WO2011138827A1 - 電源制御システム - Google Patents

電源制御システム Download PDF

Info

Publication number
WO2011138827A1
WO2011138827A1 PCT/JP2010/057764 JP2010057764W WO2011138827A1 WO 2011138827 A1 WO2011138827 A1 WO 2011138827A1 JP 2010057764 W JP2010057764 W JP 2010057764W WO 2011138827 A1 WO2011138827 A1 WO 2011138827A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
temperature
control
converter
power supply
Prior art date
Application number
PCT/JP2010/057764
Other languages
English (en)
French (fr)
Inventor
成 北澤
芳和 大野
拓也 上野
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/057764 priority Critical patent/WO2011138827A1/ja
Publication of WO2011138827A1 publication Critical patent/WO2011138827A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • the present invention relates to a power supply control system, and more particularly to a power supply control system including an inverter control board mounting component for controlling an inverter circuit.
  • Examples of a power supply circuit that handles AC power and DC power include a voltage converter such as a boost converter that performs DC voltage conversion, a DC / DC converter, an inverter circuit that performs conversion between DC power and AC power, and the like. Since these devices can cause overheating, overvoltage, overcurrent, etc., respectively, due to their operation, various protection devices have been devised so as not to cause damage.
  • a voltage converter such as a boost converter that performs DC voltage conversion, a DC / DC converter, an inverter circuit that performs conversion between DC power and AC power, and the like. Since these devices can cause overheating, overvoltage, overcurrent, etc., respectively, due to their operation, various protection devices have been devised so as not to cause damage.
  • Patent Document 1 in an AC power supply system using a solar cell as an example, a power generation voltage and a power generation current are detected in order to make maximum use of the power generation output regardless of variations in solar radiation. It is disclosed that control of output is performed, and it is disclosed that under such control, the operation of the inverter is controlled so that the output voltage of the inverter does not exceed the maximum allowable voltage of the induction motor as a load. Yes.
  • Patent Document 2 for an inverter circuit device provided with a temperature detection circuit, a thermistor is provided on a wiring board for heat radiation of aluminum to which a switching element and a driver circuit constituting the inverter circuit are attached. Accordingly, it is described that a pulse wave-modulated rectangular wave is controlled and a motor current corresponding to a change in temperature is supplied to the motor.
  • Patent Document 3 as a rotating electrical machine control system, a temperature sensor such as a thermistor or a diode is provided for each switching element of an inverter that drives the rotating electrical machine. When a predetermined temperature is exceeded, rectangular wave control is performed from pulse width modulation control. It is stated to switch to.
  • Patent Document 4 discloses a power supply system in which a generator converts braking energy into electrical energy to charge a capacitor, and the charged power is charged to the battery via a step-up / down circuit. It is described that the output of the step-up / step-down circuit is restricted based on the voltage between both ends of the circuit to suppress the heat generation of the step-up / down circuit. An embodiment in which the output of the step-up / step-down circuit is limited using temperature detection of a temperature sensor provided in the vicinity of the step-up / step-down circuit is also described.
  • Patent Document 5 as a method for overheating protection of a switching element in an inverter device, a loss of the switching element is obtained based on an output current, a control rate, and an output frequency of the inverter device, and this is referred to as a transient thermal impedance of the switching element. It is described that the switching element junction temperature is obtained based on this, and the output current of the inverter device is controlled so that this value does not exceed the set temperature.
  • Patent Document 6 in a DC-DC converter device that performs step-down between a high-voltage battery and a low-voltage battery that is an auxiliary battery, if the temperature detected by the temperature sensor is in an overheated region, DC -It is stated that the output current limitation and the output voltage limitation of the DC converter device are performed to suppress overheating of the semiconductor power switching element of the DC-DC converter device.
  • an inverter control circuit for controlling the inverter circuit is configured by mounting components such as a control IC, a photocoupler, a transformer, and a capacitor on a control board. Since these components are related to the control of the inverter circuit, the influence is great if damage or the like occurs. However, the control board itself may not take up a large space, and it is not easy to take protective measures one by one for each component. Thus, the problem remains about protection of the components mounted in an inverter control circuit.
  • An object of the present invention is to provide a power supply control system that enables protection of components mounted on an inverter control board.
  • a power supply control system is connected to a high voltage power supply circuit including a high voltage power storage device and an inverter circuit, a low voltage power storage device, and a low voltage power storage device.
  • a DC / DC converter stepped down to an auxiliary machine voltage, an inverter control board on which an inverter circuit control part that operates with the auxiliary machine voltage is mounted, a temperature acquisition unit that acquires a control board temperature that is a temperature of the inverter control board, and DC A control unit that controls the operation of the DC / DC converter, and the control unit limits the output voltage of the DC / DC converter when the control substrate temperature is equal to or higher than a predetermined threshold temperature, and controls the inverter circuit control component. It has an output limiting means for suppressing self-heating.
  • control unit does not limit the output voltage of the DC / DC converter when the voltage between the terminals of the low-voltage power storage device is lower than a predetermined threshold voltage.
  • the temperature acquisition unit estimates and acquires the control substrate temperature based on the refrigerant temperature for cooling the inverter circuit.
  • the temperature acquisition unit estimates and acquires the control board temperature based on the magnitude of the output current of the inverter circuit.
  • the temperature acquisition unit estimates and acquires the control board temperature based on the magnitude of the output current of the high-voltage power storage device.
  • the power supply control system acquires the control board temperature, which is the temperature of the inverter control board on which the inverter circuit control parts that operate with the auxiliary machine voltage are mounted, and the control board temperature is equal to or higher than a predetermined threshold temperature.
  • the output voltage of the DC / DC converter is limited to suppress self-heating of the inverter circuit control component. As a result, it is possible to protect the control board mounted components for controlling the inverter circuit.
  • the output voltage of the DC / DC converter is not limited. If the output of the DC / DC converter is limited too much, the burden on the low-voltage power storage device that supplies power for general electrical equipment that operates with auxiliary voltage increases, and this affects other electrical equipment that operates with auxiliary voltage. obtain. According to the above configuration, when the voltage between the terminals of the low-voltage power storage device is less than the threshold voltage, the output of the DC / DC converter is not limited. It is possible to balance the balance with the operation of.
  • the control board temperature is estimated based on the refrigerant temperature that cools the inverter circuit.
  • the control board temperature is estimated based on the magnitude of the output current of the inverter circuit.
  • the control board temperature is estimated based on the magnitude of the output current of the high voltage power storage device. Since the control board does not take up much space as described above, it may not be easy to provide a temperature sensor for detecting the control board temperature. According to the above configuration, since the control substrate temperature can be estimated without using the control substrate temperature detection sensor, it is possible to control the output restriction of the DC / DC converter based on these.
  • FIG. 4 is a flowchart illustrating a procedure for limiting an output voltage of a DC / DC converter in the power supply control system according to the embodiment of the present invention. It is a figure explaining the mode of the output voltage control of the DC / DC converter in the normal time in the power supply control system of embodiment which concerns on this invention. It is a figure explaining the mode of output voltage restriction of a DC / DC converter when the control board temperature becomes high temperature in the power supply control system of an embodiment concerning the present invention.
  • FIG. 9 is a diagram illustrating the relationship between the temperature of the refrigerant that cools the inverter housing and the output voltage of the DC / DC converter in FIG. 8. It is a figure explaining a mode that output voltage restriction of a DC / DC converter is performed based on an inverter output current in a power supply control system of an embodiment concerning the present invention.
  • FIG. 11 is a diagram for explaining a relationship between an inverter output current integrated value and an output voltage of a DC / DC converter with respect to FIG. 10. It is a figure explaining a mode that the output voltage restriction
  • the power supply system will be described as including a high-voltage power storage device, a voltage converter, an inverter circuit, a DC / DC converter, and a low-voltage power storage device.
  • a high-voltage power storage device a voltage converter
  • an inverter circuit a DC / DC converter
  • a low-voltage power storage device a low-voltage power storage device
  • control ICs, photocouplers, transformers, and capacitors will be described as control board mounting components for inverter circuits. Of course, these are merely examples for explanation, and other circuit components may be mounted. Good.
  • the temperature, voltage, etc. described below are examples for explanation, and can be appropriately changed according to the specifications of the power supply system.
  • FIG. 1 is a diagram for explaining the configuration of the power supply control system 10.
  • the power supply control system 10 controls a power supply system mounted on a hybrid vehicle.
  • the power supply control system 10 is not a component of the power supply control system 10, but a rotating electrical machine 6 as a load that operates at a high voltage,
  • the other auxiliary machine 8 is shown as a load operating at low voltage.
  • the rotating electrical machine 6 operates at a high voltage, and is a motor / generator (M / G) mounted on the vehicle.
  • M / G motor / generator
  • the rotating electrical machine 6 functions as a motor and is driven by an engine (not shown).
  • This is a three-phase synchronous rotating electric machine that functions as a generator when driving or braking a vehicle.
  • the rotating electrical machine 6 functions as a motor by AC power supplied from the power supply circuit side during power running of the vehicle. During braking, it functions as a generator to collect regenerative energy and supply it to the power supply circuit side.
  • auxiliary machine 8 is a general term for devices other than components mounted on the control board 20 among devices operating at a low voltage.
  • the auxiliary machine 8 includes an ECU (Electroc Control Unit) and the like.
  • the power supply control system 10 broadly includes a control device 60 and a power supply system to be controlled.
  • the elements other than the rotating electric machine 6, the other auxiliary machine 8, and the control device 60 constitute a power supply system.
  • the power supply system includes a high voltage power storage device 12, an inverter unit 14, a DC / DC converter 50, and a low voltage power storage device 26 shown as an auxiliary battery in FIG.
  • the control board 20 for controlling the inverter unit 14 and the components mounted thereon will be described in particular.
  • the high voltage power storage device 12 is a chargeable / dischargeable high voltage secondary battery.
  • the high voltage power storage device 12 for example, a lithium ion assembled battery or a nickel hydride assembled battery having a terminal voltage of about 200 V, a capacitor, or the like can be used.
  • the assembled battery is obtained by combining a plurality of batteries each having a terminal voltage of 1 V to several V, called a single battery or a battery cell, to obtain the predetermined terminal voltage. Since the high voltage power storage device 12 is a main power source in the power supply system, it may be referred to as a high voltage battery or simply a battery.
  • the current sensor 42 provided on a negative electrode side bus of the high-voltage energy storage device 12 detects the battery current I B is a charging current to the discharge current or high voltage energy storage device 12, from the high voltage energy storage device 12 Battery current detection means.
  • the battery current I B detected by the current sensor 42 is transmitted to the control device 60 using an appropriate signal line.
  • the inverter unit 14 is a circuit having a function of converting the high voltage power storage device 12, which is a high voltage DC power supply, into an AC drive signal suitable for the operation of the rotating electrical machine 6 driven by AC.
  • the inverter unit 14 includes a high voltage / voltage converter 16 and an inverter circuit 18.
  • the high voltage voltage converter 16 is a circuit that is disposed between the high voltage power storage device 12 and the inverter circuit 18 and has a voltage conversion function. As shown in FIG. 1, the high voltage voltage converter 16 can include a reactor, a switching element, and the like. As the voltage conversion function, the voltage on the high voltage power storage device 12 side is boosted by using the energy storage action of the reactor and supplied to the inverter circuit 18 side, and the power from the inverter circuit 18 side is supplied to the high voltage power storage device 12. And a step-down function for stepping down and supplying charging power.
  • the high voltage / voltage converter 16 includes a smoothing capacitor that suppresses fluctuations in voltage and current.
  • the inverter circuit 18 is a circuit connected to the rotating electrical machine 6 and includes a plurality of switching elements, reverse connection diodes, and the like, and has a function of performing power conversion between AC power and DC power. That is, when the rotating electrical machine 6 functions as a generator, the inverter circuit 18 converts the AC three-phase regenerative power from the rotating electrical machine 6 into DC power and supplies it as a charging current to the high voltage power storage device 12 side. It has a function. Further, when the rotating electric machine 6 functions as a motor, the rotating electric machine 6 has an orthogonal conversion function that converts DC power from the high voltage power storage device 12 side into AC three-phase driving power and supplies the rotating electric machine 6 as AC driving power.
  • the inverter circuit 18 includes a smoothing capacitor that suppresses fluctuations in voltage and current, and a discharge resistor for discharging the capacitor.
  • a current sensor 40 provided on an inverter output signal line connecting the inverter circuit 18 and the rotating electrical machine 6 is a drive current supplied from the inverter circuit 18 to the rotating electrical machine 6 or an inverter circuit 18 from the rotating electrical machine 6.
  • the inverter output current I C detected by the current sensor 40 is transmitted to the control device 60 through an appropriate signal line.
  • the control board 20 is a circuit board on which components for controlling the inverter unit 14 are mounted. As described above, the inverter unit 14 operates under the high voltage of the high voltage power storage device 12, but each component mounted on the control board 20 operates at a low voltage. Thus, since the circuit board which comprises the inverter part 14, and the control board 20 differ in an operating voltage, it is set as a mutually different circuit board.
  • the components mounted on the control board 20 include a control IC that outputs a control signal of each switching element constituting the inverter unit 14, and a photocoupler for transmitting the control signal from the control IC to each switching element of the inverter unit 14. , Transformers, capacitors and the like.
  • a control IC that outputs a control signal of each switching element constituting the inverter unit 14
  • a photocoupler for transmitting the control signal from the control IC to each switching element of the inverter unit 14.
  • the temperature sensor 22 mounted on the control board 20 is a temperature detection element having a function of detecting the control board temperature ⁇ C that is the board temperature of the control board 20.
  • Each component constituting the control board 20 also generates heat by operation.
  • the control board 20 is small as described above, there is no room for individually providing a protection element for preventing overheating of each part. Therefore, the temperature sensor 22 monitors the temperature of the control board 20, and when the temperature rise is large, there is a risk of overheating of each component mounted on the temperature sensor. Data of the control board temperature ⁇ C detected by the temperature sensor 22 is transmitted to the control device 60 through an appropriate signal line.
  • the inverter housing 30 is a case that houses the board related to the inverter unit 14 and the control board 20. Since the inverter unit 14 handles high voltage and high power, it can be stored together in a single case for convenience of handling by the user, and the user can be prevented from coming into contact with high voltage components.
  • the cooling flow path 31 is a flow path through which a refrigerant flows to cool the inverter housing 30.
  • the water pump 32 provided in the middle of the cooling flow path 31 and indicated as WP in FIG. 1 is a fluid pump for flowing the refrigerant through the cooling flow path 31.
  • As the refrigerant LLC (Long Life Coolant) in which an appropriate component is added to water can be used.
  • the radiator 34 provided in the middle of the cooling flow path 31 is a heat exchanger that cools the refrigerant that has flowed through the inverter housing 30 and is heated by heat exchange with the atmosphere.
  • the radiator 34 includes a heat radiating unit having appropriate cooling fins and a cooling fan.
  • the temperature sensor 36 provided in the cooling flow path 31 is a refrigerant temperature detection unit that detects the temperature of the refrigerant that cools the inverter housing 30. As described above, since the heat generation in the inverter housing 30 is largely caused by the inverter circuit 18, the refrigerant temperature may be considered as the refrigerant temperature for cooling the inverter circuit 18.
  • the refrigerant temperature ⁇ W detected by the temperature sensor 36 is transmitted to the control device 60 using an appropriate signal line.
  • the low voltage power storage device 26 shown as an auxiliary battery in FIG. 1 is a power storage device capable of charging and discharging at a lower voltage than the high voltage of the high voltage power storage device 12.
  • the low voltage is about 12V to about 16V.
  • a lead storage battery that has been conventionally mounted on a vehicle can be used.
  • the low voltage power storage device 26 supplies power to each component mounted on the control board 20 and other auxiliary machines 8.
  • the reason why the auxiliary battery is referred to is that it is a power storage device that supplies electric power to the auxiliary machine 8. In that sense, the voltage of the low-voltage power storage device 26 is often called an auxiliary machine voltage.
  • the voltage sensor 28 is auxiliary voltage detection means for detecting an auxiliary voltage that is a voltage between terminals of the low-voltage power storage device 26.
  • the voltage between the positive side bus and the negative side bus of the inverter circuit 18 is called a system voltage and is often indicated as VH which means a high voltage, but in FIG.
  • the auxiliary machine voltage is indicated by V LB which means a low voltage.
  • the auxiliary machine voltage V LB detected by the voltage sensor 28 is transmitted to the control device 60 through an appropriate signal line.
  • the DC / DC converter 50 is a low voltage voltage converter that converts the voltage of the high voltage power storage device 12 to a low voltage that is slightly higher than the auxiliary voltage V LB.
  • the DC / DC converter 50 starts from the high voltage of about 200 V and about 12 V that is slightly higher than the auxiliary voltage V LB. It has a function of performing voltage conversion between a low voltage of about 16V.
  • the high voltage voltage converter 16 has a function of boosting from the high voltage power storage device 12 side to the inverter circuit 18 side and a function of stepping down from the inverter circuit 18 side to the high voltage power storage device 12 side.
  • the DC / DC converter 50 has a function corresponding to the function. However, like the high voltage voltage converter 16, it may have a boosting function.
  • the DC / DC converter 50 includes a reactor and a switching element, like the high voltage / voltage converter 16.
  • the DC / DC converter 50 has a function of supplying power to an auxiliary machine that operates at a low voltage. And when the output power becomes surplus than the power to the auxiliary machine or the like, the low voltage power storage device 26 is charged with the surplus, and conversely, the output power is insufficient than the power to the auxiliary machine or the like. Covers the shortage by discharging from the low-voltage power storage device 26. Thus, since both the DC / DV converter 50 and the low voltage power storage device 26 function as a low voltage power supply, the DC / DC converter 50 and the low voltage power storage device 26 are connected in parallel as shown in FIG. In cooperation with each other, power is supplied to the components mounted on the control board 20 and other auxiliary machines 8.
  • V DCDC The voltage indicated as V DCDC in FIG. 1 is the output voltage of the DC / DC converter 50.
  • V DCDC is a voltage that is stepped down by adjusting the high voltage of the high-voltage power storage device 12, and V DCDC can be controlled by the on / off duty ratio of the switching elements that constitute the DC / DC converter 50. .
  • the control of the V DCDC is performed by the control device 60. Since V LB is the voltage across the terminals of the low voltage power storage device 26 above, V DCDC and V LB are not necessarily the same, and as described above, V DCDC is set to be slightly higher than V LB.
  • the control device 60 is a device that controls the operation of each element constituting the power supply system as a whole. Since the elements constituting the power supply system have different operating voltages, the control device 60 is a generic name for some control units corresponding to them. Here, the contents of the DC / DC converter controller that controls the DC / DC converter 50 will be described.
  • the control device 60 as a DC / DC converter control unit includes V LB that is a voltage between terminals of the low-voltage power storage device 26, electric power for driving each component mounted on the control board 20, and other auxiliary devices 8. It has a function of controlling V DCDC that is the output voltage of the DC / DC converter 50 based on the power for driving. This is the normal operation control of the DC / DC converter 50. Here, in particular, it has a function of limiting the output voltage V DCDC of the DC / DC converter 50 when the heat generated by the components mounted on the control board 20 becomes high.
  • the control device 60 as such a DC / DC converter control unit can be configured by a computer suitable for mounting on a vehicle.
  • control device 60 is a generic name for several control units
  • the function as the DC / DC converter control unit can be a part of the functions of the other control units.
  • it may be a part of a function of a control unit called a power control unit (Power Control Unit).
  • control device 60 as the DC / DC converter control unit normally supplies the control board temperature acquisition processing part 62 and V DCDC when the acquired control board temperature is high.
  • the output restriction processing unit 64 is configured to restrict the value more than the value at the time of control.
  • Such a function can be realized by software, specifically, by executing a DC / DC converter output voltage control program. Some of these functions may be realized by hardware.
  • FIG. 2 is a flowchart showing a procedure for limiting the output voltage of the DC / DC converter 50.
  • FIGS. 3 to 5 show elements necessary for explaining the output voltage limitation of the DC / DC converter 50 among the components shown in FIG.
  • FIG. 6 is a diagram for explaining the relationship between V DCDC and control board temperature ⁇ C
  • FIG. 7 is a diagram for explaining the relationship between V DCDC and auxiliary machine voltage V LB , which is a voltage between terminals of low-voltage power storage device 26. .
  • FIG. 2 is a flowchart showing the procedure for limiting the output voltage of the DC / DC converter 50 as described above, and each procedure corresponds to each processing procedure of the DC / DC converter output voltage control program.
  • the control board temperature ⁇ C is acquired and compared with a predetermined threshold temperature ⁇ C0 .
  • the control board temperature ⁇ C transmitted from the temperature sensor 22 mounted on the control board 20 is acquired.
  • This processing procedure is executed by the function of the control board temperature acquisition processing unit 62 of the control device 60. Then, it is determined whether or not the acquired ⁇ C is equal to or higher than a preset threshold temperature ⁇ C0 (S10).
  • V LB that is the voltage between terminals of the low-voltage power storage device 26, power for driving each component mounted on the control board 20, and other auxiliary machines 8 are driven. Therefore , V DCDC that is the output voltage of the DC / DC converter 50 is controlled based on the power for the purpose.
  • FIG. 3 is a diagram for explaining the state of S16 when the determination in S10 is negative.
  • the control board temperature ⁇ C detected by the temperature sensor 22 mounted on the control board 20 is transmitted to the control device 60 and ⁇ C. It is determined that ⁇ C0 and the output voltage V DCDC of the DC / DC converter 50 is output by normal control.
  • FIG. 4 is a diagram illustrating the state in the case of S14.
  • the control board temperature ⁇ C detected by the temperature sensor 22 mounted on the control board 20 is transmitted to the control device 60, and it is determined that ⁇ C ⁇ ⁇ C0 .
  • the auxiliary voltage V LB detected by the voltage sensor 28 of the low voltage power storage device 26 is transmitted to the control device 60, and it is determined that V LB ⁇ V LB0 .
  • V DCDC in FIG 4 is shown as a value smaller than V DCDC in FIG.
  • FIG. 5 is a diagram for explaining the state of S16 when the determination in S12 is negative.
  • the control board temperature ⁇ C detected by the temperature sensor 22 mounted on the control board 20 is transmitted to the control device 60 and ⁇ C. This is a case where it is determined that ⁇ ⁇ C0, and the auxiliary machine voltage V LB detected by the voltage sensor 28 of the low voltage power storage device 26 is transmitted to the control device 60 and it is determined that V LB ⁇ V LB0 .
  • VDCDC auxiliary machine voltage
  • FIG. 6 is a diagram for explaining the relationship between the control substrate temperature ⁇ C and the output voltage V DCDC of the DC / DC converter.
  • the control substrate temperature ⁇ C increases when ⁇ C ⁇ ⁇ C0 .
  • output restriction is performed to decrease the output voltage V DCDC of the DC / DC converter 50. Due to this output limitation, the drive voltage to the components mounted on the control board 20 is lowered, so that self-heating of these components can be suppressed. In this way, overheating of components mounted on the control board 20 can be prevented and protection thereof can be achieved.
  • the threshold temperature ⁇ C0 can be set based on the heat resistant temperature of the component mounted on the control board 20.
  • the threshold temperature ⁇ C0 can be set based on the lowest heat resistant temperature among them. Specifically, the threshold temperature ⁇ C0 is set by giving an appropriate marginal temperature range to the lowest heat-resistant temperature.
  • the V DCDC will decrease as the control substrate temperature ⁇ C increases.
  • the power output from the DC / DC converter 50 is supplied to the other auxiliary device 8 together with the power output from the low voltage power storage device 26. Therefore, when V DCDC decreases, the power to the other auxiliary device 8 is supplied. The supplied power becomes insufficient, and other operations of the auxiliary machine 8 may be hindered.
  • a problem arises when the auxiliary voltage V LB that is the voltage across the terminals of the low-voltage power storage device 26 is low. Therefore, it is preferable not to limit the output voltage of the DC / DC converter 50 when V LB is lower than the threshold voltage V LB0 . This corresponds to the case where the determination is negative in S12.
  • FIG. 7 is a diagram for explaining the relationship between the auxiliary machine voltage V LB that is the voltage between terminals of the low-voltage power storage device and the output voltage V DCDC of the DC / DC converter.
  • V LB the output voltage of the DC / DC converter 50
  • V LB the threshold voltage
  • the threshold voltage V LB0 can be set in advance based on the threshold temperature ⁇ C0 described above and the required power of the device operating at a low voltage.
  • the temperature sensor 22 mounted on the control board 20 is used to detect the control board temperature ⁇ C.
  • the control board 20 may not occupy a very large volume in the limited volume in the inverter housing 30.
  • the temperature sensor 22 may not be provided, and the control board temperature ⁇ C may be estimated by other means, and the output limiting process of the DC / DC converter 50 may be performed using the estimated temperature.
  • FIG. 8 is a diagram for explaining how the output voltage of the DC / DC converter 50 is limited based on the refrigerant temperature ⁇ W that is the temperature of the refrigerant that cools the inverter housing 30. Since the refrigerant temperature ⁇ W is detected by the temperature sensor 36 and transmitted to the control device 60, this data can be used.
  • the refrigerant temperature ⁇ W that is the temperature of the refrigerant that cools the inverter housing 30 reflects the heat generation of the inverter circuit 18. A large amount of heat generated in the inverter circuit 18 indicates that the inverter circuit 18 is in a high load state. Therefore, a high refrigerant temperature ⁇ W means that the components mounted on the control board 20 are also heavily loaded and the self-heating is also caused. It is considered high. From this, the refrigerant temperature ⁇ W that is the temperature of the refrigerant that cools the inverter housing 30 can be associated with the control board temperature ⁇ C that is the temperature of the control board 20, and the association may be obtained in advance. Is possible.
  • FIG. 9 is a diagram for explaining the relationship between the refrigerant temperature ⁇ W that is the temperature of the refrigerant that cools the inverter housing and the output voltage V DCDC of the DC / DC converter, using the association thus obtained.
  • ⁇ W the refrigerant temperature
  • V DCDC the output voltage V DCDC of the DC / DC converter
  • FIG. 10 is a diagram for explaining how the output voltage of the DC / DC converter 50 is limited based on the inverter output current I C. Since the inverter output current I C is detected by the current sensor 40 and transmitted to the control device 60, this data can be used.
  • the inverter output current I C is large, the inverter circuit 18 has a high load. Therefore, as described above, the components mounted on the control board 20 have a high load and the self-heating is high. From this, the inverter output current I C can be associated with the control substrate temperature ⁇ C which is the temperature of the control substrate 20, and the association can be obtained in advance.
  • FIG. 11 shows the relationship between I C ⁇ t, which is the time integral value of the inverter output current I C , and the control board temperature ⁇ C in advance, and the inverter output current integral value (I C ⁇ t) is obtained using the association. It is a figure explaining the relationship of the output voltage V DCDC of a DC / DC converter. As shown in this figure, the inverter output current integral value (I C ⁇ t) relating to the threshold value (I C ⁇ t) 0 or more, the inverter output current integral (I C ⁇ t) is larger the DC / DC converter 50 The output voltage may be limited to reduce the output voltage. By combining this FIG. 11 with the previous FIG. 7, it is possible to achieve a balance between suppression of self-heating of components mounted on the control board 20 and sufficient operation of the auxiliary machine 8.
  • FIG 12 is a diagram for explaining a state of performing the output voltage limitation of the DC / DC converter 50 based on the battery current I B of the high-voltage energy storage device 12.
  • Battery current I B is detected by the current sensor 42, since it is transmitted to the control unit 60 can use this data.
  • the large battery current I B is considered that the inverter circuit 18 has a high load. Therefore, as described above, the components mounted on the control board 20 have a high load and the self-heating is high. From this, the battery current I B can be associated with the control board temperature ⁇ C which is the temperature of the control board 20, and the association can be obtained in advance.
  • FIG. 13 shows an association between I B ⁇ t, which is a time integral value of the battery current I B , and the control board temperature ⁇ C in advance, and the battery current integral value (I B ⁇ t) and DC / It is a figure explaining the relationship of output voltage V DCDC of a DC converter.
  • the battery current integral value (I B ⁇ t) relating to the threshold value (I B ⁇ t) 0 or more, the battery current integral (I B ⁇ t) is larger the DC / DC converter 50 output
  • the output voltage may be limited to reduce the voltage.
  • the power supply control system according to the present invention can be used for control of a power supply system including an inverter circuit and an inverter control board mounting component for controlling the inverter circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 電源制御システム(10)は、制御装置(60)と、その制御対象の電源システムを含む。電源システムは、高電圧蓄電装置(12)と、インバータ部(14)と、DC/DCコンバータ(50)と、低電圧蓄電装置(26)と、インバータ部(14)の制御用の制御基板(20)に搭載される各部品を含んで構成される。制御装置(60)は、通常のDC/DCコンバータ作動制御の他に、制御基板(20)に設けられる温度センサ(22)によって制御基板温度を取得する制御基板温度取得処理部(62)と、取得された制御基板温度が高いときにVDCDCを通常の制御のときの値よりも制限する出力制限処理部(64)を含んで構成される。制御基板温度は、インバータ筐体(30)を冷却する冷媒の温度等から推定される値を用いることもできる。

Description

電源制御システム
 本発明は、電源制御システムに係り、特にインバータ回路制御用のインバータ制御基板搭載部品を含む電源制御システムに関する。
 交流電力と直流電力とを扱う電源回路としては、直流電圧変換を行う昇圧コンバータ、DC/DCコンバータ等の電圧変換器、直流電力と交流電力の間の変換を行うインバータ回路等がある。これらは、それぞれ作動に伴う過熱、過大電圧、過大電流等が生じ得るので、それによる損傷等が起こらないように、様々な保護の工夫がされている。
 例えば、特許文献1には、太陽電池を例とする交流電力供給システムにおいて、その発電出力を日射変動に関係なく最大限に活用するために、発電電圧と発電電流を検出し、最大出力点で出力する制御が行われていることを述べ、このような制御の下でインバータの出力電圧が負荷である誘導電動機の最大許容電圧を超えないように、インバータの動作を制御することが開示されている。
 また、特許文献2には、温度検出回路を備えたインバータ回路装置について、インバータ回路を構成するスイッチング素子およびドライバ回路が取り付けられているアルミニウムの放熱兼用配線基板にサーミスタを設け、その温度検出信号に応じて、パルス幅変調された矩形波を制御し、モータに温度の変化に応じたモータ電流を流すことが述べられている。
 また、特許文献3には、回転電機制御システムとして、回転電機を駆動するインバータのスイッチング素子のそれぞれにサーミスタまたはダイオードの温度センサを設け、所定の温度を超えると、パルス幅変調制御から矩形波制御に切り替えることが述べられている。
 また、特許文献4には、発電機が制動エネルギを電気エネルギに変換してコンデンサを充電し、充電された電力について昇降圧回路を介してバッテリに充電する電源システムにおいて、コンデンサの両端電圧とバッテリの両端電圧とに基いて昇降圧回路の出力を制限して、昇降圧回路の発熱を抑制することが述べられている。なお、昇降圧回路の近傍に設けられた温度センサの温度検出を利用して昇降圧回路の出力制限を行う実施の形態も述べられている。
 また、特許文献5には、インバータ装置におけるスイッチング素子の過熱保護方法として、インバータ装置の出力電流と制御率と出力周波数に基いてスイッチング素子の損失を求め、これとスイッチング素子の過渡熱インピーダンスとに基いてスイッチング素子ジャンクション温度を求め、この値が設定温度を超えないようにインバータ装置の出力電流制御を行うことが述べられている。
 特許文献6には、高電圧バッテリから補機バッテリである低電圧バッテリの間の降圧を行うDC-DCコンバータ装置において、温度センサの検出温度が過熱領域とされるところにある場合には、DC-DCコンバータ装置の出力電流制限と出力電圧制限を行って、DC-DCコンバータ装置の半導体パワースイッチング素子の過熱を抑止することが述べられている。
特開2004-266921号公報 特開2004-40922号公報 特開2009-232604号公報 特開2007-135284号公報 特開平9-233832号公報 特開2006-271136号公報
 このように、昇圧コンバータ、DC/DCコンバータ、インバータ回路、及びこれらを構成する部品等の保護についてはさまざまな従来技術がある。ところで、インバータ回路を制御するためのインバータ制御回路は、例えば、制御IC、フォトカプラ、トランス、コンデンサ等の部品が制御基板に搭載されて構成される。これらの部品は、インバータ回路の制御に関わるものであるので、損傷等が生じると影響が大きい。しかしながら、制御基板自体があまり大きなスペースを取れないこともあり、各部品について1つ1つ保護手段を講じることが容易ではない。このように、インバータ制御回路に搭載される部品の保護については課題が残されている。
 本発明の目的は、インバータ制御基板に搭載される部品の保護を可能にする電源制御システムを提供することである。
 本発明に係る電源制御システムは、高電圧蓄電装置とインバータ回路とを含む高電圧電源回路と、低電圧蓄電装置と、低電圧蓄電装置と接続され、高電圧蓄電装置の端子間電圧を所定の補機電圧に降圧するDC/DCコンバータと、補機電圧で作動するインバータ回路制御用部品を搭載するインバータ制御基板と、インバータ制御基板の温度である制御基板温度を取得する温度取得部と、DC/DCコンバータの作動を制御する制御部と、を備え、制御部は、制御基板温度が予め定めた閾値温度以上のときに、DC/DCコンバータの出力電圧を制限してインバータ回路制御用部品の自己発熱を抑制する出力制限手段を有することを特徴とする。
 また、本発明に係る電源制御システムにおいて、制御部は、低電圧蓄電装置の端子間電圧が予め定めた閾値電圧未満のときには、DC/DCコンバータの出力電圧制限を行わないことが好ましい。
 また、本発明に係る電源制御システムにおいて、温度取得部は、インバータ回路を冷却する冷媒温度に基いて制御基板温度を推定して取得することが好ましい。
 また、本発明に係る電源制御システムにおいて、温度取得部は、インバータ回路の出力電流の大きさに基いて制御基板温度を推定して取得することが好ましい。
 また、本発明に係る電源制御システムにおいて、温度取得部は、高電圧蓄電装置の出力電流の大きさに基いて制御基板温度を推定して取得することが好ましい。
 上記構成により、電源制御システムは、補機電圧で作動するインバータ回路制御用部品を搭載するインバータ制御基板の温度である制御基板温度を取得し、制御基板温度が予め定めた閾値温度以上のときに、DC/DCコンバータの出力電圧を制限してインバータ回路制御用部品の自己発熱を抑制する。これによって、インバータ回路制御用の制御基板搭載部品の保護を図ることができる。
 また、電源制御システムにおいて、低電圧蓄電装置の端子間電圧が予め定めた閾値電圧未満のときには、DC/DCコンバータの出力電圧制限を行わない。あまりDC/DCコンバータの出力制限をすると、補機電圧で作動する電気機器一般について電力を供給する低電圧蓄電装置の負担が重くなり、補機電圧で作動する他の電気機器への影響が生じ得る。上記構成によれば、低電圧蓄電装置の端子間電圧が閾値電圧未満のときにはDC/DCコンバータの出力制限を行わないこととするので、これによって、制御基板搭載部品の保護と、他の電気機器の作動との兼ね合いのバランスを取ることができる。
 また、電源制御システムにおいて、インバータ回路を冷却する冷媒温度に基いて制御基板温度を推定する。また、電源制御システムにおいて、インバータ回路の出力電流の大きさに基いて制御基板温度を推定する。また、電源制御システムにおいて、高電圧蓄電装置の出力電流の大きさに基いて制御基板温度を推定する。制御基板は上記のようにあまりスペースを取れないため、制御基板温度を検出する温度センサを設けることが容易ではないことがある。上記構成によれば、制御基板温度検出センサを用いることなく、制御基板温度を推定できるので、これらに基いてDC/DCコンバータの出力制限の制御を行うことが可能になる。
本発明に係る実施の形態の電源制御システムの構成を説明する図である。 本発明に係る実施の形態の電源制御システムにおいて、DC/DCコンバータの出力電圧制限の手順を示すフローチャートである。 本発明に係る実施の形態の電源制御システムにおいて、通常のときのDC/DCコンバータの出力電圧制御の様子を説明する図である。 本発明に係る実施の形態の電源制御システムにおいて、制御基板温度が高温となったときのDC/DCコンバータの出力電圧制限の様子を説明する図である。 本発明に係る実施の形態の電源制御システムにおいて、制御基板温度が高温で、低電圧蓄電装置である補機バッテリの電圧が低下したときのDC/DCコンバータの出力電圧制御の様子を説明する図である。 本発明に係る実施の形態の電源制御システムにおいて、制御基板温度とDC/DCコンバータの出力電圧の関係を説明する図である。 本発明に係る実施の形態の電源制御システムにおいて、低電圧蓄電装置の電圧とDC/DCコンバータの出力電圧の関係を説明する図である。 本発明に係る実施の形態の電源制御システムにおいて、インバータ筐体を冷却する冷媒の温度に基づいてDC/DCコンバータの出力電圧制限を行う様子を説明する図である。 図8について、インバータ筐体を冷却する冷媒の温度とDC/DCコンバータの出力電圧の関係を説明する図である。 本発明に係る実施の形態の電源制御システムにおいて、インバータ出力電流に基づいてDC/DCコンバータの出力電圧制限を行う様子を説明する図である。 図10について、インバータ出力電流積分値とDC/DCコンバータの出力電圧の関係を説明する図である。 本発明に係る実施の形態の電源制御システムにおいて、高電圧蓄電装置電流に基づいてDC/DCコンバータの出力電圧制限を行う様子を説明する図である。 図12について、高電圧蓄電装置電流積分値とDC/DCコンバータの出力電圧の関係を説明する図である。
 以下に図面を用いて本発明に係る実施の形態につき、詳細に説明する。以下では、電源システムとしてハイブリッド車両に搭載され、1台の回転電機を負荷とするものを説明するが、これは例示であって、複数の回転電機であってもよく、車両は燃料電池を搭載する電気自動車であってもよい。また、車両搭載用途以外の電源システムであってもよい。
 また、以下では、電源システムとして、高電圧蓄電装置、電圧変換器、インバータ回路、DC/DCコンバータ、低電圧蓄電装置を含むものとして説明するが、これは主たる構成要素を述べたもので、これ以外の構成要素を含むものとしてもよい。例えば、低電圧インバータ回路、システムメインリレー等を含むものとしてもよい。また、インバータ回路用の制御基板搭載部品として、制御IC、フォトカプラ、トランス、コンデンサを説明するが、勿論、これらは説明のための例示であって、これ以外の回路部品を搭載するものとしてもよい。
 以下で述べる温度、電圧等は、説明のための例示であり、電源システムの仕様等に応じ、適宜変更が可能である。
 以下では、全ての図面において同様の要素には同一の符号を付し、重複する説明を省略する。また、本文中の説明においては、必要に応じそれ以前に述べた符号を用いるものとする。
 図1は、電源制御システム10の構成を説明する図である。この電源制御システム10は、ハイブリッド車両に搭載される電源システムの制御を行うもので、図1では、電源制御システム10の構成要素ではないが、高電圧で作動する負荷としての回転電機6と、低電圧で作動する負荷としてのその他補機8が示されている。
 回転電機6は、高電圧で作動し、車両に搭載されるモータ・ジェネレータ(M/G)であって、電源回路側から電力が供給されるときはモータとして機能し、図示されていないエンジンによる駆動時、あるいは車両の制動時には発電機として機能する三相同期型回転電機である。
 すなわち、回転電機6は、車両走行の力行のときには、電源回路側から供給される交流電力によってモータとして機能する。そして制動時には、発電機として機能して回生エネルギを回収し、電源回路側に供給する。
 図1でその他補機8として示してあるのは、低電圧で作動する機器のうち、制御基板20に搭載される部品以外のものを総称したものである。その他補機8としては、ワイパ用やウィンド開閉用の小型モータ、オーディオ機器、照明器具、表示機器等の他に、ECU(Electroc Contorl Unit)等が含まれる。
 電源制御システム10は、大別して、制御装置60と、その制御対象の電源システムを含む。図1では、上記の回転電機6、その他補機8と、制御装置60を除く要素が電源システムを構成する。
 電源システムは、高電圧蓄電装置12と、インバータ部14と、DC/DCコンバータ50と、図1では補機バッテリとして示されている低電圧蓄電装置26を主な構成要素として含むが、ここでは、この他に、特に、インバータ部14の制御用の制御基板20と、これに搭載される各部品を含んで説明する。
 高電圧蓄電装置12は、充放電可能な高電圧用2次電池である。高電圧蓄電装置12としては、例えば、約200Vの端子電圧を有するリチウムイオン組電池あるいはニッケル水素組電池、またはキャパシタ等を用いることができる。組電池は、単電池または電池セルと呼ばれる端子電圧が1Vから数Vの電池を複数個組み合わせて、上記の所定の端子電圧を得るようにしたものである。高電圧蓄電装置12は、電源システムの中の主電源であるので、高圧バッテリ、あるいは単にバッテリと呼ばれることがある。
 図1において、高電圧蓄電装置12の負極側母線に設けられる電流センサ42は、高電圧蓄電装置12からの放電電流、または高電圧蓄電装置12への充電電流であるバッテリ電流IBを検出するバッテリ電流検出手段である。電流センサ42が検出するバッテリ電流IBは、適当な信号線を用いて制御装置60に伝送される。
 インバータ部14は、高電圧直流電源である高電圧蓄電装置12を、交流駆動される回転電機6の作動に適した交流駆動信号に変換する機能を有する回路である。インバータ部14は、高電圧電圧変換器16とインバータ回路18を含んで構成される。
 高電圧電圧変換器16は、高電圧蓄電装置12とインバータ回路18の間に配置され、電圧変換機能を有する回路である。高電圧電圧変換器16としては、図1に示されるように、リアクトルと、スイッチング素子等を含んで構成することができる。電圧変換機能としては、高電圧蓄電装置12側の電圧をリアクトルのエネルギ蓄積作用を利用して昇圧しインバータ回路18側に供給する昇圧機能と、インバータ回路18側からの電力を高電圧蓄電装置12側に降圧して充電電力として供給する降圧機能とを有する。なお、高電圧電圧変換器16には、電圧、電流の変動を抑制する平滑コンデンサが含まれる。
 インバータ回路18は、回転電機6に接続される回路で、複数のスイッチング素子と逆接続ダイオード等を含んで構成され、交流電力と直流電力との間の電力変換を行う機能を有する。すなわち、インバータ回路18は、回転電機6を発電機として機能させるときは、回転電機6からの交流三相回生電力を直流電力に変換し、高電圧蓄電装置12側に充電電流として供給する交直変換機能を有する。また、回転電機6をモータとして機能させるときは、高電圧蓄電装置12側からの直流電力を交流三相駆動電力に変換し、回転電機6に交流駆動電力として供給する直交変換機能を有する。なお、インバータ回路18には、電圧、電流の変動を抑制する平滑コンデンサと、このコンデンサを放電させるための放電抵抗が含まれる。
 図1において、インバータ回路18と回転電機6とを接続するインバータ出力信号線に設けられる電流センサ40は、インバータ回路18から回転電機6に供給される駆動電流、または、回転電機6からインバータ回路18に供給される回生電流であるインバータ出力電流ICを検出するインバータ出力電流検出手段である。インバータ回路18と回転電機6とは三相信号線で接続されるので、電流センサ40は、この3本の各相電流を検出する。尤も、三相信号線が中立点を有するときは、方向も考えた3つの相電流の和はゼロとなるので、2つの相電流を検出することで足りる。電流センサ40によって検出されたインバータ出力電流ICは、適当な信号線で制御装置60に伝送される。
 制御基板20は、インバータ部14の制御用の各部品を搭載する回路基板である。上記のように、インバータ部14は、高電圧蓄電装置12の高電圧下で作動するが、制御基板20に搭載される各部品は、低電圧で作動する。このように、インバータ部14を構成する回路基板と、制御基板20とは、作動電圧が異なるので、互いに異なる回路基板とされる。
 制御基板20に搭載される部品としては、インバータ部14を構成する各スイッチング素子の制御信号を出力する制御IC、制御ICからの制御信号をインバータ部14の各スイッチング素子に伝送するためのフォトカプラ、トランス、コンデンサ等が含まれる。このように、制御基板20には多くの電子機器等が搭載されるが、インバータ部14を構成する回路基板に比べ、小型の基板である。それは、インバータ部を構成する各素子は高電圧を扱い、発熱等も大きいため、インバータ部14を構成する高電圧基板が大きくなるため、制御基板20にあまりスペースを割けないからである。
 制御基板20に搭載される温度センサ22は、制御基板20の基板温度である制御基板温度θCを検出する機能を有する温度検出素子である。制御基板20を構成する各部品も作動によって発熱するが、上記のように制御基板20は小型であるので、各部品の過熱等を防止するための保護素子を個別に設ける余裕がない。そこで、温度センサ22は、制御基板20の温度を監視して、温度上昇が大きいときは、これに搭載されている各部品の過熱等のおそれがあるとするものである。温度センサ22が検出する制御基板温度θCのデータは、適当な信号線で、制御装置60に伝送される。
 インバータ筐体30は、インバータ部14に関する基板と、制御基板20とを収納するケースである。インバータ部14は高電圧高電力を扱うため、これをまとめて1つのケースに収納し、ユーザの取扱いの利便性を図り、また、ユーザを高電圧部品に接触することを防止することができる。
 冷却流路31は、インバータ筐体30を冷却するために冷媒を流す流路である。これによって、インバータ筐体30の中に収容される発熱部品、特に高電力の下で発熱が大きいインバータ部14の構成部品を冷却することができる。
 冷却流路31の途中に設けられ、図1ではWPとして示されるウォータポンプ32は、冷媒を冷却流路31に流すための流体ポンプである。冷媒としては、水に適当な成分を添加したLLC(Long Life Coolannt)等を用いることができる。冷却流路31の途中に設けられるラジエータ34は、インバータ筐体30を流れて温まった冷媒を大気との熱交換によって冷却する熱交換器である。ラジエータ34は適当な冷却フィンを有する放熱部と、冷却ファンを備えて構成される。
 冷却流路31に設けられる温度センサ36は、インバータ筐体30を冷却する冷媒の温度を検出する冷媒温度検出手段である。上記のように、インバータ筐体30内における発熱は、インバータ回路18によるものが大きいので、この冷媒温度は、インバータ回路18を冷却する冷媒温度と考えてよい。温度センサ36が検出する冷媒温度θWは、適当な信号線を用いて、制御装置60に伝送される。
 図1において補機バッテリとして示される低電圧蓄電装置26は、高電圧蓄電装置12の高電圧に比べて低い電圧の充放電可能な蓄電装置である。低電圧としては、約12Vから約16V程度である。かかる低電圧蓄電装置26としては、従来から車両に搭載されてきている鉛蓄電池を用いることができる。
 低電圧蓄電装置26は、制御基板20に搭載される各部品と、その他補機8に電力を供給する。補機バッテリといわれるのは、その他補機8に電力を供給する蓄電装置であるからである。その意味で、この低電圧蓄電装置26の電圧を補機電圧と呼ばれることが多い。
 電圧センサ28は、低電圧蓄電装置26の端子間電圧である補機電圧を検出する補機電圧検出手段である。一般的に、インバータ回路18の正極側母線と負極側母線の間の電圧がシステム電圧と呼ばれ、高電圧を意味するVHとして示されることが多いが、図1では、電圧センサ28の検出する補機電圧を、低電圧を意味するVLBで示してある。電圧センサ28が検出した補機電圧VLBは、適当な信号線で制御装置60に伝送される。
 DC/DCコンバータ50は、高電圧蓄電装置12の電圧を補機電圧VLBよりやや高めの低電圧に変換する低電圧電圧変換器である。上記の例で、高電圧蓄電装置12が約200Vの端子間電圧を有するものとして、DC/DCコンバータ50は、この約200Vの高電圧と、補機電圧VLBよりもやや高めの約12Vから約16Vの低電圧との間の電圧変換を行う機能を有する。上記のように、高電圧電圧変換器16は高電圧蓄電装置12側からインバータ回路18側へ昇圧する機能と、インバータ回路18側から高電圧蓄電装置12側へ降圧する機能を有するが、この降圧機能に相当する機能をDC/DCコンバータ50は有する。もっとも、高電圧電圧変換器16と同様に、昇圧機能も有するものとしてもよい。かかるDC/DCコンバータ50は、高電圧電圧変換器16と同様に、リアクトルとスイッチング素子で構成される。
 DC/DCコンバータ50は、低電圧で作動する補機等への電力を供給する機能を有する。そして、その出力電力が補機等への電力よりも余剰となるときは、その余剰分で低電圧蓄電装置26を充電し、逆にその出力電力が補機等への電力よりも不足するときは、その不足分を低電圧蓄電装置26からの放電でまかなう。このように、DC/DVコンバータ50と低電圧蓄電装置26は、共に低電圧電源として機能するので、図1に示されるように、DC/DCコンバータ50と低電圧蓄電装置26とは並列に接続され、協働して、制御基板20に搭載される部品と、その他補機8に電力を供給する。
 図1でVDCDCとして示される電圧は、DC/DCコンバータ50の出力電圧である。VDCDCは、高電圧蓄電装置12の高電圧を電圧調整して降圧された電圧で、VDCDCは、DC/DCコンバータ50を構成するスイッチング素子のオン・オフのデューティ比で制御することができる。そのVDCDCの制御は、制御装置60によって行われる。上記でVLBは低電圧蓄電装置26の端子間電圧であるので、VDCDCとVLBとは必ずしも同じにならず、上記のように、VDCDCはVLBよりもやや高くなるように設定される。
 制御装置60は、電源システムを構成する各要素の動作を全体として制御する装置である。電源システムを構成する各要素は、作動電圧が互いに異なるので、それらに対応するいくつかの制御部の総称が、制御装置60である。ここでは、特に、DC/DCコンバータ50の制御をおこなうDC/DCコンバータ制御部としての内容を説明する。
 DC/DCコンバータ制御部としての制御装置60は、低電圧蓄電装置26の端子間電圧であるVLBと、制御基板20に搭載される各部品を駆動するための電力と、その他補機8を駆動するための電力とに基いて、DC/DCコンバータ50の出力電圧であるVDCDCを制御する機能を有する。これが通常のDC/DCコンバータ50の作動制御である。ここでは特に、制御基板20に搭載される部品の発熱が高くなったときに、DC/DCコンバータ50の出力電圧VDCDCを制限する機能を有する。かかるDC/DCコンバータ制御部としての制御装置60は、車両搭載に適したコンピュータで構成することができる。上記のように、制御装置60は、いくつかの制御部の総称であるので、DC/DCコンバータ制御部としての機能を、他の制御部の機能の一部とすることもできる。例えば、電源制御ユニット(Power Control Unit)と呼ばれる制御部の機能と一部としてもよい。
 DC/DCコンバータ制御部としての制御装置60は、上記の通常のDC/DCコンバータ作動制御の他に、制御基板温度取得処理部62と、取得された制御基板温度が高いときにVDCDCを通常の制御のときの値よりも制限する出力制限処理部64を含んで構成される。かかる機能はソフトウェアで実現でき、具体的にはDC/DCコンバータ出力電圧制御プログラムを実行することで実現できる。これらの機能の一部をハードウェアで実現するものとしてもよい。
 上記構成の作用、特に、DC/DCコンバータ制御部としての制御装置60の機能につき、図2から図7を用いて詳細に説明する。図2は、DC/DCコンバータ50の出力電圧制限の手順を示すフローチャートである。図3から図5は、図1の構成要素の中で、DC/DCコンバータ50の出力電圧制限の説明のために必要な要素を抜き出したものである。図6は、VDCDCと制御基板温度θCの関係を説明する図、図7は、VDCDCと低電圧蓄電装置26の端子間電圧である補機電圧VLBの関係を説明する図である。
 図2は、上記のように、DC/DCコンバータ50の出力電圧制限の手順を示すフローチャートで、各手順は、上記のDC/DCコンバータ出力電圧制御プログラムの各処理手順に対応する。DC/DCコンバータ出力電圧制御プログラムが立上ると、制御基板温度θCが取得され、予め定めた閾値温度θC0と比較される。具体的には、制御基板20に搭載される温度センサ22から伝送される制御基板温度θCが取得される。この処理手順は、制御装置60の制御基板温度取得処理部62の機能によって実行される。そして、取得されたθCが予め設定された閾値温度θC0以上か否かが判断される(S10)。
 比較の結果、θC<θC0のときは、S16に進み、通常の制御が行われる。通常の制御においては、上記のように、低電圧蓄電装置26の端子間電圧であるVLBと、制御基板20に搭載される各部品を駆動するための電力と、その他補機8を駆動するための電力とに基いて、DC/DCコンバータ50の出力電圧であるVDCDCが制御される。
 一方で、θC≧θC0のときは、S12に進み、低電圧蓄電装置26の端子間電圧である補機電圧VLBが取得され、予め定めた閾値電圧VLB0と比較される(S12)。VLB<VLB0のときも、S16に進み、通常の制御が行われる。
 θC≧θC0のときで、さらにVLB≧VLB0と判断されると、DC/DCコンバータ50の出力電圧の制限が行われる(S14)。具体的には、同じ制御基板温度θCであっても、通常の制御におけるVDCDCよりも低い出力電圧とされる。この処理手順は、制御装置60の出力制限処理部64の機能によって実行される。
 図3は、S10で判断が否定されたときのS16の状態を説明する図で、制御基板20に搭載された温度センサ22の検出した制御基板温度θCが制御装置60に伝送されてθC<θC0と判断され、通常の制御によって、DC/DCコンバータ50の出力電圧VDCDCが出力された様子が示されている。
 図4は、S14の場合の状態を説明する図で、制御基板20に搭載された温度センサ22の検出した制御基板温度θCが制御装置60に伝送されてθC≧θC0と判断され、また、低電圧蓄電装置26の電圧センサ28の検出した補機電圧VLBが制御装置60に伝送されて、VLB≧VLB0と判断された場合である。図4のVDCDCは、図3のVDCDCよりも小さい値として示されている。
 図5は、S12で判断が否定されたときのS16の状態を説明する図で、制御基板20に搭載された温度センサ22の検出した制御基板温度θCが制御装置60に伝送されてθC≧θC0と判断され、また、低電圧蓄電装置26の電圧センサ28の検出した補機電圧VLBが制御装置60に伝送されて、VLB<VLB0と判断された場合である。このときは、図3と同じように、通常の制御のときのVDCDCが出力された様子が示されている。
 図6は、制御基板温度θCとDC/DCコンバータの出力電圧VDCDCの関係を説明する図である。ここで示されるように、θC≧θC0のときに、制御基板温度θCが高くなると、DC/DCコンバータ50の出力電圧VDCDCを低くなる出力制限が行われる。この出力制限によって、制御基板20に搭載される部品への駆動電圧が低くなるので、これらの部品の自己発熱を抑制できる。このようにして、制御基板20に搭載される部品の過熱を防止し、その保護を図ることができる。
 したがって、閾値温度θC0は、制御基板20搭載される部品の耐熱温度に基いて設定することができる。制御基板20に搭載される部品は、複数種類あって、それぞれの耐熱温度が異なる場合には、それらの中で、最も低い耐熱温度に基いて、閾値温度θC0を設定することができる。具体的には、最も低い耐熱温度に適当な余裕温度範囲を持たせて、閾値温度θC0を設定する。
 ところで、このようにすると、制御基板温度θCが高くなればなるほど、VDCDCがどんどん低下することになる。DC/DCコンバータ50から出力される電力は、低電圧蓄電装置26から出力される電力と共に、その他補機8にも供給されるので、VDCDCが低下してくると、その他補機8への供給電力が十分でなくなり、その他補機8の作動に支障が生じ得る。特に、低電圧蓄電装置26の端子間電圧である補機電圧VLBが低い場合が問題となる。そこで、VLBが閾値電圧VLB0より低い場合には、DC/DCコンバータ50の出力電圧制限を行わないものとすることが好ましい。これが、S12で判断が否定される場合に対応する。
 図7は、低電圧蓄電装置の端子間電圧である補機電圧VLBとDC/DCコンバータの出力電圧VDCDCの関係を説明する図である。この図に示されるように、補機電圧VLBが下がって、閾値電圧VLB0未満となると、DC/DCコンバータ50の出力電圧制限を行わずに、通常の制御に戻し、VLBが低い場合にDC/DCコンバータの出力電圧VDCDCを上げる制御が行われる。閾値電圧VLB0は、上記で述べた閾値温度θC0と、低電圧で作動する機器の必要電力等に基いて、予め設定することができる。このように、図6と図7とを併用することで、制御基板20に搭載される部品の自己発熱抑制と、その他補機8の十分な作動との間のバランスを取ることができる。
 上記では、制御基板20に搭載された温度センサ22を用いて制御基板温度θCを検出するものとして説明した。制御基板20は、インバータ筐体30の中の限られた容積の中ではあまり大きい容積を占有できないことがある。その場合に、温度センサ22を設けないで、他の手段で、制御基板温度θCを推定し、その推定温度を用いてDC/DCコンバータ50の出力制限処理を行うものとしてもよい。
 図8は、インバータ筐体30を冷却する冷媒の温度である冷媒温度θWに基づいてDC/DCコンバータ50の出力電圧制限を行う様子を説明する図である。冷媒温度θWは、温度センサ36によって検出されて、制御装置60に伝送されるので、このデータを用いることができる。
 インバータ筐体30を冷却する冷媒の温度である冷媒温度θWは、インバータ回路18の発熱を反映している。インバータ回路18の発熱が多いことは、インバータ回路18が高負荷状態であることを示すので、冷媒温度θWが高いことは、制御基板20に搭載される部品も高負荷で、その自己発熱も高いと考えられる。このことから、インバータ筐体30を冷却する冷媒の温度である冷媒温度θWは、制御基板20の温度である制御基板温度θCと関連付けることができ、その関連付けは、予め求めておくことも可能である。
 図9は、そのようにして求めた関連付けを用いて、インバータ筐体を冷却する冷媒の温度である冷媒温度θWとDC/DCコンバータの出力電圧VDCDCの関係を説明する図である。図9に示されるように、冷却冷媒に関する閾値温度θW0以上で、冷媒温度θWが高くなるに応じてDC/DCコンバータ50の出力電圧を低下させる出力電圧制限を行うことができる。この図9と、先ほどの図7とを組み合わせることで、制御基板20に搭載される部品の自己発熱抑制と、その他補機8の十分な作動との間のバランスを取ることができる。
 図10は、インバータ出力電流ICに基づいてDC/DCコンバータ50の出力電圧制限を行う様子を説明する図である。インバータ出力電流ICは、電流センサ40によって検出されて、制御装置60に伝送されるので、このデータを用いることができる。
 インバータ出力電流ICが大きければ、インバータ回路18が高負荷で、したがって、上記のように、制御基板20に搭載される部品も高負荷で、その自己発熱も高いと考えられる。このことから、インバータ出力電流ICは、制御基板20の温度である制御基板温度θCと関連付けることができ、その関連付けは、予め求めておくことも可能である。
 図11は、インバータ出力電流ICの時間積分値であるIC×tと制御基板温度θCとの関連付けを予め求め、その関連付けを用いて、インバータ出力電流積分値(IC×t)とDC/DCコンバータの出力電圧VDCDCの関係を説明する図である。この図に示されるように、インバータ出力電流積分値(IC×t)に関する閾値(IC×t)0以上で、インバータ出力電流積分値(IC×t)が大きくなるほどDC/DCコンバータ50の出力電圧を低下させる出力電圧制限を行うものとすることができる。この図11と、先ほどの図7とを組み合わせることで、制御基板20に搭載される部品の自己発熱抑制と、その他補機8の十分な作動との間のバランスを取ることができる。
 図12は、高電圧蓄電装置12のバッテリ電流IBに基づいてDC/DCコンバータ50の出力電圧制限を行う様子を説明する図である。バッテリ電流IBは、電流センサ42によって検出されて、制御装置60に伝送されるので、このデータを用いることができる。バッテリ電流IBが大きいことは、インバータ回路18が高負荷で、したがって、上記のように、制御基板20に搭載される部品も高負荷で、その自己発熱も高いと考えられる。このことから、バッテリ電流IBは、制御基板20の温度である制御基板温度θCと関連付けることができ、その関連付けは、予め求めておくことも可能である。
 図13は、バッテリ電流IBの時間積分値であるIB×tと制御基板温度θCとの関連付けを予め求め、その関連付けを用いて、バッテリ電流積分値(IB×t)とDC/DCコンバータの出力電圧VDCDCの関係を説明する図である。この図に示されるように、バッテリ電流積分値(IB×t)に関する閾値(IB×t)0以上で、バッテリ電流積分値(IB×t)が大きくなるほどDC/DCコンバータ50の出力電圧を低下させる出力電圧制限を行うものとすることができる。この図13と、先ほどの図7とを組み合わせることで、制御基板20に搭載される部品の自己発熱抑制と、その他補機8の十分な作動との間のバランスを取ることができる。
 本発明に係る電源制御システムは、インバータ回路と、インバータ回路制御用のインバータ制御基板搭載部品を含む電源システムの制御に利用できる。
 6 回転電機、8 その他補機、10 電源制御システム、12 高電圧蓄電装置、14 インバータ部、16 高電圧電圧変換器、18 インバータ回路、20 制御基板、22,36 温度センサ、26 低電圧蓄電装置、28 電圧センサ、30 インバータ筐体、31 冷却流路、32 ウォータポンプ、34 ラジエータ、40,42 電流センサ、50 DC/DCコンバータ、60 制御装置、62 制御基板温度取得処理部、64 出力制限処理部。

Claims (5)

  1.  高電圧蓄電装置とインバータ回路とを含む高電圧電源回路と、
     低電圧蓄電装置と、
     低電圧蓄電装置と接続され、高電圧蓄電装置の端子間電圧を所定の補機電圧に降圧するDC/DCコンバータと、
     補機電圧で作動するインバータ回路制御用部品を搭載するインバータ制御基板と、
     インバータ制御基板の温度である制御基板温度を取得する温度取得部と、
     DC/DCコンバータの作動を制御する制御部と、
     を備え、
     制御部は、
     制御基板温度が予め定めた閾値温度以上のときに、DC/DCコンバータの出力電圧を制限してインバータ回路制御用部品の自己発熱を抑制する出力制限手段を有することを特徴とする電源制御システム。
  2.  請求項1に記載の電源制御システムにおいて、
     制御部は、
     低電圧蓄電装置の端子間電圧が予め定めた閾値電圧未満のときには、DC/DCコンバータの出力電圧制限を行わないことを特徴とする電源制御システム。
  3.  請求項1に記載の電源制御システムにおいて、
     温度取得部は、
     インバータ回路を冷却する冷媒温度に基いて制御基板温度を推定して取得することを特徴とする電源制御システム。
  4.  請求項1に記載の電源制御システムにおいて、
     温度取得部は、
     インバータ回路の出力電流の大きさに基いて制御基板温度を推定して取得することを特徴とする電源制御システム。
  5.  請求項1に記載の電源制御システムにおいて、
     温度取得部は、
     高電圧蓄電装置の出力電流の大きさに基いて制御基板温度を推定して取得することを特徴とする電源制御システム。
PCT/JP2010/057764 2010-05-06 2010-05-06 電源制御システム WO2011138827A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057764 WO2011138827A1 (ja) 2010-05-06 2010-05-06 電源制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/057764 WO2011138827A1 (ja) 2010-05-06 2010-05-06 電源制御システム

Publications (1)

Publication Number Publication Date
WO2011138827A1 true WO2011138827A1 (ja) 2011-11-10

Family

ID=44903686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057764 WO2011138827A1 (ja) 2010-05-06 2010-05-06 電源制御システム

Country Status (1)

Country Link
WO (1) WO2011138827A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110926A (ja) * 2011-11-24 2013-06-06 Ntn Corp モータの制御装置
JP2013198256A (ja) * 2012-03-19 2013-09-30 Toyota Motor Corp 電気自動車
JP2014045599A (ja) * 2012-08-28 2014-03-13 Honda Motor Co Ltd 電動機の駆動装置
CN112747539A (zh) * 2019-10-29 2021-05-04 东芝生活电器株式会社 冰箱
CN112856899A (zh) * 2019-11-12 2021-05-28 日立环球生活方案株式会社 冰箱
WO2023199388A1 (ja) * 2022-04-11 2023-10-19 株式会社ソニー・インタラクティブエンタテインメント 冷却ファン、電子機器、及び電子機器の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233830A (ja) * 1996-02-26 1997-09-05 Toyota Motor Corp インバータ装置
JPH11164558A (ja) * 1997-11-28 1999-06-18 Toshiba Corp 交流電圧調整装置
JP2003333835A (ja) * 2002-05-10 2003-11-21 Toyota Motor Corp 電源システム、電源制御方法、および電源制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP2008219647A (ja) * 2007-03-06 2008-09-18 Funai Electric Co Ltd テレビジョン、及び音声出力機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09233830A (ja) * 1996-02-26 1997-09-05 Toyota Motor Corp インバータ装置
JPH11164558A (ja) * 1997-11-28 1999-06-18 Toshiba Corp 交流電圧調整装置
JP2003333835A (ja) * 2002-05-10 2003-11-21 Toyota Motor Corp 電源システム、電源制御方法、および電源制御をコンピュータに実行させるプログラムを記録したコンピュータ読取り可能な記録媒体
JP2008219647A (ja) * 2007-03-06 2008-09-18 Funai Electric Co Ltd テレビジョン、及び音声出力機器

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013110926A (ja) * 2011-11-24 2013-06-06 Ntn Corp モータの制御装置
US9321353B2 (en) 2011-11-24 2016-04-26 Ntn Corporation Motor control device
JP2013198256A (ja) * 2012-03-19 2013-09-30 Toyota Motor Corp 電気自動車
JP2014045599A (ja) * 2012-08-28 2014-03-13 Honda Motor Co Ltd 電動機の駆動装置
CN112747539A (zh) * 2019-10-29 2021-05-04 东芝生活电器株式会社 冰箱
CN112747539B (zh) * 2019-10-29 2022-07-26 东芝生活电器株式会社 冰箱
CN112856899A (zh) * 2019-11-12 2021-05-28 日立环球生活方案株式会社 冰箱
CN112856899B (zh) * 2019-11-12 2022-07-05 日立环球生活方案株式会社 冰箱
WO2023199388A1 (ja) * 2022-04-11 2023-10-19 株式会社ソニー・インタラクティブエンタテインメント 冷却ファン、電子機器、及び電子機器の製造方法

Similar Documents

Publication Publication Date Title
US10780795B2 (en) Battery heating system and control method thereof
JP6063155B2 (ja) 環境配慮型車両の充電装置および方法
JP4274271B2 (ja) 電圧変換装置
JP3732828B2 (ja) 動力出力装置およびこれを搭載する車輌、動力出力装置の制御方法および記憶媒体並びにプログラム、駆動装置およびこれを搭載する車輌、駆動装置の制御方法および記憶媒体並びにプログラム
JP5621619B2 (ja) 電源装置
JP5109528B2 (ja) 電力変換ユニット
JP6161127B2 (ja) 電力変換装置
WO2011138827A1 (ja) 電源制御システム
TW200302618A (en) Fast charger for high capacity batteries
JP2013037859A (ja) 蓄電池装置
JP2007325388A (ja) 電動機の制御装置及び車載用電動機駆動システム
JP5821727B2 (ja) 電気自動車
RU2709196C1 (ru) Система преобразования электрической мощности и способ управления системой преобразования электрической мощности
JP2009171702A (ja) 車両駆動システム
JP2000341801A (ja) 電気自動車用電源装置
US9260019B2 (en) Drive system and vehicle including drive system
JP6545310B1 (ja) 電力変換装置
EP2768131B1 (en) Inverter device
JP2020054057A (ja) 電力変換器
JP5077220B2 (ja) 電圧変換装置
JP2009254206A (ja) 電源制御システム
JP2014023263A (ja) 電気自動車
JP2009254209A (ja) 電源制御システム
JP2019146374A (ja) 電力変換装置
JP4139290B2 (ja) 電気車輌用電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10851048

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10851048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP