WO2011141989A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2011141989A1
WO2011141989A1 PCT/JP2010/057900 JP2010057900W WO2011141989A1 WO 2011141989 A1 WO2011141989 A1 WO 2011141989A1 JP 2010057900 W JP2010057900 W JP 2010057900W WO 2011141989 A1 WO2011141989 A1 WO 2011141989A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat generation
generation amount
ratio
target
actual
Prior art date
Application number
PCT/JP2010/057900
Other languages
English (en)
French (fr)
Inventor
鈴木 裕介
聡一郎 田中
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012514621A priority Critical patent/JP5282849B2/ja
Priority to CN201080066752.8A priority patent/CN102893002B/zh
Priority to EP10851372.2A priority patent/EP2570639B1/en
Priority to US13/640,600 priority patent/US9416738B2/en
Priority to PCT/JP2010/057900 priority patent/WO2011141989A1/ja
Publication of WO2011141989A1 publication Critical patent/WO2011141989A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/082Premixed fuels, i.e. emulsions or blends
    • F02D19/084Blends of gasoline and alcohols, e.g. E85
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/028Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • F02D41/182Circuit arrangements for generating control signals by measuring intake air flow for the control of a fuel injection device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0663Details on the fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02D19/0686Injectors
    • F02D19/0689Injectors for in-cylinder direct injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0402Engine intake system parameters the parameter being determined by using a model of the engine intake or its components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • F02D41/0062Estimating, calculating or determining the internal EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/0065Specific aspects of external EGR control
    • F02D41/0072Estimating, calculating or determining the EGR rate, amount or flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a control device for an internal combustion engine, and more particularly, to a control device for an internal combustion engine suitable for executing control of an internal combustion engine mounted on a vehicle.
  • Patent Document 1 an internal combustion engine including an in-cylinder pressure sensor is known. Further, this publication discloses a method for detecting the amount of heat generation from the output value of the in-cylinder pressure sensor and calculating the air-fuel ratio from the detected amount of heat generation in order to replace the air-fuel ratio sensor. Specifically, it is disclosed that the air-fuel ratio is calculated from the heat generation amount / injection time in the rich region, and the air-fuel ratio is calculated from the heat generation amount / air amount in the lean region. According to such a method, the injection amount feedback control for correcting the fuel injection amount based on the difference between the calculated air-fuel ratio and the target air-fuel ratio can be performed so that the air-fuel ratio matches the target air-fuel ratio. .
  • FIG. 21 is a diagram showing the relationship between the calorific value / injection amount and the excess air ratio ⁇ for each ethanol concentration in the fuel.
  • Heat generation amount / injection amount means heat generation efficiency, and the injection amount is proportional to the injection time. As shown in FIG. 21, the heat generation amount / injection amount decreases as the rich side increases. Therefore, in the conventional injection amount feedback control based on the air-fuel ratio, if the heat generation amount / injection amount decreases, it is determined that the air-fuel ratio has become rich, and the fuel injection amount is reduced.
  • the conventional injection amount feedback control has the following problems. As shown in FIG. 21, the heat generation amount / injection amount (heat generation efficiency) decreases as the ethanol concentration in the fuel increases (E85) compared to gasoline fuel (E0). That is, the calorific value / injection amount decreases as the ethanol concentration increases, even if the air-fuel ratio is not rich.
  • the conventional injection amount feedback control does not take into consideration that the heat generation amount / injection amount (heat generation efficiency) varies depending on the fuel properties such as ethanol concentration. For this reason, when an ethanol mixed fuel having a concentration higher than the set value is supplied, the calorific value / injection amount decreases and it is erroneously determined that the air-fuel ratio has become rich. As a result, the fuel injection amount is continuously reduced by the injection amount feedback control, resulting in a lean misfire. In order to avoid this problem in the above-described conventional internal combustion engine, an ethanol concentration sensor is separately required. However, an increase in cost is unavoidable.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a control device for an internal combustion engine that can perform suitable injection amount feedback control without depending on fuel properties. .
  • a first invention is a control device for an internal combustion engine, An in-cylinder pressure sensor for detecting the in-cylinder pressure; In-cylinder fresh air amount calculating means for calculating the in-cylinder fresh air amount based on the in-cylinder pressure detected by the in-cylinder pressure sensor; Actual calorific value calculation means for calculating an actual calorific value based on the in-cylinder pressure detected by the in-cylinder pressure sensor; Target heat generation amount calculation means for calculating a target heat generation amount at a predetermined excess air ratio from the in-cylinder fresh air amount calculated by the in-cylinder fresh air amount calculation means; Feedback means for feeding back a comparison value between the actual heat generation amount and the target heat generation amount to the fuel injection amount so that the actual heat generation amount calculated by the actual heat generation amount calculation unit coincides with the target heat generation amount. It is characterized by that.
  • the second invention is the first invention, wherein
  • the actual heat generation amount is a maximum value within a period from the start of combustion to the opening of the exhaust valve.
  • the third invention is the first or second invention, wherein A target excess air ratio setting means for setting a target excess air ratio based on the operation request; And a correction unit that corrects the target heat generation amount based on a heat generation ratio between a heat generation amount at the predetermined excess air ratio and a heat generation amount at the target air excess ratio.
  • Water temperature detecting means for detecting the water temperature; And a correction unit that corrects a decrease in the target heat generation amount as the water temperature detected by the water temperature detection unit decreases.
  • Target combustion point setting means for setting a target combustion point at which the combustion ratio becomes a predetermined ratio based on the ignition timing;
  • the target calorific value is corrected based on a calorific value ratio between a calorific value at a combustion point (hereinafter referred to as an MBT combustion point) at which the combustion rate in MBT becomes the predetermined rate and a calorific value at the target combustion point.
  • a correcting means for performing.
  • Alcohol concentration acquisition means for acquiring the alcohol concentration in the fuel based on the fuel injection amount required to obtain the actual heat generation amount calculated by the actual heat generation amount calculation means, and the actual heat generation amount; Correction means for correcting the decrease in the target calorific value as the alcohol concentration acquired by the alcohol concentration acquisition means increases.
  • EGR rate acquisition means for acquiring an EGR rate
  • Correction means for correcting the target heat generation amount to increase as the EGR rate acquired by the EGR rate acquisition unit increases.
  • Target combustion point setting means for setting a target combustion point at which the combustion ratio becomes the predetermined ratio based on the ignition timing;
  • An actual combustion point calculating means for calculating an actual combustion point at which the combustion ratio at the ignition timing becomes the predetermined ratio;
  • An actual heating value correction means for correcting the actual heating value based on a difference between a heating value ratio of the target combustion point with respect to the MBT combustion point and a heating value ratio of the actual combustion point with respect to the MBT combustion point; It is characterized by.
  • the comparison value between the actual heat generation amount and the target heat generation amount can be fed back to the fuel injection amount so that the actual heat generation amount matches the target heat generation amount at a predetermined excess air ratio.
  • the maximum value in the period from the start of combustion to the opening of the exhaust valve is set as the actual calorific value. Therefore, according to the present invention, the actual heat generation amount can be detected with high accuracy.
  • the target heat generation amount is corrected based on a heat generation amount ratio between a heat generation amount at a predetermined excess air ratio and a heat generation amount at the target air excess ratio. Therefore, according to the present invention, the target heat generation amount can be corrected with higher accuracy, and the accuracy of the injection amount control in accordance with the catalyst purification window can be increased. Moreover, since it is not influenced by operating conditions based on the calorific value ratio, it is possible to significantly reduce the number of man-hours and ROM capacity.
  • the target heat generation amount is corrected to decrease as the water temperature decreases. Therefore, according to the present invention, the target heat generation amount can be corrected with higher accuracy according to the change in the heat generation amount due to the cooling loss, and the accuracy of the injection amount control in accordance with the catalyst purification window can be improved.
  • the target heat generation amount is corrected based on the heat generation amount ratio between the heat generation amount at the MBT combustion point and the heat generation amount at the target combustion point. Therefore, according to the present invention, the target heat generation amount can be corrected with higher accuracy according to the change in the heat generation amount caused by the ignition timing, and the accuracy of the injection amount control in accordance with the catalyst purification window can be improved. Moreover, since it is not influenced by operating conditions based on the calorific value ratio, it is possible to significantly reduce the number of man-hours and ROM capacity.
  • the target calorific value is corrected to decrease as the alcohol concentration increases. Therefore, according to the present invention, the target heat generation amount can be corrected with higher accuracy in accordance with the amount of change in the heat generation amount caused by the alcohol concentration, and the accuracy of the injection amount control in accordance with the catalyst purification window can be improved.
  • the target heat generation amount is corrected to increase as the EGR rate increases. Therefore, according to the present invention, the target heat generation amount can be corrected with higher accuracy in accordance with the amount of change in the heat generation amount caused by the EGR rate, and the injection amount control accuracy matched to the catalyst purification window can be improved.
  • the actual heat generation amount is corrected based on the difference between the heat generation amount ratio of the target combustion point with respect to the MBT combustion point and the heat generation amount ratio of the actual combustion point with respect to the MBT combustion point. Therefore, according to the present invention, the actual heat generation amount can be corrected with high accuracy in accordance with the change in the heat generation amount caused by the control error, and the accuracy of the injection amount control in accordance with the catalyst purification window can be improved.
  • Embodiment 1 of this invention It is a schematic block diagram for demonstrating the system configuration
  • FIG. 7 is a diagram showing the relationship between the excess air ratio ⁇ and the heat generation ratio under the same operating conditions as in FIG. 6. It is a flowchart of the subroutine which ECU50 performs in Embodiment 2 of this invention. It is a figure showing the relationship between the deviation from ATDC8CA of 50% combustion points other than MBT in Embodiment 3 of this invention, and calorific value ratio. It is a flowchart of the subroutine which ECU50 performs in Embodiment 3 of this invention.
  • FIG. 1 is a schematic configuration diagram for explaining a system configuration according to the first embodiment of the present invention.
  • the system shown in FIG. 1 includes an internal combustion engine (hereinafter simply referred to as an engine) 10.
  • An engine 10 shown in FIG. 1 is a spark ignition type four-stroke reciprocating engine provided with a spark plug 12.
  • the engine 10 is also an in-cylinder direct injection engine including an injector 14 that directly injects fuel into the cylinder.
  • fuel gasoline or alcohol (for example, ethanol) mixed fuel is used.
  • FIG. 1 shows only one cylinder, but the vehicle engine 10 is generally composed of a plurality of cylinders. Each cylinder is provided with an in-cylinder pressure sensor 16 for detecting the in-cylinder pressure. The engine 10 is also provided with a crank angle sensor 18 that outputs a signal CA according to the rotation angle of the crankshaft.
  • the intake system of the engine 10 is provided with an intake passage 20 connected to each cylinder.
  • An air cleaner 22 is provided at the inlet of the intake passage 20.
  • An air flow meter 24 that outputs a signal GA corresponding to the flow rate of air sucked into the intake passage 20 is attached downstream of the air cleaner 22.
  • An electronically controlled throttle valve 26 is provided downstream of the air flow meter 24. In the vicinity of the throttle valve 26, a throttle opening sensor 27 for outputting a signal TA corresponding to the opening of the throttle valve 26 is attached.
  • a surge tank 28 is provided downstream of the throttle valve 26.
  • An intake pressure sensor 30 for measuring intake pressure is attached in the vicinity of the surge tank 28.
  • the exhaust system of the engine 10 is provided with an exhaust passage 32 connected to each cylinder.
  • a catalyst 34 is provided in the exhaust passage 32.
  • As the catalyst for example, a three-way catalyst, a NOx catalyst, or the like is used.
  • the exhaust passage 32 is provided with an EGR passage 36 connected to the intake passage 20.
  • An EGR cooler 38 and an EGR valve 40 are provided in the EGR passage 36.
  • an ECU 50 Electronic Control Unit 50 is provided.
  • Various sensors such as the in-cylinder pressure sensor 16, the crank angle sensor 18, the air flow meter 24, the throttle opening sensor 27, and the intake pressure sensor 30 are connected to the input unit of the ECU 50.
  • various actuators such as the spark plug 12, the injector 14, the throttle valve 26, the EGR valve 40 and the like described above are connected to the output portion of the ECU 50.
  • the ECU 50 controls the operating state of the engine 10 based on various input information. Further, the ECU 50 can calculate the in-cylinder volume V determined by the engine rotational speed NE (the rotational speed per unit time) and the position of the piston from the signal CA of the crank angle sensor 18.
  • the theoretical air-fuel ratio differs in value from about 14.6 at E0 and about 9.0 at E100. That is, in stoichiometry, more fuel is injected in E100 than in E0 (about 1.5 times). As shown in FIG.
  • the difference in the calorific value ratio in stoichiometry is slight. According to the knowledge of the inventor, the difference is about 2.3% between E0 and E100. Moreover, substantially the same result as in the case of stoichiometry is obtained even at a predetermined excess air ratio. According to such a result, the injection amount feedback control that is not affected by the ethanol concentration can be performed by setting the target control amount as the calorific value.
  • a correction amount corresponding to the difference between the heat generation amount and the ideal heat generation amount is fed back to the fuel injection amount so that the heat generation amount matches the ideal heat generation amount at a predetermined excess air ratio. did.
  • FIG. 3 is a flowchart of a control routine executed by the ECU 50 in order to realize the above-described operation. This control routine is executed every cycle, for example.
  • the in-cylinder fresh air amount KL and the EGR rate introduced into the cylinder are calculated (step 100).
  • FIG. 4 is a diagram showing the relationship between the combustion mass ratio change rate and the EGR rate for each engine speed NE.
  • the ECU 50 stores a relationship map shown in FIG. 4 in advance.
  • the ECU 50 calculates the engine speed NE from the signal CA of the crank angle sensor 18. Further, the ECU 50 calculates a combustion mass ratio change rate (combustion speed) from the combustion pressure detected by the in-cylinder pressure sensor 16 synchronized with the crank angle.
  • the ECU 50 acquires an EGR rate (internal EGR + external EGR) corresponding to the engine speed NE and the combustion mass ratio change rate from the relationship map shown in FIG. Further, the ECU 50 calculates the total amount of fresh air and EGR gas from the compression pressure in the compression stroke, and calculates the in-cylinder fresh air amount KL from the total amount and the EGR rate.
  • EGR rate internal EGR + external EGR
  • the basic injection amount qb is calculated based on the engine speed NE, the in-cylinder fresh air amount KL, and the target excess air ratio (step 110).
  • the cumulative heat generation amount after the start of combustion is calculated for each crank angle (step 120).
  • the accumulated calorific value is the cylinder pressure P ( ⁇ 1 ) and cylinder volume V ( ⁇ 1 ) at the crank angle ⁇ 1 before combustion, and the cylinder pressure P ( ⁇ 2 ) and cylinder volume at the crank angle ⁇ 2 after starting combustion. It is calculated from the equation (1) based on V ( ⁇ 2 ), an experimentally determined constant ⁇ A , and a specific heat ratio ⁇ .
  • the formula (1) is described in detail in Japanese Patent Application Laid-Open No. 2006-144463. Therefore, the description thereof is omitted in the description of the present embodiment.
  • the calorific value detected after the end of combustion is greatly affected by an output error due to a cooling loss and distortion inside the sensor due to heat received by the in-cylinder pressure sensor 16.
  • the value of the in-cylinder volume V becomes large, so that there is a possibility that the heat generation amount may not be accurately detected due to noise or the like.
  • the maximum value within the period until the exhaust valve is opened in the cumulative heat generation amount calculated by the equation (1) is determined as the actual heat generation amount Qd.
  • the timing for opening the exhaust valve is calculated from the signal CA of the crank angle sensor 18. According to such a configuration, the actual calorific value Qd can be accurately detected without affecting the above-described problem.
  • step 120 it is determined whether or not misfiring will occur by comparing the actual calorific value Qd with the threshold value ⁇ (step 130).
  • the ECU 50 stores a threshold value ⁇ by which an amount of generated heat that does not cause misfire is determined by experiments or the like. When the actual calorific value Qd is larger than the threshold value ⁇ , it is determined that no misfire occurs.
  • injection amount feedback control based on the heat generation amount described in detail in steps 150 to 170 is started (step 140).
  • the injection amount correction according to the difference between the actual heat generation amount Qd and the ideal heat generation amount Qt so that the actual heat generation amount Qd matches the target heat generation amount (ideal heat generation amount Qt described later).
  • the amount is corrected to increase or decrease to the basic injection amount qb.
  • an ideal heating value Qt at the time of previous combustion is calculated (step 150). Specifically, it is calculated how much heat is generated if an appropriate injection amount is injected in the previous cycle in which combustion has already been completed.
  • the ECU 50 stores, for each target excess air ratio, a map that defines an ideal heat generation amount Qt according to the engine speed NE and the in-cylinder fresh air amount KL.
  • the ideal heat generation amount Qt tends to increase linearly as the in-cylinder fresh air amount KL increases.
  • the ECU 50 acquires an ideal heat generation amount Qt corresponding to the engine speed NE and the in-cylinder fresh air amount KL in the previous cycle from the map.
  • the injection amount correction amount qh is calculated based on the deviation between the ideal heat generation amount Qt and the actual heat generation amount Qd (step 160).
  • the ECU 50 has an injection amount correction map that defines an injection amount correction amount qh that increases as a positive value as the actual heat generation amount Qd is smaller than the ideal heat generation amount Qt and increases as a negative value as the actual heat generation amount Qd is larger than the ideal heat generation amount Qt. It is remembered.
  • the ECU 50 acquires an injection amount correction amount qh corresponding to the deviation between the ideal heat generation amount Qt and the actual heat generation amount Qd from the injection amount correction map.
  • the final injection amount is calculated by adding the injection amount correction amount qh to the basic injection amount qb calculated in step 110 (step 170).
  • the ECU 50 causes the injector 14 to inject fuel according to the final injection amount.
  • the injection amount feedback control is performed so that the actual heat generation amount Qd matches the ideal heat generation amount Qt. Thereafter, this routine is terminated.
  • step 130 If it is determined in step 130 that a misfire has occurred, the value of the injection amount correction amount qh is set to zero. Therefore, in step 170, the basic injection amount qb is calculated as the final injection amount.
  • the injection amount correction according to the difference between the actual heat generation amount Qd and the ideal heat generation amount Qt so that the actual heat generation amount Qd matches the ideal heat generation amount Qt in the stoichiometry.
  • the quantity qh can be fed back to the basic injection quantity qb.
  • the EGR rate is calculated by the processing of step 100, but the method of calculating the EGR rate is not limited to this.
  • the external EGR rate is acquired from a map that defines the estimated value of the external EGR rate according to the output values of the air flow meter 24, the intake pressure sensor 30, and the throttle opening sensor 27, and the valve overlap amount is calculated. It is good also as acquiring an internal EGR rate from the map which defined the estimated value of the internal EGR rate according to a setting value. This point is the same in the following embodiments.
  • the cumulative heat generation amount is calculated based on Equation (1), but the method of calculating the cumulative heat generation amount is not limited to this. For example, it is good also as calculating in step 120 based on following Formula (2). This point is the same in the following embodiments.
  • FIG. 5 is a diagram showing an outline of sub-feedback control.
  • the injection amount correction amount qh calculated in step 160 is further corrected so that the output of the sub O2 sensor 42 attached downstream of the catalyst 34 becomes a stoichiometric output. This point is the same in the following embodiments.
  • the in-cylinder pressure sensor 16 corresponds to the “in-cylinder pressure sensor” in the first invention.
  • the ECU 50 executes the process of step 100, so that the “in-cylinder pressure fresh air amount calculating means” in the first invention executes the process of step 120.
  • the “actual heat generation amount calculation means” in step 1 executes the process of step 150
  • the “target heat generation amount calculation means” in the first aspect of the invention executes the processing of steps 160 to 170.
  • the “feedback means” in the first aspect of the invention is realized.
  • the actual calorific value Qd calculated in step 120 is the “actual calorific value” in the first and second inventions
  • the ideal calorific value Qt calculated in step 150 is the above-mentioned actual calorific value Qt. Each corresponds to the “target heat generation amount” in the first invention.
  • FIG. 2 System Configuration of Embodiment 2
  • FIG. 3 and 8 System Configuration of Embodiment 2
  • the system of the present embodiment can be realized by causing the ECU 50 to execute the routines of FIGS. 3 and 8 described later in the configuration shown in FIG.
  • a rich request or a lean request is made in order to keep drivability, emission, etc. suitably, and operation in the rich region or the lean region may be required temporarily.
  • FIG. 6 is a diagram showing experimental results obtained by examining the relationship between the excess air ratio ⁇ and the heat generation for each operating condition.
  • the calorific value tends to increase as the excess air ratio ⁇ becomes richer than stoichiometric under the same operating conditions, and decrease as it becomes leaner.
  • the amount of heat generation tends to increase as the air-fuel ratio becomes close to 11, as the fuel becomes richer.
  • the practical range of air-fuel ratio control is about 12 to 18.
  • the calorific value varies greatly depending on the operating conditions such as the engine speed NE and the injection amount per unit time (FIG. 6). Therefore, if the ideal heat generation amount Qt is corrected using the relationship shown in FIG. 6 as it is, it is necessary to adapt the correction amount for each operating condition. Moreover, the subject that the ROM capacity of ECU50 is also required arises.
  • FIG. 7 is a graph showing the relationship between the excess air ratio ⁇ and the heat generation ratio (heat generation amount other than stoichiometry / heat generation amount at stoichiometry) under the same operating conditions as in FIG.
  • the calorific value ratio is expressed by a quadratic function of the excess air ratio ⁇ . As shown in FIG. 7, the calorific value ratio corresponding to the excess air ratio ⁇ is uniquely determined regardless of the operating conditions.
  • the calorific value ratio tends to increase as the excess air ratio ⁇ becomes richer than stoichiometric, and decreases as it becomes leaner.
  • the ideal heat generation amount Qt is corrected based on the relationship between the excess air ratio ⁇ and the heat generation amount ratio shown in FIG.
  • FIG. 8 is a flowchart of a subroutine executed by the ECU 50 in order to realize the above function.
  • This routine is a subroutine executed in place of the processing of step 150 in FIG.
  • the control routine of the present embodiment is the same as the routine shown in FIG. 3 except that the processing in step 150 in FIG. 3 is replaced with the subroutine in FIG.
  • the description of the same steps as those shown in FIG. 3 is omitted or simplified.
  • an ideal heat generation amount Qt at the previous combustion is calculated (step 200). Specifically, it is calculated how much heat is generated if an appropriate injection amount is injected in the previous cycle in which combustion has already been completed.
  • the ECU 50 stores, for each target excess air ratio, a map that defines an ideal heat generation amount Qt according to the engine speed NE and the in-cylinder fresh air amount KL.
  • the ideal heat generation amount Qt increases linearly as the in-cylinder fresh air amount KL increases.
  • the ECU 50 acquires an ideal heat generation amount Qt corresponding to the engine speed NE and the in-cylinder fresh air amount KL in the previous cycle from the map.
  • the ideal heat generation amount Qt is corrected based on the target excess air ratio (step 210).
  • step 210 After the process of step 210, the process after step 160 of FIG. 3 is executed based on the new ideal heat generation amount Qt.
  • the ideal heat generation amount Qt can be corrected based on the relationship between the target excess air ratio and the heat generation amount ratio. Therefore, according to the system of the present embodiment, it is possible to improve the accuracy of the injection amount control in accordance with the catalyst purification window. Further, according to the relationship between the target excess air ratio and the calorific value ratio, it is possible to realize a highly robust system that is not affected by the fuel properties and operating conditions. Furthermore, according to the system of the present embodiment, the ideal heat generation amount Qt can be corrected based on the single relationship map shown in FIG. it can. In addition, the ROM capacity of the ECU 50 can be greatly reduced.
  • the “target air excess ratio setting means” and the “correction means” in the third aspect of the present invention are realized by the ECU 50 executing the processing of step 210 described above. .
  • Embodiment 3 FIG. [System Configuration of Embodiment 3] Next, a third embodiment of the present invention will be described with reference to FIGS.
  • the system of this embodiment can be realized by causing the ECU 50 to execute the routines of FIGS. 3 and 10 described later in the configuration shown in FIG.
  • ignition timing control for advancing / retarding the ignition timing of the spark plug 12 from MBT (Minimum Advance for Best Torque) according to the driving request is also performed. Is called.
  • the total calorific value decreases when the ignition timing is advanced from MBT. Further, when the ignition timing is retarded from MBT, the total heat generation amount increases. For this reason, the amount of heat generated at the combustion time when the combustion ratio is 50% (hereinafter simply referred to as the 50% combustion point) becomes higher on the retard side and lower on the advance side.
  • the heat generation amount is affected by the ignition timing in this way is considered to be because the amount of HC afterburning varies depending on the position of the center of gravity of combustion.
  • the calorific value varies greatly depending on the operating conditions such as the engine speed NE and the in-cylinder fresh air amount KL. Therefore, if the ideal heat generation amount Qt is to be corrected for each operating condition, it is necessary to adapt the correction amount for each operating condition. Moreover, the subject that the ROM capacity of ECU50 is also required arises.
  • FIG. 9 is a diagram showing the relationship between the deviation of the 50% combustion point other than MBT from ATDC8CA and the heat generation amount ratio (heat generation amount of 50% combustion point other than MBT / heat generation amount of MBT 50% combustion point). .
  • the relationship between the deviation and the heat generation ratio is uniquely determined regardless of the operating conditions.
  • the calorific value ratio tends to increase as the angle is retarded from the MBT and to decrease as the angle is advanced from the MBT.
  • the ideal heat generation amount Qt is corrected based on the relationship between the deviation from the ATDC8CA of the 50% combustion point shown in FIG. 9 and the heat generation amount ratio.
  • FIG. 10 is a flowchart of a subroutine executed by the ECU 50 in order to realize the above function.
  • This routine is a subroutine executed in place of the processing of step 150 in FIG.
  • the control routine of this embodiment is the same as the routine shown in FIGS. 3 and 8 except that step 230 is added after the process of step 210 of FIG.
  • the same steps as those shown in FIGS. 3 and 8 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the ideal heat generation amount Qt is corrected based on the relationship between the deviation from the ATDC 8CA of the 50% combustion point shown in FIG. 9 and the heat generation amount ratio (step 230).
  • the ECU 50 stores in advance a map that defines a target value of a 50% combustion point (hereinafter referred to as a target 50% combustion point) in accordance with an operation request (request regarding fuel consumption, emission, etc.) in another routine.
  • a 50% combustion point corresponding to the operating condition is acquired from this map and set as a target 50% combustion point.
  • a deviation between the MBT 50% combustion point and the target 50% combustion point is calculated.
  • the ECU 50 stores in advance the relationship map shown in FIG. A calorific value ratio corresponding to the deviation is acquired from this relationship map.
  • the ECU 50 multiplies the acquired heat generation amount ratio as a correction coefficient by the ideal heat generation amount Qt to obtain a new ideal heat generation amount Qt.
