JP6910507B1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
JP6910507B1
JP6910507B1 JP2020096571A JP2020096571A JP6910507B1 JP 6910507 B1 JP6910507 B1 JP 6910507B1 JP 2020096571 A JP2020096571 A JP 2020096571A JP 2020096571 A JP2020096571 A JP 2020096571A JP 6910507 B1 JP6910507 B1 JP 6910507B1
Authority
JP
Japan
Prior art keywords
output voltage
voltage
upper limit
temperature
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020096571A
Other languages
English (en)
Other versions
JP2021191171A (ja
Inventor
中島 浩二
浩二 中島
伸浩 木原
伸浩 木原
善一 野月
善一 野月
渉平 大嶋
渉平 大嶋
将希 小路
将希 小路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2020096571A priority Critical patent/JP6910507B1/ja
Priority to CN202110556452.8A priority patent/CN113765350A/zh
Application granted granted Critical
Publication of JP6910507B1 publication Critical patent/JP6910507B1/ja
Publication of JP2021191171A publication Critical patent/JP2021191171A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/60Controlling or determining the temperature of the motor or of the drive
    • H02P29/68Controlling or determining the temperature of the motor or of the drive based on the temperature of a drive component or a semiconductor component

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

【課題】コンバータの過熱保護のために、コンバータの入力電圧が変化しても、出力電圧を適切に上限制限することができる電源装置を提供する。【解決手段】入力端子と出力端子との間で直流電力を変換する、少なくとも一つのスイッチング素子を有するコンバータ20と、出力電圧Voutが目標出力電圧Voutoに近づくように、スイッチング素子をオンオフ制御する制御回路50と、を備え、制御回路50は、コンバータの温度TCが、第1の判定値を超えた場合に、目標出力電圧Voutoを、第1の上限値により上限制限し、入力電圧Vinが小さくなるに従って、第1の上限値を小さくする電源装置。【選択図】図2

Description

本願は、電源装置に関する。
入力端子と出力端子との間で直流電力を変換するコンバータを備えた電源装置において、コンバータの構成部品の過熱保護のために、コンバータの温度に応じて、コンバータから出力される出力電圧の上限値を制限するものがある(例えば、特許文献1の第2の実施形態)。
特許第3732828号
コンバータに入力される入力電圧に応じて、同じ出力電圧でも、コンバータの損失が異なる。そのため、出力電圧の上限値を制限しても、入力電圧によっては、コンバータの損失を十分に低減できず、コンバータの温度を十分に低減できない場合がある。そのため、コンバータの損失の低減、コンバータの冷却性能の向上、コンバータの耐熱性能の向上のために、コンバータの重量が増加し、大型化する。
そこで、本願は、コンバータの過熱保護のために、コンバータの入力電圧が変化しても、出力電圧を適切に上限制限することができる電源装置を提供することを目的とする。
本願に係る電源装置は、
入力端子と出力端子との間で直流電力を変換する、少なくとも一つのスイッチング素子を有するコンバータと、
前記コンバータの温度を検出する温度検出回路と、
前記入力端子の電圧である入力電圧を検出する入力電圧検出回路と、
前記出力端子の電圧である出力電圧を検出する出力電圧検出回路と、
目標出力電圧を設定し、前記出力電圧が目標出力電圧に近づくように、前記スイッチング素子をオンオフ制御する制御回路と、を備え、
前記制御回路は、前記コンバータの温度が、第1の判定値を超えた場合に、前記目標出力電圧を、第1の上限値により上限制限し、
前記入力電圧が小さくなるに従って、前記第1の上限値を小さくするものである。
本願の電源装置によれば、コンバータの温度が、第1の判定値を上回り、過熱保護を行う必要がある場合は、目標出力電圧を、第1の上限値により上限制限し、出力電圧を低下させることができる。入力電圧が小さくなるに従って、同じコンバータ損失になる出力電圧が低下する。入力電圧が小さくなるに従って、第1の上限値が小さくされるので、入力電圧に関わらず、適切にコンバータ損失を低下させることができる。よって、コンバータの発熱量を低減し、コンバータの温度上昇を抑制し、過熱保護を行うことができる。
実施の形態1に係る電源装置及び回転電機の構成図である。 実施の形態1に係る制御回路のブロック図である。 実施の形態1に係る制御回路のハードウェア構成図である。 実施の形態1に係るPWM制御及び電流挙動を説明するためのタイムチャートである。 実施の形態1に係るリアクトル損失を説明する図である。 実施の形態1に係るスイッチング素子損失を説明する図である。 実施の形態1に係るモータ要求下限電圧を説明する図である。 実施の形態1に係る第1の上限値の設定を説明する図である。 実施の形態1に係る制御挙動を説明するタイムチャートである。 実施の形態1に係る下限値の設定を説明する図である。 実施の形態2に係る電源装置及び回転電機の構成図である。 実施の形態2に係る昇圧比が2以上の場合のPWM制御及び電流挙動を説明するためのタイムチャートである。 実施の形態2に係る昇圧比が2以下の場合のPWM制御及び電流挙動を説明するためのタイムチャートである。 実施の形態2に係るリアクトル損失を説明する図である。 実施の形態2に係るスイッチング素子損失を説明する図である。 実施の形態3に係る第1の時間遅れ処理を説明するためのタイムチャートである。 実施の形態4に係る第1の上限値及び第2の上限値の設定を説明する図である。 実施の形態4に係る温度上昇が短期間の場合の制御挙動を説明するタイムチャートである。 実施の形態4に係る温度上昇が長期間の場合の制御挙動を説明するタイムチャートである。
1.実施の形態1
実施の形態1に係る電源装置について図面を参照して説明する。図1は、本実施の形態に係る電源装置の構成図である。
1−1.コンバータ20
コンバータ20は、入力端子1と出力端子2との間で直流電力を変換するDC−DCコンバータである。コンバータ20は、少なくとも一つのスイッチング素子を備えている。また、コンバータ20は、少なくとも一つのリアクトルを備えている。
本実施の形態では、コンバータ20は、入力端子1から出力端子2に直流電圧を昇圧して供給する昇圧チョッパ回路と、出力端子2から入力端子1に直流電圧を降圧して供給する降圧チョッパ回路と、から構成される双方向のチョッパ回路とされている。
コンバータ20は、出力端子2の正極側端子2aと負極側端子2bとの間に直列接続された正極側のスイッチング素子Saと負極側のスイッチング素子Sbとを有している。正極側のスイッチング素子Saと負極側のスイッチング素子Sbとの間の接続点と、入力端子1の正極側端子1aとの間に、リアクトルLが直列接続されている。入力端子1の負極側端子1bと出力端子2の負極側端子2bとが接続されている。
各スイッチング素子には、ダイオードが逆並列接続されたIGBT(Insulated Gate Bipolar Transistor)、ダイオードが逆並列接続されたFET(Field Effect Transistor)、逆並列接続されたダイオードの機能を有するMOSFET(Metal Oxide Semiconductor Field Effect Transistor)、ダイオードが逆並列接続されたバイポーラトランジスタ等が用いられる。各スイッチング素子のゲート端子は、制御回路50に接続されている。各スイッチング素子は、制御回路50から出力される制御信号によりオン又はオフされる。
入力端子1の正極側端子1aと負極側端子1bとの間には、入力側の平滑コンデンサC1が接続されている。出力端子2の正極側端子2aと負極側端子2bとの間には、出力側の平滑コンデンサC2が接続されている。
入力端子1の正極側端子1aと負極側端子1bとの間には、入力端子1の電圧である入力電圧Vinを検出する入力電圧検出回路3が設けられている。入力電圧検出回路3の出力信号は、制御回路50に入力される。出力端子2の正極側端子2aと負極側端子2bとの間には、出力端子2の電圧である出力電圧Voutを検出する出力電圧検出回路4が設けられている。出力電圧検出回路4の出力信号は、制御回路50に入力される。
コンバータ20の温度を検出する温度検出回路5が設けられている。温度検出回路5は、サーミスタ等が用いられる。温度検出回路5は、リアクトル及びスイッチング素子の一方又は双方の温度を検出するように設けられている。例えば、温度検出回路5は、温度が高くなり易い、許容上限温度が低い等、温度条件が最も厳しいリアクトル又はスイッチング素子に設けられる。なお、温度検出回路5は、複数設けられてもよい。
入力端子1は、外部の直流電源30に接続されている。出力端子2は、外部の電気負荷31に接続されている。
1−2.回転電機40
本実施の形態では、外部の電気負荷31は、回転電機40とされている。回転電機40は、直流電力を交流電力に変化して複数相(本例では、U相、V相、W相の3相)の巻線に供給するインバータ41と、複数相の巻線が設けられたステータ及びロータを有する回転電機本体42と、を備えている。インバータ41には、正極側のスイッチング素子Smaと負極側のスイッチング素子Smbとの直列回路が、3相各相に対応して3セット設けられている。各スイッチング素子は、制御回路50によりオンオフされる。各相の直列回路の2つのスイッチング素子Sma、Smbの間の接続点が、対応する相の巻線に接続されている。各相の巻線の接続線上に、各相の巻線を流れる電流を検出する巻線電流検出回路43が設けられている。また、回転電機本体42には、ロータの回転角度を検出する回転検出回路44が設けられている。巻線電流検出回路43及び回転検出回路44の出力信号は、制御回路50に入力される。
1−3.制御回路50
制御回路50は、コンバータ20を制御する。本実施の形態では、制御回路50は、コンバータ20に加えて、回転電機も制御する。なお、回転電機は、別の制御回路により制御されてもよい。この場合は、別の制御回路から制御回路50に回転電機の動作状態の情報が入力される。
図2に示すように、制御回路50は、後述する電圧検出部51、温度検出部52、及び出力電圧制御部53、及び回転電機制御部54等を備えている。制御回路50の各機能は、制御回路50が備えた処理回路により実現される。具体的には、制御回路50は、図3に示すように、処理回路として、CPU(Central Processing Unit)等の演算処理装置90(コンピュータ)、演算処理装置90とデータのやり取りする記憶装置91、演算処理装置90に外部の信号を入力する入力回路92、及び演算処理装置90から外部に信号を出力する出力回路93等を備えている。
演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置90として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置91として、演算処理装置90からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、演算処理装置90からデータを読み出し可能に構成されたROM(Read Only Memory)等が備えられている。入力回路92は、入力電圧検出回路3、出力電圧検出回路4、温度検出回路5、巻線電流検出回路43、及び回転検出回路44等の各種のセンサが接続され、これらセンサ、スイッチの出力信号を演算処理装置90に入力するA/D変換器等を備えている。出力回路93は、コンバータ20及び回転電機40のスイッチング素子をオンオフ駆動するゲート駆動回路等の電気負荷が接続され、これら電気負荷に演算処理装置90から制御信号を出力する駆動回路等を備えている。
そして、制御回路50が備える図2の各制御部51〜54等の各機能は、演算処理装置90が、ROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入力回路92、及び出力回路93等の制御回路50の他のハードウェアと協働することにより実現される。なお、各制御部51〜54等が用いる判定値、上限値、解除値、目標出力電圧の基本値、モータ要求下限電圧等の設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置91に記憶されている。以下、制御回路50の各機能について詳細に説明する。
1−3−1.回転電機制御部54
回転電機制御部54は、巻線電流検出回路43及び回転検出回路44の出力信号に基づいて、ロータの回転角度θ、回転速度ω、及び各相の巻線電流Iu、Iv、Iwを検出する。そして、回転電機制御部54は、公知の電流ベクトル制御法を用い、回転角度θ、回転速度ω、及び各相の巻線電流Iu、Iv、Iwに基づいて、回転電機が目標トルクを出力するように、各相の巻線に印加する電圧指令値を算出し、各相の電圧指令値及び出力電圧Voutに基づいて、PWM制御により、各相の2つのスイッチング素子Sma、Smbをオンオフする。
1−3−2.電圧検出部51
電圧検出部51は、出力電圧検出回路4の出力信号に基づいて、出力電圧Voutを検出する。また、電圧検出部51は、入力電圧検出回路3の出力信号に基づいて、入力電圧Vinを検出する。
1−3−3.温度検出部52
温度検出部52は、温度検出回路5の出力信号に基づいて、コンバータ温度TCを検出する。コンバータ温度TCとして、リアクトルL及びスイッチング素子の一方又は双方の温度が検出される。複数のスイッチング素子温度が検出される場合は、最も温度が高いスイッチング素子温度が、コンバータ温度TCとして選択されてもよい。
1−3−4.出力電圧制御部53
本実施の形態では、出力電圧制御部53は、目標電圧設定部531、及び電圧フィードバック制御部532を備えている。
1−3−4−1.電圧フィードバック制御部532
電圧フィードバック制御部532は、出力電圧Voutが目標出力電圧Voutoに近づくように、コンバータ20のスイッチング素子をオンオフ制御する。目標出力電圧Voutoは、後述する目標電圧設定部531により設定される。例えば、電圧フィードバック制御部532は、出力電圧Voutを、目標出力電圧Voutoに近づける電圧制御量Dvを算出する。例えば、電圧フィードバック制御部532は、目標出力電圧Voutoと出力電圧Voutとの偏差に対してPID制御を行って、電圧制御量Dvを算出する。PID制御の他に、PI制御等の各種のフィーバック制御が用いられてもよい。
電圧制御量Dvは、PWM制御のデューティ比とされている。電圧フィードバック制御部532は、電圧制御量Dvを、0から1の範囲内に制限する(0≦Dv≦1)。
図4のタイムチャートに示すように、電圧フィードバック制御部532は、電圧制御量Dv(デューティ比)に基づいて、PWM制御により、コンバータ20の正極側及び負極側のスイッチング素子をオンオフするパルス信号を生成する。本実施の形態では、電圧フィードバック制御部532は、コンバータ20の電圧制御量Dv(デューティ比)でオンする正極側のスイッチング素子Saのパルス信号Psaを生成し、正極側のスイッチング素子のパルス信号Psaを反転させて負極側のスイッチング素子Sbのパルス信号Psbを生成する。各パルス信号は、対応するスイッチング素子のゲート端子に入力される。図示は省略するが、正極側のスイッチング素子Saのオン期間と負極側のスイッチング素子Sbのオン期間との間には、正極側及び負極側のスイッチング素子の双方をオフにするデッドタイム(短絡防止期間)が設けられる。
リアクトルLに印加される印加電圧VLは、正極側のスイッチング素子Saのオン期間は、入力電圧Vinになり、リアクトルLを流れるリアクトル電流ILは、Vin/インダクタンスの傾きで増加する。一方、リアクトルの印加電圧VLは、負極側のスイッチング素子Saのオン期間は、入力電圧Vinから出力電圧Voutを減算した電圧になり、リアクトル電流ILは、(Vin―Vout)/インダクタンスの傾きで減少する。電圧制御量Dvが増加するに従って、出力電圧Voutが増加する。
1−3−4−2.目標電圧設定部531
<入力電圧及び出力電圧に応じたコンバータの損失>
まず、リアクトル損失、及びスイッチング素子(ダイオードを含む)の損失が最も大きいスイッチング素子の損失を説明する。
図5に、横軸を入力電圧Vinとし、縦軸を出力電圧Voutとし、入力電圧Vin及び出力電圧Voutの各動作点におけるリアクトル損失の特性を等高線で示している。図6に、横軸を入力電圧Vinとし、縦軸を出力電圧Voutとし、入力電圧Vin及び出力電圧Voutの各動作点におけるスイッチング素子損失の特性を等高線で示している。
目標出力電圧Voutoは、入力電圧Vin以上に設定されるので、出力電圧Voutが、入力電圧Vin以下になる領域は、コンバータの動作範囲外になり、リアクトル損失及びスイッチング素子損失を示していない。
同じリアクトル損失になる出力電圧Voutは、入力電圧Vinが小さくなるほど、小さくなる。また、同じスイッチング素子損失になる出力電圧Voutは、入力電圧Vinが小さくなるほど、小さくなる。よって、リアクトルの発熱量及びスイッチング素子の発熱量を低減するために、各損失を低減する必要があり、出力電圧Voutを低下させる必要がある。しかし、同程度に各損失を低減させるためには、入力電圧Vinが小さくなるほど、低下後の出力電圧Voutを小さくする必要がある。入力電圧Vinの変化に関わらず、昇圧比(Vout/Vin)を低くする必要がある。
<回転電機から要求されるモータ要求下限電圧Vmgmin>
図7に、横軸を回転電機の回転速度ωとし、縦軸を回転電機のトルクTとし、回転速度ω及びトルクTの各動作点において、所望のトルクを出力させるために、最低限必要な出力電圧Vmgmin(以下、モータ要求下限電圧Vmgminと称す)の特性を等高線で示している。回転電機のトルクT及び回転速度ωに応じて、モータ要求下限電圧Vmgminが変化する。具体的には、トルクTが大きいほど、回転速度ωが大きいほど、モータ要求下限電圧Vmgminが大きくなる。これは、回転速度ωが大きいほど、巻線に生じる誘起電圧が大きくなり、所望のトルクを出力させるためにモータ要求下限電圧Vmgminが大きくなり、出力トルクTが大きいほど、巻線の印加電圧が大きくなり、所望のトルクを出力させるためにモータ要求下限電圧Vmgminが大きくなるためである。このモータ要求下限電圧Vmgminは、目標出力電圧Voutoの下限値になる。
よって、設定可能であれば、目標出力電圧Voutoは、回転電機の回転速度ω及びトルクTに応じて定まるモータ要求下限電圧Vmgmin以上に設定されることが望ましい。
<コンバータ温度TCに応じた、目標出力電圧の上限制限>
コンバータ20の昇圧比(Vout/Vin)が大きくなれば、図5及び図6に示すように、リアクトル損失及びスイッチング素子損失が大きくなるため、リアクトルL及びスイッチング素子等のコンバータ20の構成部品の発熱量が増加し、コンバータ温度TCが上昇する。コンバータ温度TCが許容温度よりも上昇しないように、過熱保護を行う必要がある。
コンバータ温度TCが低い場合、コンバータ20の構成部品の発熱量を低減するために、昇圧比を低下させる必要がない。そのため、目標電圧設定部531は、コンバータ温度TCが、第1の判定値Vth1よりも低い場合は、目標出力電圧Voutoを、入力電圧Vin以上の範囲に設定する。本実施の形態は、目標電圧設定部531は、目標出力電圧Voutoを、入力電圧Vin以上であって、回転電機の回転速度ω及びトルクTに応じて定まるモータ要求下限電圧Vmgmin以上の範囲に設定する。例えば、目標電圧設定部531は、目標出力電圧Voutoの設定可能な範囲内で、コンバータ20の損失及び回転電機40(インバータ41及び回転電機本体42)の損失が小さくなるような出力電圧Voutに、目標出力電圧Voutoを設定する。
例えば、目標電圧設定部531は、入力電圧Vinと目標出力電圧の基本値Voutobとの関係が予め設定された基本値設定マップを参照し、現在の入力電圧Vinに対応する目標出力電圧の基本値Voutobを算出する。目標電圧設定部531は、図7に示すような回転電機の回転速度ω及びトルクTとモータ要求下限電圧Vmgminとの関係が予め設定された回転電機下限電圧マップを参照し、現在の回転電機の回転速度ω及び目標トルクToに対応するモータ要求下限電圧Vmgminを算出する。
そして、目標電圧設定部531は、目標出力電圧の基本値Voutobを、回転電機のモータ要求下限電圧Vmgminにより下限制限した値を、目標出力電圧Voutoとして算出する。基本値設定マップの目標出力電圧の基本値Voutobは、各入力電圧Vinの動作点において、入力電圧Vin以上であって、各損失が低くなる出力電圧Voutに予め設定される。
しかし、コンバータ温度TCが高くなり、過熱保護を行う必要がある場合は、昇圧比を低下させ、発熱量を低下させるために、目標出力電圧Voutoを上限制限する必要がある。そこで、目標電圧設定部531は、コンバータ温度TCが、第1の判定値Vth1を超えた場合に、目標出力電圧Voutoを、第1の上限値Vup1により上限制限する。図8に示すように、目標電圧設定部531は、入力電圧Vinが小さくなるに従って、第1の上限値Vup1を小さくする。なお、第1の上限値Vup1は、入力電圧Vin以上の値に設定される。
この構成によれば、コンバータの温度TCが、第1の判定値Vth1を上回り、過熱保護を行う必要がある場合は、目標出力電圧Voutoを、第1の上限値Vup1により上限制限することができる。入力電圧Vinが小さくなるに従って、同じリアクトル損失及びスイッチング素子損失になる出力電圧Voutが低下する。入力電圧Vinが小さくなるに従って、第1の上限値Vup1が小さくされるので、入力電圧Vinに関わらず、適切にリアクトル損失及びスイッチング素子損失を低下させることができる。よって、リアクトル及びスイッチング素子の発熱を低減し、コンバータの温度上昇を抑制し、過熱保護を行うことができる。
第1の判定値Vth1は、過熱保護の必要性が生じるコンバータ温度TCに基づいて、予め設定されている。第1の上限値Vup1は、各入力電圧Vinの動作点において、コンバータ温度TCが許容温度以下に低下するような値に予め設定されている。目標電圧設定部531は、入力電圧Vinと第1の上限値Vup1との関係が予め設定された第1上限値設定マップを参照し、現在の入力電圧Vinに対応する第1の上限値Vup1を算出する。
目標電圧設定部531は、コンバータ温度TCが第1の判定値Vth1よりも低い場合に算出される目標出力電圧Voutoを、第1の上限値Vup1により上限制限する。例えば、目標電圧設定部531は、入力電圧Vinと目標出力電圧の基本値Voutobとの関係が予め設定された基本値設定マップを参照し、現在の入力電圧Vinに対応する目標出力電圧の基本値Voutobを算出する。そして、目標電圧設定部531は、目標出力電圧の基本値Voutobを、回転電機のモータ要求下限電圧Vmgminで下限制限した値を、第1の上限値Vup1により上限制限した値を、目標出力電圧Voutoとして算出する。
ここで、AをBで上限制限する処理は、AとBとのいずれか小さい方の値を出力する処理に相当する。また、AをBで下限制限する処理は、AとBとのいずれか大きい方の値を出力する処理に相当する。
本実施の形態では、目標電圧設定部531は、コンバータ温度TCが第1の判定値Vth1を上回った後、コンバータ温度TCが第1の解除値Vst1を下回った場合に、第1の上限値Vup1による目標出力電圧Voutoの上限制限処理を終了する。第1の解除値Vst1は、第1の判定値Vth1以下の値に予め設定される。上限制限処理の開始と終了とが短時間で繰り返し行われないように、例えば、第1の解除値Vst1は、第1の判定値Vth1よりも10度程度小さい値に設定される。
<制御挙動>
図9に制御挙動の例を示す。時刻t01までは、目標電圧設定部531は、コンバータ温度TCが、第1の判定値Vth1よりも低いと判定し、第1の上限値Vup1による目標出力電圧Voutoの上限制限処理を行わずに、目標出力電圧Voutoを設定する。本実施の形態では、目標電圧設定部531は、入力電圧Vin以上であって、モータ要求下限電圧Vmgmin以上の範囲において、各損失が低くなる目標出力電圧の基本値Voutobを算出し、目標出力電圧の基本値Voutobをそのまま目標出力電圧Voutoに設定する。
時刻t01で、何らかの要因で、コンバータ20を冷却する冷却水の温度が過大に上昇する異常が生じている。その後、コンバータ温度TCが、次第に上昇していき、時刻t02で、目標電圧設定部531は、コンバータ温度TCが、第1の判定値Vth1よりも高いと判定し、第1の上限値Vup1による目標出力電圧Voutoの上限制限処理を開始する。本実施の形態では、目標電圧設定部531は、目標出力電圧Voutoの上限制限処理を行わない場合と同様に目標出力電圧の基本値Voutobを算出し、目標出力電圧の基本値Voutobを、第1の上限値Vup1により上限制限した値を、目標出力電圧Voutoに設定する。図9の例では、目標出力電圧の基本値Voutobが、第1の上限値Vup1を超えており、第1の上限値Vup1が、目標出力電圧Voutoに設定される。
その後、出力電圧の低下により、コンバータの損失及び発熱量が低下し、コンバータ温度TCを第1の判定値Vth1よりも低下させることができ、コンバータの過熱保護を行うことができている。
時刻t03で、冷却水の温度が過大に上昇する異常が解消している。時刻t03の後、コンバータ温度TCが次第に減少している。時刻t04で、目標電圧設定部531は、コンバータ温度TCが、第1の解除値Vst1を下回ったので、第1の上限値Vup1による目標出力電圧Voutoの上限制限処理を終了し、目標出力電圧の基本値Voutobをそのまま目標出力電圧Voutoに設定している。
<目標出力電圧の下限値>
以上では、目標出力電圧Vouto(目標出力電圧の基本値Voutob)が入力電圧Vin以上の値に設定される場合を例に説明した。しかし、出力電圧Voutが、入力電圧Vinに近い場合、コンバータ20に流れる電流、又は入力電圧Vinに過渡的な変動があった場合に、出力電圧Voutの制御が不安定になる場合がある。そのため、図10に示すように、目標電圧設定部531は、目標出力電圧Voutoを、入力電圧Vinに予め設定された正のオフセット値を加えた下限値Vminにより下限制限してもよい。すなわち、目標出力電圧Vouto(目標出力電圧の基本値Voutob)が下限値Vmin以上の値に設定されてもよい。第1の上限値Vup1は、下限値Vmin以上の値に設定される。
2.実施の形態2
実施の形態2に係る電源装置について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る電源装置の基本的な構成は実施の形態1と同様であるが、コンバータ20の構成が実施の形態1と異なる。図11は、本実施の形態に係るコンバータ20の構成図である。
本実施の形態では、コンバータ20は、出力端子2の正極側端子2aと負極側端子2bとの間に、正極側から順番に直列接続された、第1のスイッチング素子S1、第2のスイッチング素子S2、第3のスイッチング素子S3、及び第4のスイッチング素子S4を有している。各スイッチング素子のゲート端子は、制御回路50に接続されている。各スイッチング素子は、制御回路50から出力される制御信号によりオン又はオフされる。
第2のスイッチング素子S2と第3のスイッチング素子S3との間の接続点と、入力端子1の正極側端子1aとの間に、リアクトルLが直列接続されている。
第1のスイッチング素子S1と第2のスイッチング素子S2との間の接続点と、第3のスイッチング素子S3と第4のスイッチング素子S4との間の接続点との間に、充放電用のコンデンサC3が接続されている。充放電用のコンデンサC3の端子間の電圧である中間電圧Vmidを検出する中間電圧検出回路6が設けられている。中間電圧検出回路6の出力信号は、制御回路50に入力される。
実施の形態1と同様に、入力端子1の正極側端子1aと負極側端子1bとの間には、入力側の平滑コンデンサC1が接続されている。出力端子2の正極側端子2aと負極側端子2bとの間には、出力側の平滑コンデンサC2が接続されている。入力端子1の正極側端子1aと負極側端子1bとの間には、入力端子1の電圧である入力電圧Vinを検出する入力電圧検出回路3が設けられている。出力端子2の正極側端子2aと負極側端子2bとの間には、出力端子2の電圧である出力電圧Voutを検出する出力電圧検出回路4が設けられている。
本実施の形態では、電圧検出部51は、中間電圧検出回路6の出力信号に基づいて、中間電圧Vmidを検出する。
電圧フィードバック制御部532は、出力電圧Voutが目標出力電圧Voutoに近づくように、コンバータ20のスイッチング素子をオンオフ制御する。例えば、電圧フィードバック制御部532は、出力電圧Voutを、目標出力電圧Voutoに近づける電圧制御量Dvを算出する。本実施の形態では、電圧フィードバック制御部532は、中間電圧Vmidを、目標出力電圧Voutoの半分値(Vouto/2)に近づける中間電圧制御量Dmidを算出する。そして、図12、図13に示すように、電圧フィードバック制御部532は、電圧制御量Dv及び中間電圧制御量Dmidに基づいて、第1、第2、第3及び第4のスイッチング素子S1、S2、S3、S4のそれぞれをオンオフするパルス信号Ps1、Ps2、Ps3、Ps4を生成する。このパルス信号の生成には、国際公開第2012/014912号等に開示されている公知の方法が用いられる。
図12及び図13のタイムチャートに、スイッチング素子のオンオフ挙動を示す。図12は、昇圧比が2以上である場合であり、図13は、昇圧比が1以上2以下である場合である。
第1のスイッチング素子のパルス信号Ps1と第4のスイッチング素子のパルス信号Ps4とが、反転した信号になる。図示は省略するが、第1のスイッチング素子のオン期間と第4のスイッチング素子のオン期間との間には、デッドタイム(短絡防止期間)が設けられる。第2のスイッチング素子のパルス信号Ps2と第3のスイッチング素子のパルス信号Ps3とが、反転した信号になる。図示は省略するが、第2のスイッチング素子のオン期間と第3のスイッチング素子のオン期間との間には、デッドタイム(短絡防止期間)が設けられる。第1及び第4のスイッチング素子のパルス信号Ps1、Ps4と、第2及び第3のスイッチング素子のパルス信号Ps2、Ps3との間には、位相差が設けられている。
昇圧比を2以上にする図12について説明する。リアクトルLに印加される印加電圧VLは、第3のスイッチング素子のパルス信号Ps3及び第4のスイッチング素子のパルス信号Ps4の両方がオンである場合に、入力電圧Vinになり、リアクトル電流ILは、Vin/インダクタンスの傾きで増加する。一方、リアクトルの印加電圧VLは、第2のスイッチング素子のパルス信号Ps2及び第4のスイッチング素子のパルス信号Ps4の両方がオンである場合、及び第1のスイッチング素子のパルス信号Ps1及び第3のスイッチング素子のパルス信号Ps3の両方がオンである場合に、Vin−Vout/2になり、リアクトル電流ILは、(Vin―Vout/2)/インダクタンスの傾きで減少する。
昇圧比を1以上2以下にする図13について説明する。リアクトルLの印加電圧VLは、第2のスイッチング素子のパルス信号Ps2及び第4のスイッチング素子のパルス信号Ps4の両方がオンである場合、及び第1のスイッチング素子のパルス信号Ps1及び第3のスイッチング素子のパルス信号Ps3の両方がオンである場合に、Vin−Vout/2になり、リアクトル電流ILは、(Vin−Vout/2)/インダクタンスの傾きで増加する。一方、リアクトルの印加電圧VLは、第1のスイッチング素子のパルス信号Ps1及び第2のスイッチング素子のパルス信号Ps2の両方がオンである場合に、Vin−Voutになり、リアクトル電流ILは、(Vin―Vout)/インダクタンスの傾きで減少する。
図14に、横軸を入力電圧Vinとし、縦軸を出力電圧Voutとし、入力電圧Vin及び出力電圧Voutの各動作点におけるリアクトル損失の特性を等高線で示している。図15に、横軸を入力電圧Vinとし、縦軸を出力電圧Voutとし、入力電圧Vin及び出力電圧Voutの各動作点におけるスイッチング素子損失の特性を等高線で示している。
目標出力電圧Voutoは、入力電圧Vin以上に設定されるので、出力電圧Voutが、入力電圧Vin以下になる領域は、コンバータの動作範囲外になり、リアクトル損失及びスイッチング素子損失を示していない。
リアクトル損失及びスイッチング素子損失は、昇圧比(Vout/Vin)が、1付近で小さくなり、昇圧比が1付近から1.3付近に近づくほど、損失が大きくなる。また、昇圧比が1.3付近から2付近に近づくほど、損失が小さくなり、昇圧比が2付近から大きくなるのど、損失が再び大きくなる。
上述したように、リアクトル及びスイッチング素子の発熱量を低減させるために、各損失を低減させる必要がある。各損失を低減させるためには、昇圧比を1.3付近(又は2付近)に変化させる必要がある。そのためには、入力電圧Vinが小さくなるほど、低下後の出力電圧を小さくする必要がある。
実施の形態1と同様に、目標電圧設定部531は、コンバータ温度TCが、第1の判定値Vth1よりも低い場合は、目標出力電圧Voutoを、入力電圧Vin以上の範囲に設定する。また、目標電圧設定部531は、目標出力電圧Voutoを、入力電圧Vin以上であって、回転電機の回転速度及びトルクに応じて定まるモータ要求下限電圧Vmgmin以上の範囲に設定する。例えば、目標電圧設定部531は、目標出力電圧Voutoの設定可能な範囲内で、コンバータ20の損失及び回転電機40(インバータ41及び回転電機本体42)の損失が小さくなるような出力電圧Voutに、目標出力電圧Voutoを設定する。
実施の形態1と同様に、目標電圧設定部531は、コンバータ温度TCが、第1の判定値Vth1を超えた場合に、目標出力電圧Voutoを、第1の上限値Vup1により上限制限する。図8に示すように、目標電圧設定部531は、入力電圧Vinが小さくなるに従って、第1の上限値Vup1を小さくする。目標電圧設定部531は、コンバータ温度TCが第1の判定値Vth1よりも低い場合に算出される目標出力電圧Voutoを、第1の上限値Vup1により上限制限する。
また、目標電圧設定部531は、コンバータ温度TCが第1の判定値Vth1を上回った後、コンバータ温度TCが第1の解除値Vst1を下回った場合に、第1の上限値Vup1による目標出力電圧Voutoの上限制限処理を終了する。目標電圧設定部531は、目標出力電圧Voutoを、入力電圧Vinに予め設定された正のオフセット値を加えた下限値Vminにより下限制限してもよい。
3.実施の形態3
実施の形態3に係る電源装置について説明する。上記の実施の形態1又は2と同様の構成部分は説明を省略する。本実施の形態に係る電源装置の基本的な構成は実施の形態1又は2と同様であるが、目標電圧設定部531の処理が実施の形態1又は2と異なる。
<第1の時間遅れ処理>
図16に示すように、第1の上限値Vup1による目標出力電圧Voutoの上限制限処理が行われているときに、入力電圧Vinに急峻な変動があった場合を説明する。図8に示すように、入力電圧Vinの急峻な変動に応じて第1の上限値Vup1も変動し、第1の上限値Vup1に上限制限された目標出力電圧Voutoも急峻に変動する。
目標出力電圧Voutoが急峻に変動すると、出力電圧Voutが急峻に変動する。そうなると、コンバータ20の動作、電気負荷31(本例では、回転電機40)の動作が不安定になる可能性がある。
そこで、本実施の形態では、目標電圧設定部531は、入力電圧Vinに対して第1の時間遅れ処理を行った値に基づいて、第1の上限値Vup1を設定する。この構成によれば、入力電圧Vinが急峻に変動しても、第1の上限値Vup1が急峻に変動することを抑制でき、出力電圧Voutが急峻に変動することを抑制できる。なお、目標電圧設定部531は、実施の形態1と同様に入力電圧Vinに基づいて第1の上限値Vup1を設定し、第1の上限値Vup1に対して第1の時間遅れ処理を行った値を、最終的な第1の上限値Vup1として用いてもよい。
例えば、第1の時間遅れ処理は、1次遅れ処理等のローパスフィルタ処理とされる。コンバータ温度TC変化の時間遅れが、第1の時間遅れ処理の時間遅れよりも大きくなるように、コンバータの構成部品の熱時定数が設定されている。この構成によれば、第1の時間遅れ処理により低減される入力電圧Vin及び出力電圧Voutの急峻な変動成分により生じるコンバータ温度TC変化が小さくなる。そのため、第1の時間遅れ処理を行っても、コンバータ温度TC上昇の抑制性能を維持できる。
コンバータ温度TC変化の特性は、コンバータの各構成部品の熱容量、及び冷却系統等によって定まる。例えば、昇圧比のステップ変化に対するコンバータ温度TCの変化の時定数が、第1の時間遅れ処理の時定数よりも大きくなるように、リアクトル及びスイッチング素子等のコンバータの構成部品の熱時定数(熱容量)が設定されている。
或いは、第1の時間遅れ処理の時間遅れが、コンバータ温度TCの変化の時間遅れよりも小さくなるように、第1の時間遅れ処理の時定数が設定されてもよい。
<第2の時間遅れ処理>
目標電圧設定部531は、外部の電気負荷31の動作状態(本例では、回転電機40の回転速度及びトルク)に基づいて、上限制限前の目標出力電圧(目標出力電圧の基本値Voutob)を設定し、外部の電気負荷の動作状態又は上限制限前の目標出力電圧に対して、第2の時間遅れ処理を行う。
本実施の形態では、目標電圧設定部531は、回転電機の回転速度ω及びトルクTに基づいて、回転電機のモータ要求下限電圧Vmgminを算出し、目標出力電圧の基本値Voutobを、モータ要求下限電圧Vmgminにより下限制限する。目標電圧設定部531は、回転電機の回転速度ω及びトルクT、又はモータ要求下限電圧Vmgminによる下限制限後の目標出力電圧の基本値Voutobに対して第2の時間遅れ処理を行う。
この構成によれば、目標出力電圧Voutoが、第1の上限値Vup1により上限制限されておらず、モータ要求下限電圧Vmgminにより下限制限された値に設定されている場合に、外部の電気負荷31の動作状態(回転電機40の回転速度及びトルク)の急峻な変動により、目標出力電圧Voutoが急峻に変動することを抑制でき、出力電圧Voutが急峻に変動することを抑制できる。よって、コンバータ20の動作、電気負荷31(回転電機40)の動作が不安定になることを抑制できる。
第2の時間遅れ処理の時間遅れよりも、第1の時間遅れ処理の時間遅れが大きい。例えば、第2の時間遅れ処理の時定数よりも、第1の時間遅れ処理の時定数が大きくされる。第2の時間遅れ処理の時間遅れは、回転電機40の回転速度及びトルクの変化に応じて、目標出力電圧Voutoを変化させても、コンバータ20の動作、電気負荷31(回転電機40)の動作が不安定にならないように設定される。よって、第1の時間遅れ処理の時間遅れは、第2の時間遅れ処理の時間遅れよりも大きいため、入力電圧Vinの変化に対する目標出力電圧Voutoの変化速度は、回転電機40の回転速度及びトルクの変化に対する目標出力電圧Voutoの変化速度よりも大きくなる。よって、入力電圧Vinの変化に応じて、目標出力電圧Voutoを変化させても、コンバータ20の動作、電気負荷31(回転電機40)の動作が不安定にならないように、安全サイドで動作できる。
4.実施の形態4
実施の形態4に係る電源装置について説明する。上記の実施の形態1又は2と同様の構成部分は説明を省略する。本実施の形態に係る電源装置の基本的な構成は実施の形態1又は2と同様であるが、温度検出回路5の構成及び目標電圧設定部531の処理が実施の形態1又は2と異なる。
本実施の形態では、温度検出回路5として、リアクトル温度TLを検出する第1の温度検出回路と、スイッチング素子温度TSを検出する第2の温度検出回路とが設けられている。
温度検出部52は、第1の温度検出回路の出力信号に基づいて、リアクトル温度TLを検出し、第2の温度検出回路の出力信号に基づいて、スイッチング素子温度TSを検出する。
本実施の形態では、リアクトルの熱時定数は、スイッチング素子の熱時定数よりも大きい。そのため、冷却系統の異常発生、昇圧比の増加等に対して、スイッチング素子温度TSが、リアクトル温度TLよりも先に上昇する。
例えば、リアクトルの構成部材の比熱、質量を大きくすることで、リアトルクの熱容量を増加させて、リアクトルの熱時定数を、スイッチング素子の熱時定数よりも大きくする。
本実施の形態では、目標電圧設定部531は、リアクトル温度TLが、第1の判定値Vth1を超えておらず、スイッチング素子温度TSが、第2の判定値Vth2を超えた場合に、目標出力電圧Voutoを、第2の上限値Vup2により上限制限する。図17に示すように、第2の上限値Vup2は、第1の上限値Vup1よりも大きく、入力電圧Vinに応じて変化しない。
目標電圧設定部531は、リアクトル温度TLが、第1の判定値Vth1を超えた場合に、目標出力電圧Voutoを、第1の上限値Vup1により上限制限する。
この構成によれば、温度上昇速度が速いスイッチング素子温度TSが、第2の判定値Vth2を超えた場合に、目標出力電圧Voutoを第2の上限値Vup2により上限制限することにより、スイッチング素子の発熱量を低下させ、スイッチング素子温度TSの上昇を抑制することができる。第2の判定値Vth2は、過熱保護の必要性が生じるスイッチング素子の温度に基づいて、予め設定されている。第2の上限値Vup2は、スイッチング素子の温度上昇を抑制できる程度の出力電圧Voutに設定される。
第2の上限値Vup2による目標出力電圧Voutoの上限制限処理が行われている状態でも、リアクトルの温度上昇を抑制できない場合は、リアクトル温度TLは、比較的に緩やかに増加する。そして、リアクトル温度TLが、第1の判定値Vth1を超えた場合に、目標出力電圧Voutoを、第2の上限値Vup2よりも小さい第1の上限値Vup1により上限制限することにより、リアクトル及びスイッチング素子の発熱量を更に低下させ、リアクトル温度TLの上昇を抑制することができる。第1の判定値Vth1は、過熱保護の必要性が生じるリアクトルの温度に基づいて、予め設定されている。第1の上限値Vup1は、リアクトルの温度上昇を抑制できる程度の出力電圧Voutに設定される。
実施の形態1と同様に、目標電圧設定部531は、入力電圧Vin以上の範囲内に、目標出力電圧の基本値Voutobを算出する。例えば、目標電圧設定部531は、入力電圧Vin以上であって、モータ要求下限電圧Vmgmin以上の範囲において、各損失が低くなる目標出力電圧の基本値Voutobを算出する。そして、目標電圧設定部531は、第1の上限値Vup1又は第2の上限値Vup2による目標出力電圧Voutoの上限制限処理を行わない場合は、目標出力電圧の基本値Voutobを、そのまま目標出力電圧Voutoに設定する。
目標電圧設定部531は、第1の上限値Vup1による目標出力電圧Voutoの上限制限処理を行う場合は、目標出力電圧の基本値Voutobを、第1の上限値Vup1により上限制限した値を、目標出力電圧Voutoに設定する。目標電圧設定部531は、第2の上限値Vup2による目標出力電圧Voutoの上限制限処理を行う場合は、目標出力電圧の基本値Voutobを、第2の上限値Vup2により上限制限した値を、目標出力電圧Voutoに設定する。
<制御挙動>
図18及び図19に制御挙動の例を示す。図18の例は、温度上昇の発生要因が短期間発生する場合であり、図19の例は、温度上昇の発生要因が長期間発生する場合である。
まず、図18について説明する。時刻t11までは、目標電圧設定部531は、リアクトル温度TLが第1の判定値Vth1よりも低いと判定し、スイッチング素子温度TSが第2の判定値Vth2よりも低いと判定し、第1の上限値Vup1及び第2の上限値Vup2による目標出力電圧Voutoの上限制限処理を行わずに、目標出力電圧の基本値Voutobをそのまま目標出力電圧Voutoを設定する。
時刻t11で、何らかの要因で、コンバータ20を冷却する冷却水の温度が過大に上昇する異常が生じている。その後、スイッチング素子温度TSが、比較的速く上昇していき、時刻t12で、目標電圧設定部531は、スイッチング素子温度TSが、第2の判定値Vth2よりも高いと判定し、第2の上限値Vup2による目標出力電圧Voutoの上限制限処理を開始する。目標電圧設定部531は、目標出力電圧の基本値Voutobを、第2の上限値Vup2により上限制限した値を、目標出力電圧Voutoに設定する。一方、リアクトルの熱時定数は、スイッチング素子の熱時定数よりも大きいため、リアクトル温度TLは、比較的に緩やかに増加しており、リアクトル温度TLは、第1の判定値Vth1よりも高くなっていない。
その後、出力電圧の低下により、コンバータの損失及び発熱量が低下し、スイッチング素子温度TSを第2の判定値Vth2よりも低下させることができ、スイッチング素子の過熱保護を行うことができている。
時刻t13で、冷却水の温度が過大に上昇する異常が解消している。時刻t13の後、スイッチング素子温度TSが比較的速く低下している。時刻t14で、目標電圧設定部531は、スイッチング素子温度TSが、第2の解除値Vst2を下回ったので、第2の上限値Vup2による目標出力電圧Voutoの上限制限処理を終了し、目標出力電圧の基本値Voutobをそのまま目標出力電圧Voutoに設定している。第2の解除値Vst2は、第2の上限値Vup2以下に設定される。
このように、温度上昇の発生要因が短期間発生する場合は、熱時定数の大きいリアクトル温度TLの上昇は比較的小さく、熱時定数の小さいスイッチング素子温度TSの上昇は比較的大きくなる。そして、スイッチング素子温度TSを低下させるために、目標出力電圧Voutoが、第1の上限値Vup1よりも大きい第2の上限値Vup2まで低下されるので、目標出力電圧Voutoの低下量を必要最低限に抑制することができる。
次に、図19について説明する。時刻t21までは、目標電圧設定部531は、リアクトル温度TLが第1の判定値Vth1よりも低いと判定し、スイッチング素子温度TSが第2の判定値Vth2よりも低いと判定し、第1の上限値Vup1及び第2の上限値Vup2による目標出力電圧Voutoの上限制限処理を行わずに、目標出力電圧の基本値Voutobをそのまま目標出力電圧Voutoを設定する。
時刻t21で、何らかの要因で、コンバータ20を冷却する冷却水の温度が過大に上昇する異常が生じている。その後、スイッチング素子温度TSが、比較的速く上昇していき、時刻t22で、目標電圧設定部531は、スイッチング素子温度TSが、第2の判定値Vth2よりも高いと判定し、第2の上限値Vup2による目標出力電圧Voutoの上限制限処理を開始する。目標電圧設定部531は、目標出力電圧の基本値Voutobを、第2の上限値Vup2により上限制限した値を、目標出力電圧Voutoに設定する。
その後、出力電圧の低下により、コンバータの損失及び発熱量が低下し、スイッチング素子温度TSを第2の判定値Vth2よりも低下させることができ、スイッチング素子の過熱保護を行うことができている。
一方、第2の上限値Vup2による目標出力電圧Voutoの上限制限処理だけでは、リアクトル温度TLの上昇を抑制するためには十分でない。そのため、時刻22後も、熱時定数の大きいリアクトル温度TLは、比較的に緩やかに増加していく。
そして、時刻23で、目標電圧設定部531は、リアクトル温度TLが、第1の判定値Vth1よりも高いと判定し、第1の上限値Vup1による目標出力電圧Voutoの上限制限処理を開始する。目標電圧設定部531は、目標出力電圧の基本値Voutobを、第1の上限値Vup1により上限制限した値を、目標出力電圧Voutoに設定する。出力電圧が更に低下するので、コンバータの損失及び発熱量が更に低下し、リアクトル温度TLを第1の判定値Vth1よりも低下させることができ、リアクトルの過熱保護を行うことができている。
図19には示していないが、その後、異常が解消し、リアクトル温度TLが、第1の解除値Vst1を下回ると、目標電圧設定部531は、第1の上限値Vup1による目標出力電圧Voutoの上限制限処理を終了する。第1の解除値Vst1は、第1の上限値Vup1以下に設定される。
このように、温度上昇の発生要因が長期間発生する場合は、熱時定数の大きいリアクトル温度TLの上昇も大きくなる。そして、リアクトル温度TLを低下させるために、目標出力電圧Voutoが、第2の上限値Vup2よりも小さい第1の上限値Vup1まで低下されるので、目標出力電圧Voutoの低下量を大きくし、リアクトル温度TLを低下させ、リアクトルの過熱保護を行うことができる。
〔その他の実施の形態〕
(1)上記の実施の形態1においては、コンバータ20が、2つのスイッチング素子が直列接続された双方向のチョッパ回路であり、実施の形態2においては、コンバータ20が、4つのスイッチング素子が直列接続された双方向のチョッパ回路である場合を例として説明した。しかし、コンバータ20は、入力端子1と出力端子2との間で、直流電力を変換し、リアクトル及びスイッチング素子を有しているDC−DCコンバータであれば、他の種類のものであってもよい。例えば、コンバータ20は、入力端子1から出力端子2に直流電圧を昇圧して供給する昇圧チョッパ回路であってもよい、この場合は、実施の形態1において正極側のスイッチング素子が、ダイオードであってもよい。或いは、コンバータ20は、出力端子2から入力端子1に直流電圧を降圧して供給する降圧チョッパ回路であってもよい、この場合は、実施の形態1において負極側のスイッチング素子が、ダイオードであってもよい。或いは、コンバータ20は、トランス絶縁型であってもよい。
(2)上記の各実施の形態においては、外部の電気負荷31が、回転電機40である場合を例として説明した。しかし、外部の電気負荷31は、回転電機40以外の任意の電気負荷であってもよく、或いは、並列接続された複数の回転電機40であってもよい。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 入力端子、2 出力端子、3 入力電圧検出回路、4 出力電圧検出回路、5 温度検出回路、20 コンバータ、30 直流電源、31 外部の電気負荷、40 回転電機、50 制御回路、51 電圧検出部、52 温度検出部、53 出力電圧制御部、L リアクトル、TC コンバータ温度、TL リアクトル温度、TS スイッチング素子温度、Vin 入力電圧、Vout 出力電圧、Vouto 目標出力電圧、Vth1 第1の判定値、Vth2 第2の判定値、Vup1 第1の上限値、Vup2 第2の上限値

Claims (6)

  1. 入力端子と出力端子との間で直流電力を変換する、少なくとも一つのスイッチング素子を有するコンバータと、
    前記コンバータの温度を検出する温度検出回路と、
    前記入力端子の電圧である入力電圧を検出する入力電圧検出回路と、
    前記出力端子の電圧である出力電圧を検出する出力電圧検出回路と、
    目標出力電圧を設定し、前記出力電圧が目標出力電圧に近づくように、前記スイッチング素子をオンオフ制御する制御回路と、を備え、
    前記制御回路は、前記コンバータの温度が、第1の判定値を超えた場合に、前記目標出力電圧を、第1の上限値により上限制限し、
    前記入力電圧が小さくなるに従って、前記第1の上限値を小さくする電源装置。
  2. 前記制御回路は、前記目標出力電圧を、前記入力電圧に予め設定された正のオフセット値を加えた下限値により下限制限する請求項1記載の電源装置。
  3. 前記制御回路は、前記入力電圧に対して第1の時間遅れ処理を行った値に基づいて、前記第1の上限値を設定し、
    前記コンバータの温度変化の時間遅れが、前記第1の時間遅れ処理の時間遅れよりも大きくなるように、前記コンバータの構成部品の熱時定数が設定されている請求項1又は2に記載の電源装置。
  4. 前記制御回路は、前記出力端子に接続される外部の電気負荷の動作状態に基づいて、上限制限前の前記目標出力電圧を設定し、前記外部の電気負荷の動作状態又は前記上限制限前の目標出力電圧に対して、第2の時間遅れ処理を行い、
    前記第2の時間遅れ処理の時間遅れよりも前記第1の時間遅れ処理の時間遅れが大きい請求項3に記載の電源装置。
  5. 前記外部の電気負荷は、回転電機であり、
    前記制御回路は、前記外部の電機負荷の動作状態として、前記回転電機の回転速度及びトルクを用いる請求項4に記載の電源装置。
  6. 前記コンバータは、少なくとも一つのリアクトルを有し、
    前記温度検出回路は、前記コンバータの温度として、前記スイッチング素子の温度と前記リアクトルの温度とを検出し、
    前記リアクトルの温度が、前記第1の判定値を超えておらず、前記スイッチング素子の温度が、第2の判定値を超えた場合に、前記目標出力電圧を、前記第1の上限値よりも大きく前記入力電圧に応じて変化しない第2の上限値により上限制限し、
    前記リアクトルの温度が、前記第1の判定値を超えた場合に、前記目標出力電圧を、第1の上限値により上限制限し、
    前記リアクトルの熱時定数は、前記スイッチング素子の熱時定数よりも大きい請求項1から5のいずれか一項に記載の電源装置。
JP2020096571A 2020-06-03 2020-06-03 電源装置 Active JP6910507B1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020096571A JP6910507B1 (ja) 2020-06-03 2020-06-03 電源装置
CN202110556452.8A CN113765350A (zh) 2020-06-03 2021-05-21 电源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020096571A JP6910507B1 (ja) 2020-06-03 2020-06-03 電源装置

Publications (2)

Publication Number Publication Date
JP6910507B1 true JP6910507B1 (ja) 2021-07-28
JP2021191171A JP2021191171A (ja) 2021-12-13

Family

ID=76967588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020096571A Active JP6910507B1 (ja) 2020-06-03 2020-06-03 電源装置

Country Status (2)

Country Link
JP (1) JP6910507B1 (ja)
CN (1) CN113765350A (ja)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009219200A (ja) * 2008-03-07 2009-09-24 Toyota Motor Corp ハイブリッド車両の電源システム
JP2015061478A (ja) * 2013-09-20 2015-03-30 トヨタ自動車株式会社 電気自動車
JP6610268B2 (ja) * 2016-01-07 2019-11-27 住友電気工業株式会社 電源装置
JP6214842B1 (ja) * 2016-07-12 2017-10-18 三菱電機株式会社 電源システム

Also Published As

Publication number Publication date
CN113765350A (zh) 2021-12-07
JP2021191171A (ja) 2021-12-13

Similar Documents

Publication Publication Date Title
JP4274271B2 (ja) 電圧変換装置
US9954426B2 (en) Motor driving device having PWM converter
CN107134952A (zh) 电动机驱动装置
JP2017147806A (ja) 電動機制御装置および電動機制御方法
JP6185860B2 (ja) 双方向コンバータ
EP2937984B1 (en) Inverter device
JP6426775B2 (ja) モータ駆動装置
JP6135563B2 (ja) 電圧コンバータ
JP2018186625A (ja) 残留電荷消費制御部を有するモータ駆動装置
JP2019080363A (ja) 電源システム
JP5077220B2 (ja) 電圧変換装置
JP6513249B1 (ja) Dc/dcコンバータ
JP2022019798A (ja) 蓄電装置を有するモータ駆動装置
CN112511071B (zh) 功率转换装置的控制装置
JP6910507B1 (ja) 電源装置
JP6689688B2 (ja) 電力変換装置、空気調和機および電力変換装置の制御方法
JPWO2020144796A1 (ja) 電力変換装置
JP7007421B2 (ja) 蓄電装置を有するモータ駆動装置
JP2019103244A (ja) 電源システム
JP2005269722A (ja) 電動機駆動制御装置
JP6492967B2 (ja) インバータ装置
JP6285290B2 (ja) 電力変換装置
JP6564640B2 (ja) エンジン発電機
JP7189005B2 (ja) スイッチング素子の不感帯期間を調整する不感帯期間調整装置、インバータ、電力変換システム及びモータ駆動装置
JP2009033858A (ja) 電圧変換装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210608

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210706

R151 Written notification of patent or utility model registration

Ref document number: 6910507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151