WO2011142041A1 - 内燃機関の排気浄化装置 - Google Patents
内燃機関の排気浄化装置 Download PDFInfo
- Publication number
- WO2011142041A1 WO2011142041A1 PCT/JP2010/058402 JP2010058402W WO2011142041A1 WO 2011142041 A1 WO2011142041 A1 WO 2011142041A1 JP 2010058402 W JP2010058402 W JP 2010058402W WO 2011142041 A1 WO2011142041 A1 WO 2011142041A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst device
- silver
- alumina
- temperature
- reducing agent
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9404—Removing only nitrogen compounds
- B01D53/9409—Nitrogen oxides
- B01D53/9413—Processes characterised by a specific catalyst
- B01D53/9418—Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/922—Mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
- B01D53/925—Simultaneous elimination of carbon monoxide or hydrocarbons and nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9495—Controlling the catalytic process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/024—Multiple impregnation or coating
- B01J37/0242—Coating followed by impregnation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0097—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/16—Selection of particular materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0814—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0871—Regulation of absorbents or adsorbents, e.g. purging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/101—Three-way catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2066—Selective catalytic reduction [SCR]
- F01N3/208—Control of selective catalytic reduction [SCR], e.g. dosing of reducing agent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/206—Ammonium compounds
- B01D2251/2067—Urea
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/208—Hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1021—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1025—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/104—Silver
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/206—Rare earth metals
- B01D2255/2063—Lanthanum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/91—NOx-storage component incorporated in the catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9477—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/50—Silver
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/08—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
- F01N2430/085—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing at least a part of the injection taking place during expansion or exhaust stroke
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2510/00—Surface coverings
- F01N2510/06—Surface coverings for exhaust purification, e.g. catalytic reaction
- F01N2510/068—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
- F01N2510/0684—Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/14—Nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/02—Adding substances to exhaust gases the substance being ammonia or urea
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/03—Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2610/00—Adding substances to exhaust gases
- F01N2610/14—Arrangements for the supply of substances, e.g. conduits
- F01N2610/1453—Sprayers or atomisers; Arrangement thereof in the exhaust apparatus
- F01N2610/146—Control thereof, e.g. control of injectors or injection valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/0601—Parameters used for exhaust control or diagnosing being estimated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/16—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
- F01N2900/1602—Temperature of exhaust gas apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/16—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
- F01N2900/1614—NOx amount trapped in catalyst
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/16—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
- F01N2900/1622—Catalyst reducing agent absorption capacity or consumption amount
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0842—Nitrogen oxides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to an exhaust purification device for an internal combustion engine.
- a catalyst device in which silver oxide is supported using alumina as a carrier coating material is known (see Patent Document 1).
- Such a silver-alumina-based catalyst device adsorbs NO X in exhaust gas and adsorbs at a set temperature. functions to emit the NO X.
- an object of the present invention in the exhaust purification apparatus of the silver-alumina-based catalyst device and NO X reduction catalyst device and the internal combustion engine arranged in an engine exhaust system is to sufficiently reduce the atmospheric emissions of the NO X .
- An exhaust purification system of an internal combustion engine according to claim 1 according to the present invention a silver-alumina-based catalyst device and NO X reduction catalyst device is disposed in the engine exhaust system, the first set the silver-alumina-based catalyst device is hot-side
- the NO X reduction catalyst device reduces and purifies NO X released from the silver alumina catalyst device by the reducing agent when the temperature reaches the temperature, and the silver alumina catalyst device also becomes the second set temperature on the low temperature side. which comprises reducing purify released NO X from the silver-alumina-based catalyst device with a reducing agent in the NO X reduction catalyst device.
- the exhaust gas purification apparatus for an internal combustion engine according to claim 2 according to the present invention is the exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the silver alumina system is used when the temperature is not less than the second set temperature and less than the first set temperature. wherein the hot side NO X adsorption amount adsorbed to the catalyst device is estimated.
- An exhaust purification system of an internal combustion engine according to claim 3 of the present invention in the exhaust purification system of an internal combustion engine according to claim 2, when the hot-side NO X adsorbed amount estimated is the first set amount or more only the silver-alumina-based catalyst device is characterized in that reduces and purifies the released NO X from the silver-alumina-based catalyst device with a reducing agent in the NO X reducing catalyst device when the said first set temperature.
- the exhaust gas purification apparatus for an internal combustion engine according to claim 4 according to the present invention is the exhaust gas purification apparatus for an internal combustion engine according to claim 2 or 3, wherein the silver alumina catalyst device becomes the first set temperature and the NO When reducing and purifying NO X released from the silver alumina catalyst device in the X reduction catalyst device, the amount of reducing agent supplied to the NO X reduction catalyst device based on the estimated high temperature side NO X adsorption amount It is characterized by determining.
- An internal combustion engine exhaust gas purification apparatus according to a fifth aspect of the present invention is the internal combustion engine exhaust gas purification apparatus according to the first aspect, wherein the low temperature adsorbed to the silver alumina catalyst device when the temperature is lower than the second set temperature.
- An exhaust purification system of an internal combustion engine according to claim 6 of the present invention in the exhaust purification system of an internal combustion engine according to claim 5, when the low-temperature side NO X adsorbed amount estimated is the second set amount or more only the silver-alumina-based catalyst device is characterized in that reduces and purifies the released NO X from the silver-alumina-based catalyst device with a reducing agent in the NO X reducing catalyst device when the said second set temperature.
- the exhaust gas purification apparatus for an internal combustion engine according to claim 7 is the exhaust gas purification apparatus for an internal combustion engine according to claim 5 or 6, wherein the silver alumina catalyst device becomes the second set temperature and the NO When reducing and purifying NO X released from the silver alumina catalyst device in the X reduction catalyst device, the amount of reducing agent supplied to the NO X reduction catalyst device based on the estimated low temperature side NO X adsorption amount It is characterized by determining.
- the NO X reduction catalyst device uses the reducing agent from the silver alumina catalyst device. not only reduce and purify the released NO X, when the silver-alumina-based catalyst device becomes the low-temperature side of the second set temperature, for NO X adsorbed at less than the second preset temperature is discharged, when the It has also become the released NO X so as to reduce and purify the silver-alumina-based catalyst device with a reducing agent in the NO X reduction catalyst device, whereby it is possible to sufficiently reduce the atmospheric emissions of NO X.
- the silver alumina catalyst temperature side NO X adsorption amount adsorbed to the device is adapted to be estimated.
- the high temperature-side NO X adsorbed amount estimated is the first set amount or more only the silver-alumina-based catalyst device when adapted to reduce and purify the released NO X from the silver-alumina-based catalyst system with a reducing agent in the NO X reduction catalyst device when the first set temperature, the silver-alumina-based catalyst device There when the amount of NO X is small that is released when it becomes the first set temperature, suppresses the consumption of the reducing agent to stop the supply of the reducing agent to the NO X reduction catalyst device.
- the exhaust gas control apparatus According to the exhaust purification system of an internal combustion engine according to claim 4 according to the present invention, the exhaust gas control apparatus according to claim 2 or 3, the silver-alumina-based catalyst device becomes the first set temperature NO X When reducing and purifying NO X released from the silver alumina catalyst device in the reduction catalyst device, the amount of reducing agent supplied to the NO X reduction catalyst device is determined based on the estimated high temperature side NO X adsorption amount. Therefore, the consumption of the reducing agent is suppressed by preventing the reducing agent from being supplied more than necessary.
- side NO X adsorption amount is adapted to be estimated.
- the low temperature-side NO X adsorbed amount estimated is the second set amount or more only the silver-alumina-based catalyst device when adapted to reduce and purify the released NO X from the silver-alumina-based catalyst system with a reducing agent in the NO X reduction catalyst device when the second set temperature, the silver-alumina-based catalyst device When the amount of NO X released when the temperature reaches the second set temperature is small, the supply of the reducing agent to the NO X reduction catalyst device is stopped to reduce the consumption of the reducing agent.
- the silver-alumina-based catalyst device becomes the second set temperature NO X
- the amount of reducing agent supplied to the NO X reduction catalyst device is determined based on the estimated low-temperature side NO X adsorption amount. Therefore, the consumption of the reducing agent is suppressed by preventing the reducing agent from being supplied more than necessary.
- FIG. 1 is a schematic view showing an exhaust emission control device for an internal combustion engine according to the present invention.
- reference numeral 1 denotes an exhaust passage of the internal combustion engine.
- the internal combustion engine is an internal combustion engine that performs lean combustion, such as a diesel engine or a direct injection spark ignition internal combustion engine.
- a silver alumina catalyst device 2 that adsorbs NO X is disposed in the exhaust passage 1, and silver downstream of the alumina-based catalyst device 2, between the NO X reduction catalyst device 3 is arranged, the silver-alumina-based catalyst device 2 and the NO X reduction catalyst device 3 for reducing NO X, reduction A reducing agent supply device 4 for supplying the agent is disposed.
- Silver-alumina-based catalyst device 2, alumina and those obtained by supporting silver oxide as a carrier coating material, can adsorb NO X in the exhaust gas as nitrate, a first set temperature (about 300 ° C) Then, the adsorbed NO X is released.
- the released NO X can be reduced and purified by the reducing agent supplied from the reducing agent supply device 4 in the NO X reduction catalyst device 3.
- the silver-alumina-based catalyst device 2 is formed, for example, by forming an alumina Al 2 O 3 carrier coat layer on a honeycomb-shaped substrate and silver 200 g of alumina (which may contain lanthanum La for improving heat resistance). In this case, silver oxide Ag 2 O is supported on the alumina support coat layer at a ratio of 0.2 mol.
- alumina MI386 (La / Al 2 O 3 ) powder 710.4 g of binder A520 and 3600 g of water with an attritor for 20 minutes
- the material is coated at 200 g / L per unit volume.
- this is baked at 250 ° C. for 30 minutes in the air, and then baked at 500 ° C. for 1 hour to form an alumina carrier coat layer on the substrate.
- ion nitrate water is added to 236.2 g of silver nitrate to dissolve it to 1700 cc, and an aqueous silver nitrate solution with an Ag concentration of 0.82 mol / L is prepared.
- the aforementioned alumina carrier coat layer is immersed in such an aqueous silver nitrate solution for 30 minutes, and Ag 0.2 mol / L per unit volume is supported by water absorption.
- the blower-type dryer is operated and dried for 20 minutes.
- nitrogen containing 5% hydrogen passes through 7 L per minute at 500 ° C. for 3 hours.
- Bake In the catalyst thus prepared, silver oxide Ag 2 O is exposed from the alumina Al 2 O 3 carrier coat layer, and it is excellent as silver nitrate AgNO 3 after oxidizing NO in the exhaust gas to NO 2.
- the NO X reduction catalyst device 3 can be a three-way catalyst device.
- the NO X reduction catalyst device 3 can be a selective reduction type NO X catalyst device that selectively reduces and purifies NO X using ammonia NH 3 , and in this case, from the reducing agent supply device 4
- urea is supplied as a reducing agent, and ammonia is generated by hydrolysis of urea in the selective reduction type NO X catalyst device to reduce and purify NO X.
- the NO X reduction catalyst device 3 has an upstream oxidation catalyst device (supporting platinum Pt, silver Ag, copper Cu, or the like) that can partially oxidize hydrocarbons in the exhaust gas, and partially oxidized hydrocarbons.
- upstream oxidation catalyst device supporting platinum Pt, silver Ag, copper Cu, or the like
- downstream catalyst device supports platinum Pt or rhodium Rh
- nitrogen-containing hydrocarbon compounds amine compounds, isocyanate compounds, and nitroso compounds
- hydrocarbons (fuel) is supplied as the reducing agent from the reducing agent supply device 4 to purify NO X.
- the silver-alumina-based catalyst device 2 not only NO X is adsorbed as silver nitrate, is considered to NO X is adsorbed as silver nitrite AgNO 2, NO X which are adsorbed as silver nitrate first set temperature It is considered that NO X released at T1 but adsorbed as silver nitrite is released at a second set temperature T2 (about 150 ° C.) lower than the first set temperature T1.
- T2 about 150 ° C.
- step 101 it is determined whether or not the temperature T (measured temperature or estimated temperature) of the silver alumina catalyst device 2 is lower than the second set temperature T2. When this determination is affirmed, NO X in the exhaust gas is adsorbed by the silver alumina catalyst device 2 as silver nitrite.
- step 102 the adsorption amount a2 newly adsorbed on the silver alumina catalyst device 2 as silver nitrite per unit time determined based on the NO X amount discharged from the cylinder per unit time for each operating state. Is determined using a map or the like based on the current operating state (engine load and engine speed) and the current temperature T of the silver-alumina-based catalyst device 2 (the lower the temperature T, the easier it is adsorbed). The unit time here is the repetition interval of this flowchart.
- step 103 the low-temperature side NO X adsorption amount A2 adsorbed by the silver-alumina-based catalyst device 2 as silver nitrite, adsorption amount a2 determined in step 102 is integrated.
- step 101 determines whether or not the temperature T of the silver alumina catalyst device 2 is the second set temperature T2. If an affirmative determination is made, the silver-alumina-based catalyst device 2 NO X adsorbed as silver nitrite is almost released.
- step 105 when at step 105, whether or not the low-temperature side NO X adsorption amount A2 adsorbed by the silver-alumina-based catalyst device 2 as silver nitrite is set amount A2 'above is determined, this determination is negative, only a small amount of the NO X as silver nitrite not been adsorbed, for the amount of NO X released is very small, in step 108, the low temperature-side NO adsorbed to the silver-alumina-based catalyst device 2 as silver nitrite
- the X adsorption amount A2 is set to 0 (or a slight predetermined amount), and the process ends as it is.
- step 106 which is adsorbed as silver nitrite based on the side NO X adsorption amount A2
- the reducing agent amount RA is determined to supply the reducing agent feeder 4. That is, as the low-temperature side NO X adsorption amount A2 increases, the reducing agent amount RA increases, and preferably the NO X released from the silver alumina catalyst device 2 is reduced without excess or deficiency in the downstream NO X reduction catalyst device 3. The amount of reducing agent RA required to do this is determined.
- the reducing agent amount RA is equivalent to the low-temperature side NO X adsorption amount A2 adsorbed as silver nitrite on the silver alumina catalyst device 2.
- the amount of urea is equivalent to the low-temperature side NO X adsorption amount A2 adsorbed as silver nitrite on the silver alumina catalyst device 2.
- the amount of urea is equivalent to the low-temperature side NO X adsorption amount A2 adsorbed as silver nitrite on the silver alumina catalyst device 2.
- the amount of urea is added to obtain the reducing agent amount RA.
- step 107 the reducing agent amount RA determined in step 106 is supplied from the reducing agent supply device 4, at step 108, the low temperature-side NO X adsorption amount of the silver-alumina-based catalyst device 2 is adsorbed as silver nitrite A2 is set to 0 (or a slight predetermined amount), and the process ends.
- NO X released from the silver-alumina-based catalyst device 2 at the second set temperature T2 is reduced and purified by the NO X reduction catalyst device 3, a reductant exceeding the necessary amount is not supplied. Can be suppressed, and the release of the reducing agent into the atmosphere can also be suppressed.
- step 105 The determination of step 105 is omitted, and whenever the silver alumina catalyst device 2 reaches the second set temperature T2, the required amount RA of the reducing agent is determined in step 106, and the reducing agent is supplied in step 107. May be.
- step 104 it is determined in step 109 whether or not the temperature T of the silver alumina catalyst device 2 is lower than the first set temperature T1.
- this determination is affirmative, that is, when the temperature T of the silver alumina catalyst device 2 is higher than the second set temperature T2 and lower than the first set temperature T1, NO X in the exhaust gas is converted into silver nitrate as a silver alumina catalyst. Adsorbed to the device 2.
- step 111 the adsorption amount a1 newly adsorbed by the silver alumina catalyst device 2 as silver nitrate per unit time determined based on the NO X amount discharged from the cylinder per unit time for each operating state is obtained. It is determined using a map or the like based on the current operation state (engine load and engine speed) and the current temperature T of the silver-alumina-based catalyst device 2 (the lower the temperature T, the easier it is adsorbed). The unit time here is the repetition interval of this flowchart. Then, in step 112, the high temperature side NO X adsorption amount A1 adsorbed by the silver-alumina-based catalyst device 2 as silver nitrate, adsorption amount a1 determined in step 111 is integrated.
- step 109 it is determined in step 110 whether or not the temperature T of the silver alumina catalyst device 2 is the first set temperature T1. If an affirmative determination is made, the silver-alumina-based catalyst device 2 adsorbed NO X is almost released as silver nitrate.
- step 113 whether the high-temperature side NO X adsorption amount A1 that is adsorbed as silver nitrate in the silver-alumina-based catalyst device 2 is set amount A1 'above is determined, when this determination is negative, just Since only a small amount of NO X is adsorbed and the amount of released NO X is also small, in step 116, the high temperature side NO X adsorption amount A1 adsorbed as silver nitrate to the silver alumina catalyst device 2 is determined. It is set as 0 (or a slight predetermined amount) and the process is terminated as it is.
- step 114 the high temperature-side NO adsorbed as silver nitrate Based on the X adsorption amount A1, the reducing agent amount RA supplied by the reducing agent supply device 4 is determined. That is, as the high-temperature side NO X adsorption amount A1 increases, the reducing agent amount RA increases, and preferably NO X released from the silver alumina catalyst device 2 is reduced without excess or deficiency in the downstream NO X reduction catalyst device 3. The amount of reducing agent RA required to do this is determined.
- the reducing agent amount RA has an equivalent ratio with respect to the high-temperature side NO X adsorption amount A1 adsorbed to the silver alumina catalyst device 2 as silver nitrate.
- the amount of urea is adsorbed as silver nitrate released from the silver-alumina-based catalyst device 2 to the amount of fuel required to make the current exhaust gas the stoichiometric air-fuel ratio. is the amount of fuel required to reduce just proportion NO X had is that it is added the reducing agent amount RA.
- step 115 the reducing agent amount RA determined in step 114 is supplied from the reducing agent supply device 4, at step 116, the high temperature-side NO X adsorption amount adsorbed as silver nitrate in the silver-alumina-based catalyst device 2 A1 To 0 (or a small predetermined amount).
- NO X released from the silver-alumina-based catalyst device 2 at the first set temperature T1 is reduced and purified by the NO X reduction catalyst device 3
- no more than the necessary amount of reducing agent is supplied.
- step 113 When the determination in step 113 is omitted and the silver alumina catalyst device 2 reaches the first set temperature T1, the required amount RA of the reducing agent is always determined in step 114, and the reducing agent is supplied in step 115. May be.
- the determination in step 110 is negative, that is, when the temperature T of the silver alumina catalyst device 2 is higher than the first set temperature T1, NO X in the exhaust gas is adsorbed to the silver alumina catalyst device 2 as silver nitrate.
- the adsorption amount a1 per unit time is determined in step 111, the hot side NO X adsorption amount A1 that is adsorbed as silver nitrate in the silver-alumina-based catalyst device 2 at step 112, step 111
- the adsorption amount a1 determined in is integrated.
- the temperature T of the silver-alumina-based catalyst device 2 is higher than the first set temperature T1, to the percentage that is adsorbed to decrease as silver nitrate of the NO X in the exhaust gas, when the determination in step 110 is negative, it may be stopped integration of the high temperature-side NO X adsorption amount A1.
- the NO X reduction catalyst device 3 uses the reducing agent from the silver alumina catalyst device.
- the released NO X not only reduction purification, when the silver-alumina-based catalyst device 2 becomes the second set temperature T2 of the low-temperature side, for NO X adsorbed at less than the second set temperature T2 is released It has become the NO X released from the silver-alumina-based catalyst device 2 by the reducing agent at the NO X reduction catalyst device 3 even when this to reduce and purify, thereby sufficiently reducing the atmospheric emissions of the NO X be able to.
- the temperature T at which NO X is released from the silver alumina catalyst device 2 is set to a first set temperature T1 (for example, about 300 ° C.) and a second set temperature (for example, about 150
- these temperatures are not limited to a single point temperature, and the first set temperature range (for example, 290 ° C to 310 ° C) and the second set temperature range (for example, 140 ° C), respectively.
- the reducing agent supply device 4 may be arranged on the upstream side of the silver-alumina-based catalyst device 2, and when fuel is used as the reducing agent, fuel injection that injects fuel into the cylinder as the reducing agent supply device.
- a valve may be used, and fuel may be injected into the cylinder, for example, in the expansion stroke by the fuel injection valve.
- the silver alumina catalyst device 2 and the NO X reduction catalyst device 3 are separated, but this does not limit the present invention.
- a silver-alumina-based catalyst layer made of alumina carrying the silver oxide on the upper side of the NO X reduction layer if to form, and a silver-alumina-based catalyst device 2 and the NO X reduction catalyst device 3 may be an integral unit.
- the reducing agent is supplied to the integrated device and released.
- NO X in the lower side of the NO X reduction layer of the silver-alumina-based catalyst layer, and thus be reduced and purified using the supplied reducing agent.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Biomedical Technology (AREA)
- Materials Engineering (AREA)
- Toxicology (AREA)
- Organic Chemistry (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
- Catalysts (AREA)
Abstract
Description
しかしながら、銀アルミナ系触媒装置が設定温度となる時のNOX還元浄化だけでは、大気中へ放出されるNOXを十分に低減することができないことがある。
従って、本発明の目的は、銀アルミナ系触媒装置とNOX還元触媒装置とが機関排気系に配置された内燃機関の排気浄化装置において、NOXの大気放出量を十分に低減することである。
本発明による請求項2に記載の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記第二設定温度以上で前記第一設定温度未満の時に前記銀アルミナ系触媒装置へ吸着される高温側NOX吸着量が推定されることを特徴とする。
本発明による請求項3に記載の内燃機関の排気浄化装置は、請求項2に記載の内燃機関の排気浄化装置において、推定された前記高温側NOX吸着量が第一設定量以上である時にだけ前記銀アルミナ系触媒装置が前記第一設定温度となる時に前記NOX還元触媒装置において還元剤により前記銀アルミナ系触媒装置から放出されたNOXを還元浄化することを特徴とする。
本発明による請求項4に記載の内燃機関の排気浄化装置は、請求項2又は3に記載の内燃機関の排気浄化装置において、前記銀アルミナ系触媒装置が前記第一設定温度となって前記NOX還元触媒装置において前記銀アルミナ系触媒装置から放出されたNOXを還元浄化する際には、推定された前記高温側NOX吸着量に基づき前記NOX還元触媒装置へ供給する還元剤の量を決定することを特徴とする。
本発明による請求項5に記載の内燃機関の排気浄化装置は、請求項1に記載の内燃機関の排気浄化装置において、前記第二設定温度未満の時に前記銀アルミナ系触媒装置へ吸着される低温側NOX吸着量が推定されることを特徴とする。
本発明による請求項6に記載の内燃機関の排気浄化装置は、請求項5に記載の内燃機関の排気浄化装置において、推定された前記低温側NOX吸着量が第二設定量以上である時にだけ前記銀アルミナ系触媒装置が前記第二設定温度となる時に前記NOX還元触媒装置において還元剤により前記銀アルミナ系触媒装置から放出されたNOXを還元浄化することを特徴とする。
本発明による請求項7に記載の内燃機関の排気浄化装置は、請求項5又は6に記載の内燃機関の排気浄化装置において、前記銀アルミナ系触媒装置が前記第二設定温度となって前記NOX還元触媒装置において前記銀アルミナ系触媒装置から放出されたNOXを還元浄化する際には、推定された前記低温側NOX吸着量に基づき前記NOX還元触媒装置へ供給する還元剤の量を決定することを特徴とする。
本発明による請求項2に記載の内燃機関の排気浄化装置によれば、請求項1に記載の内燃機関の排気浄化装置において、第二設定温度以上で第一設定温度未満の時に銀アルミナ系触媒装置へ吸着される高温側NOX吸着量が推定されるようになっている。
本発明による請求項3に記載の内燃機関の排気浄化装置によれば、請求項2に記載の内燃機関の排気浄化装置において、推定された高温側NOX吸着量が第一設定量以上である時にだけ銀アルミナ系触媒装置が第一設定温度となる時にNOX還元触媒装置において還元剤により銀アルミナ系触媒装置から放出されたNOXを還元浄化するようになっており、銀アルミナ系触媒装置が第一設定温度となった時に放出されるNOX量が少ない時には、NOX還元触媒装置への還元剤の供給を中止して還元剤の消費量を抑制する。
本発明による請求項4に記載の内燃機関の排気浄化装置によれば、請求項2又は3に記載の内燃機関の排気浄化装置において、銀アルミナ系触媒装置が第一設定温度となってNOX還元触媒装置において銀アルミナ系触媒装置から放出されたNOXを還元浄化する際には、推定された高温側NOX吸着量に基づきNOX還元触媒装置へ供給する還元剤の量を決定するようになっており、必要以上に還元剤が供給されないようにして還元剤の消費量を抑制する。
本発明による請求項5に記載の内燃機関の排気浄化装置によれば、請求項1に記載の内燃機関の排気浄化装置において、第二設定温度未満の時に銀アルミナ系触媒装置へ吸着される低温側NOX吸着量が推定されるようになっている。
本発明による請求項6に記載の内燃機関の排気浄化装置によれば、請求項5に記載の内燃機関の排気浄化装置において、推定された低温側NOX吸着量が第二設定量以上である時にだけ銀アルミナ系触媒装置が第二設定温度となる時にNOX還元触媒装置において還元剤により銀アルミナ系触媒装置から放出されたNOXを還元浄化するようになっており、銀アルミナ系触媒装置が第二設定温度となった時に放出されるNOX量が少ない時には、NOX還元触媒装置への還元剤の供給を中止して還元剤の消費量を抑制する。
本発明による請求項7に記載の内燃機関の排気浄化装置によれば、請求項5又は6に記載の内燃機関の排気浄化装置において、銀アルミナ系触媒装置が第二設定温度となってNOX還元触媒装置において銀アルミナ系触媒装置から放出されたNOXを還元浄化する際には、推定された低温側NOX吸着量に基づきNOX還元触媒装置へ供給する還元剤の量を決定するようになっており、必要以上に還元剤が供給されないようにして還元剤の消費量を抑制する。
銀アルミナ系触媒装置2は、アルミナを担体コート材として酸化銀を担持させたものであり、排気ガス中のNOXを硝酸銀として吸着することができ、第一設定温度(約300°C)となると吸着したNOXを放出する。放出されたNOXは、NOX還元触媒装置3において、還元剤供給装置4から供給される還元剤により還元浄化させることができる。
銀アルミナ系触媒装置2は、例えば、ハニカム状の基材にアルミナAl2O3担体コート層を形成し、アルミナ200g(耐熱性向上のためにランタンLaを混入させても良い)に対して銀0.2molの割合でアルミナ担体コート層に酸化銀Ag2Oを担持させたものである。
このような触媒の調製方法としては、例えば、アルミナMI386(La/Al2O3)粉末の1600gと、バインダA520の710.4gと、水の3600gとをアトライタにより20分攪拌したものを、基材上に単位体積当たり200g/Lでコートする。次いで、これを大気中において250°Cで30分焼成し、続いて、500°Cで1時間焼成して、基材上にアルミナ担体コート層を形成する。
一方、硝酸銀236.2gにイオン交換水を加えて溶解させて1700ccとし、Ag濃度0.82mol/Lとなる硝酸銀水溶液を調製する。
このような硝酸銀水溶液に前述のアルミナ担体コート層を30分浸漬し、吸水担持により単位体積当たりAg0.2mol/Lを担持させる。次いで、送風型乾燥機を作動させて20分乾燥させ、大気中において550°Cで3時間焼成した後に、5%の水素を含む窒素が1分間に7L通過する中で500°Cで3時間焼成する。
このようして調製された触媒においては、酸化銀Ag2OがアルミナAl2O3担体コート層から露出しており、排気ガス中のNOをNO2に酸化させた後に硝酸銀AgNO3として良好に保持することができる。
NOX還元触媒装置3は、三元触媒装置とすることができ、この場合には、還元剤供給装置4からは還元剤として例えば燃料が供給され、三元触媒装置内の排気ガスの空燃比をリッチにしてNOXを還元浄化する。
また、NOX還元触媒装置3は、アンモニアNH3を使用してNOXを選択的に還元浄化する選択還元型NOX触媒装置とすることができ、この場合には、還元剤供給装置4からは還元剤として例えば尿素が供給され、選択還元型NOX触媒装置において、尿素の加水分解によりアンモニアを発生させてNOXを還元浄化する。
また、NOX還元触媒装置3が、排気ガス中の炭化水素を部分酸化しうる上流側の酸化触媒装置(白金Pt、銀Ag、又は銅Cu等を担持する)と、部分酸化させた炭化水素と排気ガス中のNOXとから酸化触媒装置において生成される含窒素炭化水素化合物(アミン化合物、イソシアナート化合物、及び、ニトロソ化合物)を浄化する下流側の触媒装置(白金Pt又はロジウムRhを担持する)とから構成される場合には、NOXを浄化するために還元剤供給装置4からは還元剤として炭化水素(燃料)が供給される。特に、供給された炭化水素により排気ガスの空燃比を15.5以下のリーン空燃比とすれば、酸化触媒装置において含窒素炭化水素化合物が生成され易くなり、排気ガス中のNOXのほぼ全てを浄化することができる。
しかしながら、銀アルミナ系触媒装置2が第一設定温度となる時にだけ還元剤供給装置4により還元剤を供給してNOX還元触媒装置3において銀アルミナ系触媒装置2から放出されたNOXを還元しても、大気中へ放出されるNOXを十分に低減することができない。
図2は、銀アルミナ系触媒装置2における温度TとNOX放出量との関係を示している。銀アルミナ系触媒装置2には、硝酸銀としてNOXが吸着されるだけでなく、亜硝酸銀AgNO2としてもNOXが吸着されると考えられ、硝酸銀として吸着されているNOXは第一設定温度T1において放出されるが、亜硝酸銀として吸着されているNOXは、第一設定温度T1より低い第二設定温度T2(約150°C)において放出されると考えられる。ここで、銀アルミナ系触媒装置2が第二設定温度T2未満の時には、排気ガス中のNOXは主に亜硝酸銀として吸着され、銀アルミナ系触媒装置2が第二設定温度T2より高く第一設定温度T1未満の時には、排気ガス中のNOXは主に硝酸銀として吸着されると考えられる。
本実施形態の内燃機関の排気浄化装置は、電子制御装置(図示せず)により図3に示すフローチャートに従って還元剤供給装置4を制御し、大気中へのNOX放出量を十分に低減している。
先ず、ステップ101において、銀アルミナ系触媒装置2の温度T(測定温度又は推定温度)が第二設定温度T2未満であるか否かが判断される。この判断が肯定される時には、排気ガス中のNOXは亜硝酸銀として銀アルミナ系触媒装置2に吸着される。それにより、ステップ102において、運転状態毎の単位時間当たりの気筒から排出されるNOX量に基づき定められた単位時間当たりの亜硝酸銀として銀アルミナ系触媒装置2に新たに吸着される吸着量a2が、現在の運転状態(機関負荷及び機関回転数)及び現在の銀アルミナ系触媒装置2の温度T(温度Tが低いほど吸着され易くなる)に基づきマップ等を使用して決定される。ここでの単位時間は、本フローチャートの繰り返し間隔となる。
次いで、ステップ103において、亜硝酸銀として銀アルミナ系触媒装置2に吸着されている低温側NOX吸着量A2には、ステップ102において決定された吸着量a2が積算される。こうして、銀アルミナ系触媒装置2の温度が第二設定温度T2未満である時には、銀アルミナ系触媒装置2へ排気ガス中のNOXが亜硝酸銀として吸着され、低温側NOX吸着量A2は徐々に増加することとなる。
一方、ステップ101の判断が否定されると、ステップ104において、銀アルミナ系触媒装置2の温度Tが第二設定温度T2となっている否かが判断される。この判断が肯定されると、銀アルミナ系触媒装置2からは亜硝酸銀として吸着したNOXが殆ど放出される。次いで、ステップ105において、銀アルミナ系触媒装置2に亜硝酸銀として吸着されている低温側NOX吸着量A2が設定量A2’以上であるか否かが判断され、この判断が否定される時には、亜硝酸銀として僅かな量のNOXしか吸着されておらず、放出されるNOX量も僅かであるために、ステップ108において、銀アルミナ系触媒装置2に亜硝酸銀として吸着されている低温側NOX吸着量A2を0(又は僅かな所定量)として、そのまま終了する。
しかしながら、ステップ105の判断が肯定される時には、銀アルミナ触媒装置2から亜硝酸銀として吸着されている比較的多くのNOXが放出されるために、ステップ106において、亜硝酸銀として吸着されている低温側NOX吸着量A2に基づき、還元剤供給装置4により供給する還元剤量RAが決定される。すなわち、低温側NOX吸着量A2が多いほど還元剤量RAは多くされ、好ましくは、銀アルミナ系触媒装置2から放出されるNOXを下流側のNOX還元触媒装置3において過不足なく還元するのに必要な還元剤量RAが決定される。
NOX還元触媒装置3が選択還元型NOX触媒装置である場合には、還元剤量RAは、銀アルミナ系触媒装置2に亜硝酸銀として吸着されている低温側NOX吸着量A2に対する当量比の尿素量とされる。また、NOX還元触媒装置3が三元触媒装置である場合には、現在の排気ガスを理論空燃比とするのに必要な燃料量に、銀アルミナ系触媒装置2から放出される亜硝酸銀として吸着されていたNOXを過不足なく還元するのに必要な燃料量が加算されて還元剤量RAとされる。
次いで、ステップ107において、ステップ106において決定された還元剤量RAが還元剤供給装置4から供給され、ステップ108において、銀アルミナ系触媒装置2に亜硝酸銀として吸着されている低温側NOX吸着量A2を0(又は僅かな所定量)として終了する。
こうして、銀アルミナ系触媒装置2から第二設定温度T2において放出されるNOXをNOX還元触媒装置3において還元浄化する際に、必要量以上の還元剤が供給されることはなく、還元剤の消費量を抑制することができ、また、還元剤の大気放出も抑制することができる。ステップ105の判断を省略して、銀アルミナ系触媒装置2が第二設定温度T2となる時には、常に、ステップ106において還元剤の必要量RAを決定し、ステップ107において還元剤を供給するようにしても良い。
また、ステップ104の判断が否定される時には、ステップ109において、銀アルミナ系触媒装置2の温度Tが第一設定温度T1未満であるか否かが判断される。この判断が肯定される時、すなわち、銀アルミナ系触媒装置2の温度Tが第二設定温度T2より高く第一設定温度T1未満である時には、排気ガス中のNOXは硝酸銀として銀アルミナ系触媒装置2に吸着される。それにより、ステップ111において、運転状態毎の単位時間当たりの気筒から排出されるNOX量に基づき定められた単位時間当たりの硝酸銀として銀アルミナ系触媒装置2に新たに吸着される吸着量a1が、現在の運転状態(機関負荷及び機関回転数)及び現在の銀アルミナ系触媒装置2の温度T(温度Tが低いほど吸着され易くなる)に基づきマップ等を使用して決定される。ここでの単位時間は、本フローチャートの繰り返し間隔となる。
次いで、ステップ112において、硝酸銀として銀アルミナ系触媒装置2に吸着されている高温側NOX吸着量A1には、ステップ111において決定された吸着量a1が積算される。こうして、銀アルミナ系触媒装置2の温度が第二設定温度T2より高く第一設定温度T1未満である時には、銀アルミナ系触媒装置2へ排気ガス中のNOXが硝酸銀として吸着され、高温側NOX吸着量A1は徐々に増加することとなる。
一方、ステップ109の判断が否定されると、ステップ110において、銀アルミナ系触媒装置2の温度Tが第一設定温度T1となっている否かが判断される。この判断が肯定されると、銀アルミナ系触媒装置2からは硝酸銀として吸着したNOXが殆ど放出される。次いで、ステップ113において、銀アルミナ系触媒装置2に硝酸銀として吸着されている高温側NOX吸着量A1が設定量A1’以上であるか否かが判断され、この判断が否定される時には、僅かな量のNOXしか吸着されておらず、放出されるNOX量も僅かであるために、ステップ116において、銀アルミナ系触媒装置2へ硝酸銀として吸着されている高温側NOX吸着量A1を0(又は僅かな所定量)として、そのまま終了する。
しかしながら、ステップ113の判断が肯定される時には、銀アルミナ触媒装置2から硝酸銀として吸着されている比較的多くのNOXが放出されるために、ステップ114において、硝酸銀として吸着されている高温側NOX吸着量A1に基づき、還元剤供給装置4により供給される還元剤量RAが決定される。すなわち、高温側NOX吸着量A1が多いほど還元剤量RAは多くされ、好ましくは、銀アルミナ系触媒装置2から放出されるNOXを下流側のNOX還元触媒装置3において過不足なく還元するのに必要な還元剤量RAが決定される。
NOX還元触媒装置3が選択還元型NOX触媒装置である場合には、還元剤量RAは、銀アルミナ系触媒装置2に硝酸銀として吸着されている高温側NOX吸着量A1に対する当量比の尿素量とされる。また、NOX還元触媒装置3が三元触媒装置である場合には、現在の排気ガスを理論空燃比とするのに必要な燃料量に、銀アルミナ系触媒装置2から放出される硝酸銀として吸着されていたNOXを過不足なく還元するのに必要な燃料量が加算されて還元剤量RAとされる。
次いで、ステップ115において、ステップ114において決定された還元剤量RAが還元剤供給装置4から供給され、ステップ116において、銀アルミナ系触媒装置2に硝酸銀として吸着されている高温側NOX吸着量A1を0(又は僅かな所定量)として終了する。
こうして、銀アルミナ系触媒装置2から第一設定温度T1において放出されるNOXをNOX還元触媒装置3において還元浄化する際に、必要量以上の還元剤が供給されることはなく、還元剤の消費量を抑制することができ、また、還元剤の大気放出も抑制することができる。ステップ113の判断を省略して、銀アルミナ系触媒装置2が第一設定温度T1となる時には、常に、ステップ114において還元剤の必要量RAを決定し、ステップ115において還元剤を供給するようにしても良い。
また、ステップ110の判断が否定される時、すなわち、銀アルミナ系触媒装置2の温度Tが第一設定温度T1より高い時には、排気ガス中のNOXは銀アルミナ系触媒装置2へ硝酸銀として吸着されるために、前述同様に、ステップ111において単位時間当たりの吸着量a1が決定され、ステップ112において銀アルミナ系触媒装置2に硝酸銀として吸着されている高温側NOX吸着量A1に、ステップ111において決定された吸着量a1が積算される。しかしながら、銀アルミナ系触媒装置2の温度Tが第一設定温度T1より高い時には、排気ガス中のNOXの硝酸銀として吸着される割合は低下するために、ステップ110の判断が否定される時には、高温側NOX吸着量A1の積算を中止するようにしても良い。
こうして、本実施形態の内燃機関の排気浄化装置によれば、銀アルミナ系触媒装置2が高温側の第一設定温度T1となる時にNOX還元触媒装置3において還元剤により銀アルミナ系触媒装置から放出されたNOXを還元浄化するだけでなく、銀アルミナ系触媒装置2が低温側の第二設定温度T2となる時には、第二設定温度T2未満の時に吸着したNOXが放出されるために、この時にもNOX還元触媒装置3において還元剤により銀アルミナ系触媒装置2から放出されたNOXを還元浄化するようになっており、それにより、NOXの大気放出量を十分に低減することができる。
前述のフローチャートにおいて、説明を簡単にするために、銀アルミナ系触媒装置2からNOXが放出される温度Tを第一設定温度T1(例えば約300°C)及び第二設定温度(例えば約150°C)としたが、これら温度は一点の温度だけに限定されることはなく、それぞれ、第一設定温度範囲(例えば290°Cから310°C)及び第二設定温度範囲(例えば140°Cから160°C)とするようにしても良い。
還元剤供給装置4は、銀アルミナ系触媒装置2の上流側に配置しても良く、また、燃料を還元剤として使用する場合には、還元剤供給装置として気筒内へ燃料を噴射する燃料噴射弁を使用することも可能であり、燃料噴射弁により例えば膨張行程において気筒内へ燃料を噴射するようにしても良い。
また、図1に示す実施形態では、銀アルミナ系触媒装置2とNOX還元触媒装置3とは別体としたが、これは本発明を限定するものではない。例えば、コージェライト等の基材上にNOX還元触媒装置の触媒を担持するNOX還元層を形成して、このNOX還元層の上側に酸化銀を担持するアルミナからなる銀アルミナ系触媒層を形成するようにすれば、銀アルミナ系触媒装置2とNOX還元触媒装置3とを一体化装置とすることができる。
