WO2011136127A1 - アルキレンカーボネート及び/又はアルキレングリコールの製造方法 - Google Patents

アルキレンカーボネート及び/又はアルキレングリコールの製造方法 Download PDF

Info

Publication number
WO2011136127A1
WO2011136127A1 PCT/JP2011/059855 JP2011059855W WO2011136127A1 WO 2011136127 A1 WO2011136127 A1 WO 2011136127A1 JP 2011059855 W JP2011059855 W JP 2011059855W WO 2011136127 A1 WO2011136127 A1 WO 2011136127A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
alkylene
reaction
carbonate
alkali metal
Prior art date
Application number
PCT/JP2011/059855
Other languages
English (en)
French (fr)
Inventor
昌彦 山岸
貴良 小野
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to JP2012512808A priority Critical patent/JP5725019B2/ja
Priority to CN201180021036.2A priority patent/CN102858727B/zh
Priority to KR1020167008016A priority patent/KR101671155B1/ko
Priority to BR112012027617-4A priority patent/BR112012027617B1/pt
Priority to SG2012079554A priority patent/SG185059A1/en
Priority to KR1020127030331A priority patent/KR101663347B1/ko
Publication of WO2011136127A1 publication Critical patent/WO2011136127A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/10Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes
    • C07C29/103Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes of cyclic ethers
    • C07C29/106Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of ethers, including cyclic ethers, e.g. oxiranes of cyclic ethers of oxiranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/12Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of esters of mineral acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/18Polyhydroxylic acyclic alcohols
    • C07C31/20Dihydroxylic alcohols

Definitions

  • alkylene oxide and carbon dioxide are reacted to produce alkylene carbonate, and further, alkylene glycol in the reaction liquid is hydrolyzed to produce alkylene glycol.
  • the present invention relates to a method for producing alkylene carbonate and / or alkylene glycol.
  • Ethylene glycol is produced on a large scale by a direct hydrolysis of ethylene oxide and water, but in this method, in order to control by-products such as diethylene glycol and triethylene glycol, hydrolysis is performed on ethylene glycol. In contrast, a greater excess of water than stoichiometric amounts must be used. Therefore, it is necessary to dehydrate the generated ethylene glycol aqueous solution to dehydrate a large excess of water, and there is a problem that a great deal of energy is required to obtain purified ethylene glycol.
  • the present invention relates to a reaction step in which alkylene oxide, water and carbon dioxide are reacted in the presence of a catalyst and an alkali metal carbonate to produce alkylene carbonate and / or alkylene glycol, and a reaction liquid obtained in the reaction step.
  • a method for producing alkylene carbonate and / or alkylene glycol comprising recovering alkylene carbonate and / or alkylene glycol from the catalyst and circulating a catalyst solution containing the catalyst to the reaction step, while maintaining the hydrolysis rate. It is an object of the present invention to provide a production method in which precipitates do not accumulate therein and can be stably operated for a long period of time.
  • the present inventors first examined the cause of the decrease in the activity of the hydrolysis catalyst.
  • potassium carbonate present in the reaction system changed to potassium chloride as the reaction proceeded,
  • the rate of hydrolysis reaction of ethylene carbonate fell.
  • the cause of the decrease in the rate of hydrolysis reaction is the production process of ethylene oxide, which is a raw material, and chlorohydrocarbon is supplied as a selectivity regulator to improve the selectivity of the reaction.
  • Hydrogen is mixed in the ethylene glycol or ethylene carbonate production process and further decomposes into chlorine ions, so that the potassium carbonate contained in the reaction solution is converted into potassium chloride, and the ethylene carbonate hydrolysis reaction is gradually performed. It was thought to be slowing down.
  • the organic chloro compound that causes a decrease in the hydrolysis reaction is concentrated in a liquid obtained by condensing a gas containing carbon dioxide released from the carbonation reactor or the hydrolysis reactor, and this liquid is recovered.
  • organic chloro compounds gradually accumulate in the process, and the accumulated organic chloro compounds gradually decompose, and potassium carbonate used as a hydrolysis catalyst is neutralized with chloride ions. It turned out to be.
  • bleeding the liquid containing the organic chloro compound out of the system can prevent chlorination of the hydrolysis catalyst and decrease the activity of the hydrolysis catalyst.
  • the condensate of carbon dioxide released from the carbonation step or the hydrolysis reactor contains about 5% to 30% of ethylene glycol.
  • ethylene glycol At the same time when bleeding chlorine ions (organic chloro compounds), this ethylene
  • glycol has a problem of bleeding, it has been found that an organic chloro compound can be separated from ethylene glycol by distillation without being decomposed when distilled under conditions without potassium carbonate.
  • the present inventors removed alkali metal chloride derived from the alkali metal carbonate (hydrolysis catalyst) in the reaction solution or chlorine ions derived from the alkali metal chloride. By carrying out the reaction, it was found that precipitates are not generated in the reaction system while maintaining the hydrolysis rate, and that it can be stably operated for a long period of time.
  • the gist of the present invention is as follows. (1) a reaction step in which alkylene oxide, water and carbon dioxide are reacted in the presence of a catalyst and an alkali metal carbonate to produce alkylene carbonate and / or alkylene glycol, and a reaction solution obtained in the reaction step
  • a reaction step in which alkylene oxide, water and carbon dioxide are reacted in the presence of a catalyst and an alkali metal carbonate to produce alkylene carbonate and / or alkylene glycol, and a reaction solution obtained in the reaction step
  • the method for producing alkylene carbonate and / or alkylene glycol comprising a step of recovering alkylene carbonate and / or alkylene glycol, and a catalyst circulation step of circulating a catalyst solution containing a catalyst to the reaction step
  • At least a part of the alkylene glycol is separated by distillation, and the solid precipitated in the distillation separation is separated.
  • the catalyst circulation step further supplies the residual liquid from which the solid precipitated in the distillation separation is separated to the reaction step.
  • the step of removing the alkali metal chloride derived from the alkali metal carbonate in the reaction solution acquires a part or all of the reaction solution containing the catalyst in the reaction step and is included in the reaction solution.
  • At least a part of the alkylene glycol is separated by distillation, and further, the solid precipitated in the distillation separation is separated.
  • the catalyst circulation step further comprises a catalyst from the residual liquid from which the solid precipitated in the distillation separation is separated.
  • the step of removing chlorine ions derived from the alkali metal chloride comprises: The condensing step for cooling the gas containing carbon dioxide released in the carbonation step and / or the hydrolysis step, and the alkalinity of the catalyst liquid circulated to the reaction step in the catalyst circulation step is 0.03 mol / mol with respect to the catalyst concentration.
  • the method for producing alkylene carbonate and / or alkylene glycol according to (1) including a step of discharging the condensate obtained in the condensation step so as to become the above.
  • the condensate is further subjected to dehydration distillation to remove water and organic chloro compounds contained therein, and then the remaining liquid is circulated to the reaction step.
  • a reaction system that discharges the condensate obtained in the hydrolysis process to the outside of the reaction system, and a catalyst with the alkalinity (concentration of OH groups of the hydrolysis catalyst contained in the catalyst liquid) circulated to the carbonation process It is the graph which showed the relationship between the ratio with respect to a density
  • the present invention relates to a reaction step in which alkylene oxide, water and carbon dioxide are reacted in the presence of a catalyst and an alkali metal carbonate to produce alkylene carbonate and / or alkylene glycol, and a reaction liquid obtained in the reaction step.
  • a catalyst and an alkali metal carbonate to produce alkylene carbonate and / or alkylene glycol
  • a reaction liquid obtained in the reaction step.
  • the alkali metal in the reaction solution comprising the step of recovering alkylene carbonate and / or alkylene glycol from the catalyst, and the catalyst circulation step of circulating the catalyst solution containing the catalyst to the reaction step, the alkali metal in the reaction solution
  • the method further comprises a step of removing alkali metal chloride derived from the carbonate or chlorine ions derived from the alkali metal chloride.
  • the reaction step of the present invention means both “a carbonate step for producing alkylene carbonate” and “a hydrolysis step for further hydrolyzing the alkylene carbonate in the reaction solution after the carbonate step”.
  • a carbonation process and a hydrolysis process are demonstrated, you may carry out in the same reactor not only in the reaction system isolate
  • Carbonation step As a catalyst for the carbonation step (in the present specification, this may be referred to as "carbonated catalyst"), an alkali metal bromide or iodide, an alkaline earth metal halide, What is necessary is just to select suitably from well-known things, such as an alkylamine, a quaternary ammonium salt, an organic tin, a germanium or tellurium compound, and a halogenated organic phosphonium salt. Of these, quaternary phosphonium iodide or bromide is preferably used.
  • Such a carbonation catalyst is preferably supplied to the reaction system in an amount of 0.001 to 0.05 times mol of alkylene oxide.
  • an alkali metal carbonate is allowed to coexist in the reaction system as a hydrolysis catalyst.
  • sodium or potassium, preferably potassium hydroxide, carbonate or bicarbonate may be added to the carbonation step, and any alkali metal compound may be added to the reaction system.
  • the alkali metal carbonate, preferably potassium carbonate is preferably present in a molar ratio of 0.01 to 1.0 with respect to the carbonated catalyst such as quaternary phosphonium iodide. In order to maintain the above concentration, it is also preferable to add an alkali metal carbonate to the reaction system.
  • the method of the present invention is characterized by including a step of removing the alkali metal chloride derived from the alkali metal carbonate or chlorine ions derived from the alkali metal chloride from the reaction system.
  • the raw material alkylene oxide ethylene oxide, propylene oxide or the like is used.
  • the alkylene oxide purified alkylene oxide with high purity may be used or a crude product may be used, but usually contains a small amount of a chlorine compound such as chlorohydrocarbon.
  • a chlorine compound such as chlorohydrocarbon.
  • the produced alkylene carbonate is ethylene carbonate.
  • alkylene oxide is converted not only to alkylene carbonate but also to alkylene glycol, so that the reaction is easy even with a supply amount of carbon dioxide equal to or less than equimolar to alkylene oxide.
  • the amount of water relative to the alkylene oxide is usually preferably about 1.0 to 10 times moles relative to the alkylene oxide.
  • Carbon dioxide provides a sufficient effect in an amount of equimolar or less with respect to the alkylene oxide, but the quantitative ratio is not necessarily strictly limited. Preferably they are 0.1 times mole or more and 5.0 times mole or less.
  • the reaction temperature in the carbonation step is usually 50 to 200 ° C., but it is preferable to carry out the reaction at 100 to 170 ° C.
  • the reaction pressure is usually 0.5 to 5.0 MPa, preferably 1.0 to 3.0 MPa.
  • the carbonation reaction can be carried out using any apparatus, but is preferably carried out using a bubble column.
  • the reaction temperature is controlled by circulating the reaction liquid in the tower through the liquid circulation conduit using a bubble tower having a liquid circulation conduit equipped with a heat exchanger for heat removal and a circulation pump in the middle.
  • the raw material alkylene oxide, carbon dioxide, catalyst, and water as necessary are continuously supplied from the bottom of the column to continuously react.
  • reaction solution obtained in the carbonation step is sent to the hydrolysis step.
  • a part or all of the reaction solution may be sent to the alkylene carbonate production process to recover the alkylene carbonate.
  • the remaining reaction liquid from which the alkylene carbonate is recovered is sent to the hydrolysis process together with the remaining liquid obtained in the carbonation process.
  • the hydrolysis reaction is advantageous in terms of reaction rate at high temperatures. However, if the temperature is too high, the quality of the alkylene glycol may be lowered, so it is usually carried out at 100 to 180 ° C. Is preferred.
  • the reaction pressure is arbitrary as long as it is in the range up to the boiling point of the liquid, but it is usually preferable to carry out at normal pressure to 2.1 MPa. Also, as the hydrolysis proceeds, the reaction temperature is increased or the reaction pressure is increased. It is also preferable to promote the hydrolysis by lowering the temperature.
  • the amount of water with respect to the reaction solution obtained from the carbonation step is sufficient if the amount is equal to or more than the molar amount of the alkylene carbonate contained, but considering the water accompanying the carbon dioxide gas as the hydrolysis proceeds. It is preferable to add in excess, and it is usually carried out in an amount of 10 moles or less, preferably 1 to 5 moles of the alkylene oxide used as a raw material. Water is added at the beginning of the carbonation step, added at the hydrolysis step, added several times as the reaction proceeds in the hydrolysis step, and supplied by steam There are methods, but any method may be used.
  • the alkylene glycol produced by hydrolysis can be separated and obtained from the reaction solution by a known method.
  • a crude alkylene glycol composed of alkylene glycol, dialkylene glycol, other high-boiling components, a carbonated catalyst, etc. is obtained through a dehydration step in which water is separated by distillation in a distillation facility, preferably vacuum distillation.
  • the liquid containing the catalyst in the reaction step of the present invention is circulated to any of the reaction steps after separating the catalyst by an appropriate method.
  • the step of separating the catalyst is referred to as the catalyst separation step
  • the step of circulating the liquid containing the catalyst obtained by the catalyst separation step to the reaction step is referred to as the catalyst circulation step.
  • the liquid containing the catalyst used for the catalyst separation step is obtained from the reaction step after the carbonation step.
  • the catalyst solution here is preferably circulated in the carbonation step.
  • the catalyst separation is preferably performed under reduced pressure in order to promote evaporation of alkylene glycol and dialkylene glycol.
  • An evaporator equipped with a reboiler is used to replenish energy necessary for evaporation and control the evaporation amount.
  • Step of removing alkali metal chloride derived from alkali metal carbonate the alkali metal carbonate that has been present as a hydrolysis catalyst is neutralized to become a chloride (in the present specification) Then, it may be referred to as “alkali metal chloride”).
  • alkali metal chloride any method can be used as long as the alkali metal chloride present in the reaction system can be removed, but preferably the reaction of the present invention.
  • a method is adopted in which any one of the reaction solutions in the step is taken out and the alkali metal chloride contained in the reaction solution is removed, and then recycled to any of the reaction steps of the present invention.
  • inorganic bromide or iodide may or may not be added in order to remove chloride derived from the carbonated catalyst.
  • the alkali metal chloride concentration is preferably 2% by weight or less, more specifically 0.1% by weight to 1% by weight. If the concentration of the alkali metal chloride in the extracted reaction solution is too high, the chloride itself is deposited, which may cause a clogging trouble.
  • the reaction solution used for the alkali metal chloride removal treatment may be any reaction solution after the carbonation step, but it may be the reaction solution in the hydrolysis step during continuous operation, or from the hydrolysis step. Examples thereof include a reaction liquid obtained or a liquid obtained by removing alkylene glycol and water from the reaction liquid obtained from the hydrolysis step (this may be referred to as “catalyst liquid” in the present specification).
  • the extraction of the reaction solution may be continuous or intermittent.
  • the whole reaction solution may be extracted, but if a part of the reaction solution is extracted, the amount of the reaction solution to be processed is smaller and the processing is easier.
  • the method for removing the alkali metal chloride from the reaction solution may be any method known per se. Specifically, at least a part of the alkylene glycol contained in the reaction solution obtained above is distilled and separated. Examples thereof include a method of removing a solid content precipitated in the distillation separation and a method of using an ion exchange resin. The method by removing the solid content which precipitates when the alkylene glycol and the high boiling point component contained in the reaction solution are evaporated and recovered will be described below.
  • the extracted reaction solution is subjected to a step of distilling and separating at least a part of the alkylene glycol contained in the obtained reaction solution (hereinafter sometimes referred to as “distillation step”).
  • the distillation step is carried out until the alkali metal chloride concentration in the liquid is 0.5% by weight or more, preferably 1% by weight or more, and more preferably 2% by weight or more.
  • alkylene glycol is distilled and separated.
  • high-boiling components such as dialkylene glycol and trialkylene glycol are added. It may be separated.
  • the distillation is performed under reduced pressure, specifically 500 torr or less, preferably 30 to 200 torr, at a temperature at which the catalyst does not deteriorate, 120 to 200 ° C., preferably 120 to 180 ° C.
  • a distillation apparatus an apparatus equipped with a reboiler is used to replenish energy required for evaporation and control the evaporation amount.
  • At least alkylene glycol if necessary, high-boiling compounds are separated by distillation.
  • the alkali metal chloride concentration in the liquid exceeds 0.5% by weight, the alkali metal chloride Will be deposited.
  • the solid substance which is the precipitated alkali metal chloride is separated from the solution part.
  • filtration separation, centrifugation, precipitation separation, or the like can be performed, and any method has no problem.
  • the precipitate when the precipitate is separated via a precipitation tank, generally, the lower the temperature, the lower the solubility and the higher the removal effect. Since the viscosity of a certain catalyst solution increases and the fluidity is lost, it is preferable to heat or keep the temperature so that it is preferably handled at 80 ° C. or higher, more preferably 90 ° C. or higher and 180 ° C. or lower.
  • the precipitation tank may be installed separately from the evaporation apparatus, but it is preferable to flush the reaction liquid heated by the heat exchanger with the distillation apparatus and the precipitation tank integrally from the middle or upper part to the precipitation tank.
  • the precipitated alkali metal chloride is separated into solid and liquid, then recovered as a solid, or the residual liquid in the precipitation tank is extracted from the drain line, and then the remaining alkali metal chloride is dissolved in the solvent. Thereafter, it is preferable to perform the detoxification treatment or to perform the detoxification treatment by extracting the solid from the manhole as it is.
  • the solution part separated and recovered above can be used as a catalyst by supplying it to a reactor, preferably a reactor in a carbonation step, as a liquid containing the catalyst subjected to the catalyst separation step (catalyst) Circulation process).
  • the catalyst liquid which is the solution part after removing the solid matter can further be separated from the catalyst as a catalyst separation step and used for the catalyst circulation step. Examples of the catalyst recovery method include the method described in Japanese Patent No. 4273802.
  • chloride ions derived from alkali metal chlorides which have been neutralized with alkali metal carbonates present as hydrolysis catalysts, are also removed from the reaction system.
  • the second feature is to include a process. Any method may be used to remove the chlorine ions derived from the alkali metal chloride as long as the chlorine ions present in the reaction system can be removed.
  • the alkali of the catalyst liquid to be circulated to the reaction step is used. The condensate described below is discharged out of the system so that the degree (concentration of the OH group of the hydrolysis catalyst contained in the catalyst solution) is 0.03 mol / mol or more with respect to the catalyst concentration.
  • the alkalinity of the catalyst solution is 0.03 mol / mol or less with respect to the catalyst concentration, the hydrolysis rate decreases, and it is difficult to say that this is an industrially advantageous method for producing alkylene carbonate and / or alkylene glycol.
  • the alkalinity of the catalyst solution is adjusted to 0.03 mol / mol or more with respect to the catalyst concentration, and more preferably 0.05 mol / mol or more with respect to the catalyst concentration.
  • the alkalinity can be measured by a known method. Specifically, the catalyst solution can be titrated with an acid. In addition, as an index for discharging the condensate out of the system, it can be used that the chlorine ions contained in the catalyst liquid are less than 3 in molar ratio with respect to the contained alkali metal.
  • the alkali metal added as a hydrolysis catalyst may be neutralized and may not function as a hydrolysis catalyst.
  • the molar ratio of chlorine ions to alkali metal in the catalyst solution to be circulated is less than 3, preferably less than 2, and most preferably less than 1.
  • the concentration of chlorine ions in the catalyst solution to be circulated can be measured by a commonly used method such as precipitation titration or ion chromatography. If the condensate discharge amount in which the molar ratio falls within the above range is known as an empirical value, a method of discharging the condensate amount without monitoring the chlorine ion concentration in the circulating catalyst solution can be used.
  • the gas containing carbon dioxide released in the carbonation step and / or hydrolysis step is cooled.
  • Condensation step is included.
  • the gas phase portion of the reactor is cooled to recover the condensate, which is extracted and discharged.
  • the discharge amount may be the whole amount or an amount sufficient for the alkalinity in the catalyst solution to be circulated to the reaction step to be 0.03 mol / mol or more with respect to the catalyst concentration. Since the condensate contains raw material alkylene oxide in addition to chlorine ions (organic chloro compound), if necessary, the alkylene oxide is recovered and then discharged as a solution containing chlorine ions (organic chloro compound).
  • the accumulated amount of chlorine ions is small, and the alkalinity of the catalyst solution is 0.03 mol / mol or more with respect to the catalyst concentration, so it may be returned to the hydrolysis reactor as it is.
  • the condensate may be extracted after chlorine ions have accumulated, but it is also preferable to extract the condensate in advance in order to prevent the accumulation of chlorine ions.
  • the extraction is preferably carried out continuously or intermittently while adjusting the extraction amount while monitoring the chlorine ion concentration in the catalyst solution and the state of the hydrolysis reaction.
  • the remainder of the condensate extracted and discharged out of the reaction system can be circulated to the carbonation step or the hydrolysis step.
  • the condensate withdrawn from the reaction system may be discarded after detoxification if necessary as wastewater, but it contains organic substances such as alkylene glycol. It is preferable to collect it as a product.
  • dehydration distillation is performed in advance, and the organic chloro compounds are distilled and separated together with water, and then alkylene glycol is recovered. Is preferred.
  • Another method for removing chlorine ions is to supply the condensate to the hydrolysis reaction solution supply stage of the distillation column in the above dehydration step or to a stage above it, so that chlorine ions (organic chloro compound) together with moisture
  • a method of discharging from the tank is also used.
  • the reaction solution coming from the hydrolysis step contains a hydrolysis catalyst. For this reason, when it is supplied to a stage below the supply stage, chlorine ions (organic chloro compounds) may react with the hydrolysis catalyst and neutralize the hydrolysis catalyst as chlorine. In order to avoid this, it is necessary to supply the hydrolysis reaction liquid to the supply stage of the hydrolysis reaction liquid or to a higher stage to avoid contact with the hydrolysis catalyst.
  • an alkali metal carbonate which is present as a hydrolysis catalyst is first added to the reaction process.
  • the alkali metal carbonate to be added preferably potassium carbonate, should be maintained at a concentration of 0.01 to 1.0 with respect to the carbonated catalyst such as quaternary phosphonium iodide. preferable.
  • a method for adding carbonate solids may be added directly, but a method of adding by dissolving in water or a method of adding by dissolving in alkylene glycol is effective in terms of handling.
  • the alkali metal carbonate may be added continuously, but the operation can be continued without any problem by adding an appropriate amount when the reaction rate decreases while monitoring the state of the hydrolysis reaction.
  • Example 1 Carbonation step A carbonation reaction portion containing a carbonation reactor at 100 ° C. with a residence time of 1 hour pressurized with carbon dioxide at 2.0 MPa, 5 parts by weight of tributylmethylphosphonium iodide / Hr, potassium carbonate 0
  • the carbonation process reaction liquid containing ethylene carbonate and ethylene glycol (EG) was obtained by supplying 0.8 weight part / Hr and raw material ethylene oxide aqueous solution (60 weight%) 78 weight part / Hr.
  • reaction liquid obtained from the hydrolysis step is distilled by a vacuum distillation tower at 140 ° C. and 80 torr to obtain a dehydrated liquid from the tower bottom, which is further operated at 140 ° C. and 60 torr.
  • Most of the ethylene glycol was evaporated using a vacuum evaporator, and 13 parts by weight / hr of the catalyst solution in which the catalyst was concentrated was recovered from the bottom of the evaporator.
  • the recovered catalyst solution was recycled to the carbonation reactor as a catalyst.
  • the hydrolysis reaction became insufficient, so the operation was continued while adding potassium carbonate.
  • reaction solution was extracted from the hydrolysis step that continued operation for 3 months, and 100 parts of the reaction solution was charged into a glass evaporator, followed by distillation separation of ethylene glycol.
  • the pressure was 30 torr, and heating was performed by heating the oil bath to 170 ° C.
  • Example 1 In Example 1, the operation was continued in the same manner as in Example 1 except that potassium chloride was not removed from the catalyst solution. As a result, potassium chloride was precipitated in the catalyst solution, making it difficult to circulate the catalyst solution, and the operation was stopped.
  • Example 2 Carbonation step A carbonation reaction portion containing a carbonation reactor at 100 ° C. with a residence time of 1 hour pressurized with carbon dioxide at 2.0 MPa, 5 parts by weight of tributylmethylphosphonium iodide / Hr, potassium carbonate 0
  • the carbonation process reaction liquid containing ethylene carbonate and ethylene glycol (EG) was obtained by supplying 0.8 weight part / Hr and raw material ethylene oxide aqueous solution (60 weight%) 78 weight part / Hr.
  • the carbon dioxide gas generated in the first hydrolysis reactor was cooled, and the condensate of water vapor accompanying the carbon dioxide gas was analyzed.
  • 167 ppm ethylene chlorohydrin was contained in the condensate. It contained 273 ppm of methyldioxolane and 17.2% by weight of ethylene glycol. Therefore, continuous extraction of the entire amount of the condensate was started.
  • the operation was performed for 100 days, and the evaluation was performed using the alkalinity which is an index of the hydrolysis rate.
  • the alkalinity was measured by titrating the number of moles of OH groups serving as a hydrolysis catalyst contained in the catalyst solution circulated to the carbonation step with an acid. The value is also divided by the number of moles of tributylmethylphosphonium iodide in order to eliminate the influence of changes in the concentration of the catalyst solution. The result is shown in FIG. As shown in FIG. 1, no decrease in the reaction rate of the hydrolysis reaction was observed, and the alkalinity of the catalyst solution was maintained at 0.03 mol / mol or more with respect to the catalyst concentration.
  • the chlorine ion concentration and potassium concentration contained in the catalyst solution were measured.
  • the measuring method of potassium is ICP (Inductively Coupled Plasma) emission spectroscopy.
  • the measuring method of chloride ion is precipitation titration analysis. The results are shown in Table 1 and FIG. As apparent from Table 1 and FIG. 2, the concentration of chlorine ions contained in the catalyst solution was less than 3 in terms of molar ratio with respect to the alkali metal concentration.
  • Example 3 The condensate and hydrolysis reaction liquid extracted in Example 2 above were distilled in a theoretical eight-stage distillation column, and ethylene chlorohydrin and chloromethyldioxolane were distilled off together with moisture from the top of the column. From this, ethylene glycol containing no organic chloro compound was recovered.
  • Example 2 Ethylene glycol was produced in the same manner as in Example 2 except that the condensate of water vapor accompanying the carbon dioxide gas obtained by cooling the carbon dioxide gas generated in the first hydrolysis reactor was directly supplied to the hydrolysis step. went. The operation was continued for 230 days, and the alkalinity of the hydrolysis catalyst in the catalyst solution to be circulated to the carbonation step was measured in the same manner as in Example 2. The result is shown in FIG. As apparent from FIG. 3, the alkalinity of the hydrolysis catalyst decreased, the reaction rate of the hydrolysis reaction gradually decreased, and the conversion of ethylene carbonate was 99.9% or more, up to 98.8%. Declined.
  • a method for producing alkylene carbonate and / or alkylene glycol which can prevent deterioration of the catalyst in the hydrolysis step and can stably operate for a long period of time while maintaining the hydrolysis rate and no precipitate is formed in the reaction system.
  • alkylene carbonate and / or alkylene glycol can be efficiently produced with little loss.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

触媒及びアルカリ金属の炭酸塩の存在下に、アルキレンオキシド、水及び二酸化炭素を反応させて、アルキレンカーボネート及び/又はアルキレングリコールを生成させる反応工程と、該反応工程で得られる反応液からアルキレンカーボネート及び/又はアルキレングリコールを回収し、触媒を含む触媒液を反応工程へ循環させる触媒循環工程とを備えるアルキレンカーボネート及び/又はアルキレングリコールの製造方法において、加水分解速度を維持しながら反応系内に析出物が蓄積せず長期間安定的に運転可能な製造方法を提供することを課題とする。本発明の方法は、反応液中の前記アルカリ金属の炭酸塩由来のアルカリ金属塩化物、又は該アルカリ金属塩化物由来の塩素イオンを除去する工程を含む。

Description

アルキレンカーボネート及び/又はアルキレングリコールの製造方法
 本発明は、触媒及びアルカリ金属の炭酸塩の存在下に、アルキレンオキシド、二酸化炭素を反応させて、アルキレンカーボネートを生成させ、さらに該反応液中のアルキレンカーボネートを加水分解することによりアルキレングリコールを生成させることによるアルキレンカーボネート及び/又はアルキレングリコールの製造方法に関するものである。
 エチレングリコールはエチレンオキシドと水を直接反応させて加水分解する方法で大規模に製造されているが、この方法では加水分解に際して、ジエチレングリコールやトリエチレングリコール等の副生を制御するために、エチレングリコールに対して化学量論量よりも大過剰の水を使用しなければならない。その為に、生成したエチレングリコール水溶液を蒸留して大過剰の水を脱水する必要があり、精製されたエチレングリコールを取得するのに多大のエネルギーを要するという問題がある。
 この問題を解決する方法として、二酸化炭素の存在下に水とエチレンオキシドを反応させることによりエチレングリコールを製造する方法が提案されている。この反応は、エチレンオキシドと二酸化炭素との反応でエチレンカーボネート(以下、「カーボネート化工程」と称する)を生成させ、次いでエチレンカーボネートを加水分解することによりエチレングリコールを生成させる(以下、「加水分解工程」と称する)2段階で反応を行う。エチレンカーボネートの加水分解では、ジエチレングリコールやトリエチレングリコール等はほとんど副生しない為に加水分解は化学量論よりも若干過剰の水で行わせることができ、生成したエチレングリコール水溶液の脱水に要する費用を大きく減少させることができる。なお、エチレンカーボネートの加水分解で二酸化炭素が生成するため、この二酸化炭素は循環使用される。また、この方法で中間体として生成したエチレンカーボネートを抜き出すことによりエチレンカーボネートを製造することも可能である。
 上記方法においては、これまでカーボネート化工程において、触媒の活性低下が問題となっており、その対策として、加水水分解工程で放出される二酸化炭素に同伴する凝縮液をカーボネート化工程に戻すことによりカーボネート化触媒の活性低下を防ぐ方法(特許文献1を参照)や、カーボネート化工程の触媒の活性低下の原因が該触媒の塩素化であることが判明したため、該触媒液に無機ヨウ化物または無機臭化物を加えて有機溶媒中にカーボネート化触媒由来の塩化物を沈澱させて除去することにより触媒を再生する方法が開示されている(特許文献2を参照)。
 しかしながら、加水分解工程における触媒の活性の低下及びその防止方法は、これまで開示されているものはない。
特開2000-143563号公報 特開2004-292384号公報
 本発明は、触媒及びアルカリ金属の炭酸塩の存在下に、アルキレンオキシド、水及び二酸化炭素を反応させて、アルキレンカーボネート及び/又はアルキレングリコールを生成させる反応工程と、該反応工程で得られる反応液からアルキレンカーボネート及び/又はアルキレングリコールを回収し、触媒を含む触媒液を反応工程へ循環させる触媒循環工程とを備えるアルキレンカーボネート及び/又はアルキレングリコールの製造方法において、加水分解速度を維持しながら反応系内に析出物が蓄積せず長期間安定的に運転可能な製造方法を提供することを課題とする。
 本発明者らは、上記課題を解決するために、まず、加水分解触媒の活性低下の原因について検討したところ、反応系内に存在する炭酸カリウムが、反応が進むにつれて塩化カリウムに変化し、その結果、エチレンカーボネートの加水分解反応の速度が低下することを見出した。詳細には、加水分解反応の速度が低下する原因は、原料であるエチレンオキシドの製造工程で、反応の選択性の向上のためにクロロ炭化水素が選択性調節剤として供給されており、このクロロ炭化水素がエチレングリコールまたはエチレンカーボネートの製造工程に微量混入し、更に分解して塩素イオンになることで、反応液に含まれる炭酸カリウムを塩化カリウムへと変換し、少しずつエチレンカーボネートの加水分解反応の速度を落としていると考えられた。
 さらに、反応系内に存在する有機クロル化合物を解析したところ、カーボネート化工程で回収される過剰な二酸化炭素あるいは加水分解反応器から放出される二酸化炭素を冷却した際に得られる凝縮液中に、80~420ppmと高濃度の有機クロル化合物が滞留していることがわかった。
 すなわち、加水分解反応を低下させる原因となっている有機クロル化合物は、カーボネート化反応器あるいは加水分解反応器から放出される二酸化炭素を含むガスを凝縮した液に濃縮されており、この液を回収していることが原因で、次第にプロセス内に有機クロル化合物が蓄積し、更に、蓄積した有機クロル化合物が次第に分解して、加水分解触媒として使用している炭酸カリウムが塩素イオンで中和されてしまうことが判明した。そこで、有機クロル化合物を含む液を、系外にブリードすることにより、驚くべきことに、加水分解触媒の塩素化を防止し、加水分解触媒の活性低下を防ぐことができることが判明した。
 カーボネート化工程、あるいは加水分解反応器から放出される二酸化炭素の凝縮液にはエチレングリコールがおよそ5%から30%程度含まれており、塩素イオン(有機クロル化合物)をブリードする際、同時にこのエチレングリコールもブリードされてしまう問題があるが、有機クロル化合物は炭酸カリウムがない条件で蒸留すると、分解することなくエチレングリコールと蒸留分離できることが判明した。
 これらの知見をもとに、本発明者らは、反応液中の前記アルカリ金属の炭酸塩(加水分解触媒)由来のアルカリ金属塩化物、又は該アルカリ金属塩化物由来の塩素イオンを除去しながら反応を行うことにより、加水分解速度を維持しながら反応系内に析出物が生じず長期間安定的に運転可能であることを見出した。
 つまり、本発明の要旨は、
(1)触媒及びアルカリ金属の炭酸塩の存在下に、アルキレンオキシド、水及び二酸化炭素を反応させて、アルキレンカーボネート及び/又はアルキレングリコールを生成させる反応工程と、該反応工程で得られる反応液からアルキレンカーボネート及び/又はアルキレングリコールを回収する工程と、触媒を含む触媒液を反応工程へ循環させる触媒循環工程とを備えるアルキレンカーボネート及び/又はアルキレングリコールの製造方法において、
反応液中の前記アルカリ金属の炭酸塩由来のアルカリ金属塩化物、又は該アルカリ金属塩化物由来の塩素イオンを除去する工程を含むことを特徴とするアルキレンカーボネート及び/又はアルキレングリコールの製造方法、
(2)反応液中の前記アルカリ金属の炭酸塩由来のアルカリ金属塩化物を除去する工程が、前記反応工程中の触媒を含む反応液の一部又は全量を取得して該反応液に含まれるアルキレングリコールの少なくとも一部を蒸留分離し、更に、該蒸留分離において析出する固体を分離するものであり、前記触媒循環工程が更に、該蒸留分離において析出する固体を分離した残液を反応工程へ循環させるものである(1)に記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法、
(3)反応液中の前記アルカリ金属の炭酸塩由来のアルカリ金属塩化物を除去する工程が、前記反応工程中の触媒を含む反応液の一部又は全量を取得して該反応液に含まれるアルキレングリコールの少なくとも一部を蒸留分離し、更に、該蒸留分離において析出する固体を分離するものであり、前記触媒循環工程が更に、該蒸留分離において析出する固体を分離した残液から、さらに触媒を分離回収した後に、回収した触媒を前記反応工程に循環させることを特徴とする(1)に記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法、
(4)前記析出する固体の分離を、80℃以上で行うことを特徴とする(2)または(3)に記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法、
(5)前記反応工程が、触媒及びアルカリ金属の炭酸塩の存在下に、アルキレンオキシドと二酸化炭素とを反応させて、アルキレンカーボネートを生成させるカーボネート化工程、及びカーボネート化工程の反応液中のアルキレンカーボネートを加水分解してアルキレングリコールを生成させる加水分解工程を含み、
前記アルカリ金属塩化物由来の塩素イオンの除去工程が、
カーボネート化工程及び/又は加水分解工程で放出される二酸化炭素を含むガスを冷却する凝縮工程と、触媒循環工程で反応工程へ循環させる触媒液のアルカリ度が触媒濃度に対して0.03mol/mol以上となるように前記凝縮工程で得られた凝縮液を排出する工程を含む、(1)に記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法、
(6)前記塩素イオン除去工程において、前記凝縮液をさらに脱水蒸留して中に含まれる水及び有機クロル化合物を除去した後、残りの液を前記反応工程へ循環させる、(5)に記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法、
(7)前記有機クロル化合物がエチレンクロルヒドリンである(6)に記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法、
(8)前記凝縮液を循環させる場所が、前記加水分解工程で得られる加水分解反応液に含まれる水を蒸留分離する蒸留塔の加水分解反応液供給段またはそれより上の段である(5)~(7)のいずれかに記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法、
(9)前記反応工程に、前記アルカリ金属の炭酸塩を追加添加することを特徴とする(1)~(8)のいずれかに記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法、
(10)アルキレンカーボネートがエチレンカーボネートであり、アルキレングリコールがエチレングリコールである(1)~(9)のいずれかに記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法、
に存する。
加水分解工程で得られる凝縮液を反応系外へ排出する反応系で、カーボネート化工程へ循環させている触媒液のアルカリ度(触媒液中に含まれる加水分解触媒のOH基の濃度)の触媒濃度に対する比率と運転日数との関係を示したグラフである。 加水分解工程で得られる凝縮液を反応系外へ排出する反応系で、カーボネート化工程へ循環させている触媒液中に含まれるカリウムに対する塩素イオン濃度と運転日数との関係を示したグラフである。 加水分解工程で得られる凝縮液を反応系外へ排出させない反応系で、カーボネート化工程へ循環させている触媒液中に含まれるカリウムに対する塩素イオン濃度と運転日数との関係を示したグラフである。
 以下、本発明について詳細に説明するが、本発明は以下に示す実施形態や例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施することができる。
 本発明は、触媒及びアルカリ金属の炭酸塩の存在下に、アルキレンオキシド、水及び二酸化炭素を反応させて、アルキレンカーボネート及び/又はアルキレングリコールを生成させる反応工程と、該反応工程で得られる反応液からアルキレンカーボネート及び/又はアルキレングリコールを回収する工程と、触媒を含む触媒液を反応工程へ循環させる触媒循環工程とを備えるアルキレンカーボネート及び/又はアルキレングリコールの製造方法において、反応液中の前記アルカリ金属の炭酸塩由来のアルカリ金属塩化物、又は該アルカリ金属塩化物由来の塩素イオンを除去する工程を含むことを特徴とする方法である。
 本発明の反応工程とは、「アルキレンカーボネートを生成させるカーボネート化工程」と、「前記カーボネート化工程の後の反応液中のアルキレンカーボネートをさらに加水分解する加水分解工程」の両方を意味する。以下に、カーボネート化工程と加水分解工程について説明するが、2つに分離した反応系に限らず、同一の反応器内で行ってもよい。
(1)カーボネート化工程
 カーボネート化工程の触媒(本明細書中では、これを「カーボネート化触媒」と称することがある)としては、アルカリ金属の臭化物またはヨウ化物、アルカリ土類金属のハロゲン化物、アルキルアミン、第4級アンモニウム塩、有機スズまたはゲルマニウム若しくはテルル化合物、ハロゲン化有機ホスホニウム塩等の公知のものの中から適宜選択して用いれば良い。なかでも、4級ホスホニウムヨーダイド又はブロマイドが好ましく用いられる。具体的には、トリフェニルメチルホスホニウムヨーダイド、トリフェニルプロピルホスホニウムヨーダイド、トリフェニルベンジルホスホニウムヨーダイド、トリブチルメチルホスホニウムヨーダイド等が挙げられる。このようなカーボネート化触媒は、アルキレンオキシドに対して0.001~0.05倍モルとなるように反応系に供給するのが好ましい。
 本発明のカーボネート化工程では、カーボネート化反応だけでなく、後述する加水分解反応も同時に行うことも可能である。加水分解反応を同時に行う場合には、加水分解触媒としてアルカリ金属の炭酸塩を反応系内に共存させる。具体的には、カーボネート化工程にナトリウム又はカリウム等、好ましくはカリウムの水酸化物、炭酸塩又は重炭酸塩を添加すればよく、いずれのアルカリ金属化合物を添加しても、これらは、反応系内では炭酸塩として存在する。この場合、アルカリ金属の炭酸塩、好ましくは炭酸カリウムは、4級ホスホニウムヨーダイド等の前記カーボネート化触媒に対して、モル比で0.01~1.0となるように存在させることが好ましい。上記濃度を維持するためにアルカリ金属の炭酸塩を反応系に追加的に添加することも好ましい。
 本発明の方法においては、上記アルカリ金属の炭酸塩由来のアルカリ金属塩化物、又は該アルカリ金属塩化物由来の塩素イオンを反応系から除去する工程を含むことを特徴とする。
 原料のアルキレンオキシドは、エチレンオキシド、プロピレンオキシド等が用いられる。アルキレンオキシドとしては、純度の高い精製アルキレンオキシドを用いてもよいし、粗製物でもよいが、通常、クロロ炭化水素などの塩素化合物を微量含んでいる。具体的には、例えば、エチレンオキシドの場合、WO2004/056794号公報等に記載のエチレンオキシドの製造工程から得られる、水を含んだ純度の低い粗製エチレンオキシドを使用することができる。本発明の好ましい態様として、生成するアルキレンカーボネートは、エチレンカーボネートである。
 カーボネート化工程において、水が存在することによれば、アルキレンオキシドはアルキレンカーボネートだけでなく、アルキレングリコールにも転化されるので、アルキレンオキシドに対して等モル以下の二酸化炭素の供給量でも反応は容易に進行する。加水分解工程を同時に行う場合には、アルキレンオキシドに対する水の量は、通常、アルキレンオキシドに対して1.0~10倍モル程度用いることが好ましい。また、二酸化炭素はアルキレンオキシドに対し等モル以下の量で十分な効果が得られるが、これらの量比については必ずしも厳密な制約はない。好ましくは0.1倍モル以上5.0倍モル以下である。
 カーボネート化工程の反応温度は、通常、50~200℃であるが、100℃~170℃で行うのが好ましい。また、反応圧力は、通常、0.5~5.0MPaであるが、好ましくは1.0~3.0MPaで行われる。
 カーボネート化反応は任意の装置を用いて行うことができるが、気泡塔を用いて行うのが好ましい。一例として、途中に除熱用の熱交換器及び循環用のポンプを備えた液循環導管を有する気泡塔を用いて塔内の反応液を液循環導管を経て循環させることにより反応温度を制御し、塔底より原料のアルキレンオキシド、二酸化炭素、触媒、及び必要に応じて水を連続的に供給し、連続的に反応を行わせる。また、特開平11-269110号公報に開示されているような、エジェクター型ノズルを備えた反応器を用いるのも好ましい。なお、気泡塔で、アルキレンオキシドを完全に反応させるのは非効率なので、気泡塔の後に、管型反応器を配し、液中のアルキレンオキシドを更に反応させるのも好ましい。
 本態様においては、カーボネート化工程で得られた反応液は加水分解工程に送られる。ただし、場合によっては、反応液の一部又は全量を、アルキレンカーボネートの製造工程に送り、アルキレンカーボネートを回収してもよい。アルキレンカーボネートを回収した残りの反応液は、カーボネート化工程で得られた残りの液と合わせて加水分解工程に送られる。
(2)加水分解工程
 加水分解反応は高温で行う方が反応速度の点で有利であるが、高温にし過ぎるとアルキレングリコールの品質が低下する恐れがあるので、通常は100~180℃で行うのが好ましい。反応圧力は液の沸点までの範囲であれば任意であるが、通常は、常圧~2.1MPaで行うのが好ましく、また、加水分解が進行するにつれて反応温度を高くしたり、反応圧力を低くしたりして、加水分解を促進させるのも好ましい。
 カーボネート化工程から得た反応液に対する水の量は、含まれるアルキレンカーボネートに対し、等モル以上の量があれば十分であるが、加水分解の進行に伴って炭酸ガスに同伴する水分を考慮し余分に添加するのが好ましく、通常は原料として使用したアルキレンオキシドの10倍モル以下、好ましくは1~5倍モルで行うのが好ましい。水の添加方法は、カーボネート化工程の最初にまとめて添加する方法、加水分解工程で追加する方法、加水分解工程で反応の進行に伴って何回かに分けて添加する方法、スチームで供給する方法等があるが、いずれの方法でもよい。
 加水分解工程の反応器は、特に制約はないが、反応の進行に伴い炭酸ガスが発生するので、発生した炭酸ガスを除く必要がある。また、反応は吸熱反応であるので温度の低下を防ぐ為に加熱用の熱交換器を備えることが好ましい。熱交換器は反応器の内部に設置する方法、液を一部抜き出して外部に設置した熱交換器で加熱を行い、再度反応器に戻す方法がある。反応器は1つの反応器で行ってもよいが、アルキレンカーボネートの転化率を高く維持する為には、反応器の内部に仕切りを設けて液の流れを制御する、あるいは複数の反応器を使用して反応する方法がある。
 加水分解工程で使用される触媒は、カーボネート化工程で使用した触媒をそのまま使用することができる。加水分解速度が不十分な場合は、触媒を加水分解工程で追加してもよい。
(3)回収工程(脱水工程)
 加水分解により生成したアルキレングリコールは、公知の方法により反応液中から分離取得することができる。通常は、まず蒸留設備において蒸留、好ましくは減圧蒸留して水を分離する脱水工程を経て、アルキレングリコール、ジアルキレングリコール、その他の高沸点成分及びカーボネート化触媒等からなる粗アルキレングリコールを取得する。
(4)触媒分離工程、触媒循環工程
 本発明の反応工程において触媒を含む液は、触媒を適当な方法で分離した後に、反応工程のいずれかへ循環させる。ここで、触媒を分離する工程を触媒分離工程、また、触媒分離工程により得られた触媒を含む液を反応工程へ循環させる工程を触媒循環工程という。
 触媒分離工程に供される触媒を含む液とは、カーボネート化工程より後の反応工程から取得されるものである。
 具体的な触媒分離及び循環工程としては、上記加水分解工程で得られる触媒を含む液を用いる場合、(3)に記載のとおり加水分解工程の反応液を脱水した後、フラッシング槽に供給してアルキレングリコール及びジアルキレングリコール等の高沸点物のほとんどを気化させて分離し、残留したアルキレングリコール、ジアルキレングリコール、高沸点物及び触媒を含む液を回収して、触媒液として反応工程へ循環させる。ここでの触媒液は、カーボネート化工程に循環することが好ましい。上記触媒分離はアルキレングリコール及びジアルキレングリコール等の蒸発を促進する為に減圧下で行われることが好ましい。蒸発装置としてはリボイラーを備えたものを用いて蒸発に必要なエネルギーを補給し且つ蒸発量を制御する。
(5)アルカリ金属の炭酸塩由来のアルカリ金属塩化物除去工程
 本発明においては、加水分解触媒として存在させていたアルカリ金属の炭酸塩が中和されて塩化物になったもの(本明細書中では、「アルカリ金属塩化物」と称することがある)を取り除く工程を含むことを特徴とする。上記アルカリ金属の炭酸塩由来のアルカリ金属塩化物の除去方法としては、反応系に存在する上記アルカリ金属塩化物が除去し得る方法であればいずれのものでもよいが、好ましくは、本発明の反応工程のいずれかの反応液を抜き出して、該反応液中に含まれるアルカリ金属塩化物を取り除いた後に、本発明の反応工程のいずれかへ循環させる方法がとられる。なお、本発明の方法においては、カーボネート化触媒由来の塩化物を除去するために無機臭化物または無機ヨウ化物を加えてもよいし、加えなくともよい。
 抜き出す反応液としては、まず、アルカリ金属塩化物の濃度が、2重量%以下、詳細には0.1重量%~1重量%までのものが好ましい。抜き出した反応液中のアルカリ金属塩化物の濃度が高すぎると、塩化物自体が析出し閉塞トラブルの原因となるため好ましくない。アルカリ金属塩化物除去処理に供する反応液としては、カーボネート化工程の後の反応液であれば何れのものでもよいが、連続運転中の加水分解工程の反応液か、又は、該加水分解工程から得られる反応液、又は、該加水分解工程から得られる反応液からアルキレングリコールと水を抜いた液(本明細書中では、これを「触媒液」と称することがある)が挙げられる。
 この反応液の抜き出しは、連続的であっても間欠的であってもかまわない。また、抜き出しの方法は、反応液を全量抜き出してもかまわないが、反応液の一部を抜き出すほうが処理する反応液の量が少なくて処理が容易である。
 上記反応液からアルカリ金属塩化物を取り除く方法は、それ自体公知のいずれの方法によってもよいが、具体的には、上記で取得した反応液中に含まれる少なくとも一部のアルキレングリコールを蒸留分離し、該蒸留分離において析出する固形分を除去する方法や、イオン交換樹脂を使用するなどの方法が挙げられる。以下に反応液中に含まれるアルキレングリコール及び高沸点成分を蒸発させて回収した際に析出する固形分を除去することによる方法を説明する。
 まず、抜き出した反応液は、取得した反応液中に含まれる少なくとも一部のアルキレングリコールを蒸留分離する工程(以下、「蒸留工程」と称することがある。)に供する。該蒸留工程は、液体中のアルカリ金属塩化物濃度が0.5重量%以上、好ましくは1重量%以上、さらに好ましくは2重量%以上になるまで行うものである。また、この蒸留分離工程は、アルキレングリコールを蒸留分離するものであるが、反応液中のアルカリ金属塩化物濃度を上記の範囲にするために、ジアルキレングリコール、トリアルキレングリコールなどの高沸点成分を分離してもよい。
 具体的な蒸留方法としては、減圧下、具体的には500torr以下、好ましくは30~200torrで、触媒が劣化しない程度の温度、120~200℃好ましくは120~180℃で行われる。蒸留装置としては、リボイラーを備えたものを用いて、蒸発に要するエネルギーを補給し、且つ蒸発量を制御する。
 アルカリ金属塩化物以外の組成にもよるが、少なくともアルキレングリコール、必要に応じて高沸点物を蒸留分離して液体中のアルカリ金属塩化物濃度が0.5重量%を超えると、アルカリ金属塩化物が析出してくる。析出したアルカリ金属塩化物である固形物を溶液部と分離する。分離の方法としては濾過分離、遠心分離、沈殿分離等の方法で行うことができ、いずれの方法でも問題ない。
 具体的には、例えば、沈殿槽を経由して沈澱分離する場合、一般的には、温度は低温であるほうが溶解度が小さく、除去効果が上がるが、本方法では冷却しすぎると、溶液部である触媒溶液の粘性が増し、流動性がなくなるため、好ましくは80℃以上、更に好ましくは90℃以上、180℃以下で取り扱うよう加熱または保温をすることが好ましい。沈澱槽は、蒸発装置とは別に設置してもかまわないが、蒸留装置と沈殿槽を一体にして熱交換器で加熱した反応液を中段または上部から直接沈殿槽にフラッシュさせるのが好ましい。
 沈澱した固形物であるアルカリ金属塩化物は、固液分離した後、固体として回収する方法や、沈殿槽にある残液をドレンラインより抜き出した後、残ったアルカリ金属塩化物を溶媒に溶解した後、無害化処理するか、あるいは、マンホールより固体のまま抜き出し無害化処理するなどの方法で処理することが好ましい。また、上記で分離回収される溶液部は、上記の触媒分離工程を行った触媒を含む液として、反応器、好ましくはカーボネート化工程の反応器に供給し、触媒として使用することができる(触媒循環工程)。また、固形物を除去した後の溶液部である触媒液は、ここからさらに触媒分離工程として、触媒のみを分離回収して触媒循環工程に供することもできる。触媒の回収方法は、例えば、日本特許第4273802号公報等に記載の方法が挙げられる。
(6)アルカリ金属塩化物由来の塩素イオン除去工程
 本発明においては、加水分解触媒として存在させていたアルカリ金属の炭酸塩が中和されたアルカリ金属塩化物由来の塩素イオンも反応系から除去する工程を含むことを第2の特徴とする。上記アルカリ金属塩化物由来の塩素イオンの除去方法としては、反応系に存在する当該塩素イオンが除去し得る方法であればいずれのものでもよいが、好ましくは、反応工程へ循環させる触媒液のアルカリ度(触媒液中に含まれる加水分解触媒のOH基の濃度)が、触媒濃度に対して0.03mol/mol以上となるように下述する凝縮液を系外へ排出することを特徴とする方法である。触媒液のアルカリ度が、触媒濃度に対して0.03mol/mol以下となると、加水分解速度が低下して、工業的に有利なアルキレンカーボネート及び/又はアルキレングリコールの製造方法とは言い難い。上記触媒液のアルカリ度は、触媒濃度に対して0.03mol/mol以上に調整するが、更に好ましくは、触媒濃度に対して0.05mol/mol以上に調整される。
 上記アルカリ度は、公知の方法により測定することができる。具体的には、触媒液について、酸により滴定することにより行うことができる。
 また、上記凝縮液を系外に排出する指標として、上記触媒液に含まれる塩素イオンが、含有するアルカリ金属に対し、モル比で3未満となることも用いることができる。
 塩素イオン濃度のモル比が、含有するアルカリ金属に対し3以上になると、加水分解触媒として加えられているアルカリ金属が中和され、加水分解触媒として働かなくなってしまう場合がある。循環させる触媒液中の塩素イオンのアルカリ金属に対するモル比は、3未満、好ましくは2未満、最も好ましくは1未満である。循環させる触媒液中の塩素イオン濃度は、沈澱滴定やイオンクロマトグラフ等通常用いられる方法で測定することができる。
 モル比が上記範囲となる凝縮液の排出量が経験値としてわかる場合には、循環させる触媒液中の塩素イオン濃度を監視しなくとも当該量を排出する方法をとることもできる。
 上記のアルカリ金属塩化物由来の塩素イオン除去方法を行う場合、アルキレンカーボネート及び/又はアルキレングリコールの製造方法では、上記カーボネート化工程及び/又は加水分解工程で放出される二酸化炭素を含むガスを冷却する凝縮工程を含む。
 カーボネート化工程で塩素イオンを除去する場合は、反応器の気相部を冷却して凝縮液を回収し、これを抜き出して排出する。排出量は、全量でも良いし、上記反応工程へ循環させる触媒液中のアルカリ度が触媒濃度に対して0.03mol/mol以上となるのに十分な量であればよい。凝縮液中には塩素イオン(有機クロル化合物)の他に原料のアルキレンオキシドが含まれる為に、必要があればアルキレンオキシドを回収した後に、塩素イオン(有機クロル化合物)を含む溶液として排出する。
 また、加水分解工程で塩素イオン(有機クロル化合物)を除去する場合は、加水分解の進行に伴って発生する炭酸ガスを冷却して炭酸ガスに同伴された水蒸気を凝縮することにより、塩素イオン(有機クロル化合物)は凝縮液中に回収される。そこで、該凝縮液を全量、又は上記反応工程へ循環させる触媒液のアルカリ度が触媒濃度に対して0.03mol/mol以上となるのに十分な量を反応系外へ抜き出して排出する方法が用いられる。
 運転の初期は、塩素イオンの蓄積量が少なく、触媒液のアルカリ度が触媒濃度に対して0.03mol/mol以上であるので、そのまま加水分解反応器に戻してもよい。凝縮液の抜き出しは、塩素イオンが蓄積してから行えばよいが、塩素イオンの蓄積を防止する為に予め抜き出しておくことも好ましい。抜き出しは連続的あるいは間欠的に、上記触媒液中の塩素イオン濃度や加水分解反応の状況を監視しながら、抜き出し量を調整しながら実施するのが好ましい。反応系外へ抜き出して排出した凝縮液の残部は、カーボネート化工程や加水分解工程へ循環させることができる。
 反応系外へ抜き出した凝縮液は、そのまま排水として必要があれば無害化処理した後に廃棄してもかまわないが、アルキレングリコール等の有機物が含まれているので、プロセスに回収してアルキレングリコールを製品として回収することが好ましい。排水を回収する際、塩素イオン(有機クロル化合物)が再び塩素としてプロセスに戻ってしまうのを防ぐ為に、予め脱水蒸留を行い、水と共に有機クロル化合物を蒸留分離した後アルキレングリコールを回収することが好ましい。
 また、別の塩素イオン除去方法としては、上記脱水工程の蒸留塔の加水分解反応液供給段またはそれより上の段に前記凝縮液を供給して塩素イオン(有機クロル化合物)を水分とともに塔頂から排出する方法も用いられる。加水分解工程から来る反応液は加水分解触媒を含んでいる。その為に、供給段より下の段に供給した場合には、塩素イオン(有機クロル化合物)が加水分解触媒と反応して塩素として加水分解触媒を中和してしまう可能性があり、これを避ける為に、加水分解反応液の供給段またはそれより上の段に供給し、加水分解触媒との接触を回避する必要がある。
(7)触媒の補給
 本発明の反応工程においては、より加水分解反応速度を保ったまま運転を継続するために、最初に加水分解触媒として存在させるアルカリ金属の炭酸塩を反応工程に添加することもできる。添加するアルカリ金属の炭酸塩、好ましくは炭酸カリウムは、4級ホスホニウムヨーダイド等の前記カーボネート化触媒に対して、モル比で0.01~1.0となる濃度を維持する程度とすることが好ましい。炭酸塩の添加方法としては、直接固体を投入してもかまわないが、水に溶かして添加する、あるいは、アルキレングリコールに溶解して添加する方法が取り扱いの点で有効である。アルカリ金属の炭酸塩の添加は連続的に添加してもかまわないが、加水分解反応の状況を監視しながら、反応速度が低下してきた時に適量を追加する方法で問題なく運転を継続できる。
 また、塩素の除去に伴って、カーボネート化触媒に由来するヨウ素あるいは臭素といったハロゲンや触媒そのものが同伴して除去された場合には、カーボネート化触媒、加水分解触媒を追加したり、場合によっては、ヨウ化水素あるいは臭化水素等の使用した触媒に対応するハロゲン化水素を添加することが好ましい。
(8)アルキレンカーボネート及びアルキレングリコールの精製
 かくして生成、回収された粗アルキレンカーボネート及び/又は粗アルキレングリコールは、それ自体公知の通常用いられる方法により必要に応じて精製することができる。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り以下の実施例によって限定されるものではない。
[実施例1]
(1)カーボネート化工程
 二酸化炭素で2.0MPaで加圧された滞留時間1時間、100℃のカーボネート化反応器を含むカーボネート化反応部分にトリブチルメチルホスホニウムヨーダイド5重量部/Hr、炭酸カリウム0.8重量部/Hr、原料エチレンオキシド水溶液(60重量%)78重量部/Hrを供給することによりエチレンカーボネート及びエチレングリコール(EG)を含むカーボネート化工程反応液を得た。
(2)加水分解工程
 カーボネート化工程から得られた反応液を滞留時間2時間、圧力0.5MPa、温度150℃の加水分解反応器を含む加水分解反応部に移して、含有されるエチレンカーボネートを加水分解して、触媒及びエチレングリコールを含む加水分解工程反応液87.5重量部/Hrを得た。
(3)精製
 加水分解工程から得られた反応液を、塔底140℃、80torrの減圧蒸留塔により蒸留して、塔底から脱水された液を得、これを更に140℃、60torrで操作される減圧蒸発器によりエチレングリコールの大部分を蒸発させ、蒸発器底部より触媒が濃縮された触媒液を13重量部/Hrを回収した。回収した触媒液は触媒としてカーボネート化反応器へ循環使用した。
 運転を継続したところ、加水分解反応が不十分になったので、炭酸カリウムを添加しながら運転を継続した。
 3ヶ月運転を継続した加水分解工程から反応液を抜き出し、ガラス製エバポレーターに該反応液100部仕込み、エチレングリコールの蒸留分離操作を行った。圧力を30torrとし、加熱はオイルバスを170℃に加熱して行った。
 上記反応液中に含まれるエチレングリコールが5部留出したところで、エバポレーターのボトムフラスコの表面に塩化カリウムが析出するのが確認できた。更に、蒸留操作を継続し、46部エチレングリコールを主成分とする液が留出したところで、蒸留操作を停止した。フラスコの底に塩化カリウムが沈澱しているのが確認できた。ここで、上澄み部分の触媒を含む液を一部抜き出し、塩化カリウムが取り除かれた再生触媒溶液として、上記と同様にカーボネート化工程及び加水分解工程を行ったところ、カーボネート化反応、加水分解反応とも問題なく運転を更に継続することができた。
[比較例1]
 実施例1において、触媒液から塩化カリウムを除去しないこと以外、実施例1と同様に運転を継続したところ、触媒液に塩化カリウムが析出して触媒液の循環が困難になり運転を停止した。
[実施例2]
(1)カーボネート化工程
 二酸化炭素で2.0MPaで加圧された滞留時間1時間、100℃のカーボネート化反応器を含むカーボネート化反応部分にトリブチルメチルホスホニウムヨーダイド5重量部/Hr、炭酸カリウム0.8重量部/Hr、原料エチレンオキシド水溶液(60重量%)78重量部/Hrを供給することによりエチレンカーボネート及びエチレングリコール(EG)を含むカーボネート化工程反応液を得た。
(2)加水分解工程
 カーボネート化工程から得られた反応液を、まず、圧力1.8MPa、温度150℃の第1加水分解反応器でエチレンカーボネートの加水分解反応を行い、引き続き 圧力0.2MPa,温度150℃の第2加水分解反応器で残りのエチレンカーボネートを加水分解して、触媒及びエチレングリコールを含む加水分解工程反応液87.5重量部/Hrを得た。加水分解に伴い発生する炭酸ガスは、熱交換器で冷却し、炭酸ガスに同伴した水分は凝縮した後、加水分解反応器に戻して反応を継続した。
(3)脱水/塩素イオン除去工程
 加水分解工程から得られた反応液を、塔底140℃、80torrの減圧蒸留塔により脱水蒸留して、塔底から脱水された液を得、これを更に140℃、60torrで操作される減圧蒸発器によりエチレングリコールの大部分を蒸発させ、蒸発器底部より触媒が濃縮された触媒液を13重量部/Hrを回収した。回収した触媒液は触媒として第1加水分解反応器へ循環使用した。
 上記運転を継続したあと、第1加水分解反応器で発生した炭酸ガスを冷却して、炭酸ガスに同伴される水蒸気の凝縮液を分析したところ、凝縮液中にエチレンクロルヒドリンが167ppm、クロルメチルジオキソランが273ppm、エチレングリコールが17.2重量%含まれていた。そこで、凝縮液の全量について連続的に抜出しを開始した。
 100日間運転を行ったが、加水分解速度の指標であるアルカリ度を用いて評価を行った。上記アルカリ度は、カーボネート化工程へ循環させている触媒液中に含まれる加水分解触媒となるOH基のモル数を酸で滴定することにより測定した。また、触媒液の濃度の変化による影響を無くすためトリブチルメチルホスホニウムヨーダイドのモル数で除した値である。この結果を図1に示す。図1のとおり、加水分解反応の反応速度の低下は見られず、上記触媒液のアルカリ度は触媒濃度に対して0.03mol/mol以上を維持していた。
 また、上記触媒液中に含まれる塩素イオン濃度及びカリウムの濃度を測定した。カリウムの測定方法は、ICP(Inductively Coupled Plasma)発光分光分析法である。塩素イオンの測定方法は、沈殿滴定分析法である。この結果を表1及び図2に示す。表1及び図2から明らかなように、上記触媒液中に含まれる塩素イオン濃度は、アルカリ金属濃度に対して、モル比で3未満であった。
Figure JPOXMLDOC01-appb-T000001
[実施例3]
 上記実施例2で抜出した凝縮液と加水分解反応液と共に理論段8段の蒸留塔で蒸留を行い、エチレンクロルヒドリン及びクロルメチルジオキソランを水分とともに塔頂から留出させ、蒸留塔の塔底から有機クロル化合物を含まないエチレングリコールを回収した。
[比較例2]
 第1加水分解反応器で発生した炭酸ガスを冷却して得られた炭酸ガスに同伴される水蒸気の凝縮液をそのまま加水分解工程に供給した以外は、実施例2と同様にエチレングリコールの生成を行った。230日間運転を継続し、カーボネート化工程へ循環させる触媒液中の加水分解触媒のアルカリ度を実施例2と同様に測定した。この結果を図3に示す。図3から明らかなように、上記加水分解触媒のアルカリ度は減少し加水分解反応の反応速度が次第に遅くなりエチレンカーボネートの転化率が99.9%以上であったものが、98.8%まで低下した。
 本発明の方法により、加水分解工程における触媒の劣化を防ぎ、加水分解速度を維持しながら反応系内に析出物が生じず長期間安定的に運転可能なアルキレンカーボネート及び/又はアルキレングリコールの製造方法が提供される。本方法の採用によりアルキレンカーボネート及び/又はアルキレングリコールを効率よくロスが少なく製造することができる。

Claims (10)

  1.  触媒及びアルカリ金属の炭酸塩の存在下に、アルキレンオキシド、水及び二酸化炭素を反応させて、アルキレンカーボネート及び/又はアルキレングリコールを生成させる反応工程と、該反応工程で得られる反応液からアルキレンカーボネート及び/又はアルキレングリコールを回収する工程と、触媒を含む触媒液を反応工程へ循環させる触媒循環工程とを備えるアルキレンカーボネート及び/又はアルキレングリコールの製造方法において、
    反応液中の前記アルカリ金属の炭酸塩由来のアルカリ金属塩化物、又は該アルカリ金属塩化物由来の塩素イオンを除去する工程を含むことを特徴とするアルキレンカーボネート及び/又はアルキレングリコールの製造方法。
  2.  反応液中の前記アルカリ金属の炭酸塩由来のアルカリ金属塩化物を除去する工程が、前記反応工程中の触媒を含む反応液の一部又は全量を取得して該反応液に含まれるアルキレングリコールの少なくとも一部を蒸留分離し、更に、該蒸留分離において析出する固体を分離するものであり、前記触媒循環工程が該蒸留分離において析出する固体を分離した残液を反応工程へ循環させるものである請求項1に記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法。
  3.  反応液中の前記アルカリ金属の炭酸塩由来のアルカリ金属塩化物を除去する工程が、前記反応工程中の触媒を含む反応液の一部又は全量を取得して該反応液に含まれるアルキレングリコールの少なくとも一部を蒸留分離し、更に、該蒸留分離において析出する固体を分離するものであり、前記触媒循環工程が該蒸留分離において析出する固体を分離した残液から、さらに触媒を分離回収した後に、回収した触媒を前記反応工程に循環させることを特徴とする請求項1に記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法。
  4.  前記析出する固体の分離を、80℃以上で行うことを特徴とする請求項2または3に記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法。
  5.  前記反応工程が、触媒及びアルカリ金属の炭酸塩の存在下に、アルキレンオキシドと二酸化炭素とを反応させて、アルキレンカーボネートを生成させるカーボネート化工程、及びカーボネート化工程の反応液中のアルキレンカーボネートを加水分解してアルキレングリコールを生成させる加水分解工程を含み、
    前記アルカリ金属塩化物由来の塩素イオンの除去工程が、
    カーボネート化工程及び/又は加水分解工程で放出される二酸化炭素を含むガスを冷却する凝縮工程と、触媒循環工程で反応工程へ循環させる触媒液のアルカリ度が触媒濃度に対して0.03mol/mol以上となるように前記凝縮工程で得られた凝縮液を排出する工程を含む、請求項1に記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法。
  6.  前記塩素イオン除去工程において、前記凝縮液をさらに脱水蒸留して中に含まれる水及び有機クロル化合物を除去した後、残りの液を前記反応工程へ循環させる、請求項5に記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法。
  7.  前記有機クロル化合物がエチレンクロルヒドリンである請求項6に記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法。
  8.  前記凝縮液を循環させる場所が、前記加水分解工程で得られる加水分解反応液に含まれる水を蒸留分離する蒸留塔の加水分解反応液供給段またはそれより上の段である請求項5~7のいずれか一項に記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法。
  9.  前記反応工程に、前記アルカリ金属の炭酸塩を追加添加することを特徴とする請求項1~8のいずれか一項に記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法。
  10.  アルキレンカーボネートがエチレンカーボネートであり、アルキレングリコールがエチレングリコールである請求項1~9のいずれか一項に記載のアルキレンカーボネート及び/又はアルキレングリコールの製造方法。
PCT/JP2011/059855 2010-04-28 2011-04-21 アルキレンカーボネート及び/又はアルキレングリコールの製造方法 WO2011136127A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2012512808A JP5725019B2 (ja) 2010-04-28 2011-04-21 アルキレンカーボネート及び/又はアルキレングリコールの製造方法
CN201180021036.2A CN102858727B (zh) 2010-04-28 2011-04-21 碳酸亚烷基酯及/或亚烷基二醇的制造方法
KR1020167008016A KR101671155B1 (ko) 2010-04-28 2011-04-21 알킬렌카보네이트 및/또는 알킬렌글리콜의 제조 방법
BR112012027617-4A BR112012027617B1 (pt) 2010-04-28 2011-04-21 Método para produção de alquileno glicol
SG2012079554A SG185059A1 (en) 2010-04-28 2011-04-21 Method for producing alkylene carbonate and/or alkylene glycol
KR1020127030331A KR101663347B1 (ko) 2010-04-28 2011-04-21 알킬렌카보네이트 및/또는 알킬렌글리콜의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010103785 2010-04-28
JP2010-103785 2010-04-28
JP2010158779 2010-07-13
JP2010-158779 2010-07-13

Publications (1)

Publication Number Publication Date
WO2011136127A1 true WO2011136127A1 (ja) 2011-11-03

Family

ID=44861433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059855 WO2011136127A1 (ja) 2010-04-28 2011-04-21 アルキレンカーボネート及び/又はアルキレングリコールの製造方法

Country Status (7)

Country Link
JP (1) JP5725019B2 (ja)
KR (2) KR101663347B1 (ja)
CN (1) CN102858727B (ja)
BR (1) BR112012027617B1 (ja)
SG (1) SG185059A1 (ja)
TW (1) TWI511947B (ja)
WO (1) WO2011136127A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209329A (ja) * 2012-03-30 2013-10-10 Nippon Shokubai Co Ltd エチレングリコール類の製造方法
JP2014148481A (ja) * 2013-02-01 2014-08-21 Mitsubishi Chemicals Corp アルキレンカーボネートの製造方法
WO2020120305A1 (en) * 2018-12-10 2020-06-18 Shell Internationale Research Maatschappij B.V. Process for the preparation of ethylene glycol

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109867654B (zh) * 2019-02-19 2021-06-29 胜华新能源科技(东营)有限公司 一种用于环氧烷烃和二氧化碳制备碳酸亚烷基酯的方法
KR102150240B1 (ko) * 2019-10-14 2020-09-01 그린케미칼 주식회사 알킬렌카보네이트 제조 장치 및 그를 이용한 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690029A (en) * 1979-12-24 1981-07-21 Nippon Shokubai Kagaku Kogyo Co Ltd Preparation of high-purity alkylene glycol
JP2000128814A (ja) * 1998-10-27 2000-05-09 Mitsubishi Chemicals Corp エチレングリコールの製造方法
JP2000143562A (ja) * 1998-11-06 2000-05-23 Mitsubishi Chemicals Corp エチレングリコールの製造方法
JP2000143563A (ja) * 1998-11-13 2000-05-23 Mitsubishi Chemicals Corp エチレングリコールの製造方法
JP2001031600A (ja) * 1999-07-14 2001-02-06 Nippon Shokubai Co Ltd 高純度モノエチレングリコールの製法
JP2001031601A (ja) * 1999-07-14 2001-02-06 Nippon Shokubai Co Ltd 高純度モノエチレングリコールの製造方法
WO2004069777A1 (ja) * 2003-02-07 2004-08-19 Mitsubishi Chemical Corporation アルキレン誘導体の製造方法及びアルキレン誘導体製造用触媒の再生方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG74047A1 (en) * 1997-04-30 2000-07-18 Mitsubishi Chem Corp Process for producing alkylene glycol
JP3690129B2 (ja) * 1998-08-10 2005-08-31 三菱化学株式会社 アルキレングリコールの製造方法
US6437199B1 (en) * 1999-07-14 2002-08-20 Nippon Shokubai Co., Ltd. Method for production of high-purity monoethylene glycol
JP4333153B2 (ja) * 2003-02-07 2009-09-16 三菱化学株式会社 アルキレングリコールの製造方法
JP4273802B2 (ja) 2003-03-27 2009-06-03 三菱化学株式会社 アルキレン誘導体の製造方法
PE20070478A1 (es) * 2005-08-02 2007-05-18 Shell Int Research Proceso de preparacion de alquilenglicoles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5690029A (en) * 1979-12-24 1981-07-21 Nippon Shokubai Kagaku Kogyo Co Ltd Preparation of high-purity alkylene glycol
JP2000128814A (ja) * 1998-10-27 2000-05-09 Mitsubishi Chemicals Corp エチレングリコールの製造方法
JP2000143562A (ja) * 1998-11-06 2000-05-23 Mitsubishi Chemicals Corp エチレングリコールの製造方法
JP2000143563A (ja) * 1998-11-13 2000-05-23 Mitsubishi Chemicals Corp エチレングリコールの製造方法
JP2001031600A (ja) * 1999-07-14 2001-02-06 Nippon Shokubai Co Ltd 高純度モノエチレングリコールの製法
JP2001031601A (ja) * 1999-07-14 2001-02-06 Nippon Shokubai Co Ltd 高純度モノエチレングリコールの製造方法
WO2004069777A1 (ja) * 2003-02-07 2004-08-19 Mitsubishi Chemical Corporation アルキレン誘導体の製造方法及びアルキレン誘導体製造用触媒の再生方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013209329A (ja) * 2012-03-30 2013-10-10 Nippon Shokubai Co Ltd エチレングリコール類の製造方法
JP2014148481A (ja) * 2013-02-01 2014-08-21 Mitsubishi Chemicals Corp アルキレンカーボネートの製造方法
WO2020120305A1 (en) * 2018-12-10 2020-06-18 Shell Internationale Research Maatschappij B.V. Process for the preparation of ethylene glycol
EA039838B1 (ru) * 2018-12-10 2022-03-18 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ получения этиленгликоля
US11807594B2 (en) 2018-12-10 2023-11-07 Shell Usa, Inc. Process for the preparation of ethylene glycol
TWI825239B (zh) * 2018-12-10 2023-12-11 荷蘭商蜆殼國際研究所 用於製備乙二醇之方法

Also Published As

Publication number Publication date
JPWO2011136127A1 (ja) 2013-07-18
JP5725019B2 (ja) 2015-05-27
BR112012027617A2 (pt) 2016-08-09
KR101671155B1 (ko) 2016-10-31
TWI511947B (zh) 2015-12-11
BR112012027617B1 (pt) 2021-11-09
TW201141820A (en) 2011-12-01
KR20160039307A (ko) 2016-04-08
KR20130056242A (ko) 2013-05-29
KR101663347B1 (ko) 2016-10-06
CN102858727A (zh) 2013-01-02
SG185059A1 (en) 2012-12-28
CN102858727B (zh) 2014-09-24

Similar Documents

Publication Publication Date Title
US7253326B1 (en) Method for preparing trimethylolproane
JP5725019B2 (ja) アルキレンカーボネート及び/又はアルキレングリコールの製造方法
JP2010536560A (ja) 工業用ブラインの精製方法及び精製装置
US9963436B2 (en) Process for the manufacture of epoxy-monomers and epoxides
KR20120086352A (ko) 에틸렌카보네이트 및 에틸렌글리콜의 제조 방법
EP3369722B2 (en) Method for producing acetic acid
US7982061B2 (en) Process for producing epoxides
JPH0427972B2 (ja)
JP5511473B2 (ja) エチレングリコールの精製方法
JP2004262767A (ja) アルキレングリコールの製造方法
CN113166010B (zh) 用于制备乙二醇的工艺
JP4023117B2 (ja) エチレングリコールの製造方法
JP4273799B2 (ja) アルキレン誘導体の製造方法
JP2004292384A (ja) アルキレン誘導体の製造方法
JP2014148481A (ja) アルキレンカーボネートの製造方法
JP2001199914A (ja) エチレングリコールとエチレンカーボネートの併産方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180021036.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774910

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012512808

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1201005671

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127030331

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 9850/CHENP/2012

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 11774910

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012027617

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012027617

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121026