  • step 230 After the processing of step 230, the processing after step 160 in FIG. 3 is executed based on the new ideal heat generation amount Qt.
  • the ideal heat generation amount Qt can be corrected based on the relationship between the deviation of the target 50% combustion point from the ATDC 8CA and the heat generation amount ratio. Therefore, according to the system of the present embodiment, it is possible to improve the accuracy of the injection amount control in accordance with the catalyst purification window. Further, according to the relationship between the deviation of the target 50% combustion point from the ATDC8CA and the calorific value ratio, a highly robust system that is not affected by the fuel properties and the operating conditions can be realized. Furthermore, according to the system of the present embodiment, the ideal heat generation amount Qt can be corrected with higher accuracy and adjusted to the catalyst purification window by further considering the influence factor on the heat generation amount as compared with the above-described embodiment. Appropriate injection amount control can be realized.
  • the ideal heat generation amount Qt can be corrected based on the single relationship map shown in FIG. 9, so that the number of adaptation man-hours corresponding to operating conditions can be greatly reduced. it can. Furthermore, the ROM capacity of the ECU 50 can be greatly reduced.
  • the correction of the ideal heat generation amount Qt in step 230 is used together with the correction of the ideal heat generation amount Qt in step 210.
  • the present invention is not limited to this. Only the process of step 230 may be performed without performing the process of step 210. This also applies to the following embodiments.
  • the relationship map shown in FIG. 9 is determined based on the 50% combustion point, but the reference of the combustion point is not limited to this. It is good also as a combustion point in arbitrary combustion ratios.
  • the 50% combustion point in MBT is ATDC8CA, but this value varies depending on the system and is not limited to ATDC8CA.
  • the “target combustion point setting means” and the “correction means” in the fifth aspect of the present invention are realized by the ECU 50 executing the processing of step 230 described above.
  • Embodiment 4 FIG. [System Configuration of Embodiment 4] Next, a fourth embodiment of the present invention will be described with reference to FIGS.
  • the system of the present embodiment can be realized by causing the ECU 50 to execute the routines of FIGS. 3 and 11 described later in the configuration shown in FIG.
  • the ignition timing control is performed by determining the target 50% combustion point according to the operation request.
  • a control error occurs in the process of ignition timing control. If a control error occurs, the amount of heat generation also changes.
  • the calorific value varies greatly depending on the operating conditions such as the engine speed NE and the in-cylinder fresh air amount KL. Therefore, if the actual calorific value Qd is to be corrected for each operating condition, the correction amount needs to be adapted for each operating condition. Moreover, the subject that the ROM capacity of ECU50 is also required arises.
  • FIG. 11 is a diagram showing the relationship between the deviation from the ATDC8CA of the 50% combustion point other than MBT and the heat generation amount ratio (heat generation amount of 50% combustion point other than MBT / heat generation amount of MBT 50% combustion point). .
  • the relationship between the deviation and the heat generation ratio is uniquely determined regardless of the operating conditions.
  • the calorific value ratio tends to increase as the angle is retarded from the MBT and to decrease as the angle is advanced from the MBT.
  • a in FIG. 11 indicates a target 50% combustion point.
  • B shown in FIG. 11 shows an actual 50% combustion point (hereinafter referred to as an actual 50% combustion point), which is a result of performing the ignition timing control according to the target 50% combustion point.
  • an actual 50% combustion point hereinafter referred to as an actual 50% combustion point
  • the actual heating value Qd is based on the difference between the heating value ratio of the target 50% combustion point with respect to the MBT 50% combustion point and the heating value ratio of the actual 50% combustion point with respect to the MBT 50% combustion point. It was decided to correct.
  • FIG. 12 is a flowchart of a subroutine executed by the ECU 50 in order to realize the above function.
  • This routine is a subroutine executed in place of the processing of step 150 in FIG.
  • the control routine of this embodiment is the same as the routine shown in FIGS. 3 and 10 except that step 260 is added after the process of step 230 of FIG.
  • step 260 is added after the process of step 230 of FIG.
  • the actual heat generation amount Qd is corrected based on the relationship between the deviation from the target 50% combustion point and the actual 50% combustion point shown in FIG. (Step 260). This will be specifically described. First, a crank angle that is half of the total calorific value in the previous cycle is calculated as an actual 50% combustion point. Then, a deviation between the MBT 50% combustion point and the actual 50% combustion point is calculated.
  • the ECU 50 stores the relationship map shown in FIG. 11 described above in advance. A calorific value ratio corresponding to the deviation (hereinafter referred to as an actual 50% combustion point calorific value ratio) is acquired from this relationship map.
  • the ECU 50 stores in advance a map that defines a target 50% combustion point according to an operation request in another routine. From this map, a target 50% combustion point corresponding to the operating condition of the previous cycle is set. Next, the deviation between the MBT 50% combustion point and the target 50% combustion point is calculated. Thereafter, a heat value ratio corresponding to the deviation (hereinafter referred to as a target 50% combustion point heat value ratio) is acquired from the relationship map shown in FIG.
  • the ECU 50 multiplies the actual heat generation amount Qd by using the calculated heat generation amount ratio as a correction coefficient to obtain a new actual heat generation amount Qd.
  • step 260 After the process of step 260, the process after step 160 of FIG. 3 is executed based on the new actual heat generation amount Qd.
  • the actual calorific value Qd can be corrected based on the relationship between the deviation of the target 50% combustion point and the actual 50% combustion point from the ATDC 8CA and the calorific value ratio. it can. Therefore, according to the system of the present embodiment, it is possible to improve the accuracy of the injection amount control in accordance with the catalyst purification window. Further, according to the relationship with the calorific value ratio, it is possible to realize a highly robust system that is not affected by fuel properties and operating conditions. Furthermore, according to the system of the present embodiment, the actual heat generation amount Qd can be accurately corrected according to the amount of change in the heat generation amount caused by the control error, and appropriate injection amount control in accordance with the catalyst purification window can be realized. it can.
  • the actual calorific value Qd can be corrected based on the single relation map shown in FIG. 12, so that the number of man-hours for adaptation according to the operating conditions can be greatly reduced. it can. Furthermore, the ROM capacity of the ECU 50 can be greatly reduced.
  • the correction of the actual heat generation amount Qd in step 260 is used together with the correction of the ideal heat generation amount Qt in steps 210 and 230.
  • the present invention is not limited to this. Absent. It is good also as combining only the process of step 260, or the process of each step. This point is the same in the following embodiments.
  • the ECU 50 executes the processing of step 260 to thereby perform the “target combustion point setting means”, “actual combustion point calculation means”, and “actual heat generation amount” in the eighth invention. "Correction means” is realized respectively.
  • Embodiment 5 FIG. [System Configuration of Embodiment 5] Next, a fifth embodiment of the present invention will be described with reference to FIGS.
  • a water temperature sensor 44 that detects the water temperature of the engine 10 is added to the configuration of FIG. 1 described above.
  • the water temperature sensor 44 is connected to the input unit of the ECU 50.
  • the system of this embodiment is realizable by making ECU50 implement the routine of FIG.3 and FIG.14 mentioned later.
  • the calorific value also changes depending on the difference in cooling loss due to the water temperature (cylinder wall temperature).
  • FIG. 13 is a diagram showing the relationship between the water temperature and the calorific value correction coefficient.
  • the calorific value correction coefficient in a completely warm-up state (for example, 80 ° C.) is 1. Further, the calorific value correction coefficient is not changed depending on the operating conditions, but is determined only by the water temperature. Further, the heat generation amount correction coefficient tends to be smaller as the water temperature is lower than the complete warm-up state, and to be greater as the water temperature is higher than the complete warm-up state.
  • the ideal heat generation amount Qt is corrected based on the relationship between the water temperature and the heat generation amount correction coefficient shown in FIG. Specifically, the ideal heating value Qt is corrected to decrease as the water temperature decreases.
  • FIG. 14 is a flowchart of a subroutine executed by the ECU 50 in order to realize the above function.
  • This routine is a subroutine executed in place of the processing of step 150 in FIG.
  • the control routine of this embodiment is the same as the routine shown in FIGS. 3 and 12 except that step 220 is added after the process of step 210 of FIG.
  • step 220 is added after the process of step 210 of FIG.
  • the same steps as those shown in FIGS. 3 and 12 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the ideal heat generation amount Qt is corrected based on the relationship between the water temperature and the heat generation amount correction coefficient shown in FIG. 13 (step 220).
  • the water temperature is detected by the water temperature sensor 44.
  • the ECU 50 stores in advance the relationship map shown in FIG. From this relationship map, a heat generation amount correction coefficient corresponding to the water temperature is acquired.
  • the ECU 50 multiplies the acquired heat generation amount correction coefficient by the ideal heat generation amount Qt to obtain a new ideal heat generation amount Qt.
  • step 260 After the process of step 260, the process after step 160 of FIG. 3 is executed based on the new ideal heat generation amount Qt.
  • the ideal heat generation amount Qt can be corrected based on the relationship between the water temperature and the heat generation amount correction coefficient. Therefore, according to the system of the present embodiment, it is possible to improve the accuracy of the injection amount control in accordance with the catalyst purification window. Moreover, since the calorific value correction coefficient is determined by using only the water temperature as a parameter, it is possible to significantly reduce the number of man-hours for adaptation according to the operating conditions. Furthermore, the ROM capacity of the ECU 50 can be greatly reduced.
  • the correction of the ideal heat generation amount Qt in step 220 is used in combination with the correction of the ideal heat generation amount Qt in steps 210 and 230 and the correction of the actual heat generation amount Qd in step 260.
  • it is not limited to this. It is good also as combining only the process of step 220, or the process of each step. This point is the same in the following embodiments.
  • the water temperature sensor 44 corresponds to the “water temperature detecting means” in the fourth invention.
  • the “correction means” in the fourth aspect of the present invention is realized by the ECU 50 executing the processing of step 220 described above.
  • Embodiment 6 FIG. [System Configuration of Embodiment 6] Next, a sixth embodiment of the present invention will be described with reference to FIGS.
  • the system of the present embodiment can be realized by causing the ECU 50 to execute the routines of FIGS. 3 and 15 described later in the configuration shown in FIG.
  • FIG. 15 is a flowchart of a subroutine executed by the ECU 50 in order to realize the above-described function.
  • This routine is a subroutine executed in place of the processing of step 150 in FIG.
  • the control routine of this embodiment is the same as the routine shown in FIGS. 3 and 14 except that step 240 is added after the process of step 230 of FIG.
  • step 240 is added after the process of step 230 of FIG.
  • the same steps as those shown in FIGS. 3 and 14 are denoted by the same reference numerals, and description thereof is omitted or simplified.
  • step 240 the ideal heat generation amount Qt is corrected by the fuel property (step 240).
  • the process in step 240 will be described in three stages.
  • FIG. 16 is a graph showing the relationship between the excess air ratio ⁇ and the stoichiometric ratio of the calorific value / injection amount.
  • the ECU 50 stores a relationship map shown in FIG. As described above, the heat generation amount / injection amount (heat generation efficiency) tends to decrease as the richer side (FIG. 21). Further, the stoichiometric ratio is not affected by the operating conditions. From this relationship map, the stoichiometric ratio of the heat generation amount / injection amount corresponding to the target excess air ratio is acquired. The calorific value is corrected by multiplying the calorific value by the reciprocal of the acquired stoichiometric ratio. By this process, the change in the lower heating value can be corrected in advance.
  • FIG. 17 is a diagram showing the relationship between the injection time / heat generation amount and the ethanol concentration.
  • the ECU 50 stores a relationship map shown in FIG.
  • the injection time corresponds to the injection amount and is calculated from the control value of the injector 14. From this relationship map, the ethanol concentration corresponding to the calorific value / injection time is acquired based on the calorific value corrected in the first stage. In addition, it is desirable to be based on the heat generation amount and the injection amount in the past predetermined number of cycles.
  • FIG. 18 is a diagram showing the relationship between the ethanol concentration and the calorific value correction ratio.
  • the calorific value correction ratio corresponds to the calorific value ratio at stoichiometry in FIG. Since FIG. 18 has the same tendency as FIG. 2 described above, description thereof is omitted.
  • the ECU 50 stores a relationship map shown in FIG. From this relationship map, the calorific value correction value corresponding to the ethanol concentration acquired in the second stage is acquired. Thereafter, the ECU 50 multiplies the ideal heat generation amount Qt by the heat generation amount correction value to obtain a new ideal heat generation amount Qt.
  • step 260 After the process of step 260, the process after step 160 of FIG. 3 is executed based on the new ideal heat generation amount Qt.
  • the fuel property is judged more accurately by correcting the change in the lower calorific value in accordance with the change in the target excess air ratio and determining the fuel property.
  • the correction of the ideal heat generation amount Qt in step 240 is used in combination with the correction of the ideal heat generation amount Qt in steps 210 to 230 and the correction of the actual heat generation amount Qd in step 260.
  • it is not limited to this. It is good also as combining only the process of step 240, or the process of each step. This point is the same in the following embodiments.
  • the “alcohol concentration acquisition means” and the “correction means” according to the sixth aspect of the present invention are realized by the ECU 50 executing the process of step 240 described above.
  • Embodiment 7 FIG. [System Configuration of Embodiment 7] Next, a sixth embodiment of the present invention will be described with reference to FIGS.
  • the system of the present embodiment can be realized by causing the ECU 50 to execute the routines of FIGS. 3 and 20 described later in the configuration shown in FIG.
  • the calorific value also changes when the specific heat ratio increases and the cooling loss decreases due to the increase in EGR gas.
  • FIG. 19 is a diagram showing the relationship between the EGR rate and the calorific value change ratio.
  • the heating value change increasing rate tends to increase linearly as the EGR rate increases regardless of the operating conditions.
  • the calorific value increases by 4% for an EGR rate of 20%. Therefore, in the system of this embodiment, the ideal heat generation amount Qt is corrected based on the relationship between the EGR rate and the heat generation amount change ratio shown in FIG. Specifically, the ideal heating value Qt is increased and corrected as the EGR rate is higher.
  • FIG. 20 is a flowchart of a subroutine executed by the ECU 50 in order to realize the above function.
  • This routine is a subroutine executed in place of the processing of step 150 in FIG.
  • the control routine of this embodiment is the same as the routine shown in FIGS. 3 and 15 except that step 250 is added after the process of step 240 of FIG.
  • step 250 is added after the process of step 240 of FIG.
  • the same steps as those shown in FIGS. 3 and 15 are denoted by the same reference numerals, and the description thereof is omitted or simplified.
  • the ideal heat generation amount Qt is corrected based on the relationship between the EGR rate and the heat generation amount change ratio shown in FIG. 19 (step 250).
  • the ECU 50 stores in advance the relationship map shown in FIG. In step 210, a heat generation amount change ratio corresponding to the EGR rate calculated in step 100 is acquired from this relationship map.
  • the ECU 50 multiplies the acquired heat generation amount change ratio by the ideal heat generation amount Qt to obtain a new ideal heat generation amount Qt.
  • step 260 After the process of step 260, the process after step 160 of FIG. 3 is executed based on the new ideal heat generation amount Qt.
  • the ideal heat generation amount Qt can be corrected based on the relationship between the EGR rate and the injection amount change ratio. Since the calorific value change ratio is determined using only the EGR rate as a parameter, a highly robust system that is not affected by the operating conditions can be realized. Further, according to the system of the present embodiment, it is possible to realize appropriate injection amount control in accordance with the catalyst purification window by assuming all influencing factors on the calorific value.
  • the correction of the ideal heat generation amount Qt in step 250 is used in combination with the correction of the ideal heat generation amount Qt in steps 210 to 240 and the correction of the actual heat generation amount Qd in step 260.
  • it is not limited to this. It is good also as combining only the process of step 250, or the process of each step. This point is the same in the following embodiments.
  • the ECU 50 executes the process of step 100, so that the “EGR rate acquisition means” in the seventh invention executes the process of step 250.
  • the “correction means” in the seventh aspect of the invention is realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 燃料性状が変化する場合であっても、好適な噴射量フィードバック制御を実施することのできる内燃機関の制御装置を提供する。 筒内圧を検出する筒内圧センサ(16)を備える。筒内圧センサ(16)により検出された筒内圧に基づいて筒内新気量を算出する(100)。筒内圧センサ(16)により検出された筒内圧に基づいて実発熱量を算出する(120)。算出された筒内新気量から所定の空気過剰率における目標発熱量を算出する(150)。算出された実発熱量が目標発熱量と一致するように、該実発熱量と前記目標発熱量との比較値を燃料噴射量にフィードバックする(160、170)。

Description

内燃機関の制御装置
 この発明は、内燃機関の制御装置に係り、特に、車両に搭載される内燃機関の制御を実行するのに好適な内燃機関の制御装置に関する。
 燃費やエミッションに関する要求が高まる中、燃焼状態を把握するために筒内圧センサを搭載することが注目されている。しかし、筒内圧センサはコストが高いため、採用するにはコストの低下と、他のセンサを代替する等の更なるメリットが求められる。
 例えば、特許文献1に開示されるように、筒内圧センサを備えた内燃機関が知られている。また、本公報には、空燃比センサを代替するために、筒内圧センサの出力値から発熱量を検出し、検出した発熱量から空燃比を算出する手法が開示されている。具体的には、リッチ域においては発熱量/噴射時間から空燃比を算出し、リーン域においては発熱量/空気量から空燃比を算出することが開示されている。このような手法によれば、空燃比が目標空燃比と一致するように、算出した空燃比と目標空燃比との差に基づいて燃料噴射量を補正する噴射量フィードバック制御を実施することができる。
日本特開2006-144643号公報 日本特開2005-23850号公報 日本特開2006-97588号公報
 図21は、発熱量/噴射量と空気過剰率λとの関係を、燃料中のエタノール濃度毎に表した図である。発熱量/噴射量は発熱効率を意味し、噴射量は噴射時間に比例する。図21に示すように、発熱量/噴射量はリッチ側ほど低下する。そのため、上記従来の空燃比に基づく噴射量フィードバック制御では、発熱量/噴射量が低下すれば空燃比がリッチになったと判定し、燃料噴射量を低減することとなる。
 しかしながら、上記従来の噴射量フィードバック制御によれば、次のような問題が生じる。図21に示すように、発熱量/噴射量(発熱効率)は、燃料中のエタノール濃度が高いほど(E85)、ガソリン燃料(E0)に比して低くなる。すなわち、発熱量/噴射量は、エタノール濃度が高くなれば、空燃比がリッチでなくても低下することとなる。
 上記従来の噴射量フィードバック制御では、発熱量/噴射量(発熱効率)が、エタノール濃度等の燃料性状によって変化することについて考慮されていない。そのため、設定値よりも高い濃度のエタノール混合燃料が給油された場合には、発熱量/噴射量が低下し、空燃比がリッチになったと誤判定することとなる。その結果、噴射量フィードバック制御により、燃料噴射量が減量され続け、リーン失火に至ることとなる。上記従来の内燃機関においてこの課題を回避するには、エタノール濃度センサが別途必要となるが、それではコストアップは避けられない。
 この発明は、上述のような課題を解決するためになされたもので、燃料性状によらないで好適な噴射量フィードバック制御を実施することのできる内燃機関の制御装置を提供することを目的とする。
 第1の発明は、上記の目的を達成するため、内燃機関の制御装置であって、
 筒内圧を検出する筒内圧センサと、
 前記筒内圧センサにより検出された筒内圧に基づいて筒内新気量を算出する筒内新気量算出手段と、
 前記筒内圧センサにより検出された筒内圧に基づいて実発熱量を算出する実発熱量算出手段と、
 前記筒内新気量算出手段により算出された筒内新気量から所定の空気過剰率における目標発熱量を算出する目標発熱量算出手段と、
 前記実発熱量算出手段により算出された実発熱量が前記目標発熱量と一致するように、該実発熱量と前記目標発熱量との比較値を燃料噴射量にフィードバックするフィードバック手段と、を備えることを特徴とする。
 また、第2の発明は、第1の発明において、
 前記実発熱量は、燃焼開始から排気バルブが開くまでの期間内における最大値であることを特徴とする。
 また、第3の発明は、第1又は第2の発明において、
 運転要求に基づいて目標空気過剰率を設定する目標空気過剰率設定手段と、
 前記目標発熱量を、前記所定の空気過剰率における発熱量と前記目標空気過剰率における発熱量との発熱量比に基づいて補正する補正手段と、を備えることを特徴とする。
 また、第4の発明は、第1乃至第3の発明のいずれかにおいて、
 水温を検出する水温検出手段と、
 前記目標発熱量を、前記水温検出手段により検出された水温が低いほど減少補正する補正手段と、を備えることを特徴とする。
 また、第5の発明は、第1乃至第4の発明のいずれかにおいて、
 点火時期に基づいて燃焼割合が所定割合となる目標燃焼点を設定する目標燃焼点設定手段と、
 前記目標発熱量を、MBTでの燃焼割合が前記所定割合となる燃焼点(以下、MBT燃焼点と記す。)における発熱量と、前記目標燃焼点における発熱量との発熱量比に基づいて補正する補正手段と、を備えることを特徴とする。
 また、第6の発明は、第1乃至第5の発明のいずれかにおいて、
 前記実発熱量算出手段により算出された実発熱量を得るために要した燃料噴射量と、該実発熱量とに基づいて燃料中のアルコール濃度を取得するアルコール濃度取得手段と、
 前記目標発熱量を、前記アルコール濃度取得手段により取得されたアルコール濃度が高いほど減少補正する補正手段と、を備えることを特徴とする。
 また、第7の発明は、第1乃至第6の発明のいずれかにおいて、
 EGR率を取得するEGR率取得手段と、
 前記目標発熱量を、前記EGR率取得手段により取得されたEGR率が高いほど増大補正する補正手段と、を備えることを特徴とする。
 また、第8の発明は、第1乃至第7の発明のいずれかにおいて、
 点火時期に基づいて燃焼割合が前記所定割合となる目標燃焼点を設定する目標燃焼点設定手段と、
 前記点火時期における燃焼割合が前記所定割合となる実燃焼点を算出する実燃焼点算出手段と、
 前記実発熱量を、MBT燃焼点に対する前記目標燃焼点の発熱量比と、MBT燃焼点に対する前記実燃焼点の発熱量比との差に基づいて補正する実発熱量補正手段と、を備えることを特徴とする。
 所定の空気過剰率における発熱量比は、燃料性状による差が僅かである(図2)。第1の発明によれば、実発熱量が、所定の空気過剰率における目標発熱量と一致するように、実発熱量と目標発熱量との比較値を燃料噴射量にフィードバックすることができる。目標制御量を発熱量とすることで、燃料性状の影響を殆ど受けないロバスト性の高い噴射量フィードバック制御が可能となる。
 第2の発明によれば、燃焼開始から排気バルブが開くまでの期間内における最大値を実発熱量とする。そのため、本発明によれば、実発熱量を精度高く検出することができる。
 第3の発明によれば、前記目標発熱量を、所定の空気過剰率における発熱量と目標空気過剰率における発熱量との発熱量比に基づいて補正する。そのため、本発明によれば、目標発熱量をより精度高く補正し、触媒浄化ウィンドウに合わせた噴射量制御の精度を高めることができる。また、発熱量比に基づけば、運転条件の影響を受けないため、適合工数及びROM容量を大幅に削減することができる。
 第4の発明によれば、目標発熱量を水温が低いほど減少補正する。そのため、本発明によれば、冷却損失に起因する発熱量の変化分に応じて、目標発熱量をより精度高く補正し、触媒浄化ウィンドウに合わせた噴射量制御の精度を高めることができる。
 第5の発明によれば、目標発熱量を、MBT燃焼点における発熱量と、目標燃焼点における発熱量との発熱量比に基づいて補正する。そのため、本発明によれば、点火時期に起因する発熱量の変化分に応じて、目標発熱量をより精度高く補正し、触媒浄化ウィンドウに合わせた噴射量制御の精度を高めることができる。また、発熱量比に基づけば、運転条件の影響を受けないため、適合工数及びROM容量を大幅に削減することができる。
 第6の発明によれば、目標発熱量をアルコール濃度が高いほど減少補正する。そのため、本発明によれば、アルコール濃度に起因する発熱量の変化分に応じて、目標発熱量をより精度高く補正し、触媒浄化ウィンドウに合わせた噴射量制御の精度を高めることができる。
 第7の発明によれば、目標発熱量をEGR率が高いほど増大補正する。そのため、本発明によれば、EGR率に起因する発熱量の変化分に応じて、目標発熱量をより精度高く補正し、触媒浄化ウィンドウに合わせた噴射量制御の精度を高めることができる。
 第8の発明によれば、実発熱量を、MBT燃焼点に対する目標燃焼点の発熱量比と、MBT燃焼点に対する実燃焼点の発熱量比との差に基づいて補正する。そのため、本発明によれば、制御誤差に起因する発熱量の変化分に応じて、実発熱量を精度高く補正し、触媒浄化ウィンドウに合わせた噴射量制御の精度を高めることができる。
本発明の実施の形態1のシステム構成を説明するための概略構成図である。 燃料中のエタノール濃度とストイキにおける発熱量比との関係を表した図である。 本発明の実施の形態1においてECU50が実行する制御ルーチンのフローチャートである。 本発明の実施の形態1における燃焼質量割合変化率とEGR率との関係をエンジン回転数NE毎に示した図である。 本発明の実施の形態1におけるサブフィードバック制御の概略を示す図である。 空気過剰率λと発熱量との関係を、運転条件毎に調べた実験結果を示す図である。 図6と同じ運転条件において、空気過剰率λと発熱量比との関係を表した図である。 本発明の実施の形態2においてECU50が実行するサブルーチンのフローチャートである。 本発明の実施の形態3におけるMBT以外の50%燃焼点のATDC8CAからの偏差と発熱量比との関係を表した図である。 本発明の実施の形態3においてECU50が実行するサブルーチンのフローチャートである。 本発明の実施の形態4におけるMBT以外の50%燃焼点のATDC8CAからの偏差と発熱量比との関係を表した図である。 本発明の実施の形態4においてECU50が実行するサブルーチンのフローチャートである。 本発明の実施の形態5における水温と発熱量補正係数との関係を表した図である。 本発明の実施の形態5においてECU50が実行するサブルーチンのフローチャートである。 本発明の実施の形態6においてECU50が実行するサブルーチンのフローチャートである。 本発明の実施の形態6における空気過剰率λと発熱量/噴射量のストイキ比との関係を表した図である。 本発明の実施の形態6における噴射時間/発熱量とエタノール濃度との関係を表した図である。 本発明の実施の形態6におけるエタノール濃度と発熱量補正比との関係を表した図である。 本発明の実施の形態7におけるEGR率と発熱量変化比率との関係を表した図である。 本発明の実施の形態7においてECU50が実行するサブルーチンのフローチャートである。 発熱量/噴射量と空気過剰率λとの関係を、燃料中のエタノール濃度毎に表した図である。
Qd 実発熱量
Qt 理想発熱量
qb 基本噴射量
qh 噴射量補正量
α 閾値
λ 空気過剰率
10 エンジン
12 スパークプラグ
14 インジェクタ
16 筒内圧センサ
18 クランク角度センサ
24 エアフローメータ
26 スロットルバルブ
27 スロットル開度センサ
30 吸気圧センサ
34 触媒
36 EGR通路
42 サブO2センサ
44 水温センサ
50 ECU(Electronic Control Unit)
 以下、図面を参照して本発明の実施の形態について詳細に説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
実施の形態1.
[実施の形態1のシステム構成]
 図1は、本発明の実施の形態1のシステム構成を説明するための概略構成図である。図1に示すシステムは、内燃機関(以下、単にエンジンという。)10を備えている。図1に示すエンジン10は、スパークプラグ12を備えた火花点火式の4ストロークレシプロエンジンである。また、エンジン10は、筒内に燃料を直接噴射するインジェクタ14を備えた筒内直噴エンジンでもある。燃料には、ガソリンやアルコール(例えば、エタノール)混合燃料が用いられる。
 図1では1つの気筒のみが描かれているが、車両用のエンジン10は、一般的に複数の気筒から構成されている。各気筒には筒内圧を検出するための筒内圧センサ16が取り付けられている。また、エンジン10には、クランク軸の回転角に応じて信号CAを出力するクランク角度センサ18が取り付けられている。
 エンジン10の吸気系には、各気筒に接続された吸気通路20が設けられている。吸気通路20の入口には、エアクリーナ22が設けられている。エアクリーナ22の下流には、吸気通路20に吸入される空気の流量に応じた信号GAを出力するエアフローメータ24が取り付けられている。エアフローメータ24の下流には、電子制御式のスロットルバルブ26が設けられている。スロットルバルブ26の近傍には、スロットルバルブ26の開度に応じた信号TAを出力するスロットル開度センサ27が取り付けられている。スロットルバルブ26の下流には、サージタンク28が設けられている。サージタンク28の近傍には、吸気圧を測定するための吸気圧センサ30が取り付けられている。
 エンジン10の排気系には、各気筒に接続された排気通路32が設けられている。排気通路32には触媒34が設けられている。触媒としては、例えば、三元触媒、NOx触媒等が用いられる。また、排気通路32には、吸気通路20に接続されるEGR通路36が設けられている。EGR通路36には、EGRクーラ38とEGRバルブ40とが設けられている。
 エンジン10の制御系には、ECU(Electronic Control Unit)50が設けられている。ECU50の入力部には、上述した筒内圧センサ16、クランク角度センサ18、エアフローメータ24、スロットル開度センサ27、吸気圧センサ30等の各種センサが接続されている。また、ECU50の出力部には、上述したスパークプラグ12、インジェクタ14、スロットルバルブ26、EGRバルブ40等の各種アクチュエータが接続されている。ECU50は、入力された各種の情報に基づいて、エンジン10の運転状態を制御する。また、ECU50は、クランク角度センサ18の信号CAから、エンジン回転数NE(単位時間当たり回転数)や、ピストンの位置によって決まる筒内容積Vを計算することができる。
[実施の形態1における特徴的制御]
 上述したシステム構成においては、エミッション等を好適に保つため、噴射量フィードバック制御(PID制御)を実施することが望まれる。ところが、上述したシステムでは、コスト低減のため、触媒34の上流に空燃比センサが取り付けられていない。そこで、例えば日本特開2006-144643号公報に開示されているように、空燃比センサを代替するために、筒内圧センサの出力値から検出される発熱量から空燃比を算出し、空燃比を理論空燃比に一致させるように、空燃比と理論空燃比との差に応じた補正量を燃料噴射量にフィードバックすることが考えられる。
 しかしながら、空燃比センサからは、空気過剰率λ(空燃比/理論空燃比)が検出されるところ、筒内圧センサの出力値に基づいて算出されるものは空燃比に過ぎない。そのため、エタノール濃度が異なる燃料が給油される等、理論空燃比が変化する条件下においては、エタノール濃度センサを別途取り付けない限り、適切な理論空燃比を設定することができない。適切な理論空燃比が設定できなければ、筒内圧センサの出力値に基づいて算出された空燃比によっては、エミッション等を好適に保つ噴射量フィードバック制御を実施することができないこととなる。
 次に、このような課題を解決する本実施形態の制御概要について図2を用いて説明する。図2は、燃料中のエタノール濃度とストイキ(空気過剰率λ=1)における発熱量比(E0以外でのストイキにおける発熱量/E0でのストイキにおける発熱量)との関係を表した図である。理論空燃比はE0で約14.6、E100で約9.0と値が異なる。つまり、ストイキにおいては、E100の方がE0よりも多くの燃料が噴射されることとなる(約1.5倍)。図2に示す通り、エタノール濃度が異なってもストイキにおける発熱量比の差は僅かである。発明者の知見によれば、その差は、E0とE100とで約2.3%程度であるという結果が得られている。また、所定の空気過剰率においてもストイキの場合と略同様の結果が得られている。このような結果によれば、目標制御量を発熱量とすることで、エタノール濃度の影響を受けない噴射量フィードバック制御が可能となる。
 そこで、本実施形態のシステムでは、発熱量を所定の空気過剰率における理想発熱量に一致させるように、発熱量と理想発熱量との差に応じた補正量を燃料噴射量にフィードバックすることとした。
(制御ルーチン)
 図3は、上述の動作を実現するために、ECU50が実行する制御ルーチンのフローチャートである。この制御ルーチンは、例えば1サイクル毎に実行される。図3に示すルーチンでは、まず、筒内に導入された筒内新気量KLとEGR率とが算出される(ステップ100)。図4は、燃焼質量割合変化率とEGR率との関係をエンジン回転数NE毎に示した図である。ECU50には、図4に示す関係マップが予め記憶されている。ECU50は、クランク角度センサ18の信号CAからエンジン回転数NEを算出する。また、ECU50は、クランク角に同期した筒内圧センサ16によって検出された燃焼圧から燃焼質量割合変化率(燃焼速度)を算出する。そして、ECU50は、図4に示す関係マップからエンジン回転数NEと燃焼質量割合変化率とに応じたEGR率(内部EGR+外部EGR)を取得する。さらに、ECU50は、圧縮行程における圧縮圧から新気とEGRガスとの総量を算出し、この総量とEGR率とから筒内新気量KLを算出する。
 次に、エンジン回転数NEと筒内新気量KLと目標空気過剰率とに基づいて、基本噴射量qbが算出される(ステップ110)。ECU50には、エンジン回転数NEと筒内新気量KLと目標空気過剰率とに応じた基本噴射量qbを定めたマップが予め記憶されている。目標空気過剰率は、例えばストイキ(空気過剰率λ=1)に設定されているものとする。
 続いて、筒内圧センサ16の出力値に基づいて、燃焼開始以降の累積発熱量がクランク角毎に算出される(ステップ120)。累積発熱量は、燃焼前のクランク角θにおける筒内圧P(θ)と筒内容積V(θ)、燃焼開始後のクランク角θにおける筒内圧P(θ)と筒内容積V(θ)、実験的に求められる定数α、及び比熱比κに基づいて式(1)から算出される。なお、式(1)については、日本特開2006-144643等に詳細な説明が記載されている。そのため、本実施形態の説明においては、その説明は省略する。
Figure JPOXMLDOC01-appb-M000001
 ところで、燃焼終了後に検出される発熱量は、冷却損失および筒内圧センサ16の受熱によるセンサ内部の歪みに起因する出力誤差の影響を大きく受ける。また、排気バルブが開いた後の期間は、筒内容積Vの値が大きくなるため、ノイズ等によって発熱量が正確に検出されない可能性がある。さらに、発熱量の検出タイミングをdQ/dθ=0とすれば、例えば筒内圧センサ16のAD変換を10CAといった粗い間隔で実施する場合には、必ずしもdQ/dθ=0が検出されず、或いは、ノイズ振幅等の影響で誤ったタイミングで発熱量を検出してしまう可能性もある。
 そこで、本実施形態のシステムにおいては、式(1)で算出される累積発熱量の内、排気バルブが開くまでの期間内においての最大値を実発熱量Qdと決定することとする。排気バルブが開く時期は、クランク角度センサ18の信号CAから算出される。このような構成によれば、上述した問題に対する影響なく、実発熱量Qdを精度良く検出することができる。
 ステップ120の処理後、実発熱量Qdと閾値αとを比較して失火しないか否かが判定される(ステップ130)。ECU50には、失火が生じない程度の発熱量を実験等により定めた閾値αが記憶されている。実発熱量Qdが閾値αよりも大きい場合には、失火しないと判定される。
 ステップ130において、失火しないと判断された場合には、ステップ150~170で詳説する発熱量に基づく噴射量フィードバック制御が開始される(ステップ140)。本実施形態における噴射量フィードバック制御は、実発熱量Qdを目標発熱量(後述する理想発熱量Qt)に一致させるように、実発熱量Qdと理想発熱量Qtとの差に応じた噴射量補正量を基本噴射量qbに増減補正するものである。
 まず、前回燃焼時の理想発熱量Qtが算出される(ステップ150)。具体的には、既に燃焼を終えた前回サイクルにおいて、適正な噴射量が噴射されればどれだけの発熱量を発生したかが算出される。ECU50には、エンジン回転数NEと筒内新気量KLとに応じた理想発熱量Qtを定めたマップが目標空気過剰率毎に記憶されている。理想発熱量Qtは、筒内新気量KLの増大に伴い線形的に増大する傾向がある。ECU50は、上記マップから前サイクルでのエンジン回転数NEと筒内新気量KLとに応じた理想発熱量Qtを取得する。
 続いて、理想発熱量Qtと実発熱量Qdとの偏差に基づいて噴射量補正量qhが算出される(ステップ160)。ECU50には、実発熱量Qdが理想発熱量Qtより小さいほど正値に大きく、実発熱量Qdが理想発熱量Qtより大きいほど負値に大きい噴射量補正量qhを定めた噴射量補正マップが記憶されている。ECU50は、噴射量補正マップから理想発熱量Qtと実発熱量Qdとの偏差に応じた噴射量補正量qhを取得する。
 そして、ステップ110において算出された基本噴射量qbに噴射量補正量qhを加算して最終噴射量が算出される(ステップ170)。ECU50は、インジェクタ14に最終噴射量に応じた燃料を噴射させる。これにより、実発熱量Qdを理想発熱量Qtに一致させるように噴射量フィードバック制御が実施される。その後本ルーチンは終了される。
 なお、ステップ130において、失火すると判定された場合には、噴射量補正量qhの値は0に設定される。そのため、ステップ170では、基本噴射量qbが最終噴射量として算出される。
 以上説明したように、図3に示すルーチンによれば、実発熱量Qdをストイキにおける理想発熱量Qtに一致させるように、実発熱量Qdと理想発熱量Qtとの差に応じた噴射量補正量qhを基本噴射量qbにフィードバックすることができる。目標制御量を発熱量とすることで、エタノール濃度(燃料性状)の影響を受けないロバスト性の高いシステムを実現することができる。また、本実施形態のシステムによれば、空燃比センサ及びエタノール濃度センサを別途必要としないため、コストの低減を図ることができる。さらに、図3に示すルーチンによれば、最終噴射量を算出するまでの過程において、パラメータに噴射時間を用いていない。そのため、インジェクタ14による噴射ばらつきの影響を排除でき、精度の高い噴射量フィードバック制御を実現することができる。
 ところで、上述した実施の形態1のシステムにおいては、EGR率を、ステップ100の処理により算出することとしているが、EGR率の算出方法はこれに限定されるものではない。例えば、ステップ100において、エアフローメータ24と吸気圧センサ30とスロットル開度センサ27との出力値に応じた外部EGR率の推定値を定めたマップから外部EGR率を取得し、バルブオーバーラップ量の設定値に応じた内部EGR率の推定値を定めたマップから内部EGR率を取得することとしても良い。なお、この点は以下の実施の形態でも同様である。
 また、上述した実施の形態1のシステムにおいては、累積発熱量を、式(1)に基づいて算出することとしているが、累積発熱量の算出方法はこれに限定されるものではない。例えば、ステップ120において、次の式(2)に基づいて算出することとしても良い。なお、この点は以下の実施の形態でも同様である。
Figure JPOXMLDOC01-appb-M000002
 また、上述した実施の形態1のシステムにおいては、理想発熱量Qtを、ストイキ(空気過剰率λ=1)におけるものとしているが、例えば、所定の空気過剰率を定めて、当該空気過剰率における理想発熱量Qtを用いることとしても良い。
 また、上述した実施の形態1のシステムにおいては、触媒34上流の空燃比センサの機能を、筒内圧センサ16で代替することとしているが、さらに加えて、触媒34下流にサブO2センサ42を配置することとしてもよい。図5は、サブフィードバック制御の概略を示す図である。サブフィードバック制御では、触媒34の下流に取り付けられたサブO2センサ42の出力がストイキ出力となるように、ステップ160において算出された噴射量補正量qhが更に補正される。なお、この点は以下の実施の形態でも同様である。
 尚、上述した実施の形態1においては、筒内圧センサ16が前記第1の発明における「筒内圧センサ」に相当している。また、ここでは、ECU50が、上記ステップ100の処理を実行することにより前記第1の発明における「筒内圧新気量算出手段」が、上記ステップ120の処理を実行することにより前記第1の発明における「実発熱量算出手段」が、上記ステップ150の処理を実行することにより前記第1の発明における「目標発熱量算出手段」が、上記ステップ160~ステップ170の処理を実行することにより前記第1の発明における「フィードバック手段」が、それぞれ実現されている。更に、実施の形態1においては、上記ステップ120において算出される実発熱量Qdが前記第1及び第2の発明における「実発熱量」に、上記ステップ150において算出される理想発熱量Qtが前記第1の発明における「目標発熱量」に、それぞれ対応している。
実施の形態2.
[実施の形態2のシステム構成]
 次に、図6~図8を参照して本発明の実施の形態2について説明する。本実施形態のシステムは図1に示す構成において、ECU50に後述する図3及び図8のルーチンを実施させることで実現することができる。
[実施の形態2における特徴的制御]
 上述した実施の形態1では、燃料性状によらないで、実発熱量Qdをストイキ(空気過剰率λ=1)における理想発熱量Qtに一致させる噴射量フィードバック制御を実施している。ところで、エンジン10の制御においては、ドライバビリティやエミッション等を好適に保つためにリッチ要求やリーン要求がなされ、一時的にリッチ域やリーン域での運転が求められる場合もある。
 図6は、空気過剰率λと発熱量との関係を、運転条件毎に調べた実験結果を示す図である。図6に示すように、発熱量は、同一運転条件において空気過剰率λがストイキよりもリッチになるに従い増加し、リーンになるに従い低下する傾向がある。詳細には、例えばガソリン燃料においては、空燃比11近傍まではリッチになるに従い発熱量が増加する傾向にある。また、空燃比制御の実用域は空燃比12~18程度である。噴射量フィードバック制御の精度を高めるためには、目標空気過剰率に応じた発熱量の変化に基づいて理想発熱量Qtを補正することが望ましい。
 しかしながら、発熱量は、エンジン回転数NEや単位時間当たりの噴射量といった運転条件毎に大きく異なる(図6)。そのため、図6に示す関係をそのまま用いて理想発熱量Qtを補正しようとすれば、運転条件毎に補正量を適合する必要が生じる。また、ECU50のROM容量も多く必要になるという課題も生じる。
 次に、このような課題を解決する本実施形態の制御概要について図7を用いて説明する。図7は、図6と同じ運転条件において、空気過剰率λと発熱量比(ストイキ以外における発熱量/ストイキにおける発熱量)との関係を表した図である。発熱量比は空気過剰率λの2次関数で表される。図7に示す通り、運転条件によらず、空気過剰率λに対応する発熱量比は一意に定まる。そして、発熱量比は、空気過剰率λがストイキよりもリッチになるに従って大きくなり、リーンになるに従って小さくなる傾向がある。
 そこで、本実施形態のシステムでは、図7に示す空気過剰率λと発熱量比との関係に基づいて理想発熱量Qtを補正することとした。
(制御ルーチン)
 図8は、上述の機能を実現するために、ECU50が実行するサブルーチンのフローチャートである。このルーチンは、図3のステップ150の処理に換えて実行されるサブルーチンである。換言すれば、本実施形態の制御ルーチンは、図3のステップ150の処理が、図8のサブルーチンに置き換えられている点を除き、図3に示すルーチンと同様である。以下、本実施形態の制御ルーチンのうち、図3に示すステップと同一のステップについては、その説明を省略または簡略する。
 図8に示すサブルーチンは、図3に示すステップ140の処理後に実行される。このサブルーチンでは、まず、前回燃焼時の理想発熱量Qtが算出される(ステップ200)。具体的には、既に燃焼を終えた前回サイクルにおいて、適正な噴射量が噴射されればどれだけの発熱量を発生したかが算出される。ECU50には、エンジン回転数NEと筒内新気量KLとに応じた理想発熱量Qtを定めたマップが目標空気過剰率毎に記憶されている。理想発熱量Qtは筒内新気量KLの増大に伴い線形的に増大する。ECU50は、上記マップから前サイクルでのエンジン回転数NEと筒内新気量KLとに応じた理想発熱量Qtを取得する。
 次に、目標空気過剰率に基づいて理想発熱量Qtが補正される(ステップ210)。ECU50には、他のルーチンにおいてドライバビリティやエミッション等を好適に保つためになされる運転要求(リッチ要求やリーン要求)に応じた空気過剰率λの目標値(目標空気過剰率)を定めたマップが予め記憶されている。例えば、リッチ要求がなされると、目標空気過剰率は1より小さく(例えば、空気過剰率λ=0.9)設定される。リーン要求がなされると、目標空気過剰率は1より大きく(例えば、空気過剰率λ=1.1)設定される。また、ECU50には、上述した図7に示す関係マップが予め記憶されている。この関係マップから、目標空気過剰率に応じた発熱量比が取得される。ECU50は、取得した発熱量比を補正係数として理想発熱量Qtに乗じて新たな理想発熱量Qtとする。
 ステップ210の処理後、新たな理想発熱量Qtに基づいて図3のステップ160以降の処理が実行される。
 以上説明したように、図8に示すサブルーチンによれば、目標空気過剰率と発熱量比との関係に基づいて理想発熱量Qtを補正することができる。そのため、本実施形態のシステムによれば、触媒浄化ウィンドウに合わせた噴射量制御の精度を高めることができる。また、目標空気過剰率と発熱量比との関係によれば、燃料性状及び運転条件の影響を受けないロバスト性の高いシステムを実現することができる。さらに、本実施形態のシステムによれば、図7に示した単一の関係マップに基づいて理想発熱量Qtを補正することができるため、運転条件に応じた適合工数を大幅に削減することができる。加えて、ECU50のROM容量を大幅に削減することができる。
 尚、上述した実施の形態2においては、ECU50が、上記ステップ210の処理を実行することにより前記第3の発明における「目標空気過剰率設定手段」及び「補正手段」が、それぞれ実現されている。
実施の形態3.
[実施の形態3のシステム構成]
 次に、図9~図10を参照して本発明の実施の形態3について説明する。本実施形態のシステムは図1に示す構成において、ECU50に後述する図3及び図10のルーチンを実施させることで実現することができる。
[実施の形態3における特徴的制御]
 上述した実施の形態1では、燃料性状によらないで、実発熱量Qdをストイキ(空気過剰率λ=1)における理想発熱量Qtに一致させる噴射量フィードバック制御を実施している。ところで、エンジン10の制御においては、運転要求(燃費やエミッション等に関する要求)に応じて、スパークプラグ12の点火時期をMBT(Minimum Advance for Best Torque)から進角・遅角させる点火時期制御も行われる。
 発明者の知見によれば、点火時期をMBTから進角させると総発熱量は減少する。また、点火時期をMBTから遅角させると総発熱量は増大する。そのため、燃焼割合が50%となる燃焼時期(以下、単に50%燃焼点という。)における発熱量は、遅角側ほど高くなり進角側ほど低くなる。このように発熱量が点火時期の影響を受けるのは、燃焼重心位置によってHCの後燃え量が変化するためであると考えられる。噴射量フィードバック制御の精度を高めるためには、このような点火時期による発熱量への影響を鑑みて、理想発熱量Qtを補正することが望ましい。
 しかしながら、発熱量は、エンジン回転数NEや筒内新気量KLといった運転条件毎に大きく異なる。そのため、運転条件毎に理想発熱量Qtを補正しようとすれば、運転条件毎に補正量を適合する必要が生じる。また、ECU50のROM容量も多く必要になるという課題も生じる。
 次に、このような課題を解決する本実施形態の制御概要について図9を用いて説明する。本実施形態においては、MBTにおける50%燃焼点(以下、MBT50%燃焼点という。)が圧縮上死点後8CA(以下、ATDC8CAという。)であるものとする。図9は、MBT以外における50%燃焼点のATDC8CAからの偏差と、発熱量比(MBT以外における50%燃焼点の発熱量/MBT50%燃焼点の発熱量)との関係を表した図である。図9に示す通り、運転条件によらず、上述の偏差と発熱量比との関係は一意に定まる。また、発熱量比は、MBTよりも遅角するに従って大きくなり、MBTよりも進角するに従って小さくなる傾向がある。
 そこで、本実施形態のシステムでは、図9に示す50%燃焼点のATDC8CAからの偏差と発熱量比との関係に基づいて理想発熱量Qtを補正することとした。
(制御ルーチン)
 図10は、上述の機能を実現するために、ECU50が実行するサブルーチンのフローチャートである。このルーチンは、図3のステップ150の処理に換えて実行されるサブルーチンである。本実施形態の制御ルーチンは、図8のステップ210の処理後に、ステップ230が追加されている点を除き、図3及び図8に示すルーチンと同様である。以下、本実施形態の制御ルーチンのうち、図3及び図8に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
 図10に示すサブルーチンでは、ステップ210の処理後に、図9に示す50%燃焼点のATDC8CAからの偏差と発熱量比との関係に基づいて理想発熱量Qtを補正する(ステップ230)。具体的に説明する。ECU50には、他のルーチンにおいて運転要求(燃費やエミッション等に関する要求)に応じた50%燃焼点の目標値(以下、目標50%燃焼点という。)を定めたマップが予め記憶されている。このマップから運転条件に応じた50%燃焼点が取得され、目標50%燃焼点として設定される。そして、MBT50%燃焼点と目標50%燃焼点との偏差が算出される。さらに、ECU50には、上述した図9に示す関係マップが予め記憶されている。この関係マップから上記偏差に応じた発熱量比が取得される。ECU50は、取得した発熱量比を補正係数として理想発熱量Qtに乗じて新たな理想発熱量Qtとする。
 ステップ230の処理後、新たな理想発熱量Qtに基づいて図3のステップ160以降の処理が実行される。
 以上説明したように、図10に示すサブルーチンによれば、目標50%燃焼点のATDC8CAからの偏差と発熱量比との関係に基づいて理想発熱量Qtを補正することができる。そのため、本実施形態のシステムによれば、触媒浄化ウィンドウに合わせた噴射量制御の精度を高めることができる。また、目標50%燃焼点のATDC8CAからの偏差と発熱量比との関係によれば、燃料性状及び運転条件の影響を受けないロバスト性の高いシステムを実現することができる。さらに、本実施形態のシステムによれば、上述の実施の形態に比して発熱量への影響因子をさらに考慮したことによって、より精度高く理想発熱量Qtを補正でき、触媒浄化ウィンドウに合わせた適切な噴射量制御を実現することができる。
 また、本実施形態のシステムによれば、図9に示した単一の関係マップに基づいて理想発熱量Qtを補正することができるため、運転条件に応じた適合工数を大幅に削減することができる。さらに、ECU50のROM容量を大幅に削減することができる。
 ところで、上述した実施の形態3のシステムにおいては、ステップ230における理想発熱量Qtの補正を、ステップ210における理想発熱量Qtの補正と併用することとしているが、これに限定されるものではない。ステップ210の処理を行わず、ステップ230の処理のみ行うこととしても良い。なおこの点は以下の実施の形態でも同様である。
 また、上述した実施の形態3のシステムにおいては、図9に示す関係マップを、50%燃焼点を基準として定めることとしているが、燃焼点の基準はこれに限定されるものではない。任意の燃焼割合における燃焼点としてもよい。
 また、上述した実施の形態3のシステムにおいては、MBTにおける50%燃焼点を、ATDC8CAとしているが、この値はシステムによって異なるものであり、ATDC8CAに限定されるものではない。
 尚、上述した実施の形態3においては、ECU50が、上記ステップ230の処理を実行することにより前記第5の発明における「目標燃焼点設定手段」及び「補正手段」が、それぞれ実現されている。
実施の形態4.