この場合において、銀アルミナ系触媒層が第一設定温度及び第二設定温度となって銀アルミナ系触媒層からNOXが放出される時に、一体化装置へ還元剤が供給されるようにし、放出されたNOXは、銀アルミナ系触媒層の下側のNOX還元層において、供給された還元剤を使用して還元浄化されることとなる。
2 銀アルミナ系触媒装置
3 NOX還元触媒装置
4 還元剤供給装置
Claims (7)
- 銀アルミナ系触媒装置とNOX還元触媒装置とが機関排気系に配置され、前記銀アルミナ系触媒装置が高温側の第一設定温度となる時に前記NOX還元触媒装置において還元剤により前記銀アルミナ系触媒装置から放出されたNOXを還元浄化し、前記銀アルミナ系触媒装置が低温側の第二設定温度となる時にも前記NOX還元触媒装置において還元剤により前記銀アルミナ系触媒装置から放出されたNOXを還元浄化することを特徴とする内燃機関の排気浄化装置。
- 前記第二設定温度以上で前記第一設定温度未満の時に前記銀アルミナ系触媒装置へ吸着される高温側NOX吸着量が推定されることを特徴とする請求項1に記載の内燃機関の排気浄化装置。
- 推定された前記高温側NOX吸着量が第一設定量以上である時にだけ前記銀アルミナ系触媒装置が前記第一設定温度となる時に前記NOX還元触媒装置において還元剤により前記銀アルミナ系触媒装置から放出されたNOXを還元浄化することを特徴とする請求項2に記載の内燃機関の排気浄化装置。
- 前記銀アルミナ系触媒装置が前記第一設定温度となって前記NOX還元触媒装置において前記銀アルミナ系触媒装置から放出されたNOXを還元浄化する際には、推定された前記高温側NOX吸着量に基づき前記NOX還元触媒装置へ供給する還元剤の量を決定することを特徴とする請求項2又は3に記載の内燃機関の排気浄化装置。
- 前記第二設定温度未満の時に前記銀アルミナ系触媒装置へ吸着される低温側NOX吸着量が推定されることを特徴とする請求項1に記載の内燃機関の排気浄化装置。
- 推定された前記低温側NOX吸着量が第二設定量以上である時にだけ前記銀アルミナ系触媒装置が前記第二設定温度となる時に前記NOX還元触媒装置において還元剤により前記銀アルミナ系触媒装置から放出されたNOXを還元浄化することを特徴とする請求項5に記載の内燃機関の排気浄化装置。
- 前記銀アルミナ系触媒装置が前記第二設定温度となって前記NOX還元触媒装置において前記銀アルミナ系触媒装置から放出されたNOXを還元浄化する際には、推定された前記低温側NOX吸着量に基づき前記NOX還元触媒装置へ供給する還元剤の量を決定することを特徴とする請求項5又は6に記載の内燃機関の排気浄化装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/058402 WO2011142041A1 (ja) | 2010-05-12 | 2010-05-12 | 内燃機関の排気浄化装置 |
US13/581,766 US8465702B2 (en) | 2010-05-12 | 2010-05-12 | Exhaust purification system of internal combustion engine |
EP10851423.3A EP2570627B1 (en) | 2010-05-12 | 2010-05-12 | Exhaust purification device for internal combustion engine |
CN2010800652236A CN102791972B (zh) | 2010-05-12 | 2010-05-12 | 内燃机的排气净化装置 |
JP2011521793A JP5115658B2 (ja) | 2010-05-12 | 2010-05-12 | 内燃機関の排気浄化装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2010/058402 WO2011142041A1 (ja) | 2010-05-12 | 2010-05-12 | 内燃機関の排気浄化装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011142041A1 true WO2011142041A1 (ja) | 2011-11-17 |
Family
ID=44914107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/058402 WO2011142041A1 (ja) | 2010-05-12 | 2010-05-12 | 内燃機関の排気浄化装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8465702B2 (ja) |
EP (1) | EP2570627B1 (ja) |
JP (1) | JP5115658B2 (ja) |
CN (1) | CN102791972B (ja) |
WO (1) | WO2011142041A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015200199A (ja) * | 2014-04-07 | 2015-11-12 | 本田技研工業株式会社 | 内燃機関の排ガス浄化装置 |
EP2955348A4 (en) * | 2013-02-05 | 2016-01-20 | Toyota Motor Co Ltd | EXHAUST GAS CLEANER FOR A COMBUSTION ENGINE |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09248448A (ja) * | 1996-03-18 | 1997-09-22 | Hitachi Ltd | 窒素酸化物の吸着剤および除去システム |
JP2801423B2 (ja) | 1991-03-08 | 1998-09-21 | 住友金属鉱山 株式会社 | 窒素酸化物浄化触媒 |
JP2007218177A (ja) * | 2006-02-16 | 2007-08-30 | Toyota Motor Corp | 排ガス浄化システム |
JP2009047095A (ja) * | 2007-08-21 | 2009-03-05 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2009082846A (ja) * | 2007-10-01 | 2009-04-23 | Toyota Central R&D Labs Inc | 窒素酸化物吸着材、並びにそれを用いた排ガス浄化方法 |
JP2009112948A (ja) * | 2007-11-06 | 2009-05-28 | Honda Motor Co Ltd | 窒素酸化物の吸着除去剤およびこれを用いた窒素酸化物の吸着除去方法 |
JP2009275631A (ja) | 2008-05-15 | 2009-11-26 | Toyota Motor Corp | 車両の制御装置および制御方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3733834B2 (ja) * | 2000-05-02 | 2006-01-11 | 日産自動車株式会社 | 内燃機関の排気浄化装置 |
CN1246070C (zh) * | 2002-04-29 | 2006-03-22 | 清华大学 | 一种稀薄燃烧型汽车尾气催化净化方法和装置 |
DE10300298A1 (de) * | 2003-01-02 | 2004-07-15 | Daimlerchrysler Ag | Abgasnachbehandlungseinrichtung und -verfahren |
US20050223698A1 (en) * | 2004-03-31 | 2005-10-13 | Mitsubishi Fuso Truck And Bus Corporation | Exhaust gas cleaning device |
JP2006022729A (ja) * | 2004-07-08 | 2006-01-26 | Hino Motors Ltd | 排気浄化装置の制御方法 |
EP2520776B1 (en) * | 2009-12-28 | 2015-01-28 | Toyota Jidosha Kabushiki Kaisha | Exhaust gas purification device for internal combustion engine |
-
2010
- 2010-05-12 CN CN2010800652236A patent/CN102791972B/zh not_active Expired - Fee Related
- 2010-05-12 JP JP2011521793A patent/JP5115658B2/ja not_active Expired - Fee Related
- 2010-05-12 EP EP10851423.3A patent/EP2570627B1/en not_active Not-in-force
- 2010-05-12 WO PCT/JP2010/058402 patent/WO2011142041A1/ja active Application Filing
- 2010-05-12 US US13/581,766 patent/US8465702B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2801423B2 (ja) | 1991-03-08 | 1998-09-21 | 住友金属鉱山 株式会社 | 窒素酸化物浄化触媒 |
JPH09248448A (ja) * | 1996-03-18 | 1997-09-22 | Hitachi Ltd | 窒素酸化物の吸着剤および除去システム |
JP2007218177A (ja) * | 2006-02-16 | 2007-08-30 | Toyota Motor Corp | 排ガス浄化システム |
JP2009047095A (ja) * | 2007-08-21 | 2009-03-05 | Toyota Motor Corp | 内燃機関の排気浄化装置 |
JP2009082846A (ja) * | 2007-10-01 | 2009-04-23 | Toyota Central R&D Labs Inc | 窒素酸化物吸着材、並びにそれを用いた排ガス浄化方法 |
JP2009112948A (ja) * | 2007-11-06 | 2009-05-28 | Honda Motor Co Ltd | 窒素酸化物の吸着除去剤およびこれを用いた窒素酸化物の吸着除去方法 |
JP2009275631A (ja) | 2008-05-15 | 2009-11-26 | Toyota Motor Corp | 車両の制御装置および制御方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2570627A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2955348A4 (en) * | 2013-02-05 | 2016-01-20 | Toyota Motor Co Ltd | EXHAUST GAS CLEANER FOR A COMBUSTION ENGINE |
JP2015200199A (ja) * | 2014-04-07 | 2015-11-12 | 本田技研工業株式会社 | 内燃機関の排ガス浄化装置 |
Also Published As
Publication number | Publication date |
---|---|
US8465702B2 (en) | 2013-06-18 |
EP2570627B1 (en) | 2013-12-18 |
EP2570627A1 (en) | 2013-03-20 |
EP2570627A4 (en) | 2013-04-17 |
JPWO2011142041A1 (ja) | 2013-07-22 |
CN102791972A (zh) | 2012-11-21 |
US20130052087A1 (en) | 2013-02-28 |
CN102791972B (zh) | 2013-10-23 |
JP5115658B2 (ja) | 2013-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9810120B2 (en) | Exhaust gas purifying system | |
US7207169B2 (en) | System and method for purifying an exhaust gas | |
WO2007138874A1 (ja) | NOx還元触媒、NOx還元触媒システム、及びNOx還元方法 | |
US20100221154A1 (en) | Method and apparatus for reducing nox emissions from a lean burning hydrocarbon fueled power source | |
EP1064985A2 (en) | Exhaust gas purifying system | |
US20170314437A1 (en) | Exhaust system | |
JP5115658B2 (ja) | 内燃機関の排気浄化装置 | |
JP2008163898A (ja) | 内燃機関の排気ガス浄化装置 | |
JP5293836B2 (ja) | 内燃機関の排気浄化装置 | |
JP2006289301A (ja) | 排ガス浄化用触媒 | |
JP2009167844A (ja) | 排気ガス浄化触媒装置 | |
US8263009B2 (en) | Exhaust gas purifying catalyst | |
JP2019178617A (ja) | 内燃機関の排気浄化装置 | |
US8834802B2 (en) | Exhaust purification system of internal combustion engine | |
US20130243658A1 (en) | Exhaust purification system of internal combustion engine | |
JP2002168117A (ja) | 排気ガス浄化システム | |
EP2788118B1 (en) | Exhaust gas cleaning catalyst apparatus with control unit, exhaust gas cleaning method using said apparatus | |
JP2011069270A (ja) | 排気浄化装置 | |
JP5746008B2 (ja) | 内燃機関の排気浄化装置 | |
JPWO2011080845A1 (ja) | 内燃機関の排気浄化装置 | |
JP2004060587A (ja) | 排ガス浄化方法及び排ガス浄化装置 | |
JP2000312827A (ja) | 排ガス浄化触媒 | |
JP2010281309A (ja) | 内燃機関の排気浄化装置 | |
JP2006104966A (ja) | 内燃機関の排ガス浄化装置及び排ガス浄化方法 | |
JP2003245552A (ja) | 排気ガス浄化用触媒、及びディーゼルエンジンの排気浄化装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080065223.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011521793 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10851423 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13581766 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010851423 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |