JP5821727B2 - 電気自動車 - Google Patents

電気自動車 Download PDF

Info

Publication number
JP5821727B2
JP5821727B2 JP2012061866A JP2012061866A JP5821727B2 JP 5821727 B2 JP5821727 B2 JP 5821727B2 JP 2012061866 A JP2012061866 A JP 2012061866A JP 2012061866 A JP2012061866 A JP 2012061866A JP 5821727 B2 JP5821727 B2 JP 5821727B2
Authority
JP
Japan
Prior art keywords
temperature
power
discharge resistor
capacitor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012061866A
Other languages
English (en)
Other versions
JP2013198256A (ja
Inventor
廷夫 勘崎
廷夫 勘崎
哲智 川合
哲智 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2012061866A priority Critical patent/JP5821727B2/ja
Publication of JP2013198256A publication Critical patent/JP2013198256A/ja
Application granted granted Critical
Publication of JP5821727B2 publication Critical patent/JP5821727B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Inverter Devices (AREA)

Description

本明細書が開示する技術は、電気自動車に関する。特に、走行用モータに供給する電流を平滑化するコンデンサ、あるいは、走行用モータに供給する電力を蓄えるコンデンサと、そのコンデンサを放電する放電抵抗を備える電気自動車に関する。本明細書における「電気自動車」には、燃料電池車や、走行用モータとエンジンを共に備えるハイブリッド車も含む。
電気自動車の走行用モータの駆動には、バッテリから供給される直流電力をモータ駆動に適した交流電力に変換する電力変換器が用いられる。電力変換器は、典型的には、直流電力を交流電力に変換するインバータであるが、バッテリの出力電圧を変圧する電圧変換器を含むこともある。走行用モータは、一般に定格出力が数十キロワット程度であることから、電力変換器に流れる電流が大きい。そのため、電力変換器に流れる電流を平滑化するためのコンデンサにも大容量のものが採用される。あるいは、鉛蓄電池やリチウムイオン電池、燃料電池などと同様に、走行用モータの駆動電力を蓄える蓄電装置としてコンデンサ(「キャパシタ」とも称される)を搭載する電気自動車もある。
そのような電気自動車は、コンデンサが蓄える電力が不要となった場合にコンデンサを速やかに放電するデバイス(放電デバイス)を備えていることが望ましい。コンデンサに蓄えられた電力が漏電すると他のデバイスに影響を与える虞があるからである。コンデンサが蓄える電力が不要となる場合とは、典型的には、車両にアクシデント(故障や衝突など)が生じた場合である。コンデンサの放電には、例えば、電気抵抗が小さくかつ耐熱性の高い放電抵抗が用いられ、衝突の際にコンデンサを放電抵抗に接続する放電スイッチによってこの抵抗に放電される。コンデンサに蓄えられた電力は、放電抵抗により熱エネルギに変換されて消費される。
一旦アクシデントが生じ、コンデンサを放電した後、アクシデントが解消した場合、あるいは、アクシデントが軽微であり、その後も走行を続けることが可能な場合には放電スイッチを切断し、放電抵抗をコンデンサから切り離す。しかしながら、コンデンサと放電抵抗の接続状態を維持したまま切断状態に戻らない短絡故障が放電スイッチに生じた場合には、再び走行を開始すると放電抵抗に絶えず電流が流れて発熱し続ける。すると、放電抵抗の発熱によって、放電抵抗自体や放電抵抗の周囲に配置された電子部品が過熱してしまう。このため、特許文献1に開示されているように、例えば、放電スイッチが短絡故障した場合には、回路素子やヒューズを溶断しモータ駆動電力を供給する回路を切断して駆動電力の供給を止める技術がある。
特開2010−233414号公報
しかしながら、モータ駆動電力を供給する回路を切断してしまうと走行ができなくなる。一方、通常と同じ状態で走行を続けると、放電抵抗自体や放電抵抗の周囲に配置された電子部品が過熱してしまう。本明細書は、コンデンサに放電抵抗が接続され続ける短絡故障が生じても、放電抵抗や周囲の電子部品の過熱を抑制しつつモータへの電力供給を続けることのできる技術を提供する。
本明細書が開示する技術は、電気自動車に具現化することができる。その電気自動車は、コンデンサと、コンデンサを放電する放電抵抗と、放電抵抗をコンデンサに接続したり切断したりする放電スイッチと、放電抵抗又はその周囲に配置されている電子部品の温度を計測する温度センサと、電力制限手段を備える。コンデンサは、典型的には、バッテリと走行用モータの間の回路に組み込まれており走行用モータに供給する電流を平滑化するコンデンサ、あるいは、走行用モータに供給する電力を蓄えるコンデンサである。電力制限手段は、放電スイッチが短絡故障した際、温度センサにより計測された温度又は温度上昇率が予め定められた閾値を上回る場合に、放電抵抗又はその周囲の電子部品に供給する電力を制限しつつ走行用モータに電力を供給する。ここで、「電力(あるいは電流)を制限する」とは、放電抵抗又はその周囲の電子部品に供給する電力(あるいは電流)の最大値(供給電力(電流)上限値)を下げることを意味する。なお、温度上昇率は、温度センサのデータから求めることができる。
上記の電気自動車は、放電スイッチが短絡故障しても、放電抵抗又はその周囲に配置された電子部品の温度(あるいは温度上昇率)が予め定められた閾値を上回る場合にはそれらに供給される電力を制限するため、放電抵抗や周囲の電子部品に電流が流れ続けるとしてもその発熱量が抑えられる。従って、走行用モータに電力を供給していても放電抵抗や周囲の電子部品が過熱してしまうことが抑制される。これにより、走行用モータへの電力供給を止めることなく、放電抵抗や周囲の電子部品の温度上昇も抑えられる。また、温度上昇率が予め定められた閾値を上回る場合に放電抵抗又はその周囲の電子部品に供給される電力を制限する構成の場合、所定温度に達してから電力制限する場合に比べて、放電抵抗や周囲の電子部品の発熱がより速く抑制される。これにより、走行用モータへの電力供給を止めることなく、放電抵抗や周囲の電子部品の過熱をさらに効果的に抑制できる。
電気自動車には、バッテリの電圧を昇圧する昇圧回路を備えており、昇圧回路の高電圧側に平滑化用のコンデンサが並列に接続されているタイプがある。そのようなタイプの電気自動車の場合、電力制限手段は、昇圧回路の出力電圧を低下させるように構成されているとよい。昇圧回路の出力電圧を低下させることで、上記の放電抵抗に流れる電流を制限することから、発熱の直接的な原因である放電抵抗自体の発熱を効果的に抑制することができる。これにより、放電抵抗の周囲に配置された電子部品もその温度上昇が効果的に抑えられる。
なお、放電抵抗の典型例は、高い耐熱性を有する電気抵抗器であるが、これに限られない。また、放電スイッチの典型例は、IGBTなどの半導体スイッチング素子であるが、機械的接点でスイッチングするメカニカルリレーやそれ以外の回路の開閉器でもよい。放電抵抗の周囲の電子部品は、放電抵抗と配置上の物理的位置関係が接近している電子部品の他に、例えば、放熱抵抗と同じ放熱器を共用することにより熱的結合の関係にある電子部品や、放熱抵抗と同じ筐体内に収容されて雰囲気や空間を共有する関係にある電子部品も含まれる。具体的には、放電抵抗の周囲の電子部品は、変圧回路に用いられるリアクトル、あるいは、インバータや変圧器の回路である。
また、放電スイッチの短絡故障は、例えば、放電抵抗を電流が流れているか否かのセンサを備えることによって検知することができる。その場合、コントローラは、放電スイッチに対して開放指令を出力したにも関わらずに放電抵抗に電流が流れている場合に、短絡故障を検知する。
また、温度センサが計測する温度は、放電抵抗や周囲の電子部品そのものの温度であってもよいし、放電抵抗や周囲の電子部品を冷却する冷媒の温度であってもよい。冷媒温度は、放電抵抗や周囲の電子部品の温度の近似値として、すなわち、それらの温度の代替値として利用できる。
本明細書が開示する技術の詳細、及び、さらなる改良は、発明の実施の形態で説明する。
実施例のハイブリッド車の構成を示すブロック図である。 コントローラが実行する電力制限処理を示すフローチャート図である。 スイッチングトランジスタの短絡故障時における温度変化の一例を示す特性図である。 電力制御処理の実行時における発熱量と温度の変化の一例を示すグラフである。 スイッチングトランジスタの短絡故障時における供給電力(実線)、温度(二点鎖線)及び排熱量(ハッチング部分)の各変化の一例を示すグラフであり、図5(A)は比較例の場合、図5(B)は実施例の場合ある。
図面を参照して実施例の電気自動車を説明する。実施例の電気自動車は、走行用として、モータとエンジンの双方を備えるハイブリッド車2である。図1にハイブリッド車2のブロック図を示す。ハイブリッド車2は、走行用の駆動源として、モータ8とエンジン6を備えている。モータ8の出力トルクとエンジン6の出力トルクは、動力分配機構7で適宜に分配/合成され、車軸9(即ち車輪)へ伝達される。なお、図1は、本明細書の説明に要する部品だけを表しており、説明に関係のない一部の部品は図示を省略していることに留意されたい。
モータ8を駆動するための電力はメインバッテリ3から供給される。メインバッテリ3の出力電圧は、例えば300ボルトである。なお、図示を省略しているが、ハイブリッド車2は、メインバッテリ3の他に、カーナビゲーション装置やルームランプなど、メインバッテリ3の出力電圧よりも低い電圧で駆動するデバイス群(通称「補機」と呼ばれる)に電力を供給するための補機バッテリも備える。後述するパワーコントロールユニット(以下「PCU」と称する)5の大電流系回路を除く信号処理回路(PWM生成回路など)も補機の一種である。また、「メインバッテリ」との呼称は、「補機バッテリ」と区別するための便宜上のものである。
メインバッテリ3は、システムメインリレー4を介してPCU5に接続される。システムメインリレー4は、メインバッテリ3と車両の駆動系を接続したり切断したりするスイッチである。システムメインリレー4は、上位コントローラ62により切り換えられる。
PCU5は、メインバッテリ3とモータ8の間に介在する電子回路10である。PCU5は、メインバッテリ3の電圧をモータ8の駆動に適した電圧(例えば600ボルト)まで昇圧する電圧コンバータ回路20、昇圧後の直流電力を交流に変換するインバータ回路30、放電回路40やコントローラ50を含む。インバータ回路30の出力がモータ8への供給電力に相当する。なお、PCU5では、図示しない水冷方式の冷却器によって、電圧コンバータ回路20、インバータ回路30や放電回路40を構成する電子部品などが常時冷却されており、この冷却器の水温は温度センサ51によって検出されている。
なお、ハイブリッド車2は、エンジン6の駆動力、あるいは車両の減速エネルギを利用してモータ8で発電することもできる。モータ8が発電する場合、インバータ回路30が交流を直流に変換し、さらに電圧コンバータ回路20がメインバッテリ3よりも僅かに高い電圧まで降圧し、メインバッテリ3へ供給する。
電圧コンバータ回路20は、フィルタコンデンサ12とリアクトル21とIGBTなどのスイッチングトランジスタ22、24を主とする回路で、これらの電子部品の温度を検出する温度センサ52も含んで構成される。このスイッチングトランジスタ22、24には、それぞれ保護用のダイオードが逆並列に接続されている。スイッチングトランジスタ22、24やその周辺回路は、例えば、インテリジェントパワーモジュール(IPM)としてパッケージ化されている場合もある。
インバータ回路30は、モータ8のU、V、Wの各相に対応してスイッチング制御するスイッチングトランジスタ31、32、33、34、35、36(以下、これらの符号は「31−36」と総称する)を主とする回路で、これらの電子部品の温度を検出する温度センサ53も含んで構成される。これらのスイッチングトランジスタ31−36には、それぞれ保護用のダイオードが逆並列に接続されている。スイッチングトランジスタ31−36やその周辺回路も、スイッチングトランジスタ22、24と同様に、インテリジェントパワーモジュール(IPM)としてパッケージ化されている場合がある。
電圧コンバータ回路20やインバータ回路30は、いずれもコントローラ50に接続されており、それぞれを構成するスイッチングトランジスタの制御端子がこれにより制御される。即ち、電圧コンバータ回路20やインバータ回路30は、コントローラ50により生成されて供給されるPWM信号によって、昇圧したり、交流に変換したりするためのスイッチング制御を行う。
このような電圧コンバータ回路20の高電圧側(即ちインバータ回路側)にはコンデンサ14が電圧コンバータ回路20と並列に接続されている。コンデンサ14は、インバータ回路30に入力される電流を平滑化するために挿入されている。なお、電圧コンバータ回路20のスイッチングトランジスタ22の高電位側や、インバータ回路30のスイッチングトランジスタ31、33、35の高電位側の電線をP線と称する。これに対し、電圧コンバータ回路20のスイッチングトランジスタ24の低電位側(グランド側)や、スイッチングトランジスタ32、34、36の低電位側の電線をN線と称する。コンデンサ14、及び、電圧コンバータ回路内のコンデンサ12は、P線とN線の間に挿入されている。メインバッテリ3からモータ8へは大電流が供給されるので、コンデンサ12及びコンデンサ14はともに大容量である。
放電回路40は、電圧コンバータ回路20とインバータ回路30に対して並列に接続されている。別言すれば、P線とN線の間に放電回路40が接続されている。放電回路40は、高耐熱性の放電抵抗42とスイッチングトランジスタ44の直列接続で構成される。この放電回路40には、この他に、放電抵抗42の温度やその周囲の温度を検出する温度センサ54及び放電抵抗42に流れる電流を検出する電流センサ55も含んで構成されている。スイッチングトランジスタ44の制御端子は、コントローラ50に接続されており、スイッチングトランジスタ44のオンオフ(開閉)は、コントローラ50が制御する。スイッチングトランジスタ44が放電スイッチに相当する。
スイッチングトランジスタ44をオンにすると、放電抵抗42がP線とN線の間に接続されて、コンデンサ14、放電抵抗42及びスイッチングトランジスタ44による閉回路が構成される。このため、コンデンサ14に蓄えられた電荷が放電抵抗42に流れる。放電抵抗42に流れた電力は、熱エネルギとなって散逸する。即ち、放電抵抗42は自身が発熱することによりコンデンサ14を放電する。
また、P線には、リアクトル21及びスイッチングトランジスタ22の保護用ダイオードを介してコンデンサ12が電気的に接続されている。このため、スイッチングトランジスタ44をオンにすると、コンデンサ12、リアクトル21、スイッチングトランジスタ22の保護用ダイオード、放電抵抗42及びスイッチングトランジスタ44による閉回路が構成されて、コンデンサ12に蓄えられた電荷が放電抵抗42に流れる。これにより、放電抵抗42がコンデンサ12も放電する。
このような放電回路40によるコンデンサの放電動作は、コントローラ50により直接的に制御されるが、放電回路40の駆動を指示するのは、コントローラ50の上位システムに相当する上位コントローラ62である。上位コントローラ62は、加速度センサを含むエアバッグシステムのエアバッグコントローラ64から受信する衝突信号をトリガにして下位のコントローラ50に対して放電回路40の駆動信号を送信する。これを受信したコントローラ50は、放電回路40のスイッチングトランジスタ44をオンにする制御を行ってコンデンサ14などに蓄えられた電荷を放電抵抗42に流して放電させる。
コントローラ50は、マイクロコンピュータ、メモリや入出力インタフェースなどの電子部品で構成される情報処理装置である。このコントローラ50には、電圧コンバータ回路20、インバータ回路30、放電回路40や上位コントローラ62が接続されており、また電圧コンバータ回路20などの温度センサ51、52、53、54、さらには放電抵抗42の電流センサ55も接続されている。前述した電圧コンバータ回路20やインバータ回路30のスイッチング制御はこのコントローラ50によって実行される。
上述したように、コントローラ50は、エアバッグコントローラ64の衝突信号をトリガにしてスイッチングトランジスタ44(放電スイッチ)を閉じ、放電抵抗42をコンデンサ12、14に接続し、それらのコンデンサを放電する。コントローラ50(及び上位コントローラ62)は、車両が衝突した場合のほか、車両のメインスイッチ(イグニッションスイッチとも呼ばれる)がOFFされた場合、あるいは、予め定められた故障を検知した場合に、コンデンサ12、14を放電する。コンデンサを放電した後、車両にアクシデントがなければ、あるいは、アクシデントがあっても軽微である場合は、コントローラ50(コントローラ62)は、スイッチングトランジスタ44を開放し、放電抵抗42をコンデンサ12、14から切り離す。この場合、車両が再び走行を開始しても、放電抵抗42は切り離されたままであり、発熱することはない。
ところが、スイッチングトランジスタ44は、オン状態(回路を閉じた状態)を維持したままオフ状態(回路を開いた状態)に戻らない短絡故障を生ずる場合がある。短絡故障が生じた場合、アクシデントが解消し(あるいは軽微なアクシデントであることが判明し)、再び走行を開始すると、放電抵抗42には、常に電流が流れることから、放電抵抗42は発熱し続ける。すると、この発熱によって、放電抵抗42自体や、放電抵抗42の周辺に配置されている電圧コンバータ回路20やインバータ回路30を構成する電子部品は、加熱されて機能的に影響を受けることがある。
そこで、コントローラ50では、定期的(例えば10ミリ秒ごと)にスイッチングトランジスタ44を監視して、短絡故障を検出した場合には、電圧コンバータ回路20、コンデンサ14やインバータ回路30に供給される電力を制限する電力制限処理を実行する。図2に、コントローラ50が実行する電力制限処理のフローチャートを示す。このフローチャートの処理手順は、本明細書が開示する技術的思想の範囲内で入れ替えてもよい。
コントローラ50は、まずステップS2−S4によりスイッチングトランジスタ44の短絡故障を検出する。コントローラ50が放電回路40による放電制御をしていない場合(即ち、スイッチングトランジスタ44に対して開放の指令を与えている場合)には、通常、放電抵抗42に電流が流れることはない。このため、電流センサ55による電流値から放電抵抗42に電流が流れているか否か検出する(S2:NO、S3、S4)。電流が流れている場合にはスイッチングトランジスタ44は短絡故障しているため、故障を検出する(S4:YES)。電流が流れていない場合は、スイッチングトランジスタ44は正常であるため、本電力制限処理を終了する(S4:NO)。
スイッチングトランジスタ44の短絡故障を検出した場合、コントローラ50は、ステップS5−S7により電力制限を行うか否かを判定する。温度センサ51、52、53、54により電圧コンバータ回路20、インバータ回路30及び放電回路40の各電子部品の温度を検出する(S5)。スイッチングトランジスタ44の短絡故障により特に温度上昇しやすい放電抵抗42の温度やその周囲の温度は、温度センサ54が検出する。これらのセンサによる温度検出は、例えば、所定時間間隔で複数回行われる。これにより得られた複数の温度データにより平均値を求めたり、また所定時間間隔で変動した温度差から温度上昇率を算出する(S6)。
なお、温度上昇率は、放電抵抗42に流れる電流値から推定することも可能である。放電抵抗42の温度は、放電抵抗42に流れる電流値が大きいほど温度が上がりやすく、電流値が小さければ温度は上がり難い。そのため、放電抵抗42の抵抗値及び電流値に基づいて放電抵抗42による単位時間当たりの発熱量を算出して単位時間当たりの温度上昇率を推定する。この発熱量はジュール熱によるものであることから、温度上昇率は放電抵抗42の比熱容量を含んだ所定の演算式により求められる。また、種々の発熱量に対して予め設定された温度上昇率のマップデータにこの発熱量を対応させることによっても求められる。
温度上昇率の値が大きいほど、又は現在の温度と既定の最大許容温度との差が小さいほど、電力制限を強める必要がある。電力制限とは、典型的には、電圧コンバータ回路20の出力電圧VHの上限値を下げることである。あるいは、電力制限とは、電圧コンバータ回路20に供給する電力Winの上限値を下げることである。以下では、電圧コンバータ回路20の出力電圧の上限値(上限電圧VHmax)を電力制限の制御変数として説明を続ける。
上限電圧VHmaxもステップS6において求める。上限電圧VHmaxは、例えば、温度上昇率の値と、最大許容温度との温度差と、により決定する。温度上昇率が大きく且つ最大許容温度との温度差が小さい場合にはVHmaxをより低く、また温度上昇率が小さく且つ最大許容温度との温度差が大きい場合にはVHmaxをより高くする。このように決定されたVHmaxは、例えば、温度上昇率の推定と同様に、温度上昇率及び最大許容温度との温度差に対応付けられたマップデータとして提供される。なお、最大許容温度との温度差に関係なく、例えば、温度上昇率が大きければ上限電圧VHmaxが低くなるように、また温度上昇率が小さければ上限電圧VHmaxが高くなるように、温度上昇率に直線的に比例した値に上限電圧VHmaxを決定してもよい。
このように推定された温度上昇率により電力制限を行うか否かを判定する(S7)。例えば、温度上昇率が予め定められた所定の閾値を上回る場合には電力制限を実行し、上回らない場合には放電抵抗42による放熱に余裕があるため処理を終了する(S7:NO)。予め定められた所定の閾値としては、例えば、0.01℃/ミリ秒などが挙げられる。所定の閾は、例えば、85℃や100℃などの予め定められた所定の温度でよい。この場合、ステップS5により検出された各温度が所定の温度を上回っているか否かをこのステップS7において判定する。
温度上昇率が所定の閾値を上回る場合、ステップS8−S12により電力制限を実行する。第1段階として、ステップS6で決定した上限電圧VHmaxを、実際の電圧コンバータ回路20の出力制限の制限値として設定する(S8)。
上限電圧VHmaxを設定した後、温度センサ51、52、53、54により各温度を検出する(S9)。ステップS5において検出した前回の温度と出力制限後の今回の温度とを比較して温度上昇しているか否かを判定する(S10)。温度上昇が続いている場合(S10:YES)には、第2段階として、さらに電力制限を強める。具体的には、S11において、上限電圧VHmaxをさらに下げる。続いて、再度、ステップS9に戻って各温度を検出し、温度上昇が止まるまで上限電圧VHmaxを低下させる。これに対して温度上昇が止まった場合、即ち温度が降下又は変わらない場合には、ステップS8で設定した上限電圧VHmaxを保持して処理を終了する(S10:NO、S12)。
コントローラ50によりこのような電力制御処理を行うことで、スイッチングトランジスタ44に短絡故障が生じた場合においても、例えば、放電抵抗42の温度は、図3に実線で示すような変化をして最大許容温度Tmax(一点鎖線)を下回る。図3は、放電抵抗42の温度変化の一例を示しており、実線は発熱量、二点鎖線は温度を示している。図3の例では、時刻tsで電力制限を開始している。このため、スイッチングトランジスタ44が短絡故障をしても、放電抵抗42などの温度が最大許容温度Tmaxを超えない限りにおいては、モータ8に電力供給をし続けることが可能となる。図3に示す破線は、電力制限を行わなかったときの例であり、放電抵抗42の温度は一定の上昇率で上昇し、短時間に最大許容温度Tmaxに達する。放電抵抗42の温度が最大許容温度Tmaxに達すると、コントローラ50はモータ8への電力供給を停止する。それゆえ、放電抵抗42の温度は急激に低下する。
また、図4に、放電抵抗42の発熱量と温度の関係の一例を示す。実線が発熱量を示しており、2点鎖線は温度を示している。また、1点鎖線は、PCU5の冷却能力の上限値、即ち、単位時間当たりの最大放熱量CPを示している。図4の例では、スイッチングトランジスタ44の短絡故障が時刻taで検知される。短絡故障検知後、発熱量(実線)は一時的には増加するものの、前述したステップS8やステップS11による電力制限により、時刻tb以降、発熱量は減少し続けて、やがて冷却器による冷却性能CP(一点鎖線)と釣り合うことで、ほぼ一定になる。放電抵抗42の温度(二点鎖線)も、短絡故障の発生時taから一旦は上昇しても、電力制限により発熱量が減少することにより温度上昇率は徐々に小さくなり、やがて発熱量と冷却器による冷却性能CPとが釣り合った時点tc以降、緩やかに温度低下をし始める。
図5には、スイッチングトランジスタ44の短絡故障時における供給電力(実線)、温度(二点鎖線)及び排熱量(ハッチング部分)の各変化が示されており、図5(A)は、スイッチングトランジスタ44が短絡故障しても電力制限を行わず、放電抵抗42の温度が上限値に達すると回路素子やヒューズを溶断し電力供給を止める比較例の場合、図5(B)は上述した電力制限処理を実行した場合である。
図5からは、放電抵抗42による放熱量の違いを把握することができる。即ち、図5(A)に示す比較例の場合には、放電抵抗42の温度(二点鎖線)が最大許容温度Tmax(一点鎖線)に達すると、その時点Toffで直ちに電力供給(実線)を止める。Toff時点以降は温度が低下する。
これに対して、図5(B)に示す電力制限処理を実行した場合には、比較例の場合と異なり、放電抵抗42などの温度(二点鎖線)が最大許容温度Tmax(一点鎖線)に到達する以前の時点tcntで電力制御を実行することから、その時点tcntから電力供給は緩やかに減少し、それとともに放電抵抗42などの温度上昇率も抑えられる。即ち、電力制限処理を実行した場合には、前述したステップS8により電力制御を開始した後も、モータ8には電力供給され続けるため、その後も放電抵抗42が放熱し電力供給が止まるまで放熱量(ハッチング部分)は増加し続ける。但し、この例では、比較例との放熱量の違いを明確にするため、前述した電力制限を実行しても放電抵抗42の温度が上昇し続け、最大許容温度Tmaxに到達した時点Toffで電力供給を中止する制御を示した。
このように上述した電力制御処理を行うことによって、スイッチングトランジスタ44が短絡故障をしても、その後においてより長い時間をかけてモータ8に対する電力供給をし続けるため、放熱量をより多くすることができる。
上記の例では、放電抵抗42の温度を示した。放電抵抗42の温度上昇が抑制されれば、放電抵抗42の周囲に配置された他の電子部品の過熱も抑制される。
以上説明したように実施例のハイブリッド車2では、コントローラ50により実行する電力制限処理により、スイッチングトランジスタ44が短絡故障しても、放電抵抗42又は電圧コンバータ回路20の電子部品(リアクトル21、スイッチングトランジスタ22、24)やインバータ回路30の電子部品(スイッチングトランジスタ31−36)の温度が予め定められた閾値を上回る場合にはそれらに供給される電力を制限するため、モータ8に電力を供給していても放電抵抗42や周囲の電子部品の発熱が抑制される。これにより、モータ8への電力供給を止めることなく、放電抵抗42、電圧コンバータ回路20やインバータ回路30の電子部品の温度上昇も抑えられる。また、温度上昇率が予め定められた閾値を上回る場合に放電抵抗42又は電圧コンバータ回路20やインバータ回路30の電子部品に供給される電力を制限するため、所定温度に達してから電力制限する場合に比べて、放電抵抗42や電圧コンバータ回路20やインバータ回路30の電子部品の発熱がより速く抑制される。これにより、モータ8への電力供給を止めることなく、電圧コンバータ回路20やインバータ回路30の電子部品に及ぼし得る熱による影響をさらに軽減する。
また、ハイブリッド車2では、メインバッテリ3の電圧を昇圧する電圧コンバータ回路20であってその高電圧側のP線にコンデンサ14が並列に接続されているものを備え、コントローラ50により実行する電力制限処理により電圧コンバータ回路20の出力電圧を低下させる。これにより、放電抵抗42に流れる電流が減少することから、発熱の直接的な原因である放電抵抗42自体の発熱を効果的に抑制する。このため、放電抵抗42の周囲の電圧コンバータ回路20やインバータ回路30の電子部品もその温度上昇が効果的に抑えられ、これらに及ぼし得る熱による影響を軽減する。
なお、実施例では、温度と温度上昇率のいずれかに基づいて電力制限を実行するか否かを判定したが(S7)、温度と温度上昇率の双方に基づいた判定でもよい。また、温度や温度上昇率は、前回実行したときの値を記憶しておき、その値と今回実行したときの値とを比較して、電力制限を実行するか否かの判定材料にしてもよい。
また、実施例では、放電抵抗42の温度の他に、電圧コンバータ回路20やインバータ回路30の温度も温度センサ52や温度センサ53によって検出したが、これらの温度を検出することなく、放電抵抗42の温度やその温度上昇率に基づいて電力制限を行うか否かを判定してもよい。また、放電抵抗42の電流は温度上昇率を推定するために検出したが、電流に基づくことなく温度上昇率を推定する場合には温度センサ51は必ずしも必要ではない。
上記の実施例では、電圧コンバータ回路20の出力電圧VHを低下させることで、放電抵抗42に供給される電力を制限した。電力制限は、そのほか、例えば、メインバッテリ3からPCU5に入力する電力(メインバッテリ3の出力電力)やPCU5からモータ8に出力する電力(モータ8の入力電力)の制限であってもよい。また、放電抵抗42の周囲に配置された電子部品であり、耐熱性が低い部品に対する電力供給を制限してもよい。そのような電子部品に供給する電力を制限し、そのような電子部品自体の発熱を抑制することによって、そのような電子部品の過熱を防止することができる。
上記の実施例では、インバータへの入力電流を平滑化するコンデンサ14と昇圧回路のコンデンサ12の放電を例とした。本明細書が開示する技術は、モータ駆動用の電力を蓄えるキャパシタ(コンデンサの一種)を放電する電気自動車にも適用することができる。
実施例技術に関する留意点を述べる。メインバッテリ3がバッテリの一例に相当する。モータ8が「走行用モータ」の一例に相当する。電子回路10が「回路」の一例に相当する。電圧コンバータ回路20が「昇圧回路」の一例に相当する。リアクトル21、スイッチングトランジスタ22、24、31−36が「電子部品」の一例に相当する。スイッチングトランジスタ44が「放電スイッチ」の一例に相当する。コントローラ50が「電力制限手段」の一例に相当する。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。また、本明細書又は図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成するものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。
2:ハイブリッド車
3:メインバッテリ
5:PCU
6:エンジン
8:モータ
10:電子回路
14:コンデンサ
20:電圧コンバータ回路
21:リアクトル
22、24、31−36、44:スイッチングトランジスタ
30:インバータ回路
40:放電回路
42:放電抵抗
44:スイッチングトランジスタ(放電スイッチ)
50:コントローラ
51−54:温度センサ
55:電流センサ

Claims (2)

  1. バッテリと走行用モータの間の回路に組み込まれており走行用モータに供給する電流を平滑化するコンデンサ、あるいは、走行用モータに供給する電力を蓄えるコンデンサと、
    コンデンサを放電する放電抵抗と、
    放電抵抗をコンデンサに接続したり切断したりする放電スイッチと、
    放電抵抗又はその周囲に配置されている電子部品の温度を計測する温度センサと、
    放電スイッチが短絡故障した際、温度センサにより計測された温度又は温度上昇率が予め定められた閾値を上回る場合に、放電抵抗又はその周囲に配置されている電子部品に供給する電力を制限しつつ前記走行用モータに電力を供給する電力制限手段と、
    を備えることを特徴とする電気自動車。
  2. バッテリの電圧を昇圧する昇圧回路を備えており、
    前記コンデンサは電流平滑化用のコンデンサであって昇圧回路の高電圧側に並列に接続されており、
    前記電力制限手段は、昇圧回路の出力電圧を低下させることを特徴とする請求項1に記載の電気自動車。
JP2012061866A 2012-03-19 2012-03-19 電気自動車 Active JP5821727B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012061866A JP5821727B2 (ja) 2012-03-19 2012-03-19 電気自動車

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012061866A JP5821727B2 (ja) 2012-03-19 2012-03-19 電気自動車

Publications (2)

Publication Number Publication Date
JP2013198256A JP2013198256A (ja) 2013-09-30
JP5821727B2 true JP5821727B2 (ja) 2015-11-24

Family

ID=49396577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012061866A Active JP5821727B2 (ja) 2012-03-19 2012-03-19 電気自動車

Country Status (1)

Country Link
JP (1) JP5821727B2 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2519342A (en) * 2013-10-18 2015-04-22 Heber Ltd Detection of circuit integrity
JP5880519B2 (ja) * 2013-10-21 2016-03-09 トヨタ自動車株式会社 車載電子装置
JP6171885B2 (ja) 2013-11-20 2017-08-02 株式会社デンソー 車載電気システム
JP2016052140A (ja) 2014-08-28 2016-04-11 株式会社ケーヒン 放電制御装置
JP6582672B2 (ja) * 2015-07-23 2019-10-02 三菱自動車工業株式会社 モータ制御装置
JP2018186625A (ja) * 2017-04-25 2018-11-22 ファナック株式会社 残留電荷消費制御部を有するモータ駆動装置
JP7177985B2 (ja) * 2019-02-05 2022-11-25 マツダ株式会社 車両電源システム
JP6910507B1 (ja) * 2020-06-03 2021-07-28 三菱電機株式会社 電源装置
JP7313416B2 (ja) * 2021-11-16 2023-07-24 三菱電機株式会社 電力変換装置
CN117968889B (zh) * 2024-04-01 2024-06-11 杭州高特电子设备股份有限公司 一种基于温度场分析的电池故障识别系统与方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0319007A (ja) * 1989-06-16 1991-01-28 Hitachi Lighting Ltd 電源装置
JP2009201194A (ja) * 2008-02-19 2009-09-03 Toyota Motor Corp 回転電機の異常検出装置および異常検出方法
JP5094797B2 (ja) * 2009-08-07 2012-12-12 日立オートモティブシステムズ株式会社 直流電源平滑用コンデンサーの放電回路
JP5567381B2 (ja) * 2010-04-27 2014-08-06 日立オートモティブシステムズ株式会社 電力変換装置
WO2011138827A1 (ja) * 2010-05-06 2011-11-10 トヨタ自動車株式会社 電源制御システム
US9043066B2 (en) * 2011-05-31 2015-05-26 Toyota Jidosha Kabushiki Kaisha Vehicle and control method of vehicle
JP5828300B2 (ja) * 2012-05-08 2015-12-02 トヨタ自動車株式会社 電気自動車
JP2015027127A (ja) * 2013-07-24 2015-02-05 トヨタ自動車株式会社 電力変換器

Also Published As

Publication number Publication date
JP2013198256A (ja) 2013-09-30

Similar Documents

Publication Publication Date Title
JP5821727B2 (ja) 電気自動車
JP6761014B2 (ja) 電気自動車のためのインバータ
US20150034406A1 (en) Electric vehicle
US9994109B2 (en) Power supply system applied to electrically powered vehicle
US8583310B2 (en) Electric vehicle
US9637009B2 (en) Electric vehicle
US20150214858A1 (en) Operating state circuit for an inverter and method for setting operating states of an inverter
US9548675B2 (en) Method and device for discharging an inverter capacitor
US20080007190A1 (en) Motor control apparatus and on-vehicle motor drive system
US20140240872A1 (en) Power-supply unit
US12090863B2 (en) Discharge apparatus for an electrical drive arrangement of a vehicle and electrical drive arrangement comprising the discharge apparatus
US10787136B2 (en) Electric power system for controlling pre-charge of vehicle
US9998057B2 (en) Power supply system
KR101698401B1 (ko) 냉각 부재를 포함하는 에너지 저장 장치, 및 에너지 저장 셀의 냉각 방법
JP2013236442A (ja) 電気自動車
US20140210260A1 (en) Electric power conversion system for electric vehicle
JP7039520B2 (ja) 電源システム
US9515477B2 (en) Overcurrent protection device, overcurrent protection method, and non-transitory medium
US10367345B2 (en) Temperature detection device
WO2011138827A1 (ja) 電源制御システム
JP2011130555A (ja) 駆動システム
JP2015027127A (ja) 電力変換器
JP2015136213A (ja) 電動車両の電力変換装置
JP6726249B2 (ja) メインリレー保護装置
JP4096895B2 (ja) 車両用高電圧直流電源回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150921

R151 Written notification of patent or utility model registration

Ref document number: 5821727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151