[実施の形態4のシステム構成]
 次に、図11~図12を参照して本発明の実施の形態4について説明する。本実施形態のシステムは図1に示す構成において、ECU50に後述する図3及び図11のルーチンを実施させることで実現することができる。
[実施の形態4における特徴的制御]
 上述した実施の形態3では、運転要求に応じた目標50%燃焼点を定めて点火時期制御が行われる。しかしながら、点火時期制御の過程においては制御誤差が生じる。制御誤差が生じれば発熱量も変化することとなる。噴射量フィードバック制御の精度を高めるためには、このような制御誤差による発熱量への影響に鑑み、発熱量の変化分に応じて実発熱量Qdを補正することが望ましい。
 ところが、発熱量は、エンジン回転数NEや筒内新気量KLといった運転条件毎に大きく異なる。そのため、運転条件毎に実発熱量Qdを補正しようとすれば、運転条件毎に補正量を適合する必要が生じる。また、ECU50のROM容量も多く必要になるという課題も生じる。
 次に、このような課題を解決する本実施形態の制御概要について図11を用いて説明する。本実施形態においては、MBTにおける50%燃焼点(MBT50%燃焼点)が圧縮上死点後8CA(ATDC8CA)であるものとする。図11は、MBT以外における50%燃焼点のATDC8CAからの偏差と、発熱量比(MBT以外における50%燃焼点の発熱量/MBT50%燃焼点の発熱量)との関係を表した図である。図11に示す通り、運転条件によらず、上述の偏差と発熱量比との関係は一意に定まる。また、発熱量比は、MBTよりも遅角するに従って大きくなり、MBTよりも進角するに従って小さくなる傾向がある。
 図11に示すaは、目標50%燃焼点を示す。図11に示すbは、目標50%燃焼点に応じて点火時期制御を行った結果である現実の50%燃焼点(以下、実50%燃焼点という。)を示す。上述した通り、このような差は制御誤差により生じる。そこで、本実施形態のシステムでは、MBT50%燃焼点に対する目標50%燃焼点の発熱量比と、MBT50%燃焼点に対する実50%燃焼点の発熱量比との差に基づいて、実発熱量Qdを補正することとした。
(制御ルーチン)
 図12は、上述の機能を実現するために、ECU50が実行するサブルーチンのフローチャートである。このルーチンは、図3のステップ150の処理に換えて実行されるサブルーチンである。本実施形態の制御ルーチンは、図10のステップ230の処理後に、ステップ260が追加されている点を除き、図3及び図10に示すルーチンと同様である。以下、本実施形態の制御ルーチンのうち、図3及び図10に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
 図12に示すサブルーチンでは、ステップ230の処理後に、図11に示す目標50%燃焼点及び実50%燃焼点のATDC8CAからの偏差と発熱量比との関係に基づいて実発熱量Qdを補正する(ステップ260)。具体的に説明する。まず、実50%燃焼点として、前回サイクルにおける総発熱量の半分となるクランク角が算出される。そして、MBT50%燃焼点と実50%燃焼点との偏差が算出される。ECU50には、上述した図11に示す関係マップが予め記憶されている。この関係マップから偏差に応じた発熱量比(以下、実50%燃焼点発熱量比という。)が取得される。
 また、ECU50には、他のルーチンにおいて運転要求に応じた目標50%燃焼点を定めたマップが予め記憶されている。このマップから前回サイクルの運転条件に応じた目標50%燃焼点が設定される。次に、MBT50%燃焼点と目標50%燃焼点との偏差が算出される。その後、図11に示す関係マップから偏差に応じた発熱量比(以下、目標50%燃焼点発熱量比という。)が取得される。
 その後、目標50%燃焼点発熱量比と実50%燃焼点発熱量比との差から、目標50%燃焼点に対する実50%燃焼点の発熱量比が求められる。ECU50は、求めた発熱量比を補正係数として実発熱量Qdに乗じて新たな実発熱量Qdとする。
 ステップ260の処理後、新たな実発熱量Qdに基づいて図3のステップ160以降の処理が実行される。
 以上説明したように、図12に示すサブルーチンによれば、目標50%燃焼点及び実50%燃焼点のATDC8CAからの偏差と発熱量比との関係に基づいて実発熱量Qdを補正することができる。そのため、本実施形態のシステムによれば、触媒浄化ウィンドウに合わせた噴射量制御の精度を高めることができる。また、発熱量比との関係によれば、燃料性状及び運転条件の影響を受けないロバスト性の高いシステムを実現することができる。さらに、本実施形態のシステムによれば、制御誤差に起因する発熱量の変化分に応じて精度高く実発熱量Qdを補正でき、触媒浄化ウィンドウに合わせた適切な噴射量制御を実現することができる。
 また、本実施形態のシステムによれば、図12に示した単一の関係マップに基づいて実発熱量Qdを補正することができるため、運転条件に応じた適合工数を大幅に削減することができる。さらに、ECU50のROM容量を大幅に削減することができる。
 ところで、上述した実施の形態4のシステムにおいては、ステップ260における実発熱量Qdの補正を、ステップ210及び230における理想発熱量Qtの補正と併用することとしているが、これに限定されるものではない。ステップ260の処理のみ又は各ステップの処理と組み合わせることとしても良い。なお、この点は以下の実施の形態でも同様である。
 尚、上述した実施の形態4においては、ECU50が、上記ステップ260の処理を実行することにより前記第8の発明における「目標燃焼点設定手段」と「実燃焼点算出手段」と「実発熱量補正手段」が、それぞれ実現されている。
実施の形態5.
[実施の形態5のシステム構成]
 次に、図13~図14を参照して本発明の実施の形態5について説明する。本実施形態のシステムには、上述した図1の構成に、エンジン10の水温を検出する水温センサ44が加えられている。水温センサ44は、ECU50の入力部に接続されている。そして、本実施形態のシステムは、ECU50に後述する図3及び図14のルーチンを実施させることで実現することができる。
[実施の形態5における特徴的制御]
 上述した実施の形態1では、燃料性状によらないで、実発熱量Qdをストイキ(空気過剰率λ=1)における理想発熱量Qtに一致させる噴射量フィードバック制御を実施している。ところで、発熱量は、水温(シリンダ壁温)による冷却損失の違いによっても変化する。噴射量フィードバック制御の精度を高めるためには、このような影響を鑑みて理想発熱量Qtを補正することが望ましい。
 図13は、水温と発熱量補正係数との関係を表した図である。完全暖機状態(例えば、80℃)における発熱量補正係数は1である。また、発熱量補正係数は、運転条件によって変更されるものではなく水温のみよって定まるものである。さらに、発熱量補正係数は、水温が完全暖機状態よりも低いほど小さくなり、完全暖機状態よりも高いほど大きくなる傾向がある。本実施形態のシステムでは、図13に示す水温と発熱量補正係数との関係に基づいて理想発熱量Qtを補正することとした。具体的には、水温が低いほど理想発熱量Qtを減少補正することとした。
(制御ルーチン)
 図14は、上述の機能を実現するために、ECU50が実行するサブルーチンのフローチャートである。このルーチンは、図3のステップ150の処理に換えて実行されるサブルーチンである。本実施形態の制御ルーチンは、図12のステップ210の処理後に、ステップ220が追加されている点を除き、図3及び図12に示すルーチンと同様である。以下、本実施形態の制御ルーチンのうち、図3及び図12に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
 図14に示すサブルーチンでは、ステップ210の処理後に、図13に示す水温と発熱量補正係数との関係に基づいて理想発熱量Qtを補正する(ステップ220)。まず、水温センサ44により水温が検出される。ECU50には、上述した図13に示す関係マップが予め記憶されている。この関係マップから、水温に応じた発熱量補正係数が取得される。ECU50は、取得した発熱量補正係数を理想発熱量Qtに乗じて新たな理想発熱量Qtとする。
 ステップ260の処理後、新たな理想発熱量Qtに基づいて図3のステップ160以降の処理が実行される。
 以上説明したように、図14に示すサブルーチンによれば、水温と発熱量補正係数との関係に基づいて理想発熱量Qtを補正することができる。そのため、本実施形態のシステムによれば、触媒浄化ウィンドウに合わせた噴射量制御の精度を高めることができる。また、発熱量補正係数は水温のみをパラメータとして定まるため、運転条件に応じた適合工数を大幅に削減することができる。さらに、ECU50のROM容量を大幅に削減することができる。
 ところで、上述した実施の形態5のシステムにおいては、ステップ220における理想発熱量Qtの補正を、ステップ210、230における理想発熱量Qtの補正、及びステップ260における実発熱量Qdの補正と併用することとしているが、これに限定されるものではない。ステップ220の処理のみ又は各ステップの処理と組み合わせることとしても良い。なお、この点は以下の実施の形態でも同様である。
 尚、上述した実施の形態5においては、水温センサ44が前記第4の発明における「水温検出手段」に相当している。また、ここでは、ECU50が、上記ステップ220の処理を実行することにより前記第4の発明における「補正手段」が実現されている。
実施の形態6.
[実施の形態6のシステム構成]
 次に、図15~図18を参照して本発明の実施の形態6について説明する。本実施形態のシステムは図1に示す構成において、ECU50に後述する図3及び図15のルーチンを実施させることで実現することができる。
[実施の形態6における特徴的制御]
 上述した実施の形態1では、燃料性状が異なってもストイキにおける発熱量比の違いは僅かである点に着目して(図2)、実発熱量Qdをストイキにおける理想発熱量Qtに一致させる噴射量フィードバック制御を実施している。ここで、燃料性状による気化潜熱の違い等に起因する発熱量比の違いも踏まえて、理想発熱量Qtを補正できれば更に望ましい。そこで、本実施形態のシステムでは、燃料性状による発熱量比の違いに基づいて理想発熱量Qtを補正することとした。
(制御ルーチン)
 図15は、上述の機能を実現するために、ECU50が実行するサブルーチンのフローチャートである。このルーチンは、図3のステップ150の処理に換えて実行されるサブルーチンである。本実施形態の制御ルーチンは、図14のステップ230の処理後に、ステップ240が追加されている点を除き、図3及び図14に示すルーチンと同様である。以下、本実施形態の制御ルーチンのうち、図3及び図14に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
 図15に示すサブルーチンでは、ステップ210の処理後に、燃料性状によって理想発熱量Qtを補正する(ステップ240)。以下、ステップ240における処理を3段階に分けて説明する。
 まず、第1段階の処理について説明する。図16は、空気過剰率λと発熱量/噴射量のストイキ比との関係を表した図である。ECU50には、図16に示す関係マップが記憶されている。上述した通り、発熱量/噴射量(発熱効率)は、リッチ側ほど低下する傾向がある(図21)。また、ストイキ比によれば運転条件の影響を受けない。この関係マップから目標空気過剰率に応じた発熱量/噴射量のストイキ比が取得される。取得したストイキ比の逆数を発熱量に乗じて発熱量を補正する。この処理により、低位発熱量の変化分を予め補正することができる。
 次に、第2段階の処理について説明する。図17は、噴射時間/発熱量とエタノール濃度との関係を表した図である。ECU50には、図17に示す関係マップが記憶されている。噴射時間は噴射量に相当し、インジェクタ14の制御値から算出される。この関係マップから、第1段階で補正した発熱量に基づいて、発熱量/噴射時間に応じたエタノール濃度が取得される。なお、過去所定サイクル数における発熱量と噴射量とに基づくことが望ましい。
 続いて、第3段階の処理について説明する。図18は、エタノール濃度と発熱量補正比との関係を表した図である。発熱量補正比は、図2におけるストイキにおける発熱量比に対応している。図18は、上述した図2と同様の傾向を有しているため、その説明は省略する。ECU50には、図18に示す関係マップが記憶されている。この関係マップから、第2段階で取得したエタノール濃度に応じた発熱量補正値が取得される。その後、ECU50は、発熱量補正値を理想発熱量Qtに乗じて新たな理想発熱量Qtとする。
 ステップ260の処理後、新たな理想発熱量Qtに基づいて図3のステップ160以降の処理が実行される。
 以上説明したように、図15に示すサブルーチンによれば、目標空気過剰率の変化に応じた、低位発熱量の変化分を予め補正した上で、燃料性状を判定することでより精度の高い燃料性状検出ができる。その結果、精度高く理想発熱量Qtを補正し、触媒浄化ウィンドウに合わせた適切な噴射量制御を実現することができる。
 ところで、上述した実施の形態6のシステムにおいては、ステップ240における理想発熱量Qtの補正を、ステップ210~230における理想発熱量Qtの補正、及びステップ260における実発熱量Qdの補正と併用することとしているが、これに限定されるものではない。ステップ240の処理のみ又は各ステップの処理と組み合わせることとしても良い。なお、この点は以下の実施の形態でも同様である。
 尚、上述した実施の形態6においては、ECU50が、上記ステップ240の処理を実行することにより前記第6の発明における「アルコール濃度取得手段」と「補正手段」が、それぞれ実現されている。
実施の形態7.
[実施の形態7のシステム構成]
 次に、図19~図20を参照して本発明の実施の形態6について説明する。本実施形態のシステムは図1に示す構成において、ECU50に後述する図3及び図20のルーチンを実施させることで実現することができる。
[実施の形態7における特徴的制御]
 上述した実施の形態1では、燃料性状によらないで、実発熱量Qdをストイキ(空気過剰率λ=1)における理想発熱量Qtに一致させる噴射量フィードバック制御を実施している。ところで、発熱量は、EGRガスの増加により比熱比が上昇し冷却損失が低下することによっても変化する。噴射量フィードバック制御の精度を高めるためには、このような影響を鑑みて理想発熱量Qtを補正することが望ましい。
 図19は、EGR率と発熱量変化比率との関係を表した図である。図19に示すように、運転条件によらず、EGR率の増大に伴って発熱量変化増加率も線形的に増大する傾向がある。例えば、EGR率20%に対して発熱量は4%増加する。そこで、本実施形態のシステムでは、図19に示すEGR率と発熱量変化比率との関係に基づいて理想発熱量Qtを補正することとした。具体的には、EGR率が高いほど理想発熱量Qtを増大補正することとした。
(制御ルーチン)
 図20は、上述の機能を実現するために、ECU50が実行するサブルーチンのフローチャートである。このルーチンは、図3のステップ150の処理に換えて実行されるサブルーチンである。本実施形態の制御ルーチンは、図15のステップ240の処理後に、ステップ250が追加されている点を除き、図3及び図15に示すルーチンと同様である。以下、本実施形態の制御ルーチンのうち、図3及び図15に示すステップと同一のステップについては、同一の符号を付してその説明を省略または簡略する。
 図20に示すサブルーチンでは、ステップ210の処理後に、図19に示すEGR率と発熱量変化比率との関係に基づいて理想発熱量Qtを補正する(ステップ250)。ECU50には、上述した図19に示す関係マップが予め記憶されている。ステップ210では、この関係マップから、ステップ100において算出されたEGR率に応じた発熱量変化比率が取得される。ECU50は、取得した発熱量変化比率を理想発熱量Qtに乗じて新たな理想発熱量Qtとする。
 ステップ260の処理後、新たな理想発熱量Qtに基づいて図3のステップ160以降の処理が実行される。
 以上説明したように、図14に示すサブルーチンによれば、EGR率と噴射量変化比率との関係に基づいて理想発熱量Qtを補正することができる。発熱量変化比率はEGR率のみをパラメータとして定まるため、運転条件の影響を受けないロバスト性の高いシステムを実現することができる。また、本実施形態のシステムによれば、発熱量への影響因子を全て想定することによって触媒浄化ウィンドウに合わせた適切な噴射量制御を実現することができる。
 ところで、上述した実施の形態7のシステムにおいては、ステップ250における理想発熱量Qtの補正を、ステップ210~240における理想発熱量Qtの補正、及びステップ260における実発熱量Qdの補正と併用することとしているが、これに限定されるものではない。ステップ250の処理のみ又は各ステップの処理と組み合わせることとしても良い。なお、この点は以下の実施の形態でも同様である。
 尚、上述した実施の形態7においては、ECU50が、上記ステップ100の処理を実行することにより前記第7の発明における「EGR率取得手段」が、上記ステップ250の処理を実行することにより前記第7の発明における「補正手段」が、それぞれ実現されている。

Claims (8)

  1.  筒内圧を検出する筒内圧センサと、
     前記筒内圧センサにより検出された筒内圧に基づいて筒内新気量を算出する筒内新気量算出手段と、
     前記筒内圧センサにより検出された筒内圧に基づいて実発熱量を算出する実発熱量算出手段と、
     前記筒内新気量算出手段により算出された筒内新気量から所定の空気過剰率における目標発熱量を算出する目標発熱量算出手段と、
     前記実発熱量算出手段により算出された実発熱量が前記目標発熱量と一致するように、該実発熱量と前記目標発熱量との比較値を燃料噴射量にフィードバックするフィードバック手段と、
     を備えることを特徴とする内燃機関の制御装置。
  2.  前記実発熱量は、燃焼開始から排気バルブが開くまでの期間内における最大値であること、を特徴とする請求項1記載の内燃機関の制御装置。
  3.  運転要求に基づいて目標空気過剰率を設定する目標空気過剰率設定手段と、
     前記目標発熱量を、前記所定の空気過剰率における発熱量と前記目標空気過剰率における発熱量との発熱量比に基づいて補正する補正手段と、
     を備えることを特徴とする請求項1又は2記載の内燃機関の制御装置。
  4.  水温を検出する水温検出手段と、
     前記目標発熱量を、前記水温検出手段により検出された水温が低いほど減少補正する補正手段と、
     を備えることを特徴とする請求項1乃至3のいずれか1項記載の内燃機関の制御装置。
  5.  点火時期に基づいて燃焼割合が所定割合となる目標燃焼点を設定する目標燃焼点設定手段と、
     前記目標発熱量を、MBTでの燃焼割合が前記所定割合となる燃焼点(以下、MBT燃焼点と記す。)における発熱量と、前記目標燃焼点における発熱量との発熱量比に基づいて補正する補正手段と、
     を備えることを特徴とする請求項1乃至4のいずれか1項記載の内燃機関の制御装置。
  6.  前記実発熱量算出手段により算出された実発熱量を得るために要した燃料噴射量と、該実発熱量とに基づいて燃料中のアルコール濃度を取得するアルコール濃度取得手段と、
     前記目標発熱量を、前記アルコール濃度取得手段により取得されたアルコール濃度が高いほど減少補正する補正手段と、
     を備えることを特徴とする請求項1乃至5のいずれか1項記載の内燃機関の制御装置。
  7.  EGR率を取得するEGR率取得手段と、
     前記目標発熱量を、前記EGR率取得手段により取得されたEGR率が高いほど増大補正する補正手段と、
     を備えることを特徴とする請求項1乃至6のいずれか1項記載の内燃機関の制御装置。
  8.  点火時期に基づいて燃焼割合が前記所定割合となる目標燃焼点を設定する目標燃焼点設定手段と、
     前記点火時期における燃焼割合が前記所定割合となる実燃焼点を算出する実燃焼点算出手段と、
     前記実発熱量を、MBT燃焼点に対する前記目標燃焼点の発熱量比と、MBT燃焼点に対する前記実燃焼点の発熱量比との差に基づいて補正する実発熱量補正手段と、
     を備えることを特徴とする請求項1乃至7のいずれか1項記載の内燃機関の制御装置。
PCT/JP2010/057900 2010-05-10 2010-05-10 内燃機関の制御装置 WO2011141989A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012514621A JP5282849B2 (ja) 2010-05-10 2010-05-10 内燃機関の制御装置
CN201080066752.8A CN102893002B (zh) 2010-05-10 2010-05-10 内燃机的控制装置
EP10851372.2A EP2570639B1 (en) 2010-05-10 2010-05-10 Control device for an internal combustion engine
US13/640,600 US9416738B2 (en) 2010-05-10 2010-05-10 Internal combustion engine control device for carrying out injection amount feedback control
PCT/JP2010/057900 WO2011141989A1 (ja) 2010-05-10 2010-05-10 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057900 WO2011141989A1 (ja) 2010-05-10 2010-05-10 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2011141989A1 true WO2011141989A1 (ja) 2011-11-17

Family

ID=44914058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057900 WO2011141989A1 (ja) 2010-05-10 2010-05-10 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US9416738B2 (ja)
EP (1) EP2570639B1 (ja)
JP (1) JP5282849B2 (ja)
CN (1) CN102893002B (ja)
WO (1) WO2011141989A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060071A1 (de) * 2012-10-15 2014-04-24 Mtu Friedrichshafen Gmbh Verfahren zum betreiben eines hubkolben-verbrennungsmotors
JP2017219005A (ja) * 2016-06-09 2017-12-14 トヨタ自動車株式会社 内燃機関の制御装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5548114B2 (ja) * 2010-12-24 2014-07-16 川崎重工業株式会社 内燃機関の空燃比制御装置及び空燃比制御方法
DE102013202038B3 (de) * 2013-02-07 2013-07-25 Mtu Friedrichshafen Gmbh Verfahren zur Korrektur einer mittels einer Brennstoffeinspritzvorrichtung eingespritzten Brennstoffmenge im Betrieb einer Brennkraftmaschine
JP5861666B2 (ja) * 2013-05-30 2016-02-16 トヨタ自動車株式会社 内燃機関の制御装置
JP6488113B2 (ja) * 2014-11-28 2019-03-20 日立オートモティブシステムズ株式会社 内燃機関の制御装置
WO2016104186A1 (ja) * 2014-12-24 2016-06-30 株式会社ケーヒン 内燃機関制御装置
JP6237659B2 (ja) * 2015-01-21 2017-11-29 トヨタ自動車株式会社 火花点火式内燃機関の制御装置
US9593629B2 (en) 2015-03-05 2017-03-14 Caterpillar Inc. Method and system for controlling an air-fuel ratio in an engine using a fuel source with an unknown composition
CN106401759B (zh) * 2015-07-27 2019-04-02 长城汽车股份有限公司 双燃料发动机的控制方法、系统及具有该系统的车辆
US10584653B2 (en) * 2017-11-27 2020-03-10 Innio Jenbacher Gmbh & Co Og Systems and methods for spark timing retardation
EP4348022A1 (en) * 2021-06-04 2024-04-10 Cummins, Inc. Adjusting an internal combustion engine
CN114458458B (zh) * 2022-03-10 2023-01-24 潍柴动力股份有限公司 一种发动机控制方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228642A (ja) * 1986-03-31 1987-10-07 Toyota Motor Corp 筒内直接噴射式内燃機関
JPH09291825A (ja) * 1996-02-26 1997-11-11 Hiroyasu Tanigawa ピストンサイクルのエネルギ変換方法及びその装置
JP2000265873A (ja) * 1999-03-12 2000-09-26 Nissan Motor Co Ltd 内燃機関の燃焼制御装置
JP2005023850A (ja) 2003-07-02 2005-01-27 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2005207407A (ja) * 2003-12-25 2005-08-04 Toyota Motor Corp 内燃機関の制御装置および制御方法
JP2006097588A (ja) 2004-09-29 2006-04-13 Toyota Motor Corp 内燃機関の制御装置および空燃比算出方法
JP2006144643A (ja) 2004-11-18 2006-06-08 Toyota Motor Corp 内燃機関の制御装置および空燃比算出方法
JP2008169717A (ja) * 2007-01-10 2008-07-24 Denso Corp エンジン制御装置
JP2009013922A (ja) * 2007-07-06 2009-01-22 Mitsubishi Electric Corp 内燃機関の制御装置
JP2009138556A (ja) * 2007-12-04 2009-06-25 Toyota Motor Corp フレキシブル燃料機関の燃料濃度の推定装置及び推定方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03164555A (ja) * 1989-11-21 1991-07-16 Mitsubishi Electric Corp 内燃機関制御装置
JP3237316B2 (ja) * 1993-06-28 2001-12-10 三菱電機株式会社 エンジン制御装置
CN1077212C (zh) * 1996-07-02 2002-01-02 三菱自动车工业株式会社 缸内喷射内燃机用废气加热系统
US6994077B2 (en) * 2002-09-09 2006-02-07 Toyota Jidosha Kabushiki Kaisha Control system for internal combustion engine
JP4353078B2 (ja) * 2004-11-18 2009-10-28 トヨタ自動車株式会社 内燃機関の制御装置および制御方法
JP2007113396A (ja) * 2005-10-18 2007-05-10 Denso Corp 内燃機関の燃焼状態判定装置
US7159568B1 (en) * 2005-11-30 2007-01-09 Ford Global Technologies, Llc System and method for engine starting
JP2007297992A (ja) * 2006-05-01 2007-11-15 Toyota Motor Corp 内燃機関の制御装置
JP4314585B2 (ja) * 2006-06-16 2009-08-19 株式会社デンソー 内燃機関の制御装置
JP4315196B2 (ja) * 2006-12-21 2009-08-19 トヨタ自動車株式会社 内燃機関の制御装置
US7788017B2 (en) * 2006-12-27 2010-08-31 Denso Corporation Engine control, fuel property detection and determination apparatus, and method for the same
JP4882787B2 (ja) * 2007-02-19 2012-02-22 トヨタ自動車株式会社 内燃機関の制御装置
JP4784868B2 (ja) * 2007-03-02 2011-10-05 トヨタ自動車株式会社 内燃機関の制御装置
JP2008274883A (ja) * 2007-05-01 2008-11-13 Toyota Motor Corp 内燃機関の制御装置
JP2009091944A (ja) * 2007-10-05 2009-04-30 Denso Corp 内燃機関の制御装置及び制御システム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228642A (ja) * 1986-03-31 1987-10-07 Toyota Motor Corp 筒内直接噴射式内燃機関
JPH09291825A (ja) * 1996-02-26 1997-11-11 Hiroyasu Tanigawa ピストンサイクルのエネルギ変換方法及びその装置
JP2000265873A (ja) * 1999-03-12 2000-09-26 Nissan Motor Co Ltd 内燃機関の燃焼制御装置
JP2005023850A (ja) 2003-07-02 2005-01-27 Toyota Motor Corp 内燃機関の空燃比制御装置
JP2005207407A (ja) * 2003-12-25 2005-08-04 Toyota Motor Corp 内燃機関の制御装置および制御方法
JP2006097588A (ja) 2004-09-29 2006-04-13 Toyota Motor Corp 内燃機関の制御装置および空燃比算出方法
JP2006144643A (ja) 2004-11-18 2006-06-08 Toyota Motor Corp 内燃機関の制御装置および空燃比算出方法
JP2008169717A (ja) * 2007-01-10 2008-07-24 Denso Corp エンジン制御装置
JP2009013922A (ja) * 2007-07-06 2009-01-22 Mitsubishi Electric Corp 内燃機関の制御装置
JP2009138556A (ja) * 2007-12-04 2009-06-25 Toyota Motor Corp フレキシブル燃料機関の燃料濃度の推定装置及び推定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014060071A1 (de) * 2012-10-15 2014-04-24 Mtu Friedrichshafen Gmbh Verfahren zum betreiben eines hubkolben-verbrennungsmotors
JP2017219005A (ja) * 2016-06-09 2017-12-14 トヨタ自動車株式会社 内燃機関の制御装置

Also Published As

Publication number Publication date
EP2570639B1 (en) 2019-04-17
US20130046451A1 (en) 2013-02-21
EP2570639A1 (en) 2013-03-20
EP2570639A4 (en) 2015-06-17
CN102893002A (zh) 2013-01-23
CN102893002B (zh) 2015-07-22
US9416738B2 (en) 2016-08-16
JP5282849B2 (ja) 2013-09-04
JPWO2011141989A1 (ja) 2013-07-22

Similar Documents

Publication Publication Date Title
JP5282849B2 (ja) 内燃機関の制御装置
US10196999B2 (en) Method and system for pre-ignition control
JP4484085B2 (ja) エンジンの制御装置
JP2007120392A (ja) 内燃機関の空燃比制御装置
US8695568B2 (en) Inter-cylinder air-fuel ratio imbalance abnormality determination device
US10876484B2 (en) Methods and systems for engine fuel and torque control
US20130197786A1 (en) Control apparatus and control method for multi-cylinder internal combustion engine
US9279377B2 (en) Air-fuel ratio imbalance determination apparatus and air-fuel ratio imbalance determination method
US7178494B2 (en) Variable valve timing controller for internal combustion engine
JP4605060B2 (ja) 内燃機関の制御装置
US20110213544A1 (en) Fuel injection controller for internal combustion engine
JP2007231883A (ja) 内燃機関の空燃比制御装置
JP5910651B2 (ja) 内燃機関の空燃比検出装置
WO2010113331A1 (ja) 内燃機関用燃料のアルコール濃度対応値取得装置
JP4475207B2 (ja) 内燃機関の制御装置
US20110100344A1 (en) Vehicle and vehicle control method
JP4792453B2 (ja) 吸入空気量検出装置
JP5187537B2 (ja) 内燃機関の燃料噴射制御装置
US8239117B2 (en) Method and device for operating an internal combustion engine
JP5310102B2 (ja) 内燃機関の制御装置
US20090105931A1 (en) Controller for internal combustion engine
JP2007092645A (ja) 内燃機関の制御装置
JP2012180817A (ja) 内燃機関の空燃比算出装置
CN109899169B (zh) 内燃机的燃料喷射控制装置和内燃机的控制方法
JP4888397B2 (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066752.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851372

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012514621

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13640600

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010851372

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE