WO2011135876A1 - 冷凍サイクル装置及び冷媒循環方法 - Google Patents

冷凍サイクル装置及び冷媒循環方法 Download PDF

Info

Publication number
WO2011135876A1
WO2011135876A1 PCT/JP2011/051468 JP2011051468W WO2011135876A1 WO 2011135876 A1 WO2011135876 A1 WO 2011135876A1 JP 2011051468 W JP2011051468 W JP 2011051468W WO 2011135876 A1 WO2011135876 A1 WO 2011135876A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
refrigeration cycle
control valve
cycle apparatus
storage container
Prior art date
Application number
PCT/JP2011/051468
Other languages
English (en)
French (fr)
Inventor
真哉 東井上
野本 宗
博和 南迫
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP11774661.0A priority Critical patent/EP2565557B1/en
Priority to CN201180020973.6A priority patent/CN102869930B/zh
Priority to US13/636,304 priority patent/US9207004B2/en
Publication of WO2011135876A1 publication Critical patent/WO2011135876A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0011Ejectors with the cooled primary flow at reduced or low pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/053Compression system with heat exchange between particular parts of the system between the storage receiver and another part of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B5/00Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity
    • F25B5/04Compression machines, plants or systems, with several evaporator circuits, e.g. for varying refrigerating capacity arranged in series

Definitions

  • This invention relates to a refrigeration cycle apparatus provided with an ejector.
  • the present invention provides a highly reliable refrigeration cycle apparatus that avoids shaft baking due to exhaustion of refrigerator oil in the compressor shell.
  • an oil return hole is provided on the bottom side of a gas-liquid separator provided at an ejector outlet, and a bypass circuit in which the oil return hole and a compressor suction port are connected by piping. Is provided.
  • An object of the present invention is to provide a refrigeration cycle apparatus equipped with an ejector that can reliably return refrigeration oil to a compressor, without being limited to compatibility and incompatibility with a refrigerant.
  • the refrigeration cycle apparatus of the present invention is An ejector having a driving refrigerant inlet into which the driving refrigerant flows, a suction refrigerant inlet into which the suction refrigerant flows, and a mixed refrigerant outlet through which the mixed refrigerant mixed with the driving refrigerant and the suction refrigerant flows out;
  • a compressor, a radiator, a first flow control valve, a refrigerant storage container, a second flow control valve, and a first evaporator are connected in the order of piping, and the refrigerant outlet of the first evaporator is the suction refrigerant inlet of the ejector
  • a first refrigerant path connected by piping A second refrigerant path connected by piping in the order of the compressor and the second evaporator, wherein a refrigerant inlet of the second evaporator is connected by a pipe to the mixed refrigerant outlet of the ejector;
  • the refrigeration cycle apparatus of the present invention can provide a refrigeration cycle apparatus including an ejector that can reliably return refrigeration oil to the compressor without being limited to compatibility with the refrigerant and incompatibility with the refrigerant.
  • FIG. 3 is a refrigerant circuit diagram of a refrigeration cycle apparatus 1010 in the first embodiment.
  • FIG. 2 is a schematic diagram showing an internal structure of an ejector 109 in the first embodiment.
  • FIG. 3 is a schematic diagram of a refrigerant storage container 105 in the first embodiment.
  • 1 is a schematic diagram of a compressor 101 according to Embodiment 1.
  • FIG. FIG. 3 is a schematic diagram of a refrigerant storage container 105 in the first embodiment.
  • FIG. 3 is a schematic diagram of a refrigerant storage container 105 in the first embodiment.
  • FIG. 3 is a diagram showing an ejector having a needle valve in the first embodiment.
  • FIG. 6 is a schematic diagram of a refrigerant storage container 105 according to Embodiment 2.
  • FIG. FIG. 12 is a refrigerant circuit diagram of a refrigeration cycle apparatus 1030 according to Embodiment 3.
  • FIG. 12 is a Mollier diagram regarding the refrigeration cycle apparatus 1030 according to the third embodiment.
  • FIG. 1 is a schematic diagram showing a configuration of a refrigeration cycle apparatus 1010 in the first embodiment.
  • the refrigeration cycle apparatus 1010 includes a driving refrigerant inlet 1091 into which driving refrigerant flows, a suction refrigerant inlet 1092 into which suction refrigerant flows, and a mixed refrigerant outlet 1093 from which a mixed refrigerant in which driving refrigerant and suction refrigerant are mixed flows out.
  • an ejector 109 having the following.
  • a compressor 101, a condenser 103 which is a radiator, a first flow control valve 104, a refrigerant storage container 105, a second flow control valve 106, and a first evaporator 107 are connected in this order by refrigerant piping.
  • the refrigerant outlet of the first evaporator 107 has a first refrigerant path that is connected to the suction refrigerant inlet 1092 of the ejector 109 by a pipe.
  • the compressor 101 and the second evaporator 110 are connected in order by refrigerant piping, and the refrigerant inlet of the second evaporator 110 is connected by the mixed refrigerant outlet 1093 of the ejector 109 by refrigerant piping.
  • the refrigeration cycle apparatus 1010 branches off from the middle of the refrigerant pipe connecting the refrigerant outlet of the condenser 103 and the first flow rate control valve 104, and the third flow rate control valve 108 and the drive refrigerant inlet 1091 of the ejector 109 are in order. And a third refrigerant path connected by piping.
  • FIG. 2 is a diagram showing the configuration of the ejector 109.
  • the ejector 109 includes a nozzle unit 201, a mixing unit 202, and a diffuser unit 203.
  • the nozzle part 201 includes a pressure reducing part 201a (throttle part), a throat part 201b, and a divergent part 201c.
  • the ejector 109 flows in the high-pressure refrigerant (driving refrigerant) that has flowed out of the condenser 103 from the driving refrigerant inlet 1091, decompresses and expands the flowing driving refrigerant in the decompression unit 201 a, makes the sound velocity in the throat 201 b, and further expands the divergent part In 201c, the supersonic speed is reduced and accelerated. As a result, a super-high-speed gas-liquid two-phase refrigerant flows out from the nozzle part 201.
  • the refrigerant at the suction refrigerant inlet 1092 is drawn by the ultrahigh-speed refrigerant that has flowed out of the nozzle portion 201 (suction refrigerant).
  • the ultra-high speed driving refrigerant and the low-speed suction refrigerant begin to mix from the outlet of the nozzle unit 201, that is, the inlet of the mixing unit 202, and the pressure is recovered (increased) by exchanging the momentum.
  • the pressure is recovered by the deceleration due to the expansion of the flow path, and the mixed refrigerant in which the driving refrigerant and the suction refrigerant are mixed flows out from the mixed refrigerant outlet 1093 of the diffuser unit 203.
  • FIG. 3 is a diagram showing an outline of the internal configuration of the refrigerant storage container 105.
  • FIG. 3A is a plan view of the refrigerant storage container 105.
  • FIG. 3B is a longitudinal sectional view of the refrigerant storage container 105.
  • Two refrigerant pipes 301 and 302 are inserted from the upper side of the refrigerant storage container 105 to the vicinity of the bottom of the container.
  • the refrigerant pipe 301 is connected to the first flow control valve 104, and the refrigerant pipe 302 is connected to the second flow control valve 106.
  • the contact location 1051 between the refrigerant storage container 105 and the refrigerant pipes 301 and 302 is held and fixed by welding, so that airtightness in the container is secured.
  • the high-pressure liquid refrigerant staying at the bottom of the refrigerant storage container 105 and the refrigerating machine oil dissolved in the refrigerant flow out from the refrigerant pipe 302.
  • FIG. 4 is a schematic diagram showing the internal structure of the compressor 101.
  • the outline of the internal structure of the compressor 101 will be described with reference to FIG.
  • the shell 401 incorporates a compression mechanism and a drive mechanism.
  • the compressor 101 sucks low-pressure gas refrigerant from the suction pipe 402 and discharges high-pressure gas refrigerant from the discharge pipe 403.
  • the compression mechanism 404 is assumed to be a scroll type, but is not limited to the scroll type, and may be a rotary type or a piston type.
  • the gas refrigerant compressed by the compression mechanism 404 is once discharged into the shell space 405 and flows out from the discharge pipe 403 while filling the shell with high-pressure gas.
  • the drive mechanism is composed of a motor composed of a stator 407 and a rotor 408.
  • the rotor 408 is connected to the shaft 406 and rotates. This rotational motion is transmitted to the compression mechanism 404 to compress the refrigerant.
  • Refrigerating machine oil 409 is stored at the bottom of the shell 401. Refrigerating machine oil is supplied from the oil supply mechanism 410 to the compression mechanism 404 by the pressure difference between the pressure in the high-pressure space 405 and the low-pressure space inside the compression mechanism.
  • a part of the refrigeration oil supplied to the compression mechanism 404 is accompanied by the high-pressure gas refrigerant and flows out from the discharge pipe 403 to the condenser 103. That is, when the oil at the bottom of the shell 401 is depleted or reduced, the oil supply to the compression mechanism 404 is stagnated, causing a failure due to shaft baking.
  • FIG. 5 is a Mollier diagram of the refrigeration cycle apparatus 1010.
  • movement in the case of the heating operation of the refrigerating-cycle apparatus 1010 is demonstrated using the Mollier diagram shown in FIG.
  • the horizontal axis of the Mollier diagram in FIG. 5 indicates the specific enthalpy of the refrigerant, and the vertical axis indicates the pressure.
  • Each point such as A indicated by a black circle in the diagram indicates the refrigerant state ((A) indicated by a black circle) of each pipe in the refrigeration cycle apparatus 1010 of FIG.
  • the low-pressure refrigerant in the state A in the suction pipe 402 of the compressor 101 is compressed by the compression mechanism 404 as described above, and enters the state B and flows out of the compressor 101 together with the refrigerating machine oil.
  • the refrigerant in the state B passes through the four-way valve 102 and is cooled by exchanging heat with room air in the condenser 103 to be in the state C.
  • the refrigerant in the state C is divided into a refrigerant flowing to the drive refrigerant inlet 1091 of the ejector 109 and a refrigerant flowing to the first flow rate control valve 104.
  • the refrigerant in the state D decompressed by the first flow control valve 104 flows into the refrigerant storage container 105.
  • a liquid refrigerant having a high density stays on the bottom side of the container, and a gas refrigerant stays on the top of the container.
  • the state of the refrigerant flowing out of the refrigerant storage container 105 is a saturated liquid refrigerant, and the refrigeration oil dissolved in the liquid refrigerant flows out of the refrigerant storage container 105 together with the liquid refrigerant.
  • the liquid refrigerant and the refrigerating machine oil that have flowed out of the refrigerant storage container 105 are decompressed by the second flow rate control valve 106 to be in the state E and flow into the first evaporator 107.
  • the refrigerant is heated by heat exchange with the outside air in the first evaporator 107.
  • the refrigerant in the state C which is diverted from the condenser 103 and flows to the third flow rate control valve 108, is reduced in pressure to the state J and flows into the ejector 109.
  • the super-high-speed fluid in the state K decompressed by the nozzle unit 201 of the ejector is mixed with the suction refrigerant, that is, the refrigerant in the state F that has flowed out of the first evaporator 107 immediately after the exit of the nozzle unit 201 to be in the state G.
  • the pressure is increased by the mixing unit 202 and the diffuser unit 203 to be in the state H and flows out from the ejector 109.
  • the refrigerant in state H enters state I by heat exchange with the outside air in the second evaporator 110 and flows into the compression mechanism through the compressor suction pipe 402.
  • the refrigerating machine oil separated from the refrigerant returns to the bottom of the shell 501.
  • a refrigeration cycle is formed by the above operation.
  • the flow path of the four-way valve 102 is switched, and the high-temperature and high-pressure refrigerant sent from the compressor 101 flows into the second evaporator 110 (outdoor heat exchanger), and the outdoor heat is generated by the high-temperature and high-pressure refrigerant.
  • the frost attached to the exchange (second evaporator 110) is melted.
  • the second evaporator 110 functions as a condenser.
  • the refrigerant flows into the first evaporator 107 (outdoor heat exchanger) through the diffuser section 203, the mixing section 202, and the suction refrigerant inlet 1092 of the ejector 109, and melts frost adhering to the first evaporator 107.
  • the refrigerant obtains the second flow control valve 106, the refrigerant storage container 105, the first flow control valve 104, flows into the condenser 103 (indoor heat exchanger) at a low pressure, and is heated by the indoor air. It returns to the suction pipe 402 of the compressor 101 through the four-way valve 102.
  • the cooling operation can be realized by the same operation as the defrosting operation.
  • excess refrigerant is stored in the refrigerant storage container 105 at a position where the intermediate pressure is reached, and liquid refrigerant is caused to flow out of the refrigerant storage container 105. Therefore, the refrigeration oil dissolved in the refrigerant can be easily taken out together with the refrigerant and circulated. Therefore, since the refrigeration oil surely returns to the compressor 101, it is possible to avoid baking due to oil exhaustion of the compressor 101 and to obtain a highly reliable refrigeration cycle apparatus 1010. Thus, in the refrigeration cycle apparatus 1010, the refrigeration oil can be reliably returned to the compressor 101 with a simple configuration using the ejector 109.
  • the refrigerant is R410A and the refrigerating machine oil is compatible with a refrigerant such as ether oil.
  • the present invention is not limited to this.
  • FIG. 6 shows the structure of the refrigerant storage container 105 when incompatible refrigerating machine oil having a density of refrigerating machine oil smaller than that of the liquid refrigerant is used.
  • FIG. 6A is a plan view of the refrigerant storage container 105.
  • FIG. 6B is a longitudinal sectional view of the refrigerant storage container 105. In this case, since the refrigeration oil stays in the upper layer portion of the liquid refrigerant, only the liquid refrigerant flows out and the refrigeration oil does not return to the compressor 101 in the arrangement structure of the refrigerant pipes 301 and 302 shown in FIG.
  • oil return holes 301-1 and 302-1 are provided on the side surfaces of the refrigerant pipes 301 and 302 at positions where the oil layer exists, and the refrigerating machine oil is circulated together with the refrigerant.
  • the reason why the oil return holes are provided in both the refrigerant pipes 301 and 302 is that the reverse cycle is taken into consideration.
  • the oil return hole 302-1 is formed at a position of the dimension H2 from the opening on the container bottom side of the refrigerant pipe 302.
  • the dimension H2 is determined by the distance H4 between the bottom of the container and the opening, the height H1 to the liquid level of the liquid refrigerant to be stored, the thickness H3 of the layer of the refrigerating machine oil, etc.
  • the diameter of the oil return hole 302-1 depends on the position of the oil return hole, the viscosity of the refrigeration oil, etc. decide. The same applies to the oil return hole 301-1.
  • FIG. 7 shows the structure of the refrigerant storage container 105 when incompatible refrigerating machine oil having a density of refrigerating machine oil larger than that of the liquid refrigerant is used.
  • FIG. 7A is a plan view of the refrigerant storage container 105.
  • FIG. 7B is a longitudinal sectional view of the refrigerant storage container 105.
  • the refrigerating machine oil is deposited below the liquid refrigerant.
  • only the refrigeration oil flows out from the opening of the refrigerant pipe 302, and the evaporator performance deteriorates. Therefore, the opening of the refrigerant pipe 302 is closed, and an oil return hole 302-2 is provided at the closed place.
  • FIG. 7 shows an example in which one refrigerant outlet 302-3 is provided with respect to the refrigerant pipe 302.
  • the liquid refrigerant is surely provided. Just let it flow out. The above description is the same for the refrigerant pipe 301 during the reverse cycle.
  • the refrigerant used in the refrigeration cycle apparatus 1010 according to Embodiment 1 is not limited to a fluorocarbon refrigerant such as R410A, but propane, isobutane (hydrocarbon refrigerant), or carbon dioxide may be used. Even when propane or CO 2 is used, the effect of the first embodiment can be obtained. In this case, propane is a flammable refrigerant, but hot water or cold water generated by storing the evaporator and the condenser in the same casing and separating them, and circulating water through the condenser or evaporator of the refrigeration cycle apparatus 1010. Can be used as a safe air conditioner. Moreover, the same effect can be acquired even if it uses the HFO (hydrofluoroolefin) type refrigerant
  • HFO hydrofluoroolefin
  • FIG. 8 is a view showing an ejector 109 in which the needle valve 205 is integrated.
  • the third flow control valve 108 is provided on the upstream side of the ejector 109.
  • an ejector in which the ejector 109 and the movable needle valve 205 are integrated is used. Also good.
  • FIG. 8 (a) shows an overall view of an ejector with a needle valve.
  • FIG. 8B shows the structure of the needle valve 205.
  • the needle valve 205 includes a coil part 205a, a rotor part 205b, and a needle part 205c.
  • the coil unit 205a receives a pulse signal from a control signal transmission unit (not shown) via the signal cable 205d
  • the coil unit 205a generates a magnetic pole
  • the rotor unit 205b inside the coil rotates. Screws and needles are machined on the rotation shaft of the rotor portion 205b, and the rotation of the screws becomes an axial movement, and the needle portion 205c moves.
  • the needle portion 205c is moved in the left-right direction (XY direction) in the figure, so that the flow rate of the drive refrigerant flowing from the condenser 103 can be adjusted.
  • the function of the third flow control valve 108 can be replaced with a movable needle valve 205.
  • first flow rate control valve 104 and the second flow rate control valve 106 may perform flow rate adjustment using a capillary tube for the purpose of cost reduction.
  • FIG. 9 shows a refrigeration cycle apparatus 1020 according to the second embodiment.
  • FIG. 10 shows the structure of the refrigerant storage container 105 of the second embodiment.
  • FIG. 10A is a plan view of the refrigerant storage container 105.
  • FIG. 10B is a longitudinal sectional view of the refrigerant storage container 105.
  • the refrigerant pipe 310 that connects the second evaporator 110, the four-way valve 102, and the suction port 402 of the compressor 101 has a structure that passes through the inside of the refrigerant storage container 105.
  • the refrigerant pipe 310 may pass through the inside of the refrigerant storage container 105 as in FIG.
  • an internal heat exchanger 112 is connected between the refrigerant storage container 105 and the second flow control valve 106.
  • the refrigeration cycle apparatus 1020 branches off from the middle of the refrigerant pipe connecting the internal heat exchanger 112 and the refrigerant storage container 105, and includes a fourth flow control valve 111, a low-pressure side flow path 112a of the internal heat exchanger 112, and the compressor 101.
  • a refrigerant pipe 310 connecting the second evaporator 110 and the compressor 101 passes through the inside of the refrigerant storage container 105. For this reason, the refrigerant staying in the refrigerant storage container 105 and the refrigerant passing through the refrigerant pipe 310 exchange heat. By this heat exchange, the enthalpy of the refrigerant in the refrigerant storage container 105 is lowered, while the enthalpy of the refrigerant sucked into the compressor 101 is increased.
  • FIG. 11 shows a Mollier diagram of the refrigeration cycle apparatus 1020 in the second embodiment.
  • a in the figure indicates the state of the refrigerant in the refrigerant pipe of FIG.
  • the refrigerant in state C flowing out of the condenser 103 is decompressed by the first flow control valve 104 and then flows into the refrigerant storage container 105.
  • the refrigerant storage container 105 exchanges heat with the low-pressure and low-temperature refrigerant, and enters the state D ′.
  • the saturated liquid refrigerant in the state D ′ flowing out from the refrigerant storage container 105 is divided into a refrigerant flowing to the bypass circuit 121 and a main refrigerant flowing to the first evaporator 107.
  • the refrigerant flowing to the bypass circuit 121 is depressurized by the fourth flow control valve 111 to be in the state L and flows into the internal heat exchanger 112.
  • the state M is reached by being heated by the high-pressure main refrigerant.
  • the refrigerant in the state M is mixed with the refrigerant in the state I ′ flowing out from the refrigerant pipe 310 in the refrigerant storage container 105 to be in the state A and sucked into the compressor 101.
  • the refrigerating machine oil flowing through the bypass circuit 121 flows in a state where the refrigerating machine oil is mixed in the same manner as the main refrigerant, the refrigerating machine oil always returns to the compressor, and oil depletion can be avoided.
  • Embodiment 3 FIG. A refrigeration cycle apparatus 1030 according to Embodiment 3 will be described with reference to FIGS. Embodiment 3 avoids exhaustion of refrigerating machine oil and uses a compressor with an injection port in an environment where the suction density of the compressor 101 is small at low outside air temperatures and the heating capacity is reduced. Improve heating capacity.
  • FIG. 12 is a refrigerant circuit diagram of the refrigeration cycle apparatus 1030 in the third embodiment.
  • the bypass circuit 121 of the refrigeration cycle apparatus 1020 of the second embodiment is connected to the suction pipe of the compressor 101.
  • the bypass circuit 122 of the refrigeration cycle apparatus 1030 of the third embodiment is connected to the injection port 101-1 of the compressor 101. The connection point is different.
  • an internal heat exchanger 112 is connected between the refrigerant storage container 105 and the second flow rate control valve 106. Branching from the refrigerant pipe connecting the internal heat exchanger 112 and the refrigerant storage container 105, the fourth flow rate control valve 111, the low pressure side flow path 112a of the internal heat exchanger, and the intermediate pressure portion 101-1 of the compressor 101 with the injection port. And pipes are connected sequentially.
  • the compressor 101 with an injection port may be a two-stage compressor having an integral structure or two compressors arranged in series.
  • FIG. 13 shows a Mollier diagram of the refrigeration cycle apparatus 1030 in the third embodiment, and A and the like in the figure show the state of the refrigerant in the refrigerant pipe of FIG.
  • the liquid refrigerant (state E) that has flowed out of the refrigerant storage container 105 is divided into a refrigerant that flows to the bypass circuit 122 and a main refrigerant that flows to the first evaporator 107.
  • the refrigerant flowing to the bypass circuit 122 is depressurized by the fourth flow control valve 111 to be in the state L and flows into the internal heat exchanger 112.
  • the state M is reached by being heated by the high-pressure main refrigerant.
  • the refrigerant in the state M is mixed with the refrigerant in the state B ′ whose pressure has been increased to the intermediate pressure of the compressor 101, enters the state A ′, and is compressed again.
  • the refrigerant circulation amount of the condenser 103 is increased and the heating capacity can be improved.
  • the refrigerating machine oil flowing through the bypass circuit 122 flows in a state in which refrigerating machine oil is mixed in the same manner as the main refrigerant, the refrigerating machine oil always returns to the compressor, and oil depletion can be avoided.
  • the refrigeration cycle apparatus in the first to third embodiments described above is not limited to an air conditioner, but is an air heat source water heater using a water heat exchanger as a condenser and an air heat source using a water heat exchanger as an evaporator. You may utilize for the chiller and the brine cooler, and also the heat pump chiller which utilized the water heat exchanger for the evaporator and the condenser.
  • the refrigeration cycle apparatus can provide a highly reliable refrigeration cycle apparatus because a refrigeration cycle apparatus using an ejector can avoid a failure due to seizure caused by exhaustion of compressor refrigeration oil. In addition, since an oil return mechanism is unnecessary, a low-cost refrigeration cycle apparatus can be provided.
  • this refrigeration cycle apparatus can be grasped as a refrigerant circulation method as described below. That is, Using an ejector having a driving refrigerant inlet into which the driving refrigerant flows in, a suction refrigerant inlet into which the suction refrigerant flows in, and a mixed refrigerant outlet through which the mixed refrigerant mixed with the driving refrigerant and the suction refrigerant flows out.
  • a compressor, a radiator, a first flow control valve, a refrigerant storage container, a second flow control valve, and a first evaporator are connected in the order of piping, and the refrigerant outlet of the first evaporator is the suction refrigerant inlet of the ejector Forming a first refrigerant path connected with the pipe,
  • the compressor and the second evaporator are connected by piping in this order, and the refrigerant inlet of the second evaporator forms a second refrigerant path connected by piping with the mixed refrigerant outlet of the ejector,
  • a third refrigerant path branched from the middle of the pipe connecting the refrigerant outlet of the radiator and the first flow control valve, and connected by a pipe in the order of the third flow control valve and the drive refrigerant inlet of the ejector.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Compressor (AREA)

Abstract

 冷媒への相溶性および非相溶性に限定せず、冷凍機油を確実に圧縮機へ戻すことができる冷凍サイクル装置を提供する。冷凍サイクル装置1010は、圧縮機101、凝縮器103、第一流量制御弁104、冷媒貯留容器105、第二流量制御弁106、第一蒸発器107の順に配管で接続され、第一蒸発器107の冷媒出口がエジェクタ109の吸引冷媒流入口1092と配管で接続される第1冷媒経路と、圧縮機101、第二蒸発器110の順に配管で接続され、第二蒸発器110の冷媒入口がエジェクタ109の混合冷媒流出口1093と配管で接続される第2冷媒経路と、凝縮器103の冷媒出口と第一流量制御弁104とを接続する配管の途中から分岐し、第三流量制御弁108、エジェクタ109の駆動冷媒流入口1091の順に配管で接続される第三冷媒経路とを備えた。

Description

冷凍サイクル装置及び冷媒循環方法
 この発明は、エジェクタを備えた冷凍サイクル装置に関するものである。例えばこの発明は、圧縮機シェル内の冷凍機油の枯渇による軸焼付けを回避し、信頼性の高い冷凍サイクル装置を提供する。
 従来のエジェクタを備えた冷凍サイクル装置として、特許文献1では、エジェクタ出口に備えた気液分離器の底側に油戻し穴を設け、この油戻し穴と圧縮機吸入口を配管接続したバイパス回路を設けている。
 このような構成により、気液分離器内の底部に滞留した冷凍機油を圧縮機に戻すことができるため、圧縮機の焼付けを回避できる。
特開2002-130874号公報(請求項1、第1図)
 従来例では、冷媒に対して非相溶性の冷凍機油、例えばポリアルキレングリコール(PAG)を使用した場合、気液分離器内に滞留した液冷媒と冷凍機油が分離するため、冷凍機油のみを圧縮機へ戻すことができる。しかしながら、液冷媒に溶解する相溶性の冷凍機油、例えばエーテル油では、冷凍機油と液冷媒が同時に圧縮機へ戻るため、冷凍機油の戻り量が減少し、圧縮機内の油が枯渇する原因となる。
 また、油戻り量を増加させるために流量を増大させると、多量の液冷媒が圧縮機へ流入し、液冷媒の圧縮による圧縮機内の圧力上昇により異常停止、もしくは圧縮機の構成部品が破損する恐れがある。
 この発明の目的は、冷媒への相溶性および非相溶性に限定せず、冷凍機油を確実に圧縮機へ戻すことができる、エジェクタを備えた冷凍サイクル装置の提供である。
 この発明の冷凍サイクル装置は、
 駆動冷媒の流入する駆動冷媒流入口と、吸引冷媒の流入する吸引冷媒流入口と、駆動冷媒と吸引冷媒との混合された混合冷媒が流出する混合冷媒流出口とを有するエジェクタを備え、冷媒を循環させる冷凍サイクル装置において、
 圧縮機、放熱器、第一流量制御弁、冷媒貯留容器、第二流量制御弁、第一蒸発器の順に配管で接続され、前記第一蒸発器の冷媒出口が前記エジェクタの前記吸引冷媒流入口と配管で接続される第一冷媒経路と、
 前記圧縮機、第二蒸発器の順に配管で接続され、前記第二蒸発器の冷媒入口が前記エジェクタの前記混合冷媒流出口と配管で接続される第二冷媒経路と、
 前記放熱器の冷媒出口と前記第一流量制御弁とを接続する配管の途中から分岐し、第三流量制御弁、前記エジェクタの前記駆動冷媒流入口の順に配管で接続される第三冷媒経路と
を備えたことを特徴とする。
 本発明の冷凍サイクル装置により、冷媒への相溶性および非相溶性に限定せず、冷凍機油を確実に圧縮機へ戻すことができる、エジェクタを備えた冷凍サイクル装置を提供できる。
実施の形態1における冷凍サイクル装置1010の冷媒回路図。 実施の形態1におけるエジェクタ109の内部構造を示す模式図。 実施の形態1における冷媒貯留容器105の模式図。 実施の形態1における圧縮機101の模式図。 実施の形態1における冷凍サイクル装置1010に関するモリエル線図。 実施の形態1における冷媒貯留容器105の模式図。 実施の形態1における冷媒貯留容器105の模式図。 実施の形態1におけるニードル弁を持つエジェクタを示す図。 実施の形態2における冷凍サイクル装置1020の冷媒回路図。 実施の形態2における冷媒貯留容器105の模式図。 実施の形態2における冷凍サイクル装置1020に関するモリエル線図。 実施の形態3における冷凍サイクル装置1030の冷媒回路図。 実施の形態3における冷凍サイクル装置1030に関するモリエル線図。
 実施の形態1.
(冷凍サイクル装置1010の構成)
 図1~図8を参照して実施の形態1を説明する。
 図1は、実施の形態1における冷凍サイクル装置1010の構成を示す模式図である。冷凍サイクル装置1010は、駆動冷媒の流入する駆動冷媒流入口1091と、吸引冷媒の流入する吸引冷媒流入口1092と、駆動冷媒と吸引冷媒との混合された混合冷媒が流出する混合冷媒流出口1093とを有するエジェクタ109を備えている。
 冷凍サイクル装置1010は、圧縮機101、放熱器である凝縮器103、第一流量制御弁104、冷媒貯留容器105、第二流量制御弁106、第一蒸発器107が、順に、冷媒配管で接続され、第一蒸発器107の冷媒出口がエジェクタ109の吸引冷媒流入口1092と配管で接続される第一冷媒経路を有する。また、冷凍サイクル装置1010は、圧縮機101、第二蒸発器110が、順に、冷媒配管で接続され、第二蒸発器110の冷媒入口がエジェクタ109の混合冷媒流出口1093と冷媒配管で接続される第二冷媒経路を有する。さらに冷凍サイクル装置1010は、凝縮器103の冷媒出口と第一流量制御弁104とを接続する冷媒配管の途中から分岐し、第三流量制御弁108、エジェクタ109の駆動冷媒流入口1091が、順に、配管で接続される第三冷媒経路を備える。
(エジェクタ109の構成)
 図2は、エジェクタ109の構成を示す図である。エジェクタ109は、ノズル部201、混合部202、ディフューザー部203で構成される。ノズル部201は、減圧部201a(絞り部)、喉部201b、末広部201cで構成される。エジェクタ109は、凝縮器103から流出した高圧の冷媒(駆動冷媒)を駆動冷媒流入口1091から流入し、流入した駆動冷媒を減圧部201aで減圧膨張させて喉部201bで音速とし、更に末広部201cで超音速として減圧・加速させる。これにより超高速の気液二相冷媒がノズル部201から流出する。一方、吸引冷媒流入口1092の冷媒は、ノズル部201から流出した超高速の冷媒により引き込まれる(吸引冷媒)。ノズル部201の出口、つまり、混合部202の入口から超高速の駆動冷媒と低速の吸引冷媒とが混ざり合いはじめ、互いの運動量交換により圧力が回復(上昇)する。さらに、ディフューザー部203においても流路拡大による減速で圧力が回復し、ディフューザー部203の混合冷媒流出口1093から駆動冷媒と吸引冷媒との混合した混合冷媒が流出する。
 図3は、冷媒貯留容器105の内部構成の概略を示す図である。図3の(a)は冷媒貯留容器105の平面図である。図3の(b)は、冷媒貯留容器105の縦断面図である。冷媒配管301、302の2本が、冷媒貯留容器105の上側から容器の底部付近まで挿入されている。冷媒配管301は、第一流量制御弁104と接続し、冷媒配管302は第二流量制御弁106と接続する。冷媒貯留容器105と冷媒配管301、302の接触箇所1051は、溶接により保持固定されることで、容器内の気密性が確保される。
 このような構造により、冷媒貯留容器105の底部に滞留した高圧の液冷媒と、冷媒に溶け込んだ冷凍機油が冷媒配管302から流出する。
(圧縮機101の構成)
 図4は、圧縮機101の内部構造を示す模式図である。図4を用いて圧縮機101の内部構造の概要を説明する。シェル401は圧縮機構、駆動機構を内蔵する。圧縮機101は、吸入管402から低圧ガス冷媒を吸入し、吐出管403から高圧ガス冷媒を吐出する。圧縮機構404は、図4の場合はスクロールタイプを想定して図示しているが、スクロールタイプに限らず、ロータリ型でもピストン型でもよい。圧縮機構404によって圧縮されたガス冷媒は、一旦シェル空間405に吐出され、シェル内を高圧ガスで満たしながら吐出管403から流出する。
 駆動機構はステータ407とローター408とからなるモータで構成される。ローター408は軸406と連結されて回転する。この回転運動が圧縮機構404に伝えられて冷媒を圧縮する。シェル401の底部には冷凍機油409が貯留されている。高圧空間405の圧力と、圧縮機構内部の低圧空間との圧力差によって、給油機構410から圧縮機構404に冷凍機油が供給される。圧縮機構404に供給された冷凍機油は、その一部が高圧ガス冷媒に同伴されて吐出管403から凝縮器103へ流出する。つまり、シェル401の底部の油が枯渇または減少すると圧縮機構404への給油が滞り、軸焼付けによる故障の原因となる。
(動作の説明)
 図5は、冷凍サイクル装置1010のモリエル線図である。図5に示すモリエル線図を用いて、冷凍サイクル装置1010の暖房運転の場合の動作を説明する。図5のモリエル線図の横軸は冷媒の比エンタルピを示し、縦軸は圧力を示す。線図中に黒丸で示すA等の各点は、図1の冷凍サイクル装置1010における各配管の冷媒状態(黒丸で示す(A)等)を示す。
 圧縮機101の吸入管402における状態Aの低圧冷媒は、先述したように、圧縮機構404で圧縮され、状態Bとなって冷凍機油とともに圧縮機101を流出する。状態Bとなった冷媒は四方弁102を通り、凝縮器103にて室内空気と熱交換することで冷却されて状態Cとなる。状態Cの冷媒はエジェクタ109の駆動冷媒流入口1091へ流れる冷媒と第一流量制御弁104へ流れる冷媒とに分流する。第一流量制御弁104で減圧された状態Dの冷媒は、冷媒貯留容器105へ流入する。冷媒貯留容器105では、密度の大きい液冷媒が容器の底側に滞留し、ガス冷媒が容器上部に滞留する。冷媒貯留容器105から流出する冷媒の状態は飽和液冷媒であり、液冷媒に溶け込んだ冷凍機油が液冷媒とともに冷媒貯留容器105から流出する。冷媒貯留容器105から流出した液冷媒と冷凍機油とは、第二流量制御弁106で減圧されて状態Eとなり、第一蒸発器107へ流入する。冷媒は、第一蒸発器107で外気との熱交換により加熱された状態となる。
 一方、凝縮器103から分流して第三流量制御弁108へ流れた状態Cの冷媒は、圧力が低下して状態Jとなり、エジェクタ109へ流入する。エジェクタのノズル部201で減圧された状態Kの超高速流体は、ノズル部201の出口直後で吸引冷媒、つまり、第一蒸発器107を流出した状態Fの冷媒と混合し、状態Gとなる。混合部202、ディフューザー部203で昇圧して状態Hとなり、エジェクタ109から流出する。
 状態Hの冷媒は、第二蒸発器110にて外気との熱交換により状態Iとなり、圧縮機吸入管402を通って圧縮機構へ流入する。冷媒から分離した冷凍機油はシェル501の底部に戻る。以上の動作により冷凍サイクルが形成される。
(除霜運転の場合)
 次に冷凍サイクル装置1010の除霜運転の場合を説明する。暖房運転において室外熱交換器(第一蒸発器107、第二蒸発器110)は蒸発器として機能するため、室外熱交換内を流れる冷媒の飽和温度は外気よりも低い温度となる。蒸発温度が0℃未満になると、大気中の水蒸気が霜となって室外熱交換器に付着する。
 室外熱交換器に霜が付着すると熱抵抗が増大して蒸発能力が低下するため、定期的に除霜運転を実施する必要がある。除霜運転では四方弁102を切り替え、第三流量制御弁108を全閉する。除霜運転では暖房運転時における放熱器が吸熱器とし機能し、吸熱器が放熱器として機能する。
 霜取り運転が開始すると、四方弁102の流路が切り替わり、圧縮機101から送出された高温高圧の冷媒が、第二蒸発器110(室外熱交換器)へ流入し、高温高圧の冷媒により室外熱交換(第二蒸発器110)に付着した霜が融解される。この場合、第二蒸発器110は凝縮器として機能する。その後、冷媒は、エジェクタ109のディフューザー部203、混合部202、吸引冷媒流入口1092を経て、第一蒸発器107(室外熱交換器)へ流入し、第一蒸発器107に付着した霜を融解する。冷媒は、第二流量制御弁106、冷媒貯留容器105、第一流量制御弁104を得て、低圧となって凝縮器103(室内熱交換器)に流入し、室内空気により加熱された後、四方弁102を通って、圧縮機101の吸入管402に戻る。
(冷房運転)
 冷房運転は、除霜運転と同じ動作により実現できる。
 以上のように、本実施の形態1の冷凍サイクル装置1010では、中間圧力となる位置で余剰冷媒を冷媒貯留容器105に貯留し、液冷媒を冷媒貯留容器105から流出させる。従って、冷媒に溶け込んだ冷凍機油を冷媒とともに容易に取り出し、循環させることができる。よって、冷凍機油は確実に圧縮機101へ戻るので、圧縮機101の油枯渇による焼付けを回避でき、信頼性の高い冷凍サイクル装置1010を得ることができる。このように、冷凍サイクル装置1010では、エジェクタ109を利用した簡易な構成で、冷凍機油を確実に圧縮機101へ戻すことができる。
 本実施の形態1では、冷媒がR410A、冷凍機油がエーテル油のような冷媒に対して相溶性のあるものを対象として説明したが、これに限るものではない。
(非相溶性の冷凍機油の場合)
 図6は、冷凍機油の密度が液冷媒より小さい非相溶性の冷凍機油を用いた場合の冷媒貯留容器105の構造を示す。図6の(a)は冷媒貯留容器105の平面図である。図6の(b)は、冷媒貯留容器105の縦断面図である。この場合、冷凍機油は液冷媒の上層部に滞留するため、図3に示す冷媒配管301、302の配置構造では、液冷媒のみが流出して冷凍機油が圧縮機101へ戻らない。このため、油層が存在する位置の冷媒配管301、302の側面に油戻し穴301-1、302-1を設け、冷凍機油を冷媒と共に循環させる。なお、冷媒配管301、302の両方に油戻し穴を設けるのはリバースサイクルを考慮したからである。油戻し穴302-1は、冷媒配管302の容器底部側の開口から寸法H2の位置に形成される。寸法H2は、容器底部と開口との距離H4、貯留される液冷媒の液面までの高さH1、冷凍器油の層の厚さH3等によって決まるが、これらの諸元は、冷媒貯留容器105の形状や冷凍サイクル装置1010の性能などから決定される。油戻し穴302-1の個数の制約はなく、冷凍機油が確実に流出するならば、単数個でも構わない。また、油戻し穴302-1の直径が大きすぎると冷凍機油のみが流出して蒸発器性能が低下するので、油戻し穴302-1の直径は油戻し穴の位置、冷凍機油の粘度などにより決定する。油戻し穴301-1についても同様である。
 図7は、冷凍機油の密度が液冷媒より大きい非相溶性の冷凍機油を用いた場合の冷媒貯留容器105の構造を示す。図7の(a)は冷媒貯留容器105の平面図である。図7の(b)は、冷媒貯留容器105の縦断面図である。この場合、冷凍機油は、液冷媒の下側に沈殿する。このような場合、冷媒配管302の開口部から冷凍機油のみが流出し、蒸発器性能が低下する。このため、冷媒配管302の開口部を閉塞して、閉塞した箇所に油戻し穴302-2を設ける。さらに、冷媒配管302において、図6の油戻し穴302-1と同様に、液冷媒の層が存在する位置に冷媒流出口302-3を設ける。油戻し穴302-2と冷媒流出口302-3とによって、冷凍機油と液冷媒とが冷媒貯留容器105から流出する。図7には冷媒流出口302-3は冷媒配管302に対して1個を備えた例を示しているが、垂直方向に複数個設けることで、液面が低下した場合においても確実に液冷媒が流出ようにすればよい。以上の説明はリバースサイクル時における冷媒配管301についても同様である。
 実施の形態1の冷凍サイクル装置1010に用いる冷媒は、R410Aなどのフロン系冷媒に限らず、プロパンやイソブタン(炭化水素系冷媒)、二酸化炭素を用いてもよい。プロパンまたはCOを利用した場合でも、本実施の形態1の効果を得ることができる。この場合、プロパンは可燃性冷媒であるが、蒸発器と凝縮器とを同じ筐体内に収納して隔離設置し、冷凍サイクル装置1010の凝縮機または蒸発器に水を循環さて生成した温水または冷水を室内に循環することで安全な空調機として利用できる。また、低GWP冷媒のHFO(ハイドロフルオロオレフィン)系冷媒やその混合冷媒を用いても同様の効果を得ることができる。
 図8は、ニードル弁205を一体構造としたエジェクタ109を示す図である。図1では、エジェクタ109の上流側に第三流量制御弁108を備えた構成であるが、図8に示すようにエジェクタ109と可動式のニードル弁205とを一体構造としたエジェクタを利用してもよい。
 図8の(a)は、ニードル弁付きのエジェクタの全体図を示す。図8の(b)は、ニードル弁205の構造を示す。ニードル弁205はコイル部205a、ローター部205b、ニードル部205cで構成される。コイル部205aは図示しない制御信号送信部から信号ケーブル205dを介してパルス信号を受信すると、磁極を発生し、コイル内部のローター部205bが回転する。ローター部205bの回転軸にはネジとニードルが加工してあり、ねじの回転が軸方向の動きとなり、ニードル部205cが移動する。このニードル部205cを図の左右方向(XY方向)に動かして、凝縮器103から流入する駆動冷媒の流量調整の可能な構造にする。この構造により、第三流量制御弁108の機能を可動式のニードル弁205で置き換えることができる。これにより、エジェクタ109と第三流量制御弁108とを一体構造化できるため、両者を接続する配管がなくなり、コストを削減することができる。
 さらに、第一流量制御弁104、第二流量制御弁106は、コスト低減を目的に毛細管を利用して流量調整を行ってもよい。
 実施の形態2.
 図9~図11を参照して実施の形態2を説明する。
 図9は実施の形態2の冷凍サイクル装置1020を示す。
 図10は、実施の形態2の冷媒貯留容器105の構造を示す。図10の(a)は冷媒貯留容器105の平面図である。図10の(b)は、冷媒貯留容器105の縦断面図である。実施の形態2では、第二蒸発器110と四方弁102、圧縮機101の吸入口402を接続する冷媒配管310が、冷媒貯留容器105の内部を通った構造となっている。なお実施の形態1を示す図1においても、図9と同様に、冷媒配管310が冷媒貯留容器105の内部を通過する構成にしてもよい。
 また、冷媒貯留容器105と第二流量制御弁106との間に、内部熱交換器112が接続されている。冷凍サイクル装置1020は、内部熱交換器112と冷媒貯留容器105とを接続する冷媒配管の途中から分岐し、第四流量制御弁111、内部熱交換器112の低圧側流路112a、圧縮機101の吸入口が、順に配管で接続されたバイパス回路121を有する。
 第二蒸発器110と圧縮機101とを接続する冷媒配管310が、冷媒貯留容器105の内部を通している。このため、冷媒貯留容器105に滞留する冷媒と、冷媒配管310を通過する冷媒とが熱交換する。この熱交換により、冷媒貯留容器105の冷媒のエンタルピが低くなり、一方、圧縮機101へ吸入される冷媒のエンタルピは高くなる。
 図11は実施の形態2における冷凍サイクル装置1020のモリエル線図を示す。図中のA等は、図9の冷媒配管における冷媒の状態を示す。凝縮器103から流出した状態Cの冷媒は第一流量制御弁104で減圧されたのち、冷媒貯留容器105へ流入する。冷媒貯留容器105で低圧低温の冷媒と熱交換器し、状態D’となる。冷媒貯留容器105から流出した状態D’の飽和液冷媒は、バイパス回路121へ流れる冷媒と第一蒸発器107へ流れる主冷媒に分流される。バイパス回路121へ流れる冷媒は、第四流量制御弁111で減圧されて状態Lとなり、内部熱交換器112へ流入する。内部熱交換器112では、高圧の主冷媒により加熱されて状態Mとなる。状態Mの冷媒は冷媒貯留容器105内の冷媒配管310から流出した状態I’の冷媒と混合して状態Aとなって圧縮機101へ吸入される。
 バイパス回路121により第一蒸発器107への冷媒流量が減少するため、第一蒸発器107での圧力損失が低減し、吸引冷媒流入口1092(エジェクタ吸引部)の圧力が上昇する。この結果、圧縮機の吸入圧力を更に高くすることが可能である。内部熱交換器112で過冷却液にし、冷媒流量の減少分を蒸発潜熱の拡大で補うことで、冷媒をバイパスさせない場合と同様の蒸発能力を維持できる。
 バイパス回路121を流れる冷媒は主冷媒と同様に冷凍機油が混ざった状態で流れているため、冷凍機油は必ず圧縮機へと戻り、油枯渇を回避できる。
 実施の形態3.
 図12、図13を参照して実施の形態3の冷凍サイクル装置1030を説明する。実施の形態3では、冷凍機油の枯渇を回避すると共に、低外気温度において圧縮機101の吸入密度が小さくり、暖房能力が低下するような環境において、インジェクションポート付きの圧縮機を利用することで暖房能力を向上する。
 図12は、実施の形態3における冷凍サイクル装置1030の冷媒回路図である。実施の形態2の冷凍サイクル装置1020のバイパス回路121は圧縮機101の吸入配管に接続したが、この実施の形態3の冷凍サイクル装置1030のバイパス回路122は、圧縮機101のインジェクションポート101-1に接続する点が異なる。
 実施の形態3では、冷媒貯留容器105と第二流量制御弁106との間に内部熱交換器112が接続されている。内部熱交換器112と冷媒貯留容器105を接続する冷媒配管から分岐し、第四流量制御弁111、内部熱交換器の低圧側流路112a、インジェクションポート付き圧縮機101の中間圧力部101-1と順次配管接続されている。インジェクションポート付き圧縮機101は、一体構造の二段圧縮機、若しくは、圧縮機2機を直列配置してもよい。
 図13は実施の形態3における冷凍サイクル装置1030のモリエル線図を示し、図中のA等は図10の冷媒配管における冷媒の状態を示す。冷媒貯留容器105から流出した液冷媒(状態E)は、バイパス回路122へ流れる冷媒と第一蒸発器107へ流れる主冷媒に分流される。バイパス回路122へ流れる冷媒は、第四流量制御弁111で減圧されて状態Lとなり、内部熱交換器112へ流入する。内部熱交換器112では、高圧の主冷媒により加熱されて状態Mとなる。状態Mの冷媒は圧縮機101の中間圧力まで昇圧された状態B’の冷媒と混合し、状態A’となり、再び圧縮される。
 バイパス側の冷媒を圧縮機の中間圧にインジェクションすることで、凝縮器103の冷媒循環量が増大し、暖房能力を向上できる。
 バイパス回路122を流れる冷媒は、主冷媒と同様に冷凍機油が混ざった状態で流れているため、冷凍機油は必ず圧縮機へと戻り、油枯渇を回避できる。
 以上の実施の形態1~3における冷凍サイクル装置は、空調装置に限定せず、凝縮器に水熱交換器を利用した空気熱源の給湯装置、蒸発器に水熱交換器を利用した空気熱源のチラーやブラインクーラー、さらに、蒸発器と凝縮器に水熱交換器を利用したヒートポンプチラーに利用してもよい。
 以上の実施の形態1~3の冷凍サイクル装置は、エジェクタを用いた冷凍サイクル装置において、圧縮機の冷凍機油の枯渇に起因する焼付けによる故障を回避できるため、信頼性の高い冷凍サイクル装置を提供できると共に、油戻し機構が不要なため、低コストの冷凍サイクル装置を提供できる。
 以上の実施の形態1~3では圧縮機、流量制御弁、四方弁等の制御を受けて動作する機器を説明したが、これらの機器は、図示していない制御装置(あるいは制御部)によって、制御される。
 以上の実施の形態1~3では冷凍サイクル装置を説明したが、この冷凍サイクル装置を以下のような冷媒循環方法として把握することも可能である。
 すなわち、
 駆動冷媒の流入する駆動冷媒流入口と、吸引冷媒の流入する吸引冷媒流入口と、駆動冷媒と吸引冷媒との混合された混合冷媒が流出する混合冷媒流出口とを有するエジェクタを用いて冷媒を循環させる冷媒循環方法において、
 圧縮機、放熱器、第一流量制御弁、冷媒貯留容器、第二流量制御弁、第一蒸発器の順に配管で接続され、前記第一蒸発器の冷媒出口が前記エジェクタの前記吸引冷媒流入口と配管で接続される第一冷媒経路を形成し、
 前記圧縮機、第二蒸発器の順に配管で接続され、前記第二蒸発器の冷媒入口が前記エジェクタの前記混合冷媒流出口と配管で接続される第二冷媒経路を形成し、
 前記放熱器の冷媒出口と前記第一流量制御弁とを接続する配管の途中から分岐し、第三流量制御弁、前記エジェクタの前記駆動冷媒流入口の順に配管で接続される第三冷媒経路を形成して、前記冷媒を循環させる媒循環方法。
 101 圧縮機、102 四方弁、103 凝縮器、104 第一流量制御弁、105 冷媒貯留容器、106 第二流量制御弁、107 第一蒸発器、108 第三流量制御弁、109 エジェクタ、1091 駆動冷媒流入口、1092 吸引冷媒流入口、1093 混合冷媒流出口、110 第二蒸発器、111 第四流量制御弁、12 内部熱交換器、121,122 バイパス回路、201 ノズル部、201a 減圧部、201b 喉部、201c 末広部、202 混合部、203 ディフューザー部、204 吸引部、205 ニードル弁、205a コイル部、205b ローター部、205c ニードル部、205d 信号ケーブル、301,302,310 冷媒配管、301-1,302-1,301-2,302-2 油戻し穴、301-3,302-3 冷媒流出口、1010,1020,1030 冷凍サイクル装置。

Claims (11)

  1.  駆動冷媒の流入する駆動冷媒流入口と、吸引冷媒の流入する吸引冷媒流入口と、駆動冷媒と吸引冷媒との混合された混合冷媒が流出する混合冷媒流出口とを有するエジェクタを備え、冷媒を循環させる冷凍サイクル装置において、
     圧縮機、放熱器、第一流量制御弁、冷媒貯留容器、第二流量制御弁、第一蒸発器の順に配管で接続され、前記第一蒸発器の冷媒出口が前記エジェクタの前記吸引冷媒流入口と配管で接続される第一冷媒経路と、
     前記圧縮機、第二蒸発器の順に配管で接続され、前記第二蒸発器の冷媒入口が前記エジェクタの前記混合冷媒流出口と配管で接続される第二冷媒経路と、
     前記放熱器の冷媒出口と前記第一流量制御弁とを接続する配管の途中から分岐し、第三流量制御弁、前記エジェクタの前記駆動冷媒流入口の順に配管で接続される第三冷媒経路と
    を備えたことを特徴とする冷凍サイクル装置。
  2.  前記冷凍サイクル装置は、さらに、
     前記冷媒貯留容器と前記第二流量制御弁との間に配置され、前記冷媒貯留容器と前記第二流量制御弁とに配管で接続された内部熱交換器と、
     前記冷媒貯留容器と前記内部熱交換器とを接続する配管から分岐し、第四流量制御弁、前記内部熱交換器の順に接続され、前記内部熱交換器を経て前記圧縮機と前記第二蒸発器とを接続する配管の途中に接続されるバイパス回路と
    を備えたことを特徴とする請求項1の冷凍サイクル装置。
  3.  前記第二蒸発器と前記圧縮機とを接続する前記配管は、
     前記冷媒貯留容器の内部を通過することを特徴とする請求項1または2のいずれかに記載する冷凍サイクル装置。
  4.  前記冷媒貯留容器は、
     容器上部から挿入され、開口である端部が容器底部の付近に位置し、前記開口から冷媒が流入する冷媒流入管と、
     前記容器上部から挿入され、開口である端部が前記容器底部の付近に位置し、前記開口から冷媒が流出する冷媒流出管と
    を備えたことを特徴とする請求項1~3のいずれかに記載の冷凍サイクル装置。
  5.  前記冷媒貯留容器の前記冷媒流出管は、
     前記容器底部の付近の前記端部から前記容器上部までの途中に、少なくとも一つの油戻し穴が側面に形成されたことを特徴とする請求項4記載の冷凍サイクル装置。
  6.  前記冷媒貯留容器の前記冷媒流入管は、
     前記容器底部の付近の前記端部から前記容器上部までの途中に、少なくとも一つの冷媒流出穴が側面に形成されたことを特徴とする請求項4または5のいずれかに記載の冷凍サイクル装置。
  7.  前記冷媒貯留容器の前記冷媒流入管は、
     前記端部である開口が封止されると共に、前記端部に前記容器底部に溜まった圧縮機油を吸引する油吸引穴が形成されたことを特徴とする請求項6記載の冷凍サイクル装置。
  8.  前記エジェクタは、
     前記駆動冷媒流入口にニードル弁を備えることにより、前記第三流量制御弁を兼用することを請求項1~7のいずれかに記載の冷凍サイクル装置。
  9.  前記冷凍サイクル装置は、
     前記冷媒として、炭化水素系冷媒と、ハイドロフルオロオレフィン系冷媒とのいずれかの冷媒を使用することを特徴とする請求項1~8のいずれかに記載の冷凍サイクル装置。
  10.  前記圧縮機は、
     インジェクションポートを備え、
     前記冷凍サイクル装置は、さらに、
     前記冷媒貯留容器と前記第二流量制御弁との間に配置され、前記冷媒貯留容器と前記第二流量制御弁とに配管で接続された内部熱交換器と、
     前記冷媒貯留容器と前記内部熱交換器とを接続する配管から分岐し、第四流量制御弁、前記内部熱交換器の順に接続され、前記内部熱交換器を経て前記圧縮機の前記インジェクションポートに接続されるバイパス回路と
    を備えたことを特徴とする請求項1の冷凍サイクル装置。
  11.  駆動冷媒の流入する駆動冷媒流入口と、吸引冷媒の流入する吸引冷媒流入口と、駆動冷媒と吸引冷媒との混合された混合冷媒が流出する混合冷媒流出口とを有するエジェクタを用いて冷媒を循環させる冷媒循環方法において、
     圧縮機、放熱器、第一流量制御弁、冷媒貯留容器、第二流量制御弁、第一蒸発器の順に配管で接続され、前記第一蒸発器の冷媒出口が前記エジェクタの前記吸引冷媒流入口と配管で接続される第一冷媒経路を形成し、
     前記圧縮機、第二蒸発器の順に配管で接続され、前記第二蒸発器の冷媒入口が前記エジェクタの前記混合冷媒流出口と配管で接続される第二冷媒経路を形成し、
     前記放熱器の冷媒出口と前記第一流量制御弁とを接続する配管の途中から分岐し、第三流量制御弁、前記エジェクタの前記駆動冷媒流入口の順に配管で接続される第三冷媒経路を形成して、
    前記冷媒を循環させることを特徴とする冷媒循環方法。
PCT/JP2011/051468 2010-04-27 2011-01-26 冷凍サイクル装置及び冷媒循環方法 WO2011135876A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11774661.0A EP2565557B1 (en) 2010-04-27 2011-01-26 Refrigeration cycle device and refrigerant circulation method
CN201180020973.6A CN102869930B (zh) 2010-04-27 2011-01-26 制冷循环装置及制冷剂循环方法
US13/636,304 US9207004B2 (en) 2010-04-27 2011-01-26 Refrigeration cycle apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010101857A JP5328713B2 (ja) 2010-04-27 2010-04-27 冷凍サイクル装置
JP2010-101857 2010-04-27

Publications (1)

Publication Number Publication Date
WO2011135876A1 true WO2011135876A1 (ja) 2011-11-03

Family

ID=44861197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/051468 WO2011135876A1 (ja) 2010-04-27 2011-01-26 冷凍サイクル装置及び冷媒循環方法

Country Status (5)

Country Link
US (1) US9207004B2 (ja)
EP (1) EP2565557B1 (ja)
JP (1) JP5328713B2 (ja)
CN (1) CN102869930B (ja)
WO (1) WO2011135876A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104976813B (zh) * 2014-04-04 2017-07-28 广东美的暖通设备有限公司 空调器
DE102017203043A1 (de) * 2017-02-24 2018-08-30 Siemens Aktiengesellschaft Wärmepumpenanordnung und Verfahren zum Betrieb einer Wärmepumpenanordnung
US11835270B1 (en) 2018-06-22 2023-12-05 Booz Allen Hamilton Inc. Thermal management systems
US11802722B2 (en) * 2018-09-05 2023-10-31 Mitsubishi Electric Corporation Refrigeration cycle apparatus
US11561029B1 (en) 2018-11-01 2023-01-24 Booz Allen Hamilton Inc. Thermal management systems
US11486607B1 (en) 2018-11-01 2022-11-01 Booz Allen Hamilton Inc. Thermal management systems for extended operation
US11448434B1 (en) * 2018-11-01 2022-09-20 Booz Allen Hamilton Inc. Thermal management systems
CN109556321A (zh) * 2018-11-09 2019-04-02 广东申菱环境系统股份有限公司 一种喷射增压型空气源热泵循环系统及工作方法
US10844860B2 (en) 2018-12-21 2020-11-24 Trane International Inc. Method of improved control for variable volume ratio valve
US11801731B1 (en) 2019-03-05 2023-10-31 Booz Allen Hamilton Inc. Thermal management systems
US11629892B1 (en) 2019-06-18 2023-04-18 Booz Allen Hamilton Inc. Thermal management systems
CN112361638B (zh) * 2019-07-25 2021-11-26 青岛海尔空调电子有限公司 空调系统
US11752837B1 (en) 2019-11-15 2023-09-12 Booz Allen Hamilton Inc. Processing vapor exhausted by thermal management systems
CN111023363B (zh) * 2019-12-17 2021-10-29 海信(山东)空调有限公司 一种空调器及控制方法
EP3862657A1 (en) 2020-02-10 2021-08-11 Carrier Corporation Refrigeration system with multiple heat absorbing heat exchangers
US11561030B1 (en) 2020-06-15 2023-01-24 Booz Allen Hamilton Inc. Thermal management systems
US11692742B1 (en) * 2020-07-02 2023-07-04 Booz Allen Hamilton Inc. Thermal management systems
DE102021131788A1 (de) 2021-12-02 2023-06-07 Valeo Klimasysteme Gmbh Kältemittelkreislauf und Kühlsystem für Fahrzeuge

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03282159A (ja) * 1990-03-08 1991-12-12 Mitsubishi Electric Corp 冷凍サイクル装置
JPH04110575A (ja) * 1990-08-30 1992-04-13 Toshiba Corp アキュムレータ
JPH1194380A (ja) * 1997-09-25 1999-04-09 Denso Corp 冷凍サイクル
JP2001174091A (ja) * 1999-12-15 2001-06-29 Mitsubishi Electric Corp 冷凍サイクル
JP2002081803A (ja) * 2000-09-08 2002-03-22 Hitachi Ltd 空気調和機
JP2002130874A (ja) 2000-10-19 2002-05-09 Denso Corp 冷凍サイクル装置
JP2003279177A (ja) * 2002-01-15 2003-10-02 Denso Corp 給湯器、蒸気圧縮式冷凍サイクル用のエジェクタ及び蒸気圧縮式冷凍サイクル
JP2005308380A (ja) * 2004-02-18 2005-11-04 Denso Corp エジェクタサイクル
JP2007078340A (ja) * 2005-08-17 2007-03-29 Denso Corp エジェクタ式冷凍サイクル
JP2007263440A (ja) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp 空気調和装置
JP2009133613A (ja) * 2009-02-02 2009-06-18 Hitachi Appliances Inc 空気調和装置
JP2010002134A (ja) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp 冷凍サイクル装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US320307A (en) * 1885-06-16 Method of and apparatus for purifying and liquefying gases and producing
JP2000179957A (ja) * 1998-12-17 2000-06-30 Hitachi Ltd 空気調和機
JP4639541B2 (ja) * 2001-03-01 2011-02-23 株式会社デンソー エジェクタを用いたサイクル
JP2002277079A (ja) * 2001-03-21 2002-09-25 Mitsubishi Electric Corp 冷凍サイクル
US6834514B2 (en) * 2002-07-08 2004-12-28 Denso Corporation Ejector cycle
CN1291196C (zh) 2004-02-18 2006-12-20 株式会社电装 具有多蒸发器的喷射循环
JP4659521B2 (ja) * 2004-12-08 2011-03-30 三菱電機株式会社 冷凍空調装置、冷凍空調装置の運転方法、冷凍空調装置の製造方法、冷凍装置、冷凍装置の製造方法
US7367202B2 (en) 2005-08-17 2008-05-06 Denso Corporation Refrigerant cycle device with ejector
JP2007315632A (ja) * 2006-05-23 2007-12-06 Denso Corp エジェクタ式サイクル

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03282159A (ja) * 1990-03-08 1991-12-12 Mitsubishi Electric Corp 冷凍サイクル装置
JPH04110575A (ja) * 1990-08-30 1992-04-13 Toshiba Corp アキュムレータ
JPH1194380A (ja) * 1997-09-25 1999-04-09 Denso Corp 冷凍サイクル
JP2001174091A (ja) * 1999-12-15 2001-06-29 Mitsubishi Electric Corp 冷凍サイクル
JP2002081803A (ja) * 2000-09-08 2002-03-22 Hitachi Ltd 空気調和機
JP2002130874A (ja) 2000-10-19 2002-05-09 Denso Corp 冷凍サイクル装置
JP2003279177A (ja) * 2002-01-15 2003-10-02 Denso Corp 給湯器、蒸気圧縮式冷凍サイクル用のエジェクタ及び蒸気圧縮式冷凍サイクル
JP2005308380A (ja) * 2004-02-18 2005-11-04 Denso Corp エジェクタサイクル
JP2007078340A (ja) * 2005-08-17 2007-03-29 Denso Corp エジェクタ式冷凍サイクル
JP2007263440A (ja) * 2006-03-28 2007-10-11 Mitsubishi Electric Corp 空気調和装置
JP2010002134A (ja) * 2008-06-20 2010-01-07 Mitsubishi Electric Corp 冷凍サイクル装置
JP2009133613A (ja) * 2009-02-02 2009-06-18 Hitachi Appliances Inc 空気調和装置

Also Published As

Publication number Publication date
CN102869930B (zh) 2015-08-05
US9207004B2 (en) 2015-12-08
JP2011231966A (ja) 2011-11-17
EP2565557A4 (en) 2016-08-17
CN102869930A (zh) 2013-01-09
EP2565557A1 (en) 2013-03-06
EP2565557B1 (en) 2019-02-27
US20130025305A1 (en) 2013-01-31
JP5328713B2 (ja) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5328713B2 (ja) 冷凍サイクル装置
JP5334905B2 (ja) 冷凍サイクル装置
JP5627713B2 (ja) 空気調和装置
KR101638675B1 (ko) 복합 이원 냉동 사이클 장치
JPWO2009087733A1 (ja) 冷凍サイクル装置および四方弁
CN105008820A (zh) 空调装置
EP3217115B1 (en) Air conditioning apparatus
US9791176B2 (en) Refrigeration apparatus
JP4118254B2 (ja) 冷凍装置
JP6727420B2 (ja) 空気調和装置
JP2015212545A (ja) ターボ機械及び冷凍サイクル装置
JP4899641B2 (ja) 混合流体分離装置
JP6249716B2 (ja) 直接接触熱交換器を備えた冷媒システム
JP2014211291A (ja) 冷媒流路切換弁
CN112752934B (zh) 多级压缩系统
KR101275921B1 (ko) 밀폐형 압축기
JP2010060202A (ja) 冷凍機用電動機における冷却構造
JPWO2014083900A1 (ja) 圧縮機、冷凍サイクル装置およびヒートポンプ給湯装置
WO2022208727A1 (ja) 冷凍サイクル装置
EP3217117A1 (en) Air-conditioning/hot-water supply system
JP6393372B2 (ja) 直接接触熱交換器を備えた冷媒システム
JP2007315638A (ja) 冷凍サイクル装置
JP6125391B2 (ja) 直接接触熱交換器および冷媒システム
JP5045677B2 (ja) エジェクタ式冷凍サイクル
WO2020067197A1 (ja) 多段圧縮システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180020973.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11774661

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011774661

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13636304

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE