WO2011136370A1 - スプレー塗布用の被膜形成用塗布液及び被膜 - Google Patents

スプレー塗布用の被膜形成用塗布液及び被膜 Download PDF

Info

Publication number
WO2011136370A1
WO2011136370A1 PCT/JP2011/060460 JP2011060460W WO2011136370A1 WO 2011136370 A1 WO2011136370 A1 WO 2011136370A1 JP 2011060460 W JP2011060460 W JP 2011060460W WO 2011136370 A1 WO2011136370 A1 WO 2011136370A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
coating
film
forming
group
Prior art date
Application number
PCT/JP2011/060460
Other languages
English (en)
French (fr)
Inventor
隆之 根木
賢一 元山
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201180021629.9A priority Critical patent/CN102869735B/zh
Priority to JP2012512925A priority patent/JP5910494B2/ja
Priority to KR1020127027829A priority patent/KR20130096145A/ko
Priority to KR1020187021382A priority patent/KR101970934B1/ko
Publication of WO2011136370A1 publication Critical patent/WO2011136370A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/20Diluents or solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/006Anti-reflective coatings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/08Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen, and oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/24Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen halogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes

Definitions

  • the present invention mainly comprises a polysiloxane obtained by polycondensation of alkoxysilane, and further contains a plurality of solvents, and a coating solution for forming a low refractive index film capable of forming a uniform film by spray coating, and the film forming process
  • the present invention relates to a coating formed using a coating solution, and further to an antireflection material having the coating.
  • Patent Document 1 discloses an alcohol dispersion of MgF 2 fine particles produced by reacting a magnesium salt or an alkoxymagnesium compound as an Mg source with a fluoride salt as an F source, or an improvement in film strength.
  • a solution obtained by adding tetraalkoxysilane or the like is used as a coating solution, which is coated on a glass substrate and heat-treated at a temperature of 100 to 500 ° C. to form an antireflection film exhibiting a low refractive index on the substrate.
  • a method is disclosed.
  • Patent Document 2 discloses a hydrolytic polycondensate such as tetraalkoxysilane, which is a coating liquid obtained by mixing two or more kinds having different average molecular weights and a solvent such as alcohol to form a coating film. It is disclosed that a film is formed by adding means such as mixing ratio at the time of mixing and control of relative humidity.
  • the coating is obtained by heating at a temperature of 250 ° C. or higher, exhibits a refractive index of 1.21 to 1.40, and has a thickness of 60 to 160 nm having micropits or irregularities having a diameter of 50 to 200 nm.
  • the coating is formed on a glass substrate to produce a low reflection glass.
  • Patent Document 3 discloses a low reflectance glass comprising glass, a lower layer film having a high refractive index formed on the surface thereof, and an upper layer film having a low refractive index formed on the surface thereof. ing.
  • the upper layer film is formed by using a fluorine-containing silicone compound having a polyfluorocarbon chain such as CF 3 (CF 2 ) 2 C 2 H 4 Si (OCH 3 ) 3 and 5 to 90% by mass of Si (OCH 3 ) 4.
  • a silane coupling agent such as acetic acid is hydrolyzed in an alcohol solvent in the presence of a catalyst such as acetic acid at room temperature, and then filtered to prepare a cocondensate solution, which is applied onto the lower layer film. The heating is performed at a temperature of 120 to 250 ° C.
  • Patent Document 4 discloses a silicon compound represented by Si (OR) 4 , a silicon compound represented by CF 3 (CF 2 ) n CH 2 CH 2 Si (OR 1 ) 3 , and R 2 CH 2 OH.
  • a coating solution is disclosed in which a reaction mixture containing the indicated alcohol and oxalic acid in a specific ratio is heated at a temperature of 40 to 180 ° C. in the absence of water to form a polysiloxane solution. .
  • a coating film having a refractive index of 1.28 to 1.38 and a water contact angle of 90 to 115 degrees is formed by applying this coating solution on the surface of the substrate and thermosetting at a temperature of 80 to 450 ° C. .
  • the wet process includes spin coating, dip coating and the like, but in practice, spin coating is often used. However, in spin coating, there are problems such as limited substrate size and very low chemical use efficiency.
  • examples of the dry process include a vacuum deposition method and a CVD method, and these methods have problems such as productivity and cost.
  • the spray coating method is attracting attention as a coating method that is less dependent on the base material and takes the productivity and cost into consideration.
  • the spray coating method is a method in which fine droplets are dropped on a base material to form a film by wetting and spreading the liquid, and there is an advantage that there is no dependency on the base material and there is little waste of the coating liquid. Therefore, cost reduction of low reflection glass and improvement of production efficiency are expected.
  • Patent Document 5 there is an example in which a coating film is formed by spray coating using glycol ether as a solvent (see, for example, Patent Document 5).
  • Patent Document 5 it is the coating material containing microparticles
  • the said coating material contains a fluorine-containing polysiloxane.
  • JP 05-105424 A Japanese Patent Laid-Open No. 06-157076 Japanese Patent Laid-Open No. 61-010043 JP 09-208898 A JP 2003-202813 A
  • An object of the present invention is to provide a silicon-based antireflection coating forming liquid that can be formed using a spray coating method, and to provide a low refractive index coating with excellent in-plane uniformity of the film by spray coating. It is to be.
  • the present invention has the following gist.
  • a coating liquid for film formation for spray coating comprising the following component (A), component (B), and component (C).
  • Component (A) polysiloxane having a fluorine-containing organic group
  • Component (B) glycol ether having 4 to 8 carbon atoms
  • Component (C) One or more solvents selected from the group consisting of cyclic alcohols having 3 to 10 carbon atoms and glycols having 3 to 10 carbon atoms.
  • the component (A) is a polysiloxane having a fluorine-containing organic group having 1 to 10 carbon atoms.
  • the coating liquid for film formation as described in 2. 3.
  • the total molar amount of the fluorine-containing organic group which the component (A) has is 5 to 40 mol with respect to 100 mol of the total molar amount of silicon atoms which the component (A) has.
  • the coating liquid for film formation as described in 2. 4).
  • the component (A) is a polysiloxane obtained by polycondensation of an alkoxysilane containing a tetraalkoxysilane and an alkoxysilane having a fluorine-containing organic group. ⁇ 4.
  • the coating liquid for film formation as described in any of the above. 6).
  • the coating liquid for film formation as described in any of the above. 7).
  • the component (D) contains at least one solvent selected from the group consisting of a glycol ether solvent, a ketone solvent and an amide solvent having a boiling point of 100 ° C. or higher at normal pressure.
  • the coating liquid for film formation as described in any of the above. 8).
  • the component (D) is one or more solvents selected from the group consisting of ethylene glycol monobutyl ether, cyclohexanone, N-methylpyrrolidone and propylene glycol monobutyl ether.
  • the coating liquid for film formation as described in 2. 9. Above 1. ⁇ 8.
  • a method for forming a coating film comprising a step of spraying the coating liquid for forming a coating film according to any one of the methods to a substrate to form a coating film.
  • the coating liquid for forming a film of the present invention can form a film having excellent film forming properties and high transmittance. Moreover, it is excellent also in the liquid landing efficiency at the time of spray application. Furthermore, according to the method of the present invention, for example, a low refractive index film having excellent film formability and high transmittance can be easily formed even on a back surface of a solar cell or the like that cannot be adsorbed and fixed. Can do.
  • the present invention is described in detail below.
  • the present invention is selected from the group consisting of component (A): polysiloxane having an organic group substituted with a fluorine atom in the side chain, component (B): glycol ethers, component (C): cyclic alcohols and glycols. It is related with the coating liquid for the film formation for spray coating containing the 1 or more types of solvent.
  • Component (A) is a polysiloxane having an organic group substituted with a fluorine atom in the side chain.
  • Such an organic group substituted with a fluorine atom is an organic group in which part or all of the hydrogen atoms of an aliphatic group or an aromatic group are substituted with a fluorine atom. Specific examples of these are given below. Examples thereof include a trifluoropropyl group, a tridecafluorooctyl group, a heptadecafluorodecyl group, a pentafluorophenylpropyl group, and the like.
  • a perfluoroalkyl group is preferable because a highly transparent film can be easily obtained. More preferred is a perfluoroalkyl group having 3 to 15 carbon atoms. Specific examples include a trifluoropropyl group, a tridecafluorooctyl group, a heptadecafluorodecyl group, and the like. In the present invention, a plurality of polysiloxanes having side chains as described above may be used in combination.
  • the method for obtaining a polysiloxane having an organic group substituted with a fluorine atom as described above in the side chain is not particularly limited. In general, it can be obtained by polycondensation of the above-mentioned alkoxysilane having an organic group in the side chain with other alkoxysilane. Especially, the polysiloxane obtained by polycondensing the alkoxysilane containing the alkoxysilane represented by Formula (1) and the alkoxysilane represented by Formula (2) is preferable.
  • R 1 in the formula (1) represents a hydrocarbon group, and since the reactivity is higher when the number of carbon atoms is smaller, a saturated hydrocarbon group having 1 to 5 carbon atoms is preferable, and a methyl group, an ethyl group, A propyl group or a butyl group.
  • Specific examples of such a tetraalkoxysilane include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and the like, and are easily available as commercial products.
  • at least one of the alkoxysilanes represented by the formula (1) may be used, but a plurality of types may be used as necessary.
  • the alkoxysilane represented by the formula (2) is an alkoxysilane having an organic group substituted with a fluorine atom in the side chain. Therefore, this alkoxysilane imparts water repellency to the coating film.
  • R 3 in the formula (2) represents an organic group substituted with the above-described fluorine atom, but the number of fluorine atoms that the organic group has is not particularly limited.
  • R 3 in the formula (2) represents a hydrocarbon group having 1 to 5 carbon atoms, preferably a saturated hydrocarbon group having 1 to 5 carbon atoms, more preferably a methyl group, an ethyl group, a propyl group, Or it is a butyl group.
  • alkoxysilanes represented by the formula (2) an alkoxysilane in which R 2 is a perfluoroalkyl group is preferable, and an alkoxysilane in which R 2 is an organic group represented by the formula (5) is more preferable.
  • k represents an integer of 0 to 12.
  • alkoxysilane having an organic group represented by the formula (5) include trifluoropropyltrimethoxysilane, trifluoropropyltriethoxysilane, tridecafluorooctyltrimethoxysilane, tridecafluorooctyltriethoxysilane, hepta Examples include decafluorodecyltrimethoxysilane and heptadecafluorodecyltriethoxysilane.
  • k is an integer of 2 to 12 because the fingerprint wiping property of the antireflection film is improved.
  • At least one of the alkoxysilanes represented by the formula (2) may be used, but a plurality of types may be used as necessary.
  • the polysiloxane which is a component (A) is the alkoxysilane represented by Formula (1) and Formula (2), and the alkoxysilane represented by Formula (3) and / or Formula (6) other than that. May be obtained by polycondensation.
  • either one of the alkoxysilane represented by the formula (3) and the alkoxysilane represented by the formula (6) is used alone. You may use both together.
  • R 4 represents an organic group not substituted with a fluorine atom
  • R 5 represents a hydrocarbon group having 1 to 5 carbon atoms
  • n represents an integer of 1 to 3.
  • R 7 represents a hydrocarbon group having 1 to 5 carbon atoms
  • R 8 represents a divalent organic group having 1 to 20 carbon atoms.
  • the alkoxysilane of the formula (3) is an alkoxysilane having an organic group in which R 4 is not substituted with a fluorine atom and 1, 2 or 3 alkoxy groups.
  • R 5 in the formula (3) is a hydrocarbon group having 1 to 5 carbon atoms. When n is 1 or 2, generally, R 5 is often the same, but in the present invention, R 5 may be the same or different.
  • R 4 in the formula (3) is an organic group having 1 to 20 carbon atoms, preferably an organic group having 1 to 15 carbon atoms. When n is 2 or 3, generally, R 4 is often the same, but in the present invention, R 4 may be the same or different. Specific examples of such alkoxysilanes represented by formula (3) are shown below, but are not limited thereto.
  • Methyltrimethoxysilane methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, pentyltrimethoxysilane, pentyltriethoxysilane, Heptyltrimethoxysilane, heptyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxysilane, octadecyltrimethoxysilane, octadecyltrie
  • R 5 in the formula (3) is a hydrocarbon group having 1 to 5 carbon atoms, preferably a saturated hydrocarbon group having 1 to 4 carbon atoms, more preferably a saturated hydrocarbon group having 1 to 3 carbon atoms. It is. In the present invention, a plurality of alkoxysilanes represented by the formula (3) may be used as necessary.
  • R 7 is a hydrocarbon group having 1 to 5 carbon atoms, preferably a saturated hydrocarbon group having 1 to 4 carbon atoms, more preferably 1 to 1 carbon atoms. 3 saturated hydrocarbon groups.
  • R 7 is often the same, but in the present invention, R 7 may be the same or different.
  • R 8 is a divalent organic group having 1 to 20 carbon atoms, and the structure is not particularly limited, and may include a cyclic structure such as a double bond, a triple bond, and a phenyl group, and a branched structure. Moreover, you may contain hetero atoms, such as nitrogen, oxygen, and fluorine.
  • a divalent group such as the formula (7) in which the R 8 portion contains a perfluoroalkyl chain. It is preferable to use an alkoxysilane which is an organic group.
  • p represents an integer of 1 to 12.
  • Specific examples of the alkoxysilane having a structure in which the R 8 portion of the formula (6) is a divalent organic group containing a perfluoroalkyl chain represented by the formula (7) include 1,6-bis ( And trimethoxysilylethyl) dodecafluorohexane and 1,6-bis (triethoxysilylethyl) dodecafluorohexane.
  • the component (A) used in the present invention usually comprises an alkoxysilane represented by the formula (1) and the formula (2), and an alkoxysilane represented by the formula (3) and the formula (6) as necessary. These can be obtained by polycondensation of one or both of them, but the proportion of these alkoxysilanes used is not particularly limited as long as they are in a homogeneous solution state in a solvent.
  • the total molar amount of the fluorine-containing organic group of the alkoxysilane represented by the formula (2) is 5 mol% or more with respect to the total molar amount of silicon atoms of the alkoxysilane used for obtaining the component (A), Is preferable because a film having a contact angle of 80 ° or more is easily obtained, and when it is 40 mol% or less, formation of gels and foreign matters can be suppressed, and a homogeneous component (A) solution can be easily obtained. Further, the total molar amount of the fluorine-containing organic group of the alkoxysilane represented by the formula (2) is more preferably 10 to 30 mol%.
  • the use amount of the alkoxysilane of the formula (1) is preferably 60 to 95 mol%, more preferably 70 to 90 mol% in the total use amount of all alkoxysilanes used for obtaining the component (A).
  • the amount used when the alkoxysilane represented by the formula (3) is used in combination is preferably 0 to 35 mol%, and 0 to 10 mol% in the total amount of alkoxysilane used to obtain the component (A). More preferred.
  • the alkoxysilane represented by the formula (6) is used in combination, it is preferably 0 to 20 mol%, and 0 to 10 mol% in the total amount of alkoxysilane used to obtain the component (A). More preferred.
  • the total usage-amount of the alkoxysilane represented by Formula (3) and Formula (6) is component (A).
  • the total amount of alkoxysilane used to obtain (A) is preferably 0 to 15 mol%, more preferably 0 to 10 mol%.
  • the method for condensing the polysiloxane that is the component (A) used in the present invention is not particularly limited, and examples thereof include a method of hydrolyzing and condensing alkoxysilane in an alcohol or glycol solvent.
  • the hydrolysis / condensation reaction may be either partial hydrolysis or complete hydrolysis.
  • complete hydrolysis theoretically 0.5 times mole of water of all alkoxy groups in the alkoxysilane may be added, but usually an excess amount of water is added more than 0.5 times mole.
  • the amount of water used in the above reaction can be appropriately selected as desired, but is usually 0.1 to 2.5 moles, preferably 0.1 to 2.5 moles of all alkoxy groups in the alkoxysilane. 2.0 moles.
  • acids such as hydrochloric acid, sulfuric acid, nitric acid, acetic acid, formic acid, succinic acid, maleic acid; alkalis such as ammonia, methylamine, ethylamine, ethanolamine, triethylamine; hydrochloric acid,
  • a metal salt such as sulfuric acid or nitric acid is used as the catalyst.
  • the amount of the catalyst used for the reaction is preferably about 0.001 to 0.05 times moles, more preferably 0.01 to 0.03 times moles of all alkoxy groups in the alkoxysilane.
  • the hydrolysis / condensation reaction by heating a solution in which the alkoxysilane is dissolved.
  • the heating temperature and the heating time can be appropriately selected as desired.
  • the reaction system is set to 50 to 180 ° C., and evaporation or volatilization of the liquid does not occur. Done for 10 hours.
  • heating and stirring at 50 ° C. for 24 hours, heating and stirring for 2 to 10 hours under reflux, and the like can be mentioned.
  • a method of heating a mixture of alkoxysilane, solvent and oxalic acid can be mentioned. Specifically, after adding oxalic acid to alcohol in advance to obtain an alcohol solution of oxalic acid, the solution and alkoxysilane are mixed and heated.
  • the amount of succinic acid is generally 0.2 to 2 mol, preferably 0.5 to 2 mol, relative to 1 mol of all alkoxy groups contained in the alkoxysilane.
  • the heating in this method can be performed at a liquid temperature of 50 to 180 ° C., and preferably performed for several tens of minutes to several tens of hours, for example, in a sealed container or under reflux so that the liquid does not evaporate or volatilize. Is called.
  • a plurality of alkoxysilanes when a plurality of alkoxysilanes are used, a plurality of alkoxysilanes may be mixed in advance, or a plurality of alkoxysilanes may be added sequentially.
  • the concentration obtained by converting the total amount of silicon atoms of the prepared alkoxysilane into SiO 2 (hereinafter referred to as SiO 2 conversion concentration) is 20% by mass or less. It is generally 15% by mass or less.
  • SiO 2 conversion concentration concentration obtained by converting the total amount of silicon atoms of the prepared alkoxysilane into SiO 2
  • SiO 2 conversion concentration is 20% by mass or less. It is generally 15% by mass or less.
  • Solvents used for polycondensation of alkoxysilanes include alkoxysilanes represented by formula (1) and formula (2) and, if necessary, alkoxysilanes represented by formula (3) and formula (6). If it melt
  • an alcohol is generated by a polycondensation reaction of an alkoxysilane, an alcohol or an organic solvent having good compatibility with the alcohol is used.
  • organic solvents include alcohols such as methanol, ethanol, propanol, and butanol; ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether; acetone, methyl ethyl ketone And ketones such as methyl isobutyl ketone.
  • a plurality of the above organic solvents may be mixed and used.
  • Component (B) used in the present invention is a glycol ether having 4 to 8 carbon atoms.
  • Examples of the component (B) used in the present invention include ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethyl carbitol, butyl carbitol, diethylene glycol monomethyl ether, propylene glycol monomethyl ether, propylene glycol monobutyl ether and the like.
  • the component (B) is not limited as long as it is compatible with the component (A), and a plurality of them can be used.
  • the content of the component (B) in the coating solution for forming a film is preferably 30 to 90 parts by mass with respect to 1 part by mass of the total amount of silicon atoms of the component (A) in terms of SiO 2. Is 40 to 80 parts by mass, particularly preferably 50 to 75 parts by mass.
  • Component (C) of the present invention is one or more solvents selected from the group consisting of cyclic alcohols having 3 to 10 carbon atoms and glycols having 3 to 10 carbon atoms.
  • the solvent as the component (C) is not particularly limited as long as it can uniformly dissolve the component (A), the component (B), and other components described later as required.
  • the solvent as component (C) include glycols such as propylene glycol, 1,3 butanediol, 2,3 butanediol, hexylene glycol; cyclopropanol, cyclobutanol, cyclopentanol, cyclohexanol, 2 -Cyclic alcohols such as methylcyclohexanol, cycloheptanol, cyclooctanol, cyclononanol, cyclodecanol; and the like.
  • glycols such as propylene glycol, 1,3 butanediol, 2,3 butanediol, and the like are preferable.
  • component (C) one kind selected from the above solvents may be used, or a plurality may be used in combination.
  • the content of the component (C) in the coating liquid for forming a film is 2 to 30 parts by mass with respect to 1 part by mass of the total amount of silicon atoms of the component (A) in terms of SiO 2 , preferably Is 2 to 20 parts by mass, particularly preferably 5 to 10 parts by mass.
  • the coating liquid for forming a film of the present invention may contain a component (D) in addition to the above components.
  • the component (D) is not particularly limited as long as it is a solvent having a high solubility of the component (A) and a boiling point of 100 ° C. or higher.
  • a solvent include a glycol ether solvent, a ketone solvent, and an amide solvent, and specific examples include ethylene glycol monobutyl ether, cyclohexanone, N-methylpyrrolidone, and propylene glycol monobutyl ether.
  • the content of the component (D) in the coating solution for film formation is preferably 0 to 50 parts by mass with respect to 1 part by mass of the total amount of silicon atoms of the component (A) in terms of SiO 2. Is from 5 to 40 parts by weight, particularly preferably from 10 to 30 parts by weight.
  • the coating liquid for forming a film contains the component (D) from the viewpoint of improving the liquid landing efficiency on the base material when spray coating is performed.
  • examples of the inorganic fine particles include metal oxide fine particles, metal double oxide fine particles, and magnesium fluoride fine particles.
  • the metal oxide fine particles include fine particles of silica, alumina, titanium oxide, zirconium oxide, tin oxide, zinc oxide and the like.
  • the metal double oxide fine particles include fine particles such as ITO (Indium Tin Oxide), ATO (Antimony Trioxide), AZO (Zinc Aluminum Oxide), and zinc antimonate. Can be mentioned.
  • hollow silica fine particles, porous silica fine particles, and the like can also be exemplified.
  • the inorganic fine particles may be either powder or colloidal solution, but those of colloidal solution are preferable because they are easy to handle.
  • This colloidal solution may be a dispersion of inorganic fine particle powder in a dispersion medium or a commercially available colloidal solution.
  • the surface shape of the formed cured film and other functions can be imparted by adding inorganic fine particles.
  • the inorganic fine particles preferably have an average particle size of 0.001 to 0.2 ⁇ m, more preferably 0.001 to 0.1 ⁇ m. When the average particle diameter of the inorganic fine particles exceeds 0.2 ⁇ m, the transparency of the cured film formed by the prepared coating liquid may be lowered.
  • the dispersion medium for inorganic fine particles examples include water and organic solvents.
  • the pH or pKa is preferably adjusted to 2 to 10, more preferably 3 to 7, from the viewpoint of the stability of the coating solution for film formation.
  • Organic solvents used for the dispersion medium of the colloidal solution include alcohols such as methanol, ethanol, propanol, and butanol; glycols such as ethylene glycol; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic hydrocarbons such as toluene and xylene Amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone; esters such as ethyl acetate, butyl acetate and ⁇ -butyrolactone; ethers such as ethylene glycol monopropyl ether, tetrahydrofuran and 1,4-dioxane Can be mentioned. Of these, alcohols and ketones are preferred.
  • organic solvents can be used alone or in admixture of two or more as a dispersion medium.
  • a well-known thing can be used for a filler, a leveling agent, a surface modifier, surfactant, etc.
  • a commercial item is easy to acquire, it is preferable.
  • the method for preparing the coating liquid for forming a film of the present invention is not particularly limited.
  • a solution in which component (A), component (B), component (C), and component (D) are uniform Any state is acceptable. Since component (A) is usually polycondensed in a solvent, it is obtained in the form of a solution. Therefore, a method of mixing component (B) and component (C) using a solution containing component (A) (hereinafter referred to as component (A) solution) as it is, or adding component (D) In addition, the method of further mixing with the component (D) is simple.
  • the component solution (A) is concentrated, diluted by adding a solvent, or replaced with another solvent, and then the component (B) and the component (C) are mixed, When adding a component (D), you may mix with a component (D) further.
  • a solvent can also be added.
  • dissolving a component (B) in the solvent which is a component (C) it may mix with the solution of a component (A), and also a component (D) may be added.
  • Concentration the total amount in terms of SiO 2 of silicon atoms components of the film-forming coating liquid (A) has (SiO 2 in terms of concentration) is preferably 0.1 to 15 mass%, 0.3-6 wt% Is more preferable.
  • SiO 2 equivalent concentration is lower than 0.5% by mass, it is difficult to obtain a desired film thickness by one application.
  • a plurality of applications can be performed. It may be less than mass%.
  • the storage stability of the solution tends to be insufficient.
  • the solvent used for dilution, substitution or the like may be the same solvent as used for the polycondensation of alkoxysilane described above, or may be a different solvent.
  • the solvent is not particularly limited as long as the compatibility with the component (A) and the component (B) is not impaired, and one kind or a plurality of kinds can be arbitrarily selected and used.
  • the above-described method of mixing other components may be simultaneous with component (A) and component (B) or after mixing of component (A) and component (B), and is not particularly limited.
  • the coating liquid for forming a film is given below.
  • Polysiloxane having a fluorine-containing organic group as component (A), glycol ether having 4 to 8 carbon atoms as component (B), and cyclic alcohol having 3 to 10 carbon atoms as component (C) A coating-forming coating solution containing one or more solvents selected from the group consisting of glycols having 3 to 10 carbon atoms.
  • component (D) film formation containing, as component (D), at least one solvent selected from the group consisting of a glycol ether solvent, a ketone solvent and an amide solvent having a boiling point of 100 ° C. or higher at normal pressure Coating liquid.
  • a coating liquid for forming a film comprising [1] or [2] above and at least one selected from the group consisting of a filler, a leveling agent, a surface modifier, and a surfactant.
  • the coating liquid for forming a film of the present invention can be applied to a substrate and thermally cured to obtain a desired film.
  • the spray coating method is a method in which fine droplets are dropped on a substrate and the film is formed by wetting and spreading the liquid, and there is no dependency on the substrate, and there is less waste of the coating liquid. There is.
  • the coating liquid for forming a film of the present invention includes, for example, a dip coating method, a flow coating method, a spin coating method, a flexographic printing method, an ink jet coating method, a bar coating method, a gravure roll coating method, a roll coating method, a blade coating method, an air coating method.
  • the coating liquid for forming a film of the present invention is characterized by being particularly suitable for a spray coating method.
  • plastics include polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, triacetylcellulose, diacetylcellulose And plates such as acetate butyrate cellulose and the like.
  • a substrate such as a solar cell that has irregularities on the back surface and cannot be fixed by adsorption has a great merit by spray coating.
  • the uniform film thickness obtained by the spray coating method can be adjusted by the amount of the chemical solution, the gas flow rate, the nozzle / stage distance (distance between the nozzle and the stage), the coating speed, and the like.
  • the chemical amount is a parameter that determines the film thickness. Increasing the chemical amount increases the film thickness, and decreasing it decreases the film thickness. In spray application, the amount of the chemical solution is, for example, 1 to 20 mL (milliliter) / min, and preferably 3 to 12 mL / min.
  • the gas flow rate is a parameter for forming fine droplets, and examples of the gas used include N 2 and dry air, but are not particularly limited thereto.
  • the gas flow rate is, for example, 3 to 20 L (liter) / min, and preferably 6 to 12 L / min.
  • the nozzle / stage distance is a parameter related to the film thickness and coating properties, and the film thickness increases as the distance decreases, but it tends to cause coating unevenness, and the film thickness decreases as the distance increases. From the viewpoints of film thickness and applicability, the nozzle / stage distance is, for example, 40 to 200 mm, and preferably 50 to 100 mm.
  • the coating speed is a parameter related to the film thickness. As the speed increases, the film thickness decreases, and as the speed decreases, the film thickness increases. In spray coating, the coating speed is, for example, 100 to 2000 mm / s, preferably 300 to 1000 mm / s.
  • the thickness of the coating film formed on the substrate can be adjusted by the above parameters at the time of coating, but can also be easily adjusted by the SiO 2 equivalent concentration of the coating solution.
  • the coating film is obtained by heating the coating film formed on the substrate at 100 to 450 ° C. Heating can be performed by using a usual method, for example, a hot plate, an oven, a belt furnace or the like.
  • the film thus obtained has the characteristics of good film formability and high transmittance.
  • the film formed by the coating liquid for forming a film of the present invention can be suitably used particularly as a low refractive index layer for solar cells.
  • the surface of a substrate having a refractive index higher than that of the coating for example, ordinary glass or TAC (triacetylcellulose) film is used.
  • TAC triacetylcellulose
  • this substrate can be easily converted to a substrate having an anti-light reflection ability.
  • the coating is effective even when used as a single coating on the substrate surface, but it is also effective as an antireflection laminate in which a coating is formed on a lower coating having a high refractive index. is there.
  • the optimum film thickness can be calculated.
  • any positive integer may be substituted for b.
  • the film thickness obtained by substituting 1 for b is 104 nm
  • the film thickness obtained by substituting 2 for b is 312 nm.
  • the coating liquid for forming a film of the present invention can form a film having excellent film forming properties and high transmittance. Moreover, it is excellent also in the liquid landing efficiency at the time of spray application. Therefore, glass cathode ray tubes; displays for televisions, computers, car navigation systems, mobile phones, etc .; mirrors with glass surfaces; glass showcases, solar cells, etc. .
  • TEOS Tetraethoxysilane UPS: 3-Ureidopropyltriethoxysilane FS-13: Tridecafluorooctyltrimethoxysilane MeOH: Methanol IPA: Isopropyl alcohol PG: Propylene glycol cHexOH: Cyclohexanol BuOH: Butanol PGME: Propylene glycol monomethyl ether HG : Hexylene glycol EG: ethylene glycol BCS: ethylene glycol monobutyl ether DEDM: diethylene glycol dimethyl ether DADE: diethylene glycol diethyl ether 1,3BD: 1,3-butanediol 2,3BD: 2,3-butanediol PB: propylene glycol monobutyl ether PGEE : Propylene glycol monoethyl ether CHN: cyclohexanone NMP: N-methylpyrrolidon
  • GC gas chromatography
  • the GC measurement was performed using Shimadzu GC-14B manufactured by Shimadzu Corporation under the following conditions.
  • Sample injection volume 1 ⁇ L
  • injection temperature 240 ° C.
  • detector temperature 290 ° C.
  • carrier gas nitrogen (flow rate 30 mL / min)
  • detection method FID (Flame Ionization Detector) method.
  • Example 1 to 24 and Comparative Examples 1 to 11 A coating solution for forming a film (Q1 to Q24) was prepared by mixing the polysiloxane solution obtained in the above synthesis example and an organic solvent with the composition shown in Table 1. In Comparative Examples, coating solutions (T1 to T11) were prepared with the compositions shown in Table 2.
  • the coating solution for coating formation (Q1 to Q24 and T1 to T11) was applied on soda lime glass (glass thickness 0.7mm) using STS-200 made by YD Mechatronic Solutions, 3ml / min chemical solution, 10L / min N 2 flow rate. , And at a nozzle / stage distance of 70 mm, the coating speed was changed to form a coating film. Thereafter, the film was allowed to stand at a temperature of 23 ° C. for 1 minute and then cured at 150 ° C. for 30 minutes in a clean oven to obtain a 100 nm film.
  • the film forming property evaluation results were excellent coating with an evaluation result of ⁇ or more under an interference fringe inspection lamp, ⁇ under a white light, and a specific transmittance of the film of 3%. Sex was shown.
  • Comparative Examples 1 to 11 as shown in Table 4, the film forming property evaluation result was ⁇ or less, and the specific permeability of the film was 1% or less.
  • Coating solution (Q1, Q17, Q19, Q21, and Q23) for coating film formation was placed on soda-lime glass (glass thickness 0.7 mm) using STS-200 manufactured by YD Mechatronic Solutions, 3 mL / min, N 2 Coating was carried out at a flow rate of 10 L / min, a nozzle / stage distance of 70 mm, and a coating speed of 300 mm / s. Thereafter, the film was allowed to stand at a temperature of 23 ° C. for 1 minute, and then cured at 150 ° C. for 30 minutes in a clean oven to obtain a film.
  • ⁇ Thickness measurement method> The film thickness of the cured coating film was measured at 16 points in the plane using FILMETRICS F20-EXR, and the average value was calculated. The results are shown in Table 5.
  • Example 25 As shown in Table 5, in the spray application under the same conditions, in Example 25, the film thickness was 95 nm, but in Examples 26 to 29, it was confirmed that the film thickness was about 10 nm or more. It was. Since the film thickness of the film obtained with the same parameters was increased, it was confirmed that the liquid deposition efficiency was increased by including the component (D).
  • a coating solution for forming a film (Q1 and Q17) was used on a crystalline silicon solar cell module using STS-200 manufactured by YD Mechatronics Solutions Co., Ltd., 3 mL / min chemical, N 2 flow rate 10 L / min, nozzle / stage distance 70 mm, and Coating was performed at a coating speed of 300 mm / s to form a coating film. Thereafter, the film was allowed to stand at a temperature of 23 ° C. for 1 minute, and then cured at 150 ° C. for 30 minutes in a clean oven to obtain a film.
  • ⁇ Solar cell IV measurement evaluation method Solar cell IV measurement evaluation was performed using a YSS-150 solar simulator manufactured by Yamashita Denso. At a temperature of 25 ° C., the module was irradiated with light mixed with ultraviolet light to infrared light having a wavelength of 290 to 1400 nm six times, and the obtained IV measurement data was averaged. Table 6 shows the result of the conversion efficiency of the solar cell calculated from the obtained data. In Table 6, “Isc” means “short-circuit current”, and “conversion efficiency” means the efficiency of conversion of sunlight into electric power.
  • the coating liquid for forming a film of the present invention is suitable for spray coating, and for example, an antireflection film can be easily formed even on a back surface of a solar cell or the like that cannot be adsorbed and fixed. Useful.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2010-105344 filed on April 30, 2010 are incorporated herein as the disclosure of the specification of the present invention. Is.

Abstract

 太陽電池等の裏面に凹凸があって吸着固定ができないものにも反射防止膜を容易に形成することができる反射防止被膜形成方法及び該方法に用いる反射防止被膜形成剤を提供する。 下記の成分(A)、成分(B)、及び成分(C)を含有することを特徴とするスプレー塗布用の被膜形成用塗布液。 成分(A):含フッ素有機基を有するポリシロキサン、 成分(B):炭素数4~8のグリコールエーテル、 成分(C):炭素数3~10の環状アルコール及び炭素数3~10のグリコールからなる群から選ばれる1種以上の溶媒。

Description

スプレー塗布用の被膜形成用塗布液及び被膜
 本発明は、アルコキシシランを重縮合して得られるポリシロキサンを主として含有し、さらに複数の溶媒を含有するスプレー塗布により均一な膜を形成できる低屈折率被膜形成用塗布液、及び該被膜形成用塗布液を用いて形成した被膜、さらには該被膜を有する反射防止材に関する。
 従来、基材の表面に、該基材の屈折率よりも小さい低屈折率を有する被膜を形成させると、該被膜の表面から反射する光の反射率が低下することが知られている。このような低下した光反射率を示す低屈折率被膜は、光反射防止膜として利用され、種々の基材表面に適用されている。
 例えば、特許文献1には、Mg源としてのマグネシウム塩やアルコキシマグネシウム化合物などと、F源としてのフッ化物塩とを反応させて生成させたMgF2微粒子のアルコール分散液、又はこれに膜強度向上のためにテトラアルコキシシランなどを加えた液を塗布液とし、これをガラス基材上に塗布し、温度100~500℃で熱処理し、基材上に低屈折率を示す反射防止膜を形成させる方法が開示されている。
 また、特許文献2には、テトラアルコキシシランなどの加水分解重縮合物であって、平均分子量の異なる2種以上とアルコールなどの溶剤とを混合してコーティング液となし、該コーティング液から被膜を形成するに当たって上記混合の際の混合割合、相対湿度のコントロールなどの手段を加えて被膜を作製することが開示されている。被膜は250℃以上の温度で加熱することにより得られ、1.21~1.40の屈折率を示し、50~200nmの径を有するマイクロピット又は凹凸を有する厚さ60~160nmを有する。被膜はガラス基板上に形成され低反射ガラスが製造されている。
 また、特許文献3には、ガラスと、その表面に形成させた高屈折率を有する下層膜と、更にその表面に形成させた低屈折率を有する上層膜とからなる低反射率ガラスが開示されている。上層膜の形成は、CF3(CF2224Si(OCH33などポリフルオロカーボン鎖を有する含フッ素シリコーン化合物と、これに対し5~90質量%のSi(OCH34などのシランカップリング剤とを、アルコール溶媒中、酢酸など触媒の存在下に室温で加水分解させた後、濾過することにより共縮合体の液を調製し、それを上記下層膜上に塗布し、温度120~250℃で加熱する方法で行なわれている。
 また、特許文献4には、Si(OR)4で示される珪素化合物と、CF3(CF2nCH2CH2Si(OR13で示される珪素化合物と、R2CH2OHで示されるアルコールと、蓚酸とを特定比率に含有する反応混合物を、水の不存在下に、温度40~180℃で加熱することによりポリシロキサンの溶液を生成させてなる塗布液が開示されている。この塗布液を基材表面に塗布し、温度80~450℃で熱硬化させることにより、1.28~1.38の屈折率と90~115度の水接触角を有する被膜が形成されている。
 一般に、ガラス基板上への低屈折率被膜の成膜法としては、ウエットプロセスとしてはスピンコート、ディップコートなどが挙げられるが、実際にはスピンコートが用いられていることが多い。しかしながら、スピンコートでは、基板サイズに限度があること、薬液使用効率が非常に低いことなどが問題となっている。また、ドライプロセスとしては真空蒸着法、CVD法などが挙げられ、これらの方法では生産性、コストなどが問題となっている。
 そのため、基材依存が少なく、生産性、及びコストの面を考慮した塗布方法としてスプレー塗布法が注目されている。スプレー塗布法は、基材に微細な液滴を滴下し、液の濡れ広がりにより成膜する方法であり、基材依存性がなく、塗布液の無駄が少ないという利点がある。そのため、低反射ガラスのコストダウン、生産効率の向上などが期待されている。
 このような状況において、スプレー塗布により基材上に低屈折率被膜を成膜するプロセスの導入が望まれており、このような要求に対応可能な反射防止被膜形成剤(塗布液)が求められている。
 しかし、上記のポリシロキサン含有の反射防止被膜形成剤は、スプレー塗布に好適であるとは言えなかった。
 一方、グリコールエーテルを溶媒とし、スプレー塗布にて塗膜を形成した例がある(例えば、特許文献5参照)。しかし、特許文献5では、微粒子を含む塗料であり、微粒子にて凹凸を形成することにより反射防止膜の役割を果たしている。また、上記塗料がフッ素含有のポリシロキサンを含有するとの記載はない。
特開平05-105424号公報 特開平06-157076号公報 特開昭61-010043号公報 特開平09-208898号公報 特開2003-202813号公報
 本発明の目的は、スプレー塗布法を用いて成膜できる珪素系の反射防止被膜形成用塗布液を提供すること、及びスプレー塗布により、膜の面内均一性に優れた低屈折率被膜を提供することである。
 本発明者らは、上記の状況に鑑み鋭意研究した結果、下記に示す本発明を完成するに至った。すなわち、本発明は、以下の要旨を有するものである。
1.下記の成分(A)、成分(B)、及び成分(C)を含有することを特徴とするスプレー塗布用の被膜形成用塗布液。
 成分(A):含フッ素有機基を有するポリシロキサン、
 成分(B):炭素数4~8のグリコールエーテル、
 成分(C):炭素数3~10の環状アルコール及び炭素数3~10のグリコールからなる群から選ばれる1種以上の溶媒。
2.成分(A)が、炭素数1~10の含フッ素有機基を有するポリシロキサンである、上記1.に記載の被膜形成用塗布液。
3.成分(A)が有する含フッ素有機基の合計モル量が、成分(A)が有する珪素原子の合計モル量の100モルに対して、5~40モルである、上記1.又は2.に記載の被膜形成用塗布液。
4.成分(C)が、シクロヘキサノール、プロピレングリコール、1,3ブタンジオール、及び2,3ブタンジオールからなる群から選ばれる1種以上の溶媒である上記1.~3.のいずれかに記載の被膜形成用塗布液。
5.成分(A)が、テトラアルコキシシランと含フッ素有機基を有するアルコキシシランとを含むアルコキシシランを重縮合して得られるポリシロキサンである、上記1.~4.のいずれかに記載の被膜形成用塗布液。
6.成分(A)が有する珪素原子の合計量をSiO2換算した質量の1質量部に対して、成分(B)が30~90質量部、成分(C)が2~30質量部である上記1.~5.のいずれかに記載の被膜形成用塗布液。
7.さらに、(D)成分として、常圧における沸点が100℃以上のグリコールエーテル溶媒、ケトン溶媒及びアミド溶媒からなる群から選ばれる1種以上の溶媒を含有する、上記1.~6.のいずれかに記載の被膜形成用塗布液。
8.成分(D)が、エチレングリコールモノブチルエーテル、シクロヘキサノン、N-メチルピロリドン及びプロピレングリコールモノブチルエーテルからなる群から選ばれる1種以上の溶媒である、上記7.に記載の被膜形成用塗布液。
9.上記1.~8.のいずれかに記載の被膜形成用塗布液を用いて得られる被膜。
10.上記9.に記載の被膜を有する反射防止基材。
11.上記9.に記載の被膜を有する反射防止フィルム。
12.上記9.に記載の被膜を有する太陽電池。
13.上記1.~8.のいずれかに記載の被膜形成用塗布液を基材にスプレー塗布して塗膜を形成する工程を含む被膜形成方法。
 本発明の被膜形成用塗布液は、成膜性に優れ、透過率が高い被膜を形成することができる。また、スプレー塗布した場合の着液効率にも優れている。
 さらに、本発明の方法に従えば、例えば、太陽電池等の裏面に凹凸があって吸着固定ができないものにも、成膜性に優れ、透過率が高い低屈折率被膜を容易に形成することができる。
 以下に本発明について詳細に説明する。
 本発明は、成分(A):フッ素原子で置換された有機基を側鎖に持つポリシロキサン、成分(B):グリコールエーテル類、成分(C):環状アルコール類及びグリコール類からなる群から選ばれる1種以上の溶媒と、を含有するスプレー塗布用の被膜形成用塗布液に関するものである。
<成分(A)>
 成分(A)は、フッ素原子で置換された有機基を側鎖に持つポリシロキサンである。
 このようなフッ素原子で置換された有機基は、脂肪族基や芳香族基の水素原子の一部又は全部をフッ素原子で置換した有機基である。これらの具体例を以下に挙げる。
 例えば、トリフルオロプロピル基、トリデカフルオロオクチル基、ヘプタデカフルオロデシル基、ペンタフルオロフェニルプロピル基等が挙げられる。
 これらの中でも、パーフルオロアルキル基は、透明性の高い被膜を得易いので好ましい。より好ましくは炭素数3~15のパーフルオロアルキル基である。
 具体例として、トリフルオロプロピル基、トリデカフルオロオクチル基、ヘプタデカフルオロデシル基等が挙げられる。
 本発明においては、上記の如き側鎖を有するポリシロキサンを複数種併用してもよい。
 上記の如きフッ素原子で置換された有機基を側鎖に持つポリシロキサンを得る方法は特に限定されない。一般的には、上記した有機基を側鎖に持つアルコキシシランとそれ以外のアルコキシシランとを重縮合して得られる。
 中でも、式(1)で表されるアルコキシシラン及び式(2)で表されるアルコキシシランを含有するアルコキシシランを重縮合して得られるポリシロキサンが好ましい。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
 式(1)のRは、炭化水素基を表すが、炭素数が少ない方が反応性が高いので、炭素数1~5の飽和炭化水素基が好ましく、より好ましくはメチル基、エチル基、プロピル基、又はブチル基である。
 このようなテトラアルコキシシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等が挙げられ、市販品として容易に入手可能である。
 本発明においては、式(1)で表されるアルコキシシランのうちの少なくとも1種を用いればよいが、必要に応じて複数種を用いてもよい。
 式(2)で表されるアルコキシシランは、上記したフッ素原子で置換された有機基を側鎖に持つアルコキシシランである。従って、このアルコキシシランは、塗膜に撥水性を付与するものである。
 ここで、式(2)のRは、上記したフッ素原子で置換された有機基を表すが、この有機基が有するフッ素原子の数は特に限定されない。
 また、式(2)のRは炭素数1~5の炭化水素基を表し、好ましくは、炭素数1~5の飽和炭化水素基であり、より好ましくはメチル基、エチル基、プロピル基、又はブチル基である。
 このような式(2)で表されるアルコキシシランの中でも、Rがパーフルオロアルキル基であるアルコキシシランが好ましく、Rが式(5)で表される有機基であるアルコキシシランがより好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(5)中、kは0~12の整数を表す。
 式(5)で表される有機基を有するアルコキシシランの具体例として、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシラン等が挙げられる。
 特に、kが2~12の整数の場合、反射防止膜の指紋の拭き取り性が良好となるので好ましい。
 本発明においては、式(2)で表されるアルコキシシランのうちの少なくとも1種を用いればよいが、必要に応じて複数種を用いてもよい。
 また、成分(A)であるポリシロキサンは、式(1)及び式(2)で表されるアルコキシシランと、それ以外に式(3)及び/又は式(6)で表されるアルコキシシランとを重縮合させたものでもよい。この際、式(1)及び式(2)で表されるアルコキシシラン以外に、式(3)で表されるアルコキシシランと式(6)で表されるアルコキシシランのどちらか一方を単独で用いてもよいし、両方を併用してもよい。
Figure JPOXMLDOC01-appb-C000004
 式(3)中、Rはフッ素原子で置換されていない有機基を表し、Rは炭素数1~5の炭化水素基を表し、nは1~3の整数を表す。
Figure JPOXMLDOC01-appb-C000005
 式(6)中、Rは炭素数1~5の炭化水素基を表し、Rは炭素数1~20の2価の有機基を表す。
 式(3)のアルコキシシランは、Rがフッ素原子で置換されていない有機基と、アルコキシ基を1、2又は3個有するアルコキシシランである。式(3)のRは、それぞれ炭素数1~5の炭化水素基である。nが1、又は2の場合、一般的にはRが同一の場合が多いが、本発明においては、Rは同一でも、それぞれ異なっていてもよい。
 式(3)中のRは、炭素数1~20の有機基、好ましくは炭素数1~15の有機基である。nが2、又は3の場合、一般的にはRが同一の場合が多いが、本発明においては、Rは同一でも、それぞれ異なっていてもよい。
 このような、式(3)で表されるアルコキシシランの具体例を以下に示すが、これに限定されない。
 メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ペンチルトリメトキシシラン、ペンチルトリエトキシシラン、ヘプチルトリメトキシシラン、ヘプチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン等のトリアルコキシシラン及びジメチルジメトキシシラン、ジメチルジエトキシシラン等のジアルコキシシランが挙げられる。
 式(3)のRは炭素数1~5の炭化水素基であるが、好ましくは、炭素数1~4の飽和炭化水素基であり、より好ましくは炭素数1~3の飽和炭化水素基である。
 本発明においては、式(3)で表されるアルコキシシランを必要に応じて複数種用いることもできる。
 また、式(6)のアルコキシシランは、Rは炭素数1~5の炭化水素基であるが、好ましくは、炭素数1~4の飽和炭化水素基であり、より好ましくは炭素数1~3の飽和炭化水素基である。
 本発明においては、式(6)で表されるアルコキシシランを必要に応じて複数種用いることもできる。一般的にはRは同一の場合が多いが、本発明においては、Rは同一でも、それぞれ異なっていてもよい。
 Rは炭素数1~20の2価の有機基であり、構造は特に限定されず、二重結合や三重結合、フェニル基などの環状構造及び分岐構造を含んでもよい。また、窒素、酸素、フッ素などのヘテロ原子を含んでもよい。
 本発明において、撥水性のより良好な被膜を形成したい場合、式(6)で表されるアルコキシシランの中でも、Rの部分がパーフルオロアルキル鎖を含む式(7)のような2価の有機基であるアルコキシシランを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000006
 式(7)中、pは1~12の整数を表す。
 式(6)のRの部分が、式(7)で表されるパーフルオロアルキル鎖を含む2価の有機基であるような構造のアルコキシシランの具体例としては、1,6-ビス(トリメトキシシリルエチル)ドデカフルオロヘキサン、1,6-ビス(トリエトキシシリルエチル)ドデカフルオロヘキサンなどが挙げられる。
 本発明に用いる成分(A)は、通常、式(1)及び式(2)で表されるアルコキシシランを必須として、必要に応じて式(3)と式(6)で表されるアルコキシシランのどちらか一方あるいは両方を重縮合して得られるが、溶媒中で均質な溶液状態であれば、これらのアルコキシシランの使用割合は特に限定されない。
 式(2)で表されるアルコキシシランの含フッ素有機基の合計モル量が、成分(A)を得るために用いるアルコキシシランの珪素原子の合計モル量に対して5モル%以上の場合、水の接触角が80度以上の被膜が得られやすいので好ましく、40モル%以下の場合、ゲルや異物の生成を抑制でき、均質な成分(A)の溶液を得られ易いので好ましい。さらに、式(2)で表されるアルコキシシランの含フッ素有機基の合計モル量は、10~30モル%がより好ましい。
 他方、式(1)のアルコキシシランの使用量は、成分(A)を得るために用いる全アルコキシシランの合計使用量中、60~95モル%が好ましく、70~90モル%がより好ましい。
 式(3)で表されるアルコキシシランを併用する場合の使用量は、成分(A)を得るために用いるアルコキシシランの合計使用量中、0~35モル%が好ましく、0~10モル%がより好ましい。また、式(6)で表されるアルコキシシランのみを併用する場合は、成分(A)を得るために用いるアルコキシシランの合計使用量中、0~20モル%が好ましく、0~10モル%がより好ましい。さらに、式(3)及び式(6)で表されるアルコキシシランの両方を併用する場合には、式(3)と式(6)で表されるアルコキシシランの合計使用量が、成分(A)を得るために用いるアルコキシシランの合計使用量中、0~35モル%、好ましくは0~20モル%であり、かつ、そのうち式(6)で表されるアルコキシシランの含まれる割合は、成分(A)を得るために用いるアルコキシシランの合計使用量中で0~15モル%であることが好ましく、0~10モル%がより好ましい。
 本発明に用いる成分(A)であるポリシロキサンを縮合する方法は特に限定されないが、例えば、アルコキシシランをアルコールやグリコール溶媒中で加水分解・縮合する方法が挙げられる。その際、加水分解・縮合反応は、部分加水分解及び完全加水分解のいずれであってもよい。完全加水分解の場合は、理論上、アルコキシシラン中の全アルコキシ基の0.5倍モルの水を加えればよいが、通常は0.5倍モルより過剰量の水を加える。
 本発明においては、上記反応に用いる水の量は、所望により適宜選択することができるが、通常、アルコキシシラン中の全アルコキシ基の0.1~2.5倍モル、好ましくは0.1~2.0倍モルである。
 また、通常、加水分解・縮合反応を促進する目的で、塩酸、硫酸、硝酸、酢酸、蟻酸、蓚酸、マレイン酸などの酸;アンモニア、メチルアミン、エチルアミン、エタノールアミン、トリエチルアミンなどのアルカリ;塩酸、硫酸、又は硝酸などの金属塩などが触媒として用いられる。この場合、反応に用いる触媒の量は、アルコキシシラン中の全アルコキシ基の0.001~0.05倍モル程度が好ましく、0.01~0.03倍モルがより好ましい。さらに、アルコキシシランが溶解した溶液を加熱することで、加水分解・縮合反応を促進させることも一般的である。その際、加熱温度及び加熱時間は所望により適宜選択でき、好ましくは反応系を50~180℃にして液の蒸発、揮散等が起こらないように、密閉容器中又は還流下で数十分から数十時間行われる。例えば、50℃で24時間加熱・撹拌したり、還流下で2~10時間加熱・撹拌するなどの方法が挙げられる。
 また、別法として、例えば、アルコキシシラン、溶媒及び蓚酸の混合物を加熱する方法が挙げられる。具体的には、あらかじめアルコールに蓚酸を加えて蓚酸のアルコール溶液とした後、当該溶液とアルコキシシランを混合し、加熱する方法である。その際、蓚酸の量は、アルコキシシランが有する全アルコキシ基の1モルに対して0.2~2モルとすることが一般的であり、好ましくは0.5~2モルである。この方法における加熱は、液温50~180℃で行うことができ、好ましくは、液の蒸発、揮散等が起こらないように、例えば、密閉容器中又は還流下で数十分~数十時間行われる。
 上記のそれぞれの方法において、複数のアルコキシシランを用いる場合は、複数のアルコキシシランをあらかじめ混合して用いてもよいし、複数のアルコキシシランを順次加えてもよい。
 上記の方法でアルコキシシランを重縮合する際には、仕込んだアルコキシシランの珪素原子の合計量をSiOに換算した濃度(以下、SiO換算濃度と称す。)が、20質量%以下とされることが一般的であり、15質量%以下が好ましい。このような濃度範囲で任意の濃度を選択することにより、ゲルの生成を抑え、均質なポリシロキサンの溶液を得ることができる。
 アルコキシシランを重縮合する際に用いられる溶媒は、式(1)及び式(2)で表されるアルコキシシランと、必要に応じて式(3)及び式(6)で表されるアルコキシシランを溶解するものであれば特に限定されない。一般的には、アルコキシシランの重縮合反応によりアルコールが生成するため、アルコール類やアルコール類と相溶性の良好な有機溶媒が用いられる。
 このような有機溶媒の具体例としては、メタノール、エタノール、プロパノール、ブタノールなどのアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテル類;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類等が挙げられる。
 本発明においては、上記の有機溶媒を複数種混合して用いてもよい。
 以下、成分(B)及び成分(C)において、「炭素数」とは、1分子中に含まれる全ての炭素原子の数を意味する。
<成分(B)>
 本発明に用いる成分(B)は、炭素数4~8のグリコールエーテルである。
 本発明に用いる成分(B)としては、例えば、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチルカルビトール、ブチルカルビトール、ジエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル等が挙げられる。
 本発明において成分(B)は、成分(A)と良好に相溶する限りにおいて限定されず、それらを複数種用いることもできる。
 成分(B)の被膜形成用塗布液中の含有量は、成分(A)が有する珪素原子の合計量をSiO換算した質量の1質量部に対して、30~90質量部であり、好ましくは40~80質量部であり、特に好ましくは50~75質量部である。
<成分(C)>
 本発明の成分(C)は、炭素数3~10の環状アルコール及び炭素数3~10のグリコールからなる群から選ばれる1種以上の溶媒である。成分(C)である溶媒としては、成分(A)、成分(B)、及び必要に応じて後記するその他の成分を、均一に溶解するものであれば特に限定されない。
 成分(C)である溶媒の具体例としては、プロピレングリコール、1,3ブタンジオール、2,3ブタンジオール、へキシレングリコール等のグリコール類;シクロプロパノール、シクロブタノール、シクロペンタノール、シクロヘキサノール、2-メチルシクロヘキサノール、シクロヘプタノール、シクロオクタノール、シクロノナノール、シクロデカノール等の環状アルコール類;等が挙げられる。中でも、塗布性の観点からは、例えば、シクロヘキサノール、プロピレングリコール、1,3ブタンジオール、2,3ブタンジオール等が好ましい。
 成分(C)は、上記溶媒から選ばれる1種類を用いてもよいし、複数を混合して用いてもよい。
 成分(C)の被膜形成用塗布液中の含有量は、成分(A)が有する珪素原子の合計量をSiO2換算した質量の1質量部に対して、2~30質量部であり、好ましくは2~20質量部であり、特に好ましくは5~10質量部である。
 さらに、本発明の被膜形成用塗布液中には、上記成分に加えて成分(D)が含まれてもよい。
<成分(D)>
 成分(D)としては、成分(A)の溶解性が高く、かつ、沸点が100℃以上の溶媒であれば特に制限はない。このような溶媒としては、例えばグリコールエーテル溶媒、ケトン溶媒及びアミド溶媒が挙げられ、具体例としては、エチレングリコールモノブチルエーテル、シクロヘキサノン、N-メチルピロリドン及びプロピレングリコールモノブチルエーテルが挙げられる。
 成分(D)の被膜形成用塗布液中の含有量は、成分(A)が有する珪素原子の合計量をSiO2換算した質量の1質量部に対して、0~50質量部であり、好ましくは5~40質量部であり、特に好ましくは10~30質量部である。
 被膜形成用塗布液が成分(D)を含有することは、スプレー塗布した場合の基材への着液効率を高めるという観点から、好ましい。
<その他の成分>
 本発明においては、本発明の効果を損なわない限りにおいて、成分(A)、成分(B)、成分(C)及び成分(D)以外のその他の成分、例えば、無機微粒子、フィラー、レベリング剤、表面改質剤、界面活性剤等の成分が含まれていてもよい。
 無機微粒子としては、金属酸化物微粒子、金属複酸化物微粒子、フッ化マグネシウム微粒子等が挙げられる。
 金属酸化物微粒子としては、シリカ、アルミナ、酸化チタン、酸化ジルコニウム、酸化スズ、酸化亜鉛等の微粒子が挙げられる。
 金属複酸化物微粒子としては、ITO(酸化インジウムスズ (Indium Tin Oxide))、ATO(三酸化アンチモン(Antimony Trioxide))、AZO(酸化亜鉛アルミニウム(Zinc Aluminium Oxide))、アンチモン酸亜鉛等の微粒子が挙げられる。
 また、中空のシリカ微粒子や多孔質シリカ微粒子等も例示することができる。
 無機微粒子は、粉体及びコロイド溶液のいずれでもよいが、コロイド溶液のものが扱い易いので好ましい。このコロイド溶液は、無機微粒子粉を分散媒に分散したものでもよいし、市販品のコロイド溶液であってもよい。
 本発明においては、無機微粒子を含有させることにより、形成される硬化被膜の表面形状やその他の機能を付与することが可能となる。
 無機微粒子としては、その平均粒子径が0.001~0.2μmであることが好ましく、更に好ましくは0.001~0.1μmである。無機微粒子の平均粒子径が0.2μmを超える場合には、調製される塗布液によって形成される硬化被膜の透明性が低下する場合がある。
 無機微粒子の分散媒としては、水及び有機溶剤を挙げることができる。コロイド溶液としては、被膜形成用塗布液の安定性の観点から、pH又はpKaが2~10に調整されていることが好ましく、より好ましくは3~7である。
 コロイド溶液の分散媒に用いる有機溶剤としては、メタノール、エタノール、プロパノール、ブタノール等のアルコール類;エチレングリコール等のグリコール類;メチルエチルケトン、メチルイソブチルケトン等のケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン等のエステル類;エチレングリコールモノプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエ-テル類を挙げることができる。これらの中で、アルコール類及びケトン類が好ましい。これら有機溶剤は、単独で又は2種以上を混合して分散媒として使用することができる。
また、フィラー、レベリング剤、表面改質剤、界面活性剤等は、公知のものを用いることができ、特に市販品は入手が容易なので好ましい。
<被膜形成用塗布液>
 本発明の被膜形成用塗布液を調製する方法は特に限定されない。成分(A)、成分(B)、及び成分(C)、又は、成分(D)を加える場合は、成分(A)、成分(B)、成分(C)及び成分(D)が均一な溶液状態であればよい。通常、成分(A)は、溶媒中で重縮合されるので、溶液の状態で得られる。そのため、成分(A)を含有する溶液(以下、成分(A)の溶液という。)をそのまま用いて、成分(B)及び成分(C)を混合する方法、又は、成分(D)を加える場合は、更に成分(D)と混合する方法が簡便である。また、必要に応じて、成分の溶液(A)を、濃縮したり、溶媒を加えて希釈したり又は他の溶媒に置換してから、成分(B)及び成分(C)を混合するか、成分(D)を加える場合は、更に成分(D)と混合してもよい。また、成分(A)の溶液と成分(B)及び成分(C)を混合した後、又は、成分(D)を加える場合は、更に成分(D)を混合した後に、溶媒を加えることもできる。また、成分(B)を成分(C)である溶媒に溶解してから、成分(A)の溶液と混合し、さらに成分(D)を加えてもよい。
 被膜形成用塗布液中の成分(A)が有する珪素原子の合計量をSiOに換算した濃度(SiO換算濃度)は、0.1~15質量%が好ましく、0.3~6質量%がより好ましい。SiO換算濃度が0.5質量%より低いと、一回の塗布で所望の膜厚を得ることが難しいが、スプレー法の場合は、複数回の塗布を行うことが出来るため、0.5質量%を下回ってもよい。一方、15質量%より高いと、溶液の保存安定性が不足し易い。
 希釈や置換等に用いる溶媒は、上記したアルコキシシランの重縮合に用いたものと同じ溶媒でもよいし、別の溶媒でもよい。この溶媒は、成分(A)及び成分(B)との相溶性を損なわなければ特に限定されず、一種でも複数種でも任意に選択して用いることができる。
 上記した、その他の成分を混合する方法は、成分(A)及び成分(B)と同時でも、成分(A)及び成分(B)の混合後であってもよく、特に限定されない。
 本発明において、被膜形成用塗布液の具体例を以下に挙げる。
[1]成分(A)である含フッ素有機基を有するポリシロキサン、成分(B)である炭素数4~8のグリコールエーテル及び、成分(C)である、炭素数3~10の環状アルコール及び炭素数3~10のグリコールからなる群から選ばれる1種以上の溶媒を含有する被膜形成用塗布液。
[2]上記[1]にさらに、成分(D)として、常圧における沸点が100℃以上のグリコールエーテル溶媒、ケトン溶媒及びアミド溶媒からなる群から選ばれる1種以上の溶媒を含有する被膜形成用塗布液。
[3]上記[1]又は[2]とフィラー、レベリング剤、表面改質剤、及び界面活性剤からなる群から選ばれる少なくとも一種を含有する被膜形成用塗布液。
<被膜の形成>
 本発明の被膜形成用塗布液は、基材に塗布し、熱硬化することで所望の被膜を得ることができる。
 塗布の際の方法として、スプレー塗布法は、基材に微細な液滴を滴下し、液の濡れ広がりにより成膜する方法であり、基材依存性がなく、塗布液の無駄が少ないという利点がある。
 本発明の被膜形成用塗布液は、例えば、ディップコート法、フローコート法、スピンコート法、フレキソ印刷法、インクジェットコート法、バーコート法、グラビアロールコート法、ロールコート法、ブレードコート法、エアドクターコート法、エアーナイフコート法、ワイヤードクターコート法、リバースコート法、トランスファーロールコート法、マイクログラビアコート法、キスコート法、キャストコート法、スロットオリフィスコート法、カレンダーコート法、ダイコート法等の公知又は周知の方法にも適用することができるが、本発明の被膜形成用塗布液は、スプレー塗布法に対して特に適している点が特徴である。
 基材としては、プラスチック、ガラス、セラミックス等の公知又は周知の基材を挙げることができる。プラスチックとしては、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリスルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロース等の板及びフィルム等が挙げられる。
 例えば、太陽電池など、裏面に凹凸があって吸着固定が出来ないような基材などは、スプレー塗布によるメリットが大きい。
 スプレー塗布法により得られる、上記したような均一な膜厚は、薬液量、ガス流量、ノズル/ステージ距離(ノズルとステージとの距離)、塗布速度等により調整することができる。
 薬液量は膜厚を決めるパラメータであり、薬液量を増やすことで膜厚は厚くなり、減らすことで膜厚は薄くなる。スプレー塗布において、薬液量は、例えば1~20mL(ミリリットル)/minであり、好ましくは3~12mL/minである。
 ガス流量は微細な液滴を形成するパラメータであり、使用されるガスの例としては、N2やドライエアーが挙げられるが、特にこれに限定されるものではない。スプレー塗布において、ガス流量は、例えば3~20L(リットル)/minであり、好ましくは6~12L/minである。
 ノズル/ステージ距離は膜厚、及び塗布性に関係するパラメータであり、距離が近づくことで膜厚は厚くなるが、塗布ムラの原因となりやすく、距離を遠ざけることで膜厚は薄くなる。膜厚、及び塗布性の観点から、ノズル/ステージ距離は、例えば40~200mmであり、好ましくは50~100mmである。
 塗布速度は膜厚に関係するパラメータであり、速度が速くなると膜厚は薄くなり、遅くなると膜厚は厚くなる。スプレー塗布において、塗布速度は、例えば100~2000mm/sであり、好ましくは300~1000mm/sである。
 基材に形成する被膜の厚さは、塗布時の上記のようなパラメータによって調節することができるが、塗布液のSiO2換算濃度によっても容易に調節することができる。
 基材上に形成された塗膜を100~450℃で加熱することにより、被膜が得られる。加熱は、通常の方法、例えばホットプレート、オーブン、ベルト炉などを使用することにより行うことができる。このようにして得られた被膜は、成膜性が良好であり、透過率が高いという特徴を有している。さらに、本発明の被膜形成用塗布液により形成される被膜は、特に、太陽電池用の低屈折率層として好適に用いることができる。
 本発明の方法に従って得られる被膜を反射防止用として使用する場合、当該被膜の屈折率より高い屈折率を有する基材、例えば、通常のガラスやTAC(トリアセチルセルロース)フィルム等の表面に、本発明の方法に従って被膜を形成することで、この基材を容易に光反射防止能を有する基材に変換させることができる。その際、当該被膜は、基材表面に単一の被膜として使用しても有効であるが、高屈折率を有する下層被膜の上に被膜を形成した、反射防止積層体としての使用も有効である。
 ここで被膜の厚さと光の波長の関係について述べる。
 屈折率aを有する被膜の厚さd(nm)と、この被膜による反射率の低下を望む光の波長λ(nm)との間には、d=(2b-1)λ/4a(式中、bは1以上の整数を表す。)の関係式が成立することが知られている。従って、この式を利用して被膜の厚さを定めることにより、容易に所望の波長の光の反射を防止することができる。
 具体例を挙げると、波長550nmの光について、1.32の屈折率を有する被膜を形成し、ガラス表面からの反射光を防止するには、上記式のλとaにこれらの数値を代入することで最適な膜厚を算出することができる。その際、bは任意の正の整数を代入すればよい。例えば、bに1を代入することによって得られる膜厚は104nmであり、bに2を代入することによって得られる膜厚は312nmである。このようにして算出された被膜厚さを採用することによって、容易に反射防止能を付与することができる。
 本発明の被膜形成用塗布液は、成膜性に優れ、透過率が高い被膜を形成することができる。また、スプレー塗布した場合の着液効率にも優れている。そのため、ガラス製のブラウン管;テレビ、コンピューター、カーナビゲーション、携帯電話等のディスプレイ;ガラス表面を有する鏡;ガラス製ショウケース、太陽電池等の光の反射防止が望まれる分野に好適に用いることができる。特に、液晶ディスプレイ、プラズマディスプレイ、プロジェクションディスプレイ、EL(Electro Luminescence)ディスプレイ、SED(Surface-conduction Electron-emitter Display)、FET(Field Emission Display)、CRT(Cathode Ray Tube)、太陽電池などの偏光板、さらに前面板に用いられる反射防止フィルムに有用である。
 以下、合成例、及び実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記のこれらの合成例及び実施例に制限して解釈されるものではない。
 本実施例における化合物の略称は、以下のとおりである。
TEOS:テトラエトキシシラン
UPS:3-ウレイドプロピルトリエトキシシラン
FS-13:トリデカフルオロオクチルトリメトキシシラン
MeOH:メタノール
IPA:イソプロピルアルコール
PG:プロピレングリコール
cHexOH:シクロヘキサノール
BuOH:ブタノール
PGME:プロピレングリコールモノメチルエーテル
HG:ヘキシレングリコール
EG:エチレングリコール
BCS:エチレングリコールモノブチルエーテル
DEDM:ジエチレングリコールジメチルエーテル
DEDE:ジエチレングリコールジエチルエーテル
1,3BD:1,3-ブタンジオール
2,3BD:2,3-ブタンジオール
PB:プロピレングリコールモノブチルエーテル
PGEE:プロピレングリコールモノエチルエーテル
CHN:シクロヘキサノン
NMP:N-メチルピロリドン
 残存アルコキシシランモノマーの測定は、以下の方法により行なった。
[残存アルコキシシランモノマー測定法]
 成分(A)であるポリシロキサンの溶液中の残存アルコキシシランモノマーをガスクロマトグラフィー(以下、GCと称す。)で測定した。
 GC測定は、島津製作所社製 Shimadzu GC-14Bを用い、下記の条件で測定した。
 カラム:キャピラリーカラム CBP1-W25-100(長さ25mm、直径0.53mm、肉厚1μm)、
 カラム温度:開始温度50℃から15℃/分で昇温して到達温度290℃(保持時間3分)とした。
 サンプル注入量:1μL、インジェクション温度:240℃、検出器温度:290℃、キャリヤーガス:窒素(流量30mL/分)、検出方法:FID(Flame Ionization Detector)法。
 [合成例]
 還流管を備えつけた4つ口反応フラスコにメタノール31.9gを投入し、攪拌下に蓚酸18.0gを、少量づつ添加して、蓚酸のメタノール溶液を調製した。次いで、この溶液を加熱還流しながら、この溶液にTEOS(16.7g)、FS-13(7.0g)、UPS(1.3g)、及びMeOH(25.1g)の混合物を滴下した。滴下後、5時間還流し、室温まで放冷して成分(A)のポリシロキサンの溶液(PS)を調製した。このポリシロキサンの溶液(PS)をGCで測定したところ、アルコキシシランモノマーは検出されなかった。
[実施例1~24、及び比較例1~11]
 表1に示す組成で、上記合成例で得られたポリシロキサンの溶液及び有機溶媒を混合して、被膜形成用塗布液(Q1~Q24)を調製した。
 また、比較例においては、表2に示す組成で、塗布液(T1~T11)を調製した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
<塗膜形成方法>
 被膜形成用塗布液(Q1~Q24及びT1~T11)を、ソーダライムガラス上(ガラス厚0.7mm)にYDメカトロソリューションズ社製STS-200用いて、薬液3mL/min、N2流量10L/min、及びノズル/ステージ距離70mmにて、塗布速度を変えることによって塗布し、塗膜を形成した。その後、温度23℃で1分間放置した後、クリーンオーブン中、150℃で30分間硬化させ、100nmの被膜を得た。
<製膜性評価>
 硬化した被膜をフナテック社製干渉縞検査ランプ下、及び白色蛍光灯下にて目視で確認した。ムラがないものを◎、ムラがほとんどないものを○、ムラが若干あるものを△、それ以外を×とした。評価結果は表3及び表4に示す。
<透過率測定>
 島津製作所社製の分光光度計UV3100PCを使用して、波長400~800nmの光を硬化被膜に入射させて、透過率を測定した。評価結果は、測定値より基材の値を差し引いた比透過率で表し、その結果を表3及び表4に示す。
 なお、表3及び表4における比透過率は、本発明の被膜をソーダライムガラス上に形成した場合の透過率が、ソーダライムガラスの透過率から何%向上したかを、百分率で表したものである。なお、透過率の向上が見られないものは×とした。
Figure JPOXMLDOC01-appb-T000009
 表3に示されるように、実施例1~24では、製膜性の評価結果が干渉縞検査ランプ下で○以上、白色灯下で◎、及び膜の比透過率が3%の優れた塗布性が示された。
 一方、比較例1~11では、表4に示されるように、製膜性の評価結果△以下であり、膜の比透過率も1%以下という不十分なものとなった。
Figure JPOXMLDOC01-appb-T000010
<塗膜形成方法>
 被膜形成用塗布液(Q1、Q17,Q19,Q21,及びQ23)を、ソーダライムガラス上(ガラス厚0.7mm)に、YDメカトロソリューションズ社製STS-200を用いて、薬液3mL/min、N2流量10L/min、ノズル/ステージ距離70mm、及び塗布速度300mm/sにて塗布し、塗膜を形成した。その後、温度23℃で1分間放置した後、クリーンオーブン中、150℃で30分間硬化させ被膜を得た。
<膜厚測定方法>
 硬化した被膜をFILMETRICS 社製F20-EXRを用いて、面内16点で膜厚測定を行い、その平均値を算出した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000011
 表5に示されるように、同一条件でのスプレー塗布において、実施例25では、膜厚は95nmであったが、実施例26~29では約10nm以上膜厚が厚くなっていることが確認された。同一パラメータによって得られた被膜の膜厚が厚くなったことから、成分(D)を含むことによって着液効率が上がったことが確認された。
<太陽電池モジュール上への塗膜形成方法>
 被膜形成用塗布液(Q1、及びQ17)を、結晶シリコン太陽電池モジュール上にYDメカトロソリューションズ社製STS-200用いて、薬液3mL/min、N2流量10L/min、ノズル/ステージ距離70mm、及び塗布速度300mm/sにて塗布し、塗膜を形成した。その後、温度23℃で1分間放置した後、クリーンオーブン中、150℃で30分間硬化させ被膜を得た。
<太陽電池IV測定評価方法>
 太陽電池IV測定評価は、山下電装製のソーラーシュミレータ YSS-150を使用して行なった。温度25℃で、モジュールに波長290~1400nmの紫外線~赤外線を混ぜた光を6回照射し、得られたIV測定データを平均化した。得られたデータより算出した太陽電池の変換効率の結果を表6に示す。
 表6中、「Isc」とは「短絡電流」を意味し、「変換効率」とは、太陽光の電力への変換の効率を意味する。
Figure JPOXMLDOC01-appb-T000012
 表6に示されるように実施例30、及び31は、未塗布のモジュールである比較例12に比べて比変換効率が3%(変換効率では0.5%)高く、優れた結果が示された。
 本発明の被膜形成用塗布液は、スプレー塗布に適しており、例えば、太陽電池等の裏面に凹凸があって吸着固定ができないものにも反射防止膜を容易に形成することができるので、極めて有用である。
 なお、2010年4月30日に出願された日本特許出願2010-105344号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (13)

  1.  下記の成分(A)、成分(B)、及び成分(C)を含有することを特徴とするスプレー塗布用の被膜形成用塗布液。
     成分(A):含フッ素有機基を有するポリシロキサン、
     成分(B):炭素数4~8のグリコールエーテル、
     成分(C):炭素数3~10の環状アルコール及び炭素数3~10のグリコールからなる群から選ばれる1種以上の溶媒。
  2.  成分(A)が、炭素数1~10の含フッ素有機基を有するポリシロキサンである、請求項1に記載の被膜形成用塗布液。
  3.  成分(A)が有する含フッ素有機基の合計モル量が、成分(A)が有する珪素原子の合計モル量の100モルに対して、5~40モルである、請求項1又は2に記載の被膜形成用塗布液。
  4.  成分(C)が、シクロヘキサノール、プロピレングリコール、1,3ブタンジオール、及び2,3ブタンジオールからなる群から選ばれる1種以上の溶媒である請求項1~3のいずれかに記載の被膜形成用塗布液。
  5.  成分(A)が、テトラアルコキシシランと含フッ素有機基を有するアルコキシシランとを含むアルコキシシランを重縮合して得られるポリシロキサンである、請求項1~4のいずれかに記載の被膜形成用塗布液。
  6.  成分(A)が有する珪素原子の合計量をSiO換算した質量の1質量部に対して、成分(B)が30~90質量部、(C)成分が2~30質量部である請求項1~5のいずれかに記載の被膜形成用塗布液。
  7.  さらに、成分(D)として、常圧における沸点が100℃以上のグリコールエーテル溶媒、ケトン溶媒及びアミド溶媒からなる群から選ばれる1種以上の溶媒を含有する、請求項1~6のいずれかに記載の被膜形成用塗布液。
  8.  (D)成分が、エチレングリコールモノブチルエーテル、シクロヘキサノン、N-メチルピロリドン及びプロピレングリコールモノブチルエーテルからなる群から選ばれる1種以上の溶媒である、請求項7に記載の被膜形成用塗布液。
  9.  請求項1~8のいずれかに記載の被膜形成用塗布液を用いて得られる被膜。
  10.  請求項9に記載の被膜を有する反射防止基材。
  11.  請求項9に記載の被膜を有する反射防止フィルム。
  12.  請求項9に記載の被膜を有する太陽電池。
  13.  請求項1~8のいずれかに記載の被膜形成用塗布液を基材にスプレー塗布して塗膜を形成する工程を含む被膜形成方法。
PCT/JP2011/060460 2010-04-30 2011-04-28 スプレー塗布用の被膜形成用塗布液及び被膜 WO2011136370A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180021629.9A CN102869735B (zh) 2010-04-30 2011-04-28 喷涂用的被膜形成用涂布液和被膜
JP2012512925A JP5910494B2 (ja) 2010-04-30 2011-04-28 スプレー塗布用の反射防止被膜形成用塗布液
KR1020127027829A KR20130096145A (ko) 2010-04-30 2011-04-28 스프레이 도포용의 피막 형성용 도포액 및 피막
KR1020187021382A KR101970934B1 (ko) 2010-04-30 2011-04-28 스프레이 도포용의 피막 형성용 도포액 및 피막

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010105344 2010-04-30
JP2010-105344 2010-04-30

Publications (1)

Publication Number Publication Date
WO2011136370A1 true WO2011136370A1 (ja) 2011-11-03

Family

ID=44861662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/060460 WO2011136370A1 (ja) 2010-04-30 2011-04-28 スプレー塗布用の被膜形成用塗布液及び被膜

Country Status (5)

Country Link
JP (1) JP5910494B2 (ja)
KR (2) KR20130096145A (ja)
CN (1) CN102869735B (ja)
TW (1) TWI496849B (ja)
WO (1) WO2011136370A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579389A (zh) * 2012-07-30 2014-02-12 比亚迪股份有限公司 一种太阳能电池组件及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3485986B1 (en) * 2016-07-12 2020-05-20 Sharp Kabushiki Kaisha Method for producing antifouling film
KR102119717B1 (ko) 2020-03-17 2020-06-08 주식회사 나온씨에스 태양광 모듈의 오염방지를 위한 옥외 환경의 코팅장치와 그 방법
KR102510059B1 (ko) 2021-01-29 2023-03-14 주식회사 나온씨에스 친환경 세척방식 적용을 위한 태양광 패널 클리닝장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192575A (ja) * 1992-12-25 1994-07-12 Nippon Unicar Co Ltd 噴射剤組成物
JP2003202813A (ja) * 2000-11-09 2003-07-18 Matsushita Electric Ind Co Ltd 画像表示装置用フェースパネルの表面処理方法、およびこの表面処理を施されたフェースパネルを備えた画像表示装置
JP2007016096A (ja) * 2005-07-06 2007-01-25 Chugoku Marine Paints Ltd 硬化性組成物、コーティング用組成物、塗料、防汚塗料、その硬化物、並びに基材の防汚方法
WO2008059844A1 (fr) * 2006-11-14 2008-05-22 Nissan Chemical Industries, Ltd. Liquide de revêtement destiné à former un film d'indice de réfraction faible, son procédé de fabrication et élément antiréfléchisseur

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110043A (ja) 1984-06-26 1986-01-17 Asahi Glass Co Ltd 防汚性を有する低反射率ガラス
JPH05105424A (ja) 1991-10-14 1993-04-27 Toshiba Corp 反射防止膜の製造方法
JP2716330B2 (ja) 1992-11-13 1998-02-18 セントラル硝子株式会社 低反射ガラスおよびその製法
JP4032185B2 (ja) 1995-12-01 2008-01-16 日産化学工業株式会社 低屈折率及び撥水性を有する被膜
US6225434B1 (en) * 1997-08-01 2001-05-01 Ppg Industries Ohio, Inc. Film-forming compositions having improved scratch resistance
JP3797037B2 (ja) * 1998-12-04 2006-07-12 東陶機器株式会社 光触媒性親水性コーティング組成物
KR100315110B1 (ko) * 1999-01-13 2001-12-28 김순택 스프레이막 형성용 조성물 및 그를 이용하여 형성된 스프레이막
JP2002173571A (ja) * 2000-12-04 2002-06-21 Omura Toryo Kk 易分解性樹脂組成物、および易分解性高分子の処理方法
JP4347749B2 (ja) * 2004-06-02 2009-10-21 パイロットインキ株式会社 感温変色性色彩記憶性積層体
JP2008064423A (ja) * 2006-09-11 2008-03-21 Osaka Gas Co Ltd 耐高アルカリ性調理器具用部材及び該部材を有する耐高アルカリ性調理器具
CN101240142B (zh) * 2008-01-24 2010-12-08 东莞市诺奇纳米科技有限公司 一种镜面喷镀专用涂料及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192575A (ja) * 1992-12-25 1994-07-12 Nippon Unicar Co Ltd 噴射剤組成物
JP2003202813A (ja) * 2000-11-09 2003-07-18 Matsushita Electric Ind Co Ltd 画像表示装置用フェースパネルの表面処理方法、およびこの表面処理を施されたフェースパネルを備えた画像表示装置
JP2007016096A (ja) * 2005-07-06 2007-01-25 Chugoku Marine Paints Ltd 硬化性組成物、コーティング用組成物、塗料、防汚塗料、その硬化物、並びに基材の防汚方法
WO2008059844A1 (fr) * 2006-11-14 2008-05-22 Nissan Chemical Industries, Ltd. Liquide de revêtement destiné à former un film d'indice de réfraction faible, son procédé de fabrication et élément antiréfléchisseur

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579389A (zh) * 2012-07-30 2014-02-12 比亚迪股份有限公司 一种太阳能电池组件及其制备方法
CN103579389B (zh) * 2012-07-30 2016-12-21 比亚迪股份有限公司 一种太阳能电池组件及其制备方法

Also Published As

Publication number Publication date
KR20130096145A (ko) 2013-08-29
JP5910494B2 (ja) 2016-04-27
KR101970934B1 (ko) 2019-04-19
CN102869735B (zh) 2016-03-30
TWI496849B (zh) 2015-08-21
JPWO2011136370A1 (ja) 2013-07-22
TW201204791A (en) 2012-02-01
CN102869735A (zh) 2013-01-09
KR20180087466A (ko) 2018-08-01

Similar Documents

Publication Publication Date Title
KR101864458B1 (ko) 저굴절률막 형성용 조성물 및 이것을 사용한 저굴절률막의 형성 방법
CN102405533B (zh) 用于光学透明基板的抗反射涂层
JP5382310B2 (ja) 被膜形成用塗布液、その製造方法、その被膜、及び反射防止材
JP5262722B2 (ja) 低屈折率被膜形成用塗布液、その製造方法及び反射防止材
JPWO2005059050A1 (ja) 低屈折率及び撥水性を有する被膜
JP5910494B2 (ja) スプレー塗布用の反射防止被膜形成用塗布液
JP5458575B2 (ja) 低屈折率被膜形成用塗布液、その製造方法及び反射防止材
TW201700615A (zh) 低折射率膜形成用液體組成物
JP5293180B2 (ja) リン酸エステル化合物を含有する被膜形成用塗布液及び反射防止膜
US9644113B2 (en) Composition for forming a thin layer with low refractive index, manufacturing method thereof, and manufacturing method of a thin layer with low refractive index
JP4893103B2 (ja) 被膜形成用塗布液及びその被膜並びに被膜形成方法
KR102188211B1 (ko) 저굴절률막 형성용 조성물 및 그 제조 방법 그리고 저굴절률막의 형성 방법
JP5310549B2 (ja) 低屈折率被膜形成用塗布液、その製造方法及び反射防止材
JP6123432B2 (ja) 低屈折率膜形成用組成物の製造方法及び低屈折率膜の形成方法
WO2015141718A1 (ja) 低屈折率膜及びその製造方法
JPWO2014203951A1 (ja) 金属酸化物膜形成用組成物及び金属酸化物膜
JP5531614B2 (ja) メルカプト基で修飾したポリシロキサンを含有する反射防止被膜形成用塗布液
EP2937319B1 (en) Method of manufacturing a composition for forming a thin layer with low refractive index, and method of manufacturing a thin layer with low refractive index
WO2021095770A1 (ja) 防眩層付基材及び画像表示装置並びに防眩層付基材の製造方法
WO2018198936A1 (ja) 低反射膜付き透明基板、光電変換装置、低反射膜付き透明基板の低反射膜を形成するための塗工液及び低反射膜付き透明基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021629.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11775151

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512925

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127027829

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11775151

Country of ref document: EP

Kind code of ref document: A1