210 by etching.
  • the positions and hole dimensions of the through holes 113 and 114 to be etched are suitably obtained by applying a photoresist and forming a mask by photolithography.
  • As an etching method dry etching represented by reactive ion etching is effective.
  • the through hole 113 is used for ventilation with the hollow portion 170, and the through hole 114 is used for electrical connection.
  • the depth of the through-holes 113 and 114 to be etched can be reduced by removing the back surface of the wafer 210 and thinning it to a predetermined size. Significantly contributes to reduction.
  • grinding is generally performed, but polishing or lapping may be used depending on the purpose.
  • polishing or lapping may be used depending on the purpose.
  • the thinning process is performed after the through holes 113 and 114 are formed, it is necessary to mask the openings of the through holes 113 and 114 on the back surface of the wafer 210 to prevent the intrusion of the grinding fluid and the like. .
  • an insulating film (not shown) is formed on the inner walls of the through holes 113 and 114 and the back surface of the wafer 210, and the through holes 114 are formed after the insulating film is formed.
  • the conductor 140 is filled.
  • a thermal CVD method or a plasma CVD method can be used as a method for forming an insulating film.
  • a thermal oxidation method can be used as a method for forming an insulating film. Since high heat is applied to the workpieces in these steps, the volatile components of the resin 220 are vaporized and released into the hollow portion 170 as in the joining step shown in FIG. However, since the hollow portion 170 is in communication with the external environment through the through hole 113, the gas due to the volatile component of the resin 220 is discharged to the outside.
  • the work after the through-hole 113 is provided is put into a chamber having a sealed structure, and the pressure in the chamber is lowered below atmospheric pressure, thereby causing a pressure difference.
  • a method of discharging the gas remaining in the hollow part 170 in the previous process to the outside can be mentioned. By doing so, the gas volatilized from the resin 220 can be removed from the hollow portion 170, and the reliability of the semiconductor device 100 can be further improved.
  • the through-hole 113 is open
  • a technique of embedding a molten metal under pressure or plating can be applied. These steps are performed after a photoresist is applied and a mask (not shown) having a predetermined opening is formed by a photolithography method, so that a metal can be embedded at a desired position. At this time, a process of forming a conductor film on the back surface of the wafer 210 and then providing a rewiring pattern by etching may be performed. Also, a method of removing metal unnecessary by forming a mask after first depositing metal on the entire back surface of the wafer 210 to embed and film the conductor 140 is also applicable.
  • the step shown in FIG. 5F is a step of providing a protective film 260 on the back surface of the wafer 210.
  • the protective film 260 is a resin film
  • a method such as pressure bonding with a roller can be applied.
  • a step of removing a predetermined region of the protective film 260 and exposing the base so as to open a land for forming an electrode bump is performed in the next step.
  • the resin for the protective film 260 may be filled and closed.
  • the step shown in FIG. 5G is a step of providing the electrode bumps 150.
  • a method of forming the electrode bump 150 there are various methods such as mounting a solder ball and reflowing, printing solder and reflowing, and the like.
  • FIG. 5 (h) is an individualization process.
  • a plurality of semiconductor devices 100 are completed by dividing the structure made up of the wafer 210, the resin (spacer member) 220, and the cover base material 230 individually.
  • the most common method is dicing with a blade.
  • the through-hole 113 is opened on the back surface of the wafer 210, it is necessary to perform masking in advance so that cutting water does not enter the hollow portion in the dicing process.
  • the method of manufacturing the semiconductor device 100 includes the wafer 210 having the functional element 111 provided on the surface corresponding to each semiconductor chip 110, the resin 220, and the cover base material 230. Preparing and assembling so that the surface of the wafer 210 and the cover base material 230 sandwich the resin 220, and then forming a plurality of through holes 113 by removing a part of the wafer 210 by etching. Including.
  • the highly reliable semiconductor device 100 can be manufactured at a low cost at the wafer level. Can be manufactured.
  • the wafer 210 is thinned by uniformly removing the surface of the wafer 210 opposite to the resin 220 side.
  • the depth of the through-hole 113 to be formed can be significantly reduced, the manufacturing time can be shortened and the cost can be reduced.
  • a conductor 140 is provided for electrical connection between the semiconductor chip 110 and the outside using the through-hole 114 formed simultaneously with the through-hole 113 for discharging the residual gas in the hollow portion 170 to the outside. Therefore, the manufacturing cost can be reduced.
  • the process of joining the resin 220 and removing a predetermined portion shown in FIG. 5A may be performed on the cover base material 230 instead of the wafer 210.
  • the predetermined region 220a serving as the hollow portion is highly accurate so as to match the predetermined region of the semiconductor chip 110. Alignment (positioning) is necessary.
  • the resin 220 may be processed in advance as a grid-like frame body by a method such as stamping, and the resin 220 may be positioned and bonded to the wafer 210 or the cover base material 230. Thereby, a manufacturing cost can be reduced rather than the case where the hollow part 170 is provided by the photolithographic method.
  • the through hole 113 may be finally closed as long as the gas generated in the hollow portion 170 can be discharged during the manufacturing process, but naturally, the through hole 113 may remain open and ventilated. good. By doing so, in a state where the semiconductor device 100 is mounted on a substrate and used, dew condensation on the surface of the cover member 130 on the hollow portion 170 side due to the temperature change, and further volatilization from the spacer member 120 It is possible to prevent performance degradation due to problems caused by components.
  • the wafer 210 exposed by removing the predetermined region 220a of the resin 220 may be observed.
  • the cover base material 230 is bonded after the wafer 210 and the resin 220 are bonded.
  • the wafer 210 may be bonded after the cover base material 230 and the resin 220 are bonded.
  • the step of bonding the resin 220 to the back surface of the cover base material 230 and the cover base material 230 exposed by removing a predetermined region of the bonded resin 220 and the wafer 210 may be bonded.
  • alignment is performed so that the position of the resin 220 from which the predetermined region 220a has been removed and the functional element 111 match.
  • the resin 220 is bonded to the wafer 210 and then the predetermined region 220a is removed.
  • the resin 220 may be bonded to the wafer 210 after the predetermined region 220a of the resin 220 is removed.
  • region used as the hollow part 170 of the resin 220 can be formed by stamping irrespective of exposure / development and etching, for example.
  • the manufacturing process of the semiconductor device 300 according to the present embodiment is almost the same as the manufacturing process of the semiconductor device 100 according to the third embodiment shown in FIG. 5, but the predetermined region 220a shown in FIG.
  • the shape of the resin 220 in the process to be removed is different.
  • FIG. 7 is a top view showing the structure of the resin 420 that is an aggregate of the spacer members 120 in the present embodiment. Specifically, it is a top view of the resin 220 from which a predetermined region in the present embodiment has been removed.
  • the resin 420 corresponds to the spacer base material of the present invention.
  • the resin 220 is formed in a lattice shape in the step shown in FIG. 5B, but in this embodiment, the resin 420 is not in a lattice shape as shown in FIG. That is, the resin 420 from which the region corresponding to the functional element 111 is removed is formed.
  • a plurality of semiconductor devices 300 are completed by dividing the structure made up of the wafer 210, the resin 420, and the cover base material 230 individually.
  • the manufacturing method of the semiconductor device 300 according to the present embodiment described above has the same effect as the manufacturing method of the semiconductor device 100 according to the third embodiment.
  • the manufacturing method of the semiconductor device 100 according to the present embodiment is similar to the manufacturing method of the semiconductor device 100 described in the third embodiment, and after the through holes 113 and 114 are formed, the wafer 210, the resin 220, and the cover mother are formed. The difference is that the material 230 is assembled.
  • FIG. 9 is a diagram schematically showing a manufacturing process of the semiconductor device 100 according to the sixth embodiment.
  • the manufacturing process of the semiconductor device 100 according to the present embodiment differs from the manufacturing process of the semiconductor device 100 according to the third embodiment shown in FIG.
  • the step of forming 113 and 114 is performed in the state of the wafer 210. In other words, after the through holes 113 and 114 are formed in the wafer 210, the wafer 210, the resin 220, and the cover base material 230 are assembled.
  • the step shown in FIG. 9A is a step of drilling the portions to be the through holes 113 and 114 to a predetermined depth that does not penetrate the wafer 210.
  • it is a step of forming a plurality of holes that are formed from the front surface of the wafer 210 to a predetermined depth and do not penetrate to the back surface of the wafer 210.
  • the step shown in FIG. 9B is a step of opening the through holes 113 and 114 in the back surface of the wafer 210 by grinding the back surface of the wafer 210 and penetrating it.
  • the through holes 113 and 114 are formed by uniformly removing the back surface of the wafer 210 to expose the bottoms of the holes formed in the previous step.
  • a workpiece having a hollow portion 170 therein which may occur in the manufacturing method of the semiconductor device 300 according to the third embodiment shown in FIG. It is possible to prevent damage and contamination to the hollow portion 170 due to the formation of 114, and the highly reliable semiconductor device 100 can be manufactured.
  • the resin 220 is formed on the wafer 210 in FIG. 9C, but the subsequent process order is the same as the manufacturing method shown in FIG. Specifically, the subsequent steps shown in FIGS. 9C to 9H are the same as the steps shown in FIGS. 5A to 5C and FIGS. 5E to 5H.
  • the wafer 210 after forming the through holes 113 and 114 in the wafer 210, the wafer 210, the resin 220, and the cover base material 230 are assembled.
  • the through holes 113 and 114 are formed before the hollow portion 170 is formed by integrating the wafer 210, the resin 220, and the cover base material 230, and is generated when the through holes 113 and 114 are formed. Can prevent damage to the hollow portion 170 that can occur, and ensures higher ventilation performance than the structure of the prior art for the gas generated by volatilization from the resin 220 and remaining in the hollow portion 170.
  • the semiconductor device 100 with improved reliability can be manufactured at a wafer level at a low cost.
  • the through holes 113 and 114 are formed after a step of forming a plurality of holes formed from the front surface of the wafer 210 to a predetermined depth and not penetrating to the back surface of the wafer 210 and a step of forming the plurality of holes.
  • the method includes forming the plurality of through holes 113 and 114 by uniformly removing the back surface of the wafer 210 to expose the bottoms of the plurality of holes.
  • the manufacturing time can be shortened and the cost can be reduced.
  • the functional element is a light receiving element, but the functional element is not limited to the light receiving element, and may be a light emitting element, for example.
  • the semiconductor device and the manufacturing method thereof according to the present invention are useful for various electronic devices such as an optical pickup device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

 高信頼性と高実用性を有し、かつ低コストで製造できる半導体装置を提供する。本発明に係る半導体装置(100)は、表面に少なくとも1つの機能素子(111)が形成された半導体チップ(110)と、半導体チップ(110)上に設けられた枠体構造からなるスペーサ部材(120)と、スペーサ部材(120)上に設けられたカバー部材(130)とを備え、半導体チップ(110)と、スペーサ部材(120)と、カバー部材(130)とは、少なくとも1つの機能素子(111)に面する少なくとも1つの中空部(170)を形成し、半導体チップ(110)は、裏面又は側面から中空部(170)まで達する少なくとも1つの貫通孔(113)を有する。

Description

半導体装置及びその製造方法
 本発明は、チップサイズパッケージ型の半導体装置およびその製造方法に関する。
 半導体チップにカバー部材が装着され、半導体チップとカバー部材との間隙が中空部となっているチップサイズパッケージ型の半導体装置が市場に普及しつつある。代表的な製品としては、携帯電話等の搭載される小型機器用の各種のイメージセンサーや、光ディスクドライブの光ピックアップに搭載される受光ICが挙げられる。また圧力センサーや加速度センサー等、MEMS(Micro Electro Mechanical Systems)と総称されるデバイスにも、上記の中空構造が応用可能である。
 それらの一例として青色レーザ対応の受光用半導体装置が特許文献1に開示されている。ここでカバー部材(特許文献1ではガラス板)と半導体チップに形成された受光領域との間隙が中空部となっており、その中空部はスペーサ部材(特許文献1では接着剤よりなる封止部)によってその周囲を取り囲まれている。
 更に、特許文献1には、中空部に水分が浸入してカバー部材の中空部側に結露し、レーザ光の受光を阻害するという問題を解決する為、スペーサ部材にジグザグに蛇行する溝を設け、半導体装置外部と中空部とを通気させる構造が開示されている。
 同じ課題に対応する為の他の手法として、カバー部材に貫通孔を設けて中空部と半導体装置外部とを通気させた構造が特許文献2および特許文献3に開示されている。
 尚、これら特許文献1~3に開示されている半導体装置は、半導体チップに形成された機能素子と半導体装置の外部とを導通する為の導体を有している。この導体は、特許文献1と特許文献2においては半導体チップを貫通する形状で、特許文献3においては半導体チップの側面に沿う形状で形成されている。
 また、これら特許文献1~3に開示されている半導体装置はウェハレベルにて製造することによって低コスト化を図っている。
特開2008-270520号公報 特開2006-108285号公報 特開2010-10303号公報
 しかしながら、このようにして得られた半導体装置には以下の課題がある。
 特許文献1~3に開示されている半導体装置において、半導体チップとカバー部材との間隙にあって中空部を取り囲んでいるスペーサ部材は樹脂よりなる接着剤とされている。またスペーサ部材は樹脂でなくても、それを半導体チップあるいはカバー部材と接合させるには接着剤を使用する。一般的に接着剤はその接合時、また接合後の熱履歴により揮発成分が気化し、これが中空部内に残留する。本願発明者等の解析によれば、この気体はカバー部材貼付けの接着剤硬化で8割、その後の絶縁膜形成工程で2割発生している。
 中空部に接着剤からの揮発気体が残留することによって、実使用上の不具合が発生する。ここに例えば青色レーザが照射された場合、気体分子がレーザ光の光ピンセット効果によって補足されて集積し、レーザ光のエネルギーによって硬化、または水分と結合して異物と化し、半導体チップの受光の感度を劣化させるという課題がある。
 図10は、従来の半導体装置で発生する課題について説明するための模式図である。
 同図に示す半導体装置900は、受光領域901に入射するレーザ光Aを受光する。このとき、接着剤樹脂の揮発成分からなる気体分子Bがレーザ光Aによって捕捉されることにより、気体分子Bが凝集した状態Cが発生する。この気体分子Bが凝集した状態Cが異物となることで、半導体装置900の受光感度が劣化する。
 ところで、特許文献1には前述のように結露防止を目的にスペーサ部材に溝を設け、外部と通気できる構造が開示されている。しかしながら、この溝はジグザグに蛇行しており、上記の図10で示したメカニズムで生成した異物がこの溝を通じて中空部より外部に除去されるのは困難である。また、こうした溝加工を個々のスペーサ部材に加工するのはコストが増大するという短所もある。なぜなら、スペーサ部材には中空部を形成する為に特定領域の全除去加工が必要で、その一方、前記の溝加工は一部スペーサ部材を残しての部分除去加工であり、この性質の異なる2種の除去加工を同時に施すのは困難だからである。
 また、特許文献2ないし3に開示されているように貫通孔がカバー部材に設けられている場合、以下の課題が発生する。
 まず第1の課題として、カバー部材はその特定の領域で光を透過させる必要があり、それに伴って貫通孔を配置する位置に制約が生じる。なぜならば、もし光が貫通孔に入射すると光が散乱し、半導体チップへの入射を妨害するからである。第2の課題として、貫通孔を設けたカバー部材をスペーサ部材に接合する際には、貫通孔が半導体チップへの光の入射を妨害しないよう、半導体チップの所定の位置に高い精度で正確にアライメントする必要がある。従って高精度なアライメント用の認識装置が必要となる為、製造コストが増大する。
 本発明は上記の課題を解決するためになされたもので、高信頼性と高実用性を有し、かつ低コストで製造できる半導体装置およびその製造方法を提供することを目的とする。
 上記課題を解決するために、本発明の半導体装置は、表面に少なくとも1つの半導体素子が形成された半導体チップと、前記半導体チップ上に設けられた枠体構造からなるスペーサ部材と、前記スペーサ部材上に設けられたカバー部材とを備え、前記半導体チップと、前記スペーサ部材と、前記カバー部材とは、前記少なくとも1つの半導体素子に面する少なくとも1つの中空部を形成し、前記半導体チップは、裏面又は側面から前記中空部まで達する少なくとも1つの貫通孔を有する。
 また、前記少なくとも1つの貫通孔は、前記半導体チップの裏面から前記中空部まで達してもよい。
 このような構成とすることにより、スペーサ部材から揮発して発生し中空部内部に残留する気体をその製造工程内で外部環境に除去する製法が実現でき、信頼性を向上させることができる。
 また、前記少なくとも1つの貫通孔は、前記半導体チップの側面から前記中空部まで貫通してもよい。
 また、前記少なくとも1つの貫通孔は、前記少なくとも1つの中空部と前記半導体装置の外部空間とを連通してもよい。
 このような構成とすることにより、本半導体装置の使用中において中空部に発生した気体や異物を外部に排出できるので、発生した本半導体装置を使用される際の信頼性を向上させることができる。
 また、前記少なくとも1つの貫通孔は、複数の貫通孔からなり、前記複数の貫通孔は、前記スペーサ部材の内壁に沿って配置されていてもよい。
 このような構成とすることにより、スペーサ部材から揮発して発生する気体に対してより高い排出効果を得られ、信頼性を向上させることができる。
 また、さらに、前記半導体チップを厚さ方向に貫通し、前記半導体素子と電気的に接続された貫通導体を備えてもよい。
 このような構成とすることにより、半導体チップと外部との電気的接続を行う為の導体を設ける貫通孔を、中空部と外部との通気用の貫通孔と同時に形成することができる為、製造の低コスト化を図ることが出来る。
 また、前記少なくとも1つの半導体素子は、複数の半導体素子からなっていてもよい。
 さらに、前記少なくとも1つの中空部は、複数の中空部からなり、前記複数の半導体素子のそれぞれは、前記複数の中空部のそれぞれに対応して配置されていてもよい。
 このような構成とすることにより、それぞれの中空部を取り囲むスペーサ部材の内壁面積が小さくなり、スペーサ基材から揮発して中空部に残留する気体の量を低減させる効果を得るので、半導体装置の信頼性を向上させることができる。
 また、前記少なくとも1つの半導体素子は受光素子であり、前記カバー部材は透光性を有してもよい。
 このような構成とすることにより、高信頼性の受光ICを得ることが出来る。
 また、前記少なくとも1つの半導体素子は発光素子であり、前記カバー部材は透光性を有してもよい。
 このような構成とすることにより、半導体レーザに代表される、高信頼性の発光デバイスを得ることが出来る。
 また、本発明の半導体装置の製造方法は、表面に少なくとも1つの半導体素子が形成された半導体チップと、前記半導体チップ上に設けられた枠体構造からなるスペーサ部材と、前記スペーサ部材上に設けられたカバー部材とを備え、前記半導体チップと、前記スペーサ部材と、前記カバー部材とは、前記少なくとも1つの半導体素子に面する少なくとも1つの中空部を形成し、前記半導体チップは、裏面から前記中空部まで達する少なくとも1つの貫通孔を有する半導体装置の製造方法であって、複数の前記半導体チップの集合体であるウェハであって、表面に各半導体チップに対応して設けられた半導体素子を有するウェハと、複数の前記スペーサ部材を含むスペーサ母材と、複数の前記カバー部材を含むカバー母材とを準備し、前記ウェハの表面と前記カバー母材とが前記スペーサ母材を挟むように組み立てる工程(A)と、エッチングにより前記ウェハの一部を除去することで、複数の前記貫通孔を形成する工程(B)とを含む。
 これによれば、スペーサ部材から揮発して発生し中空部内部に残留する気体を製造工程内において外部に排出させることができるので、高い信頼性を有する半導体装置をウェハレベルで低コストに製造することができる。
 また、前記半導体装置の製造方法は、前記工程(A)の後に前記工程(B)を行うことにより、複数の前記半導体装置を製造してもよい。
 また、さらに、前記工程(A)の後かつ前記工程(B)の前に、組み立てられた前記ウェハの前記スペーサ母材側と反対の面を均一に除去することにより、当該ウェハを薄くする工程を含んでもよい。
 これによれば、形成する貫通孔の深さを大幅に浅くする事ができる為、製造時間を短縮してコストを低減させることができる。
 また、さらに、前記工程(B)の後、複数の前記半導体装置を気密構造のチャンバー内に投入して大気圧より減圧することで、複数の前記中空部内に充満している気体分子を複数の前記貫通孔を介して外部に放出させる工程を含んでもよい。
 これによれば、スペーサ部材から揮発して発生した気体を中空部から強制的に除去することができる為、高信頼性の半導体装置を得ることができる。
 また、前記半導体装置の製造方法は、前記工程(B)の後に前記工程(A)を行うことにより、複数の前記半導体装置を製造してもよい。
 これによれば、ウェハとスペーサ部材とカバー部材とを一体化して中空部を形成するより前に貫通孔を形成することになり、貫通孔の形成時に発生する可能性のある中空部へのダメージを防止することができ、かつスペーサ部材から揮発して発生し中空部内部に残留する気体に対して、従来技術での構造よりも高い通気性能を確保し、信頼性が向上した半導体装置をウェハレベルで低コストに製造することができる。
 また、前記工程(A)は、前記ウェハの表面から所定の深さまで形成され、前記ウェハの裏面まで貫通しない複数の穴を形成する工程と、前記穴を形成する工程の後に、前記ウェハの裏面を均一に除去することで前記複数の穴の底部を露出させることにより、前記複数の貫通孔を形成する工程とを含んでもよい。
 これによれば、形成する貫通孔の深さを大幅に小さくする事ができる為、製造時間を短縮してコストを低減させることができる。
 また、さらに、前記工程(A)の後、複数の前記半導体装置を気密構造のチャンバー内に投入して大気圧より減圧することで、複数の前記中空部内に充満している気体分子を複数の前記貫通孔を介して外部に放出させる工程を含んでもよい。
 また、さらに、前記工程(B)で形成された前記複数の貫通孔の少なくとも一部の内部に絶縁体を充填する工程を含んでもよい。
 これによれば、貫通孔の内壁の表面状態を保護、安定化させ、半導体装置の信頼性を高めることができる。
 また、さらに、前記工程(B)で形成された前記複数の貫通孔の少なくとも一部の内部に導体を充填する工程を含んでもよい。
 これによれば、中空部の残留気体を外部に排出する為の貫通孔と同時に一括して形成された貫通孔を用いて半導体チップと外部との電気的接続を行う為の導体を設けることができる為、製造コストの低減を図ることができる。
 本発明の半導体装置およびその製造方法によれば、高信頼性と高実用性を有し、かつ低コストで製造できる半導体装置およびその製造方法を実現することができる。
図1Aは、本発明の実施の形態1に係る半導体装置をその上方から見た状態を示す平面模式図である。 図1Bは、図1AでのA-A’断面での構成を示す断面模式図である。 図1Cは、半導体装置を裏面から見た状態を示す平面模式図である。 図2は、本発明の実施の形態1の変形例に係る半導体装置をその上方から見た状態を示す平面模式図である。 図3Aは、本発明の実施の形態2に係る半導体装置をその上方から見た状態を示す平面模式図である。 図3Bは、図3AでのB-B’断面での構成を示す断面模式図である。 図3Cは、図3AでのB-B’断面での構成の変形例を示す断面模式図である。 図4は、本発明の実施の形態3に係る半導体装置をその上方から見た状態を示す平面模式図である。 図5は、実施の形態4に係る半導体装置の製造工程を模式的に示す図である。 図6は、図5(b)に示す工程の樹脂の構成を示す上面図である。 図7は、実施の形態5に係る半導体装置の製造工程での樹脂の構造を示す上面図である。 図8は、個片化工程を示す図である。 図9は、実施の形態6に係る半導体装置の製造工程を模式的に示す図である。 図10は、従来の半導体装置で発生する課題について説明するための模式図である。
 以下、本発明の実施の形態について図面を参照しながら説明する。なお、同じ要素には同じ符号を付しており、説明を省略する場合がある。
 (実施の形態1)
 本実施の形態に係る半導体装置は、表面に少なくとも1つの半導体素子が形成された半導体チップと、半導体チップ上に設けられた枠体構造からなるスペーサ部材と、スペーサ部材上に設けられたカバー部材とを備え、半導体チップと、スペーサ部材と、カバー部材とは、少なくとも1つの半導体素子に面する少なくとも1つの中空部を形成し、半導体チップは、中空部側以外の面から中空部まで達する少なくとも1つの貫通孔を有する。これにより、本実施の形態に係る半導体装置は、高信頼性と高実用性を有し、かつ低コストで製造できる。
 図1Aは、本発明の実施の形態1に係る半導体装置をその上方から見た状態を示す平面模式図であり、図1Bは、図1AでのA-A’断面での構成を示す断面模式図であり、図1Cは、半導体装置を裏面から見た状態を示す平面模式図である。なお、図1Aは、説明のため、一部を透視図として描いている。
 ここで例として挙げている半導体装置100は、光ディスクドライブのピックアップに使用する受光ICを想定している。
 半導体装置100は、おおまかには半導体チップ110と、スペーサ部材120と、カバー部材130とを備える。半導体チップ110には、その一方の面(主面/表面)に形成された機能素子111と、これに電気的に接続する電極パッド112とが形成されている。本実施の形態1では、機能素子111はいわゆる受光素子であり、入射した光の強度と位置を電気信号に変換し、増幅して電極パッド112に出力する。本実施の形態1において機能素子111は大きく3箇所に分かれて設けられており、そのそれぞれが更に分割された小領域の集合体である。電極パッド112は複数設けられており、それぞれ光から変換・増幅された電気信号の出力機能、電源供給を受ける機能、またグランドとしての機能を担っている。
 また、半導体チップ110には、エッチングにより形成された貫通孔113と貫通孔114とが穿たれている。この貫通孔113および114の内壁、さらに半導体チップ110の裏面に沿って絶縁膜(図示せず)が形成されている。更に貫通孔114には上記の絶縁膜を介して導体140が充填されている。この導体140は、電極パッド112と電気的に接続し、半導体チップ110の裏面に上記の絶縁膜を介して形成された再配線(図示せず)を通じて電極バンプ150と電気的に接続している。すなわち、半導体チップ110は電極パッド112から貫通孔114内の導体140および電極バンプ150を経由して外部(図示せず)と電気的に接続できる。半導体チップ110の裏面には、上記のとおり絶縁膜を介して導体である再配線が設けられているが、それを外部環境から保護する為に保護膜160がコートされている。保護膜160は、上記電極バンプ150および貫通孔113では除去されている。尚、図1Cにおいて、格子状に配列されている電極バンプ150のうち、最外周より一列内側の電極バンプが1個欠けているが、これは本半導体装置100の一番端子を示す為である。ただし、電極バンプが欠けている位置は、図1Cに示すように格子状に配列されている電極バンプのうち行方向および列方向に1つずつ内側の電極バンプに相当する位置である必要はなく、行方向および列方向のいずれか一方の1つ内側の電極バンプに相当する位置であってもよい。
 半導体チップ110の主面には、その外周に沿って枠形状のスペーサ部材120が接合され、そのスペーサ部材120の半導体チップ110と反対側の面にカバー部材130が接合されている。本半導体装置100は受光ICなので、カバー部材130は透光性を有する。枠形状のスペーサ部材120の内側は、半導体チップ110とカバー部材130とに挟まれた中空部を形成しており、半導体チップ110の中空部170に面した領域に上記の機能素子111と貫通孔113とが配置されている。貫通孔113は中空部170と半導体装置100の外部との両方に開口しているので、貫通孔113を通じて中空部と外部とで雰囲気の導通が可能である。尚、図1Aにて電極パッド112上にスペーサ部材120が配置されているが、電極パッド112は中空部170に面した領域に配置されていてもよい。
 このように、本実施の形態に係る半導体装置100は、表面に複数の機能素子111が形成された半導体チップ110と、半導体チップ110上に設けられた枠体構造からなるスペーサ部材120と、スペーサ部材120上に設けられたカバー部材130とを備え、半導体チップ110と、スペーサ部材120と、カバー部材130とは、複数の機能素子111に面する中空部170を形成し、半導体チップ110は、裏面又は側面から中空部170まで達する複数の113貫通孔を有する。また、複数の貫通孔113は、半導体チップ110の中空部170に面する領域に、実質的に等間隔で行列状に配置されている。
 ここで貫通孔113は、本半導体装置100の製造工程にて発生するスペーサ部材120からの揮発成分を外部に放出する機能を担っている。スペーサ部材120から発生する気体は、前述の通り、半導体装置100の製造工程内にてそのほぼ全てが発生する。よって、製造工程内で発生した気体が十分に排出できれば、その後は貫通孔113を塞いでしまって、必ずしも通気させる必要はない。塞ぐ為の方法としては保護膜160を用いるのが合理的ではあるが、信頼性その他の要請に応じて他の部材を貫通孔113に充填しても構わない。
 半導体チップ110の材料としては、本実施の形態1ではSiを想定しているが、半導体装置100の機能に応じてSiC、SiGe、GaAs、GaN等の化合物であってもよい。
 機能素子111としては、本実施の形態1では受光素子を想定しているが、これはCCD(Charge Coupled Device)等のイメージセンサー、赤外線センサー等の撮像素子、およびそれらのマイクロレンズアレイ、レーザ等の発光素子、MEMS等の圧力センサーやマイクロジャイロ、SAWフィルター等のIDT(Interdigital Transducer)電極であってもよい。なお、この機能素子111は、本発明の半導体素子に相当する。
 貫通孔113および114の内壁、また半導体チップ110の裏面に成膜する絶縁膜の材料としてはSiO2を想定しているが、Si34等の窒化物やPSG、BPSG等のガラス材も使用可能である。
 導体140の材料としてはCu、Al、Ti、Ni、Au、Agその他各種金属およびそれらの合金、Siを含んだ合金、各種はんだ合金、またそれらの粒子を有機材バインダーに分散・配合した導電ペーストを使用できる。導体140の形状は、本実施の形態1においては貫通孔114に充填されたプラグ状であるが、これは有機基板でのスルーホールやビアホールのように、めっき等の方法で絶縁物の内壁に成膜してもよい。なお、この導体140は、本発明の貫通導体に相当する。
 電極バンプ150の材料としては、各種のはんだ合金を適用できる。
 保護膜160の材料としては、樹脂等の有機材料であってもよく、また、上記の絶縁膜と同様の無機材料であってもよい。
 スペーサ部材120としては、エポキシ系、シリコン系、アクリル系等々の樹脂による接着剤を想定しているが、これは金属やガラス、あるいはゴムであってもよい。但し、その場合であっても、半導体チップ110やカバー部材130と接合するにはそれらの接合面になんらかの接着剤を介在させる必要がある。その場合の接着剤としては、さまざまな手法があるが、コスト上、製品に与えるダメージ上、あるいは製造ラインでの管理上の理由で、上記に代表される樹脂系の接着剤が有利である。
 カバー部材130の材料としては、本実施の形態1ではガラスを想定しているが、半導体装置100の目的に応じてプラスチック等の有機材料やAl等の金属材料であってもよい。カバー部材130が透光性の材料の場合、その両面または片面に反射防止膜を設けてもよい。また機能素子111の配置に対応して、その一部を透光性、その他の領域を遮光性としてもよい。
 なお、本実施の形態1において、半導体チップ110と外部との電気的接続は貫通孔114内の導体140を介しているが、これは特許文献3に示されたような半導体チップ110の側面に設けた導体を介してであってもよい。なぜなら、貫通孔113の効果には特に影響が無いからである。ただし、製造上のコストが増大するため、貫通孔113と114とは同時に一括して形成する方が好ましい。
 以上のように、本実施の形態に係る半導体装置100は、半導体チップ110と、半導体チップ110上に設けられた枠体構造からなるスペーサ部材120と、スペーサ部材120上に設けられたカバー部材130とを備え、半導体チップ110と、スペーサ部材120と、カバー部材130とは、中空部170を形成し、半導体チップ110は、当該半導体チップ110を厚さ方向に貫通し、中空部170まで達する複数の貫通孔113を有する。
 これにより、高信頼性と高実用性を有し、かつ低コストで製造できる半導体装置を実現できる。
 具体的には、スペーサ部材120の半導体チップ110あるいはカバー部材130への接合時、もしくはその後の製造工程や実使用時の熱履歴に応じて発生するスペーサ部材120の接着剤成分から揮発した気体は、半導体チップ110に穿たれた貫通孔113を通じて中空部170より半導体装置100の外部に排出可能となる。よって、半導体装置100の使用時に、中空部170に残存するスペーサ部材120の接着剤成分から揮発した気体が凝集することがない。よって、半導体装置100の受光感度の劣化を抑圧できる。このため、半導体装置100の信頼性及び実用性を高めることができる。
 また、半導体チップ110に貫通孔113が形成されていることにより、製造時に、カバー部材130と半導体チップ110とを高い精度で粗い面とする必要がなくなる。よって、高精度なアライメント用の認識装置が不要となり、低コストで製造できる。
 なお、上記実施の形態1に係る半導体装置100は、図1A及び図1Bに示されるように、複数の貫通孔113が、半導体チップ110の中空部170に面する領域に、実質的に等間隔で行列状に配置されているが、複数の貫通孔113の配置形態はこれに限られない。
 図2は、本発明の実施の形態1の変形例に係る半導体装置をその上方から見た状態を示す平面模式図である。図2に記載された本変形例の半導体装置101は、図1Aに記載された半導体装置100と比較して、複数の貫通孔113の配置形態のみが異なる。以下、本変形例の半導体装置101について、半導体装置100と同じ点は説明を省略し、異なる点のみを説明する。
 図2に示されるように、半導体装置101の貫通孔113は、中空部170における外周部、つまり、スペーサ部材120の内壁に沿って配置されている。アウトガスは、スペーサ部材120の樹脂から発生するため、スペーサ部材120の内壁に沿って複数の貫通孔113を設けることで、機能素子111近傍へのアウトガス拡散が抑制され、効率よくパッケージ外部へアウトガスを放出させることが可能となる。よって、本変形例に係る半導体装置101においても、アウトガス起因の性能劣化が発生せず、信頼性の高い中空構造パッケージを実現できる。
 (実施の形態2)
 本実施の形態に係る半導体装置は、実施の形態1に係る半導体装置100と比較して、ほぼ同じであるが、半導体チップに形成された貫通孔は、前記半導体チップの表面から側面まで貫通する点が異なる。
 これにより、貫通孔の長さを半導体チップの厚みよりも短くすることが可能となり、半導体チップの厚さが厚い場合であっても貫通孔を短くでき、製造コストを削減できる。
 図3Aは、本発明の実施の形態2に係る半導体装置をその上方から見た状態を示す平面模式図であり、図3Bは、図3AでのB-B’断面での構成を示す断面模式図である。なお、図3Aは、説明のため、一部を透視図として描いている。
 図3A及び図3Bに示す半導体装置200は、実施の形態1に係る半導体装置100と比較してほぼ同じであるが、貫通孔113に代わり、半導体チップ110を厚さ方向に対して斜めに貫通することにより、半導体チップ110の側面から中空部170まで達する貫通孔213が形成されている点が異なる。また、貫通孔213は、スペーサ部材120の内壁に沿って配置されている。言い換えると、貫通孔213は、半導体チップ110の表面の中空部170に接する領域の周辺部に開口している。また、機能素子111に代わり、半導体チップ110の表面中央部に配置された機能素子211を有する。
 具体的には、実施の形態1との第1の違いは、実施の形態1では貫通孔113は半導体チップ110に等間隔で格子状に配列されていたが、本実施の形態2では、貫通孔213は中空部170に面するスペーサ部材120の内壁に沿って配置されている点である。
 ところで、半導体チップ110には、機能素子211以外に、例えば受光ICであれば受光素子(機能素子211)にて光の強度を電気信号に変換した後、その電気信号を増幅して外部に出力する為の回路が必要である。そうした回路は受光素子の分解能に応じて複数必要であるが、各回路間での特性差が出ないよう、特定の領域にそろえて配置するのが望ましい。しかるに、貫通孔213がそうした回路領域でランダムあるいは等間隔に平面的に配置されていると、電気特性上のバラツキが大きくなる懸念がある。従って、機能素子211の配置に依存せず、等間隔、または不規則に貫通孔213を配置するより、機能素子211の配置に対応して貫通孔213を配置することが半導体チップ110の特性上望ましい。
 図3Aおよび図3Bに示している貫通孔213は、電極パッド112に沿って半導体チップ110の周辺領域に配置されている。つまり、つまり、貫通孔213は、スペーサ部材120の内壁に沿って配置されている。貫通孔213は、半導体チップ110表面の中空部170に面する領域の周辺部に開口している。このような配置を取ることによって、回路設計の自由度が増し、また特性上バラツキの少ない半導体装置200を得ることができる。また、スペーサ部材120から揮発して発生する気体に対してより高い排出効果を得られ、信頼性を向上させることができる。
 実施の形態1との第2の違いは、貫通孔213が半導体チップ110の側面に開口している点である。図3Bに示すように、貫通孔213は半導体チップ110の主面および側面に対してある角度をもって真直ぐに穿たれている。
 以上のように、本実施の形態に係る半導体装置200は、実施の形態1に係る半導体装置100と比較して、半導体チップ110に形成された貫通孔213が、半導体チップ110の表面から側面まで貫通する。具体的には、貫通孔213は、半導体チップ110の厚さ方向に対して斜めに形成されることにより、中空部170に達する。
 実施の形態1では貫通孔113は半導体チップ110の裏面に開口している為、半導体装置100を基板に実装する際に、基板との間隙にアンダーフィルを注入した場合、貫通孔113が塞がれてしまう。これに対し、本実施の形態に係る半導体装置200は、貫通孔213が側面に開口しているので、基板への実装時にアンダーフィルを使用しても、中空部170と、半導体装置200の外部との通気が保たれるという利点がある。
 また、貫通孔213は、半導体チップ110表面の中空部170に面する領域の周辺部に開口している。
 これにより、半導体チップ110の厚さが厚い場合であっても、貫通孔213の長さを短く設計できるので、低コストで製造できる。具体的には、本実施の形態のように半導体チップ110の主面と側面との間で貫通孔213を設ける場合、主面側での開口位置をスペーサ部材120の内壁に沿って配置していると、そうでない場合に比べて穿つ貫通孔213の長さを短く設計できる為、製造コスト上も大変有利である。
 なお、貫通孔213は、真直ぐでなく屈曲していてもよい。
 図3Cは、図3AでのB-B’断面での構成の変形例を示す断面模式図である。
 同図に示すように、貫通孔213は、半導体チップ110の厚さ方向に対して斜めに貫通しておらず、貫通孔213の一部が半導体チップ110の厚さ方向に形成され、貫通孔213の他の一部が半導体チップ110の主面方向に形成されていてもよい。つまり、屈曲部を有してもよい。
 なお、図3Bおよび図3Cにおいて、貫通孔114と導体140の記載は図の簡略化のため省略している。
 (実施の形態3)
 実施の形態3に係る半導体装置は、実施の形態1に係る半導体装置100とほぼ同じであるが、複数の機能素子111のそれぞれに対応して中空部が設けられている点が異なる。
 図4は、本発明の実施の形態3に係る半導体装置をその上方から見た状態を示す平面模式図である。なお、図4は、説明のため一部を透視図として描いている。
 同図に示す本実施の形態に係る半導体装置300は、図1A~図1Cの半導体装置100と比較して、スペーサ部材120に代わり、複数の中空部370a~370cを形成可能なスペーサ部材320を備える。
 ここで半導体チップ110の主面において、目的に応じて略3箇所に分かれて配置されている機能素子111のそれぞれに応じた領域のみを中空部370a~370bとしている。言い換えると、本実施の形態に係る半導体装置300は、表面に複数の機能素子111が形成された半導体チップ110と、スペーサ部材320と、カバー部材130とが複数の中空部370a~370cを形成し、複数の機能素子111のそれぞれは、複数の中空部370a~370cのそれぞれに対応し、対応する中空部370a~370cに面している。
 これにより各中空部370a~370cの体積を小さくできる。このように中空部370a~370cの体積を必要最小限にすることによって、中空部370a~370cを取り囲むスペーサ部材120の内壁面積を小さくするできるため、スペーサ部材120から発生して中空部370a~370cに残留する気体成分の量を低減させて、半導体装置300の信頼性を高めることができる。
 また、中空部370a~370cの体積が小さくなることで、その中空部370a~370c内の雰囲気の排出に必要な貫通孔113の数も減らすことができ、貫通孔113を形成する製造コストを低減させることができる。
 本実施の形態3で示している半導体装置300は、例えば受光ICであるが、このような構造をとることで、例えば発光デバイスと受光ICなど機能の異なる素子のそれぞれに対応する中空部を設けて、素子間での相互に影響する作用をスペーサ部材120にて防止し、ひとつのパッケージに複数の機能を収めることも可能となる。
 (実施の形態4)
 本実施の形態では、実施の形態1に係る半導体装置100の製造方法について説明する。
 図5は、実施の形態4に係る半導体装置100の製造工程を模式的に示す図である。なお、同図に示す製造工程は、複数の半導体装置100を一体化して製造した後に、個片化されることにより、個片化された複数の半導体装置100を製造する。
 まず、図5(a)に示す工程は、実施の形態1での機能素子111が等間隔で平面的に複数配列されているウェハ210上に、スペーサ部材120の材料となる樹脂220を設ける工程である。ここで樹脂220は感光性であることを想定しており、シート状の形態のものをローラでウェハ210に圧着してもよいし、また液状の形態のものをスピンコート等の方法でウェハ210上に塗布してもよい。なお、ウェハ210は半導体チップ110の集合体に相当する。
 次に図5(b)に示す工程は、前工程にて形成された樹脂220の所定の領域220aを除去する工程である。除去する所定の領域220aの寸法と位置はフォトリソグラフィー法にて得る。樹脂220を除去することによって機能素子111(図示せず)が露出するが、その機能に支障が無きよう、樹脂220の残渣等は無きように除去しなければならない。といって機能素子111にダメージを与え、その機能を阻害するまでの加工をしてはならない。中空部170の位置はウェハ210上での機能素子111の配列に従う為、本実施の形態1の場合、樹脂220は格子状に加工されることとなる。尚、樹脂220が液状の場合はあらかじめ除去可能な程度まで固化させておく必要がある。また、樹脂220は、スペーサ部材120の集合体に相当し、本発明のスペーサ母材に相当する。図6は、図5(b)に示す工程の樹脂220の構造を示す上面図である。同図に示すように、樹脂220は格子状に加工されている。
 次に図5(c)に示す工程は、前工程にて開口した樹脂220にウェハ210とほぼ同サイズのカバー部材130の集合体に相当するカバー母材230を接合する工程である。接合方法としては熱により樹脂220を一部溶融して圧着し固化させる方法が最も実用性が高い。これによって中空部170が完成するが、前述の通り、樹脂220中の揮発成分が気化して中空部170に放出される量はこの工程が最も多い。
 上記、図5(a)から(c)の中空部170を形成する工程は、清浄で乾燥した環境下で行なうことが望ましく、特に真空または窒素等の不活性ガス雰囲気のもとで行なうことが望ましい。また、接合前に接合面に対してプラズマ照射を施すことで接合強度が増す為、好ましい。
 次に図5(d)に示す工程は、前記ウェハ210の裏面側から貫通孔113および114をエッチングにより形成する工程である。エッチングする貫通孔113および114の位置と孔寸法は、フォトレジストを塗布してフォトリソグラフィーによってマスクを形成することで得るのが適している。エッチングの手法としては、反応性イオンエッチングに代表されるドライエッチングが有効である。上述の通り、貫通孔113は、中空部170との通気に使用し、貫通孔114は電気的接続に使用する。目的の異なる貫通孔を同時に一括して加工することで、製造工程全体のコストを低減させることができる。尚、ここでエッチングする前工程として、ウェハ210の裏面を除去して所定の寸法まで薄化しておくことで、エッチングする貫通孔113及び114の深さを浅くすることができ、更なる製造コスト低減に大きく寄与する。ウェハ210の裏面除去の方法としては一般的には研削加工をするが、目的に応じてポリッシングやラッピング加工も使用できる。ただし、貫通孔113および114を穿った後で薄化工程を行う場合には、ウェハ210裏面の貫通孔113および114の開口部をマスキングして研削液その他の浸入を防止しておく必要がある。
 次に図5(e)に示す工程は、貫通孔113と114の内壁、およびウェハ210の裏面に絶縁膜(図示せず)を成膜する工程と、絶縁膜の成膜後に貫通孔114に導体140を充填する工程である。まず、絶縁膜の成膜法としては熱CVD法、プラズマCVD法が使用できる。絶縁膜が酸化膜の場合は熱酸化法が使用できる。これらの工程ではワークに高熱が印加される為、図5(c)に示した接合工程と同じく、樹脂220の揮発成分が気化して中空部170に放出される。しかしながら、中空部170は、貫通孔113により、外部環境と通気しているので、樹脂220の揮発成分による気体は外部に排出される。
 中空部170の気体を外部に排出する方法としては、例えば、貫通孔113を設けた後のワークを密閉構造のチャンバーに投入し、チャンバー内の圧力を大気圧よりも下げることで、圧力差によりこれまでの工程にて中空部170内に残留していた気体を外部に排出する方法が挙げられる。こうすることで、樹脂220から揮発した気体を中空部170から取り除き、半導体装置100の信頼性を更に高めることができる。尚、中空部170から外部への気体の排出は、貫通孔113が開口している限り、更に後の工程にて行っても構わない。
 貫通孔114に導体140を形成する工法としては、溶融金属を加圧して埋め込む手法やめっきが適用できる。これらの工程はフォトレジストを塗布してフォトリソグラフィー法にて所定の開口部を有するマスク(図示せず)を形成した後に行うことで所望の位置での金属の埋め込みができる。また、ここで同時にウェハ210の裏面に導体膜を形成し、その後エッチングにより再配線のパターンを設ける工程を行ってもよい。また、先にウェハ210の裏面全面に金属を堆積して導体140の埋め込みおよび成膜をおこなった後、マスクを形成して不要な金属を除去する工法も適用可能である。
 次に図5(f)に示す工程は、ウェハ210の裏面に保護膜260を設ける工程である。保護膜260が樹脂フィルムの場合はローラによる圧着貼付け、液状の場合はスピンコートによる塗布等の方法が適用できる。保護膜260の成膜後には次の工程にて電極バンプを形成するランドの開口するよう保護膜260の所定の領域を除去して下地を露出させる工程を行う。ここで、通気用の貫通孔113については、揮発成分が発生する工程はこの時点で全て終了している為、保護膜260の樹脂を充填して塞いでしまってもよい。そうすると、後で説明する図5(h)の個片化工程において、切削水の浸入を防ぐ為に新たにマスキングする必要が無くなる。つまり、貫通孔113の内壁の表面状態を保護、安定化させ、半導体装置の信頼性を高めることができる。
 次に図5(g)に示す工程は、電極バンプ150を設ける工程である。電極バンプ150の形成方法としては、はんだボールを搭載してリフロー、はんだを印刷してリフロー等、などいろいろな手法がある。
 最後に図5(h)に示す工程は、個片化工程である。ウェハ210、樹脂(スペーサ部材)220、カバー母材230よりなる構造体を個々に分割することにより、複数の半導体装置100が完成する。最も一般的な工法はブレードによるダイシングである。ここで貫通孔113がウェハ210の裏面に開口している場合、ダイシング工程においては切削水が中空部に浸入しないよう事前にマスキングを行う必要がある。
 以上の工程により、個片化された複数の半導体装置100が製造できる。
 このように、本実施の形態に係る半導体装置100の製造方法は、表面に各半導体チップ110に対応して設けられた機能素子111を有するウェハ210と、樹脂220と、カバー母材230とを準備し、ウェハ210の表面とカバー母材230とが樹脂220を挟むように組み立てる工程と、その後、エッチングによりウェハ210の一部を除去することで、複数の貫通孔113を形成する工程とを含む。
 これによれば、樹脂220から揮発して発生し中空部170内部に残留する気体を製造工程内において外部に排出させることができるので、高い信頼性を有する半導体装置100をウェハレベルで低コストに製造することができる。
 また、貫通孔113を形成する前に、ウェハ210の樹脂220側と反対の面を均一に除去することにより、ウェハ210を薄くする工程を含む。
 これによれば、形成する貫通孔113の深さを大幅に浅くする事ができる為、製造時間を短縮してコストを低減させることができる。
 また、中空部170の残留気体を外部に排出する為の貫通孔113と同時に一括して形成された貫通孔114を用いて半導体チップ110と外部との電気的接続を行う為の導体140を設けることができる為、製造コストの低減を図ることができる。
 なお、以上の工程フローの中で、図5(a)に示している、樹脂220を接合して所定の箇所を除去する処理はウェハ210ではなくカバー母材230に対してでもよい。その場合、格子状に加工した樹脂220を設けたカバー母材230をウェハ210に接合する際には、中空部となる所定の領域220aが半導体チップ110の所定の領域に合致するよう、高精度なアライメント(位置決め)が必要である。
 また、樹脂220はスタンピング等の工法にてあらかじめ格子状の枠体として加工しておいて、それをウェハ210もしくはカバー母材230に位置決めして接合してもよい。これにより、フォトリソグラフィー法によって中空部170を設ける場合よりも製造コストを低減させることができる。
 また、貫通孔113は、製造工程中にて中空部170内に発生した気体を排出できれば、最終的には塞いでも良いとしてきたが、当然、開口して通気できるようにしたままであっても良い。そうすることで、本半導体装置100を基板に実装して使用される状態において、その温度変化に起因するカバー部材130の中空部170側の面での結露や、スペーサ部材120からの更なる揮発成分による不具合等による性能劣化を防止することができる。
 また、図5(b)に工程では、樹脂220の所定の領域220aを除去することにより露出されたウェハ210を観察してもよい。これにより、中空部170となる領域の状態を、樹脂220の所定の領域220aが除去されたウェハ210を観察するという手法によって、製造不良を除去しやすくなり、信頼性を高めることができる。
 また、上記製造方法では、ウェハ210と樹脂220とを接合した後にカバー母材230を接合したが、カバー母材230と樹脂220とを接合した後にウェハ210を接合してもよい。その後、カバー母材230の裏面に樹脂220を接合する工程と、接合された樹脂220の所定の領域を除去することにより露出されたカバー母材230とウェハ210とを接合してもよい。このとき、所定の領域220aが除去された樹脂220と、機能素子111との位置が合致するように、アライメントを行う。これにより、中空部170となる領域の状態を、平坦で均一なカバー母材230側にて観察することができるため、複雑な機能素子111が形成されたウェハ210側での状態を観察するよりも不良の除去が容易となり、信頼性の高い半導体装置100を低コストで製造できる。
 また、上記製造方法では、樹脂220は、ウェハ210に接合された後に所定の領域220aが除去されたが、樹脂220の所定の領域220aを除去した後に、ウェハ210と接合してもよい。これにより、樹脂220の中空部170となる領域を、例えば、露光・現像とエッチングによらず、スタンピングによって形成できる。これにより、上記実施の形態のような、樹脂220の所定の領域220aが除去したウェハ210の状態(例えば、樹脂220の残渣及び機能素子111へのダメージなど)に留意する必要がなくなる。よって、製造工程を簡略化でき、製造コストを低減できる。
 (実施の形態5)
 本実施の形態では、実施の形態3に係る半導体装置300の製造方法について説明する。
 本実施の形態に係る半導体装置300の製造工程は、図5に示した実施の形態3に係る半導体装置100の製造工程とほぼ同じであるが、図5(b)に示す所定の領域220aが除去される工程での樹脂220の形状が異なる。
 図7は、本実施の形態でのスペーサ部材120の集合体である樹脂420の構造を示す上面図である。具体的には、本実施の形態での所定の領域が除去された樹脂220の上面図である。なお、樹脂420は、本発明のスペーサ母材に相当する。
 実施の形態3では図5(b)に示す工程では樹脂220は格子状に形成されるが、本実施の形態では、樹脂420は図7に示すように格子状ではない。つまり、機能素子111に対応した領域が除去された樹脂420が形成される。
 その後、個片化工程では、図8に示すように、ウェハ210、樹脂420、カバー母材230よりなる構造体を個々に分割することにより、複数の半導体装置300が完成する。
 以上説明した本実施の形態に係る半導体装置300の製造方法は、実施の形態3に係る半導体装置100の製造方法と同様の効果を奏する。
 (実施の形態6)
 本実施の形態では、実施の形態1に係る半導体装置100の他の製造方法について説明する。
 本実施の形態に係る半導体装置100の製造方法は、実施の形態3で説明した半導体装置100の製造方法と比較して、貫通孔113及び114を形成した後に、ウェハ210、樹脂220及びカバー母材230を組み立てる点が異なる。
 図9は、実施の形態6に係る半導体装置100の製造工程を模式的に示す図である。
 同図と図5とを比較して解るように、本実施の形態に係る半導体装置100の製造工程と、図5で示した実施の形態3に係る半導体装置100の製造工程とは、貫通孔113および114を形成する工程をウェハ210の状態で行う点が異なる。言い換えると、ウェハ210に貫通孔113及び114を形成した後に、ウェハ210、樹脂220及びカバー母材230を組み立てる点が異なる。
 以下、図9に従って本実施の形態5での半導体装置100の製造方法を示すが、ここで図5にて述べた説明と重複する箇所の説明は省略する。
 まず図9(a)に示す工程は、貫通孔113および114となる箇所を、ウェハ210を貫通しない所定の深さまで穿つ工程である。言い換えると、ウェハ210の表面から所定の深さまで形成され、ウェハ210の裏面まで貫通しない複数の穴を形成する工程である。
 次に図9(b)に示す工程は、ウェハ210の裏面を研削することによって、ウェハ210の裏面に貫通孔113および114を開口させ、貫通させる工程である。言い換えると、ウェハ210の裏面を均一に除去することで前工程において形成された穴の底部を露出させることにより、貫通孔113および114を形成する工程である。
 こうした製造方法を採ることにより、図5に示す実施の形態3に係る半導体装置300の製造方法で発生しうる、内部に中空部170を有するワークを裏面研削したり、そのワークに貫通孔113および114を形成したりすることよる中空部170へのダメージや汚染を防止することができ、信頼性の高い半導体装置100を製造することができる。
 次に図9(c)にてウェハ210上に樹脂220を形成するが、以降の工程順は図5にて示した製造方法と同様である。具体的には、以降の図9(c)~(h)に示す工程は、図5(a)~(c)及び図5(e)~(h)で示した工程と同様である。
 以上のように、本実施の形態に係る半導体装置100の製造方法は、ウェハ210に貫通孔113及び114を形成した後に、ウェハ210、樹脂220及びカバー母材230を組み立てる。
 これによれば、ウェハ210と樹脂220とカバー母材230とを一体化して中空部170を形成するより前に貫通孔113及び114を形成することになり、貫通孔113及び114の形成時に発生しうる中空部170へのダメージを防止することができ、かつ樹脂220から揮発して発生し中空部170の内部に残留する気体に対して、従来技術での構造よりも高い通気性能を確保し、信頼性が向上した半導体装置100をウェハレベルで低コストに製造することができる。
 また、貫通孔113及び114を形成する工程は、ウェハ210の表面から所定の深さまで形成され、ウェハ210の裏面まで貫通しない複数の穴を形成する工程と、複数の穴を形成する工程の後に、ウェハ210の裏面を均一に除去することで複数の穴の底部を露出させることにより、複数の貫通孔113及び114を形成する工程を含む。
 これによれば、形成する貫通孔113及び114の深さを大幅に小さくする事ができる為、製造時間を短縮してコストを低減させることができる。
 以上、本発明に係る半導体装置及びその製造方法について、実施の形態1~6に基づき説明したが、本発明は、これら実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、異なる実施の形態の組み合わせや、当業者が思いつく各種変形を本実施の形態に施したものも、本発明の範囲内に含まれる。
 例えば、上記各実施形態では、機能素子は受光素子であるとしたが、機能素子は受光素子に限らず、例えば発光素子であってもよい。
 本発明に係る半導体装置およびその製造方法は、例えば光ピックアップ装置といった種々の電子機器に有用である。
 100、101、200、300、900  半導体装置
 110  半導体チップ
 111、211  機能素子
 112  電極パッド
 113、213  貫通孔(中空部と外部との通気用)
 114  貫通孔(外部との電気接続用)
 120、320  スペーサ部材
 130  カバー部材
 140  導体
 150  電極バンプ
 160、260  保護膜
 170、370a、370b、370c  中空部
 210  ウェハ
 220、420  樹脂
 220a  所定の領域
 230  カバー母材
 901  受光領域
 A  レーザ光
 B  気体分子(接着剤樹脂の揮発成分)
 C  気体分子が凝集した状態

Claims (19)

  1.  表面に少なくとも1つの半導体素子が形成された半導体チップと、
     前記半導体チップ上に設けられた枠体構造からなるスペーサ部材と、
     前記スペーサ部材上に設けられたカバー部材とを備え、
     前記半導体チップと、前記スペーサ部材と、前記カバー部材とは、前記少なくとも1つの半導体素子に面する少なくとも1つの中空部を形成し、
     前記半導体チップは、裏面又は側面から前記中空部まで達する少なくとも1つの貫通孔を有する
     半導体装置。
  2.  前記少なくとも1つの貫通孔は、前記半導体チップの裏面から前記中空部まで達する
     請求項1記載の半導体装置。
  3.  前記少なくとも1つの貫通孔は、前記半導体チップの側面から前記中空部まで貫通する
     請求項1記載の半導体装置。
  4.  前記少なくとも1つの貫通孔は、前記少なくとも1つの中空部と前記半導体装置の外部空間とを連通する
     請求項1~3のいずれか1項に記載の半導体装置。
  5.  前記少なくとも1つの貫通孔は、複数の貫通孔からなり、
     前記複数の貫通孔は、前記スペーサ部材の内壁に沿って配置されている
     請求項1~4のいずれか1項に記載の半導体装置。
  6.  さらに、前記半導体チップを厚さ方向に貫通し、前記半導体素子と電気的に接続された貫通導体を備える
     請求項1~5のいずれか1項に記載の半導体装置。
  7.  前記少なくとも1つの半導体素子は、複数の半導体素子からなる
     請求項1~6のいずれか1項に記載の半導体装置。
  8.  前記少なくとも1つの中空部は、複数の中空部からなり、
     前記複数の半導体素子のそれぞれは、前記複数の中空部のそれぞれに対応して配置される
     請求項7記載の半導体装置。
  9.  前記少なくとも1つの半導体素子は受光素子であり、
     前記カバー部材は透光性を有する
     請求項1~8のいずれか1項に記載の半導体装置。
  10.  前記少なくとも1つの半導体素子は発光素子であり、
     前記カバー部材は透光性を有する
     請求項1~9のいずれか1項に記載の半導体装置。
  11.  表面に少なくとも1つの半導体素子が形成された半導体チップと、前記半導体チップ上に設けられた枠体構造からなるスペーサ部材と、前記スペーサ部材上に設けられたカバー部材とを備え、前記半導体チップと、前記スペーサ部材と、前記カバー部材とは、前記少なくとも1つの半導体素子に面する少なくとも1つの中空部を形成し、前記半導体チップは、裏面から前記中空部まで達する少なくとも1つの貫通孔を有する半導体装置の製造方法であって、
     複数の前記半導体チップの集合体であるウェハであって、表面に各半導体チップに対応して設けられた半導体素子を有するウェハと、複数の前記スペーサ部材を含むスペーサ母材と、複数の前記カバー部材を含むカバー母材とを準備し、前記ウェハの表面と前記カバー母材とが前記スペーサ母材を挟むように組み立てる工程(A)と、
     エッチングにより前記ウェハの一部を除去することで、複数の前記貫通孔を形成する工程(B)とを含む
     半導体装置の製造方法。
  12.  前記半導体装置の製造方法は、前記工程(A)の後に前記工程(B)を行うことにより、複数の前記半導体装置を製造する
     請求項11記載の半導体装置の製造方法。
  13.  さらに、前記工程(A)の後かつ前記工程(B)の前に、組み立てられた前記ウェハの前記スペーサ母材側と反対の面を均一に除去することにより、当該ウェハを薄くする工程を含む
     請求項12記載の半導体装置の製造方法。
  14.  さらに、前記工程(B)の後、複数の前記半導体装置を気密構造のチャンバー内に投入して大気圧より減圧することで、複数の前記中空部内に充満している気体分子を複数の前記貫通孔を介して外部に放出させる工程を含む
     請求項12又は13に記載の半導体装置の製造方法。
  15.  前記半導体装置の製造方法は、前記工程(B)の後に前記工程(A)を行うことにより、複数の前記半導体装置を製造する
     請求項11記載の半導体装置の製造方法。
  16.  前記工程(A)は、前記ウェハの表面から所定の深さまで形成され、前記ウェハの裏面まで貫通しない複数の穴を形成する工程と、
     前記穴を形成する工程の後に、前記ウェハの裏面を均一に除去することで前記複数の穴の底部を露出させることにより、前記複数の貫通孔を形成する工程とを含む
     請求項15記載の半導体装置の製造方法。
  17.  さらに、前記工程(A)の後、複数の前記半導体装置を気密構造のチャンバー内に投入して大気圧より減圧することで、複数の前記中空部内に充満している気体分子を複数の前記貫通孔を介して外部に放出させる工程を含む
     請求項15又は16に記載の半導体装置の製造方法。
  18.  さらに、前記工程(B)で形成された前記複数の貫通孔の少なくとも一部の内部に絶縁体を充填する工程を含む
     請求項11~17のいずれか1項に記載の半導体装置の製造方法。
  19.  さらに、前記工程(B)で形成された前記複数の貫通孔の少なくとも一部の内部に導体を充填する工程を含む
     請求項11~18のいずれか1項に記載の半導体装置の製造方法。
PCT/JP2011/000212 2010-05-12 2011-01-18 半導体装置及びその製造方法 WO2011142059A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-110648 2010-05-12
JP2010110648 2010-05-12

Publications (1)

Publication Number Publication Date
WO2011142059A1 true WO2011142059A1 (ja) 2011-11-17

Family

ID=44914122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/000212 WO2011142059A1 (ja) 2010-05-12 2011-01-18 半導体装置及びその製造方法

Country Status (1)

Country Link
WO (1) WO2011142059A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219779A (ja) * 2015-05-20 2016-12-22 日亜化学工業株式会社 発光装置
US10267483B2 (en) 2015-05-20 2019-04-23 Nichia Corporation Light-emitting device
WO2022044865A1 (ja) * 2020-08-25 2022-03-03 ヌヴォトンテクノロジージャパン株式会社 半導体発光装置及び光源装置
US20220181182A1 (en) * 2020-12-03 2022-06-09 Advanced Semiconductor Engineering, Inc. Semiconductor device package and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108285A (ja) * 2004-10-04 2006-04-20 Sharp Corp 半導体装置およびその製造方法
JP2007012728A (ja) * 2005-06-29 2007-01-18 Citizen Watch Co Ltd 圧電振動子パッケージ及びその製造方法ならびに物理量センサー
WO2009011140A1 (ja) * 2007-07-19 2009-01-22 Fujikura Ltd. 半導体パッケージとその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108285A (ja) * 2004-10-04 2006-04-20 Sharp Corp 半導体装置およびその製造方法
JP2007012728A (ja) * 2005-06-29 2007-01-18 Citizen Watch Co Ltd 圧電振動子パッケージ及びその製造方法ならびに物理量センサー
WO2009011140A1 (ja) * 2007-07-19 2009-01-22 Fujikura Ltd. 半導体パッケージとその製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016219779A (ja) * 2015-05-20 2016-12-22 日亜化学工業株式会社 発光装置
US10267483B2 (en) 2015-05-20 2019-04-23 Nichia Corporation Light-emitting device
US11149917B2 (en) 2015-05-20 2021-10-19 Nichia Corporation Light-emitting device
US11428382B2 (en) 2015-05-20 2022-08-30 Nichia Corporation Light-emitting device
US11655958B2 (en) 2015-05-20 2023-05-23 Nichia Corporation Light-emitting device
US11892155B2 (en) 2015-05-20 2024-02-06 Nichia Corporation Light-emitting device
WO2022044865A1 (ja) * 2020-08-25 2022-03-03 ヌヴォトンテクノロジージャパン株式会社 半導体発光装置及び光源装置
US20220181182A1 (en) * 2020-12-03 2022-06-09 Advanced Semiconductor Engineering, Inc. Semiconductor device package and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP6586445B2 (ja) パッケージ型センサアッセンブリ及びその製造方法
US9034729B2 (en) Semiconductor device and method of manufacturing the same
KR100791730B1 (ko) 반도체 장치 및 그 제조 방법
US7893514B2 (en) Image sensor package, method of manufacturing the same, and image sensor module including the image sensor package
KR101544616B1 (ko) Mems 장치 및 이의 제조 방법
JP4198072B2 (ja) 半導体装置、光学装置用モジュール及び半導体装置の製造方法
US8536671B2 (en) Chip package
US6838309B1 (en) Flip-chip micromachine package using seal layer
JP2009206253A (ja) 半導体装置
JP2010040672A (ja) 半導体装置およびその製造方法
JP2002329850A (ja) チップサイズパッケージおよびその製造方法
WO2011142059A1 (ja) 半導体装置及びその製造方法
US8193013B2 (en) Semiconductor optical sensor element and method of producing the same
JP2007067277A (ja) 電子デバイス、電子デバイスの製造方法、半導体ウェーハ
JP5515223B2 (ja) 半導体装置
JP4450168B2 (ja) 半導体装置の製造方法および半導体装置用カバー
JP6377510B2 (ja) 半導体装置、および半導体装置の製造方法
JP4942671B2 (ja) 半導体装置およびその製造方法
AU2008256414A1 (en) Device having a sandwich structure for detecting thermal radiation, method of production and use of the device
TWI501359B (zh) 電子元件封裝體及其形成方法
JP2012033718A (ja) 半導体装置及びその製造方法
JP2006080297A (ja) 固体撮像装置及びその製造方法
JP5314269B2 (ja) 実装方法およびダイボンド装置
JP5867817B2 (ja) 光学デバイスの製造方法
JP2013038346A (ja) 光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11780320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11780320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP