WO2011134179A1 - 一种稀土永磁材料的成分和制造工艺 - Google Patents

一种稀土永磁材料的成分和制造工艺 Download PDF

Info

Publication number
WO2011134179A1
WO2011134179A1 PCT/CN2010/073002 CN2010073002W WO2011134179A1 WO 2011134179 A1 WO2011134179 A1 WO 2011134179A1 CN 2010073002 W CN2010073002 W CN 2010073002W WO 2011134179 A1 WO2011134179 A1 WO 2011134179A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
rare earth
vacuum
heat preservation
hydrogen
Prior art date
Application number
PCT/CN2010/073002
Other languages
English (en)
French (fr)
Inventor
袁文杰
董义
范耀林
Original Assignee
天津天和磁材技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津天和磁材技术有限公司 filed Critical 天津天和磁材技术有限公司
Priority to US12/995,469 priority Critical patent/US20130049908A1/en
Publication of WO2011134179A1 publication Critical patent/WO2011134179A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement

Definitions

  • the invention belongs to a permanent magnet material composition and a manufacturing method thereof, and particularly relates to a composition and a manufacturing process of a rare earth permanent magnet material.
  • the technical problem to be solved by the present invention is to provide a composition and a manufacturing process of a rare earth permanent magnet material. Save material costs, ensure and improve product performance.
  • a composition of a rare earth permanent magnet material characterized in that: the ratio of the materials in atomic percentage is:
  • Re represents all rare earth elements, and contains at least one or more of Nd, Pr, Gd, Ho, Dy, Tb.
  • the manufacturing process of the rare earth permanent magnet material is characterized in that:
  • the raw materials are compounded in the above atomic ratio and then cast in a vacuum medium frequency induction quick-setting furnace; the casting process is: within a vacuum of 1 Pa, the heating power is turned on for heating, before the material is melted. charged
  • the argon gas of about 0.05 MPa is refined, and the steel is poured when the temperature of the molten steel reaches about 1400 degrees Celsius, and the molten steel flows along the guide groove to the rotating copper roller with the cooling water to rapidly cool, forming a sheet thickness lower than that.
  • the said blank after molding is carried out in a high vacuum sintering furnace: furnace to make the first degree of vacuum on the order of 10- 2 Pa, and then heated to 1040 ° C - 1100 ° C, incubated for 3-6 hours After the end of the heat preservation, it is filled with Ar gas and continuously treated in a vacuum sintering furnace for two times: the first aging temperature is 900 ° C - 950 ° C, the heat preservation is 1.5 - 5 hours, and the heat is charged.
  • Nb can increase Hcj, increase the squareness of the J-H demagnetization curve, and improve the temperature stability of the product. Moreover, the addition of Nb can reduce the amount of heavy rare earth Dy, Tb, etc., and reduce the material cost.
  • the rare earth permanent magnet material is a rare earth permanent magnet material with an additive element Nb, and the ratio of the materials is atomic percent: Re (x) Fe (100-xzabc) B (z) Nb (a) Al (b) M ( c)
  • Re represents all rare earth elements, and at least one or more of Nd, Pr, Gd, Ho, Dy, Tb, and Nb is an essential element of the invention.
  • the main production process is as follows:
  • the raw materials (which may be alloy raw materials) are compounded in the above atomic ratio and then cast in a vacuum medium frequency induction quick-setting furnace.
  • the casting process is as follows: within a vacuum of 1 Pa, the heating power source is turned on for heating. Before the material is melted, it is filled with argon gas of about 0.05 MPa for refining. When the temperature of the molten steel reaches about 1400 ° C, the steel is poured, and the molten steel flows along the guide groove to the rotating copper roller with cooling water to rapidly cool. A metal foil having a sheet thickness of less than 0.5 mm is formed (component segregation is likely to occur when the thickness is higher than 0.5 mm, resulting in ⁇ -Fe which is disadvantageous to permanent magnet properties).
  • the rare earth alloy is easy to react with hydrogen, it is crushed by a hydrogen crushing furnace: First, hydrogen is introduced into the hydrogen crushing furnace, and the quick-setting casting piece becomes a powder after hydrogen absorption (the hydrogen absorption process releases a large amount of heat, and must be There is a cooling device), when the hydrogen absorption is finished, the vacuuming system of the device is evacuated, the furnace body is heated to 500-650 degrees Celsius to precipitate hydrogen atoms from the inside of the material, and then the device is cooled to room temperature to take out the product.
  • the hydrogenated powder was made into a finer powder by a jet mill, and the average particle size of the magnetic powder was controlled at 2.5_4.0 um.
  • the product added with Nb has the characteristics of high squareness and good temperature stability of J-H demagnetization line. In the mass production process, the product batch consistency is good and the finished product yield is high;
  • Hcj can be added to the product. After Nb can be added, Hcj can reduce the demand for heavy rare earth and reduce the cost.
  • the raw materials are prepared, wherein Pr and Nd are added in the form of an alloy, the content of Pr is about 20%, the average particle size of the air-milled powder is 3.0 um, oriented in a magnetic field of 1.9 T, the blank density is 4.2 g/cm 3 , and then in a vacuum.
  • Sintering in the sintering furnace the temperature is 1055 ° C, the holding time is 4 hr, and then the secondary aging: the first aging temperature 900 ° C, 2 hours of heat preservation; the secondary temperature 470 ° C, 3 hours of heat preservation, cooling after the end of the heat preservation Released for performance testing.
  • the raw materials are prepared, wherein Pr and Nd are added in the form of an alloy, the content of Pr is about 20%, the average particle size of the air-milled powder is 3.0 um, oriented in a magnetic field of 1.9 T, the density of the blank is 4.2 g/cm 3 , and then in a vacuum. Sintering in the sintering furnace, the temperature is 1075 ° C, the holding time is 4 hr, and then the secondary aging: the first aging temperature 910 ° C, 2 hours of heat preservation, the second temperature of 500 ° C, 3 hours of heat preservation, cooling after the end of the heat preservation Released for performance testing.
  • the oxygen content of the two samples was 800 - 1000 PPM. From the comparison, it can be seen that almost the same Hcj, the content of the Nb-added formula Tb was reduced, and the manufacturing cost was much lower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Description

一种稀土永磁材料的成分和制造工艺 技术领域
本发明属于永磁材料成分和制作方法,特别涉及一种稀土永磁材料的成分和制造工 艺。
背景技术
钕铁硼在 1983 年发明以后, 工业化生产水平有了突飞猛进的发展, 产品的性能也有 了很大的提高; 但是目前还有很多公司不能生产高性能的产品, 随着原材料价格的不断提 高, 低端产品的利润越来越低, 很多厂家都想提高产品的性能打入高端市场, 然而高性能 钕铁硼生产线的投入很大,工艺要求相当严格,如何利用低成本投入实现高端产品的量产, 是摆在很多厂家面前的难题, 目前稀土原材料, 尤其是重稀土原材料的价格节节攀升, 如 何节省材料成本, 我们在这方面做了很多的工作, 本发明就是我们其中成果的一部分。 发明内容
本发明所要解决的技术问题是: 提供一种稀土永磁材料的成分和制造工艺。 达到节省 材料成本, 保证和提高产品性能。
本发明的技术方案是:
一种稀土永磁材料的成分, 其特征在于: 材料按原子百分比配比为:
Re (x) Fe ( 100-x-z-a-b-c) B (z) Nb (a) Al (b) M (c);
其中 x= 12-16; z=5.5-6.5; a=0.05-l ; b = 0-0.8; c=0-3;
Re代表所有稀土族元素, 至少包含 Nd, Pr, Gd, Ho, Dy, Tb中的一种或多种。 本稀土永磁材料的制造工艺, 其特征在于:
( 1 ) 将各种原材料以如上的原子配比进行配料后在真空中频感应速凝炉里进行铸片; 铸片过程为: 在真空度 lPa 以内, 开启加热电源进行加热, 在材料要融化前充入
0.05MPa左右的氩气进行精炼,在钢液温度到 1400摄氏度左右时浇钢,钢液顺着导流槽流 到到通有冷却水的旋转着的铜辊上迅速冷却, 形成片厚低于 0.5mm的金属薄片;
(2) 用氢碎炉进行破碎: 首先向氢碎炉中通入氢气, 速凝铸片吸氢后会变成粉末, 吸氢过程要释放大量的热量, 必须在有冷却装置下进行, 当吸氢结束后, 开启真空系统抽 气, 将炉体加热到 500— 650 摄氏度使氢原子从材料内部析出, 然后使设备冷却到室温取
L ≠口
出广口口:
( 3 ) 用气流磨将氢化后的粉沫制成粒度更细的粉末, 磁粉的平均粒度控制在
2.5— 4.0醒;
(4)将成型后的上述毛坯在高真空炉里进行烧结: 首先要使炉体的真空度达到 10— 2Pa 量级, 然后升温到 1040°C--1100°C, 保温 3-6小时, 保温结束后充入 Ar气冷, 继续在真 空烧结炉里进行二两次效处理: 第一次时效温度 900°C--950°C, 保温 1. 5-3小时, 保温结 束后充入 Ar气冷却, 第二次时效温度 460°C-550°C, 保温 2_5小时, 保温结束后充入 Ar 气冷却出炉进行性能测试。
在制粉、 成型和烧结工序中严格控制氧含量, 采取防氧化措施使材料的氧含量控制在 2000PPM之内, 措施如下: 在气流磨过程中使用密封罐; 在成型过程中将设备密封并通入 保护气体氮气; 在将毛坯装入烧结炉时要用密封的手套箱, 并通入保护气体氮气; 在烧结 炉加热前要将烧结炉抽真空。
本发明效果是:
通过 Nb的添加可以提高 Hcj, 提高 J-H退磁曲线的矩形度, 提高产品的温度稳定性; 且通过 Nb的添加可以降低重稀土 Dy、 Tb等的用量, 降低材料成本。
具体实施方式
一种稀土永磁材料的成分
在该稀土永磁材料是一种添加元素 Nb的稀土永磁材料, 材料按原子百分比配比为: Re (x) Fe ( 100-x-z-a-b-c) B (z) Nb (a) Al (b) M (c)
其中 Re代表所有稀土族元素, 至少包含 Nd、 Pr、 Gd、 Ho、 Dy、 Tb中的一种或多种, Nb为本发明必须元素,
x= 12-16; z = 5.5-6.5; a = 0.05-l ; b = 0-0.8;
M为 Co、 Cu 、 Ga、 Zr、 Si中的一种或多种, 为非必要元素, c=0-3。
制造工艺: 将各种原材料 (可以是合金原料) 放到真空速凝炉中进行铸片, 然后在氢 碎炉中进行氢化破碎, 在气流磨设备中制成平均粒度在 2.5-4um的磁粉, 然后在磁场取向 成型压机下成型, 接着放入真空烧结炉中进行烧结和时效处理。
在该方法中涉及到一种添加元素 Nb 的使用, 材料按原子百分比配比为 Re (x) Fe
( 100-x-z-a-b-c) B (z) Nb (a) Al (b) M (c)其中 Re代表所有稀土族元素, 至少包含 Nd、 Pr、 Gd、 Ho、 Dy、 Tb中的一种或多种, x= 12-16; z = 5.5-6.5; Nb为本发明必须元素, a = 0.05-1; b = 0-0.8; M为 Co、 Cu 、 Ga、 Zr、 Si中的一种或多种, c=0-3。 主要生产过程 如下:
1 将各种原材料 (可以是合金原料) 以如上的原子配比进行配料后在真空中频感应速 凝炉里进行铸片, 铸片过程为: 在真空度 lPa以内, 开启加热电源进行加热, 在材料要融 化前充入 0.05MPa左右的氩气进行精炼, 在钢液温度到 1400摄氏度左右时浇钢, 钢液顺 着导流槽流到到通有冷却水的旋转着的铜辊上迅速冷却,形成片厚低于 0.5mm的金属薄片 (当厚度高于 0.5mm时容易出现成分偏析, 产生不利于永磁性能的 α— Fe)。
2利用稀土合金容易与氢气反应的特点, 用氢碎炉进行破碎: 首先向氢碎炉中通入氢 气, 速凝铸片吸氢后会变成粉末 (吸氢过程要释放大量的热量, 必须有冷却装置), 当吸 氢结束后开设备的启真空系统抽气, 将炉体加热到 500— 650 摄氏度使氢原子从材料内部 析出, 然后使设备冷却到室温取出产品。
3用气流磨将氢化后的粉沫制成粒度更细的粉末,磁粉的平均粒度控制在 2.5_4.0um。 4在磁场强度大于 1.8KOe的磁场取向成型压机中压制成型, 使压制后的毛坯密度在 4 一 4.3g/cm3之间, 当密度太高时容易产生内裂。
5将成型后的毛坯在高真空炉里进行烧结: 首先要使炉体的真空度达到 10— 2Pa量级, 然后升温到 1040°C--1100°C, 保温 3-6小时, 保温结束后充入 Ar气冷, 继续在真空烧结 炉里进行二两次效处理: 第一次时效温度 900°C--950°C, 保温 1. 5-3小时, 保温结束后充 入 Ar气冷却, 第二次时效温度 460°C-550°C, 保温 2_5小时, 保温结束后充入 Ar气冷却 出炉进行性能测试。
在制粉、 成型和烧结工序中严格控制氧含量, 采取防氧化措施使材料的氧含量控制在 2000PPM之内, 措施如下: 在气流磨过程中使用密封罐; 在成型过程中将设备密封并通入 保护气体氮气; 在将毛坯装入烧结炉时要用密封的手套箱, 并通入保护气体氮气; 在烧结 炉加热前要将烧结炉抽真空。
按照上述配方和生产过程制出的产品与不添加 Nb的配方相比有如下区别:
1.添加 Nb的产品具有 J-H退磁取线矩形度高、温度稳定性好的特点,在量产过程中产 品批次一致性好, 成品收得率高;
2.在钕铁硼配方中通过添加价格很高的 Dy、 Tb等重稀土元素可以提高产品的 Hcj添 加 Nb后可以增加 Hcj减少对重稀土的需求, 降低成本 具体案例
以下实例为进一步说明本发明而阐述, 但本发明并不局限于此下实例。
实施案例 1
按如下原子百分比
(Pr,Nd) 5Dy B5.85Nb0.15Alai Fe
(Pr,Nd) .2Dy0.25B5.85Alai Fe
配制原材料, 其中 Pr,Nd以合金的形式加入, Pr的含量在 20 %左右, 气流磨制粉平均粒度 在 3.0um, 在 1.9T磁场中取向成型, 毛坯密度 4.2g/cm3, 然后在真空烧结炉中烧结, 温度 为 1055°C, 保温时间 4 hr, 然后进行二次时效: 第一次时效温度 900°C, 保温 2小时; 二 次温度 470°C, 保温 3小时, 保温结束后冷却出炉进行性能测试。
Figure imgf000004_0001
两个样品的氧含量为 800— 1000PPM, 从对比中可以看到 Hcj基本相同, 而但由于添加 Nb 的配方用 Dy少, 配方成本低; 而且添加 Nb的产品 Hk/Hcj高, 退磁曲线矩形度好。 实施案例 2 按如下原子百分比
(Pr,Nd) 10.65Dy2.85 B6Nb0.3Al0.5 Co2Qi0.2Fe
(Pr,Nd) io.4Dy3.iB6Alo.5 Co2 Cu0.2 Fe
配制原材料, 其中 Pr,Nd以合金的形式加入, Pr的含量在 20%左右, 气流磨制粉平均粒度 在 3.0um, 在 1.9T磁场中取向成型, 毛坯密度 4.2g/cm3, 然后在真空烧结炉中烧结, 温度 为 1075°C, 保温时间 4 hr, 然后进行二次时效: 第一次时效温度 910°C, 保温 2小时, 二 次温度 500°C, 保温 3小时, 保温结束后冷却出炉进行性能测试。
Figure imgf000005_0001
两个样品的氧含量为 1000— 1500PPM, 从对比中可以看到几乎相同 Hcj, 添加 Nb的配方 Dy的用量少了很多成本降低; 测试产品 18CTC时的 Hcj后, 加 Nb的 hcj高, 说明 Nb的添 加改善了钕铁硼的耐温性能。 实施案例 3 按如下原子百分比
(Pr,Nd) i2.6Dy0.7 Tb0.iB6Nbo.2Alo.3 Co0.5Fe
(Pr,Nd) 12.5Dyo.6Tbo.3B6Alo.3 Co0.5Fe
配制原材料, 其中 Pr,Nd已合金的形式加入, Pr的含量在 20%左右, 气流磨制粉平均粒度 在 3.0um, 在 1.9T磁场中取向成型, 毛坯密度 4.2g/cm3, 然后在真空烧结炉中烧结, 温度 为 1070°C, 保温时间 4 hr, 然后进行二次时效: 第一次时效温度 900°C, 保温 2小时, 二 次温度 480°C, 保温 3小时, 保温结束后冷却出炉进行性能测试。
Figure imgf000005_0002
两个样品的氧含量为 800— 1000PPM, 从对比中可以看到几乎将同的 Hcj, 添加 Nb的配方 Tb的含量减少, 制造成本低很多。 将其加工成 6 X 1.5 X 0.5的产品后加热到 100°C, 保温 4hr后对比加热前后磁通的衰减结果, 如下:
Figure imgf000006_0001
从对比结果可以看出不加 Nb的配方 Hcj高于加 Nb的,但是做热减磁试验的结果 是加 Nb的耐温好, 磁通衰减少, 说明 Nb提高了产品的温度稳定性。

Claims

权利要求书
1、 一种稀土永磁材料的成分, 其特征在于: 材料按原子百分比配比为:
Re ( x) Fe ( 100-x-z-a-b-c) B ( z) Nb ( a) Al ( b) M (c);
其中 x= 12-16; z = 5.5-6.5 ; a = 0.05-l ; b = 0-0.8 ; c = 0-3 ;
Re代表所有稀土族元素, 至少包含 Nd, Pr, Gd, Ho, Dy, Tb中的一种或多种。
2、 根据权利要求 1所述的一种稀土永磁材料的制造工艺, 其特征在于:
( 1 ) 将各种原材料以如上的原子配比进行配料后在真空中频感应速凝炉里进行 铸片;
铸片过程为: 在真空度 lPa以内, 开启加热电源进行加热, 在材料要融化前充入 0.05MPa左右的氩气进行精炼, 在钢液温度到 1400摄氏度左右时浇钢, 钢液顺着导流 槽流到到通有冷却水的旋转着的铜辊上迅速冷却, 形成片厚低于 0.5mm的金属薄片;
( 2) 用氢碎炉进行破碎: 首先向氢碎炉中通入氢气, 速凝铸片吸氢后会变成粉 末, 吸氢过程要释放大量的热量, 必须在有冷却装置下进行, 当吸氢结束后, 开启真 空系统抽气, 将炉体加热到 500— 650摄氏度使氢原子从材料内部析出, 然后使设备冷 却到室温取出产品:
( 3 ) 用气流磨将氢化后的粉沫制成粒度更细的粉末, 磁粉的平均粒度控制在 2.5— 4.0醒;
( 4) 将成型后的上述毛坯在高真空炉里进行烧结: 首先要使炉体的真空度达到 10-2Pa量级, 然后升温到 1040°C --1100°C, 保温 3-6小时, 保温结束后充入 Ar气冷, 继续在真空烧结炉里进行二两次效处理: 第一次时效温度 900°C --950°C, 保温 1.5-3 小时, 保温结束后充入 Ar气冷却, 第二次时效温度 460°C -550°C, 保温 2-5小时, 保 温结束后充入 Ar气冷却出炉进行性能测试;
在制粉、 成型和烧结工序中严格控制氧含量, 采取防氧化措施使材料的氧含量控 制在 2000PPM之内, 措施如下: 在气流磨过程中使用密封罐; 在成型过程中将设备密 封并通入保护气体氮气; 在将毛坯装入烧结炉时要用密封的手套箱, 并通入保护气体 氮气; 在烧结炉加热前要将烧结炉抽真空。
1
PCT/CN2010/073002 2010-04-28 2010-05-20 一种稀土永磁材料的成分和制造工艺 WO2011134179A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/995,469 US20130049908A1 (en) 2010-04-28 2010-05-20 Component and manufacring process of rare earth permanent magnet material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010158031.1 2010-04-28
CN 201010158031 CN101826386A (zh) 2010-04-28 2010-04-28 一种稀土永磁材料的成分和制造工艺

Publications (1)

Publication Number Publication Date
WO2011134179A1 true WO2011134179A1 (zh) 2011-11-03

Family

ID=42690246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/073002 WO2011134179A1 (zh) 2010-04-28 2010-05-20 一种稀土永磁材料的成分和制造工艺

Country Status (2)

Country Link
CN (1) CN101826386A (zh)
WO (1) WO2011134179A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140127072A1 (en) * 2012-11-08 2014-05-08 Shenyang General Magnetic Co., Ltd Continuous sintering method for rare earth permanent magnetic alloy and equipment therefor
US20150243433A1 (en) * 2013-05-05 2015-08-27 China North Magnetic & Electronic Technology Co., LTD Method for producing neodymium-iron-boron rare earth permanent magnetic material
CN113223807A (zh) * 2021-05-31 2021-08-06 包头金山磁材有限公司 一种钕铁硼永磁体及其制备方法和应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102586682B (zh) * 2011-01-17 2016-01-20 三环瓦克华(北京)磁性器件有限公司 一种高性能稀土永磁烧结磁体及其制造方法
CN102376406B (zh) * 2011-11-21 2015-01-28 宁波市展发磁业科技有限公司 一种新型磁性材料
CN103887028B (zh) 2012-12-24 2017-07-28 北京中科三环高技术股份有限公司 一种烧结钕铁硼磁体及其制造方法
CN103231059B (zh) * 2013-05-05 2015-08-12 沈阳中北真空磁电科技有限公司 一种钕铁硼稀土永磁器件的制造方法
CN103594243B (zh) * 2013-11-20 2016-03-30 宁波科田磁业有限公司 防止烧结钕铁硼磁体开裂的制造方法
CN104332300A (zh) * 2014-10-13 2015-02-04 宁波尼兰德磁业有限公司 一种烧结钕铁硼磁体的方法
CN104465063B (zh) * 2014-12-20 2017-05-31 泉州惠安长圣生物科技有限公司 一种耐腐蚀铁硅基磁芯的制备方法
CN105839006B (zh) * 2015-01-29 2020-08-11 户田工业株式会社 R-t-b系稀土磁铁粉末的制造方法、r-t-b系稀土磁铁粉末和粘结磁铁
CN106098280A (zh) * 2016-05-26 2016-11-09 安徽宁磁电子科技有限公司 一种风力发电用铷铁硼永磁材料及其制备方法
CN107464684B (zh) * 2017-08-30 2020-04-21 包头天和磁材科技股份有限公司 烧结磁体的处理方法
CN109473248A (zh) * 2018-11-21 2019-03-15 重庆科技学院 一种NdCeFeB各向异性永磁体及其制备方法
CN112768169B (zh) * 2020-12-30 2023-01-10 包头天和磁材科技股份有限公司 预制品及其制备方法和耐腐蚀磁体的生产方法及用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223902A (ja) * 1985-07-23 1987-01-31 Sumitomo Special Metals Co Ltd 希土類・ボロン・鉄系合金粉末およびその製造方法
CN1768398A (zh) * 2003-02-06 2006-05-03 马格内昆茨公司 用于替代铁氧体的可高度淬火Fe基稀土材料
CN1862717A (zh) * 2005-05-22 2006-11-15 横店集团东磁有限公司 一种超高矫顽力烧结钕铁硼磁性材料及其制备方法
CN101071667A (zh) * 2007-04-12 2007-11-14 北京中科三环高技术股份有限公司 含钆的钕铁硼稀土永磁材料及其制造方法
CN101240398A (zh) * 2007-02-07 2008-08-13 罗阳 金属间化合物各向异性磁粉,制备方法及专用设备
CN101246771A (zh) * 2007-02-12 2008-08-20 天津天和磁材技术有限公司 一种高性能钕铁硼永磁材料的制造方法
CN101266856A (zh) * 2007-12-28 2008-09-17 烟台正海磁性材料有限公司 耐蚀性优异的高性能R-Fe-B系烧结磁体及其制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6223902A (ja) * 1985-07-23 1987-01-31 Sumitomo Special Metals Co Ltd 希土類・ボロン・鉄系合金粉末およびその製造方法
CN1768398A (zh) * 2003-02-06 2006-05-03 马格内昆茨公司 用于替代铁氧体的可高度淬火Fe基稀土材料
CN1862717A (zh) * 2005-05-22 2006-11-15 横店集团东磁有限公司 一种超高矫顽力烧结钕铁硼磁性材料及其制备方法
CN101240398A (zh) * 2007-02-07 2008-08-13 罗阳 金属间化合物各向异性磁粉,制备方法及专用设备
CN101246771A (zh) * 2007-02-12 2008-08-20 天津天和磁材技术有限公司 一种高性能钕铁硼永磁材料的制造方法
CN101071667A (zh) * 2007-04-12 2007-11-14 北京中科三环高技术股份有限公司 含钆的钕铁硼稀土永磁材料及其制造方法
CN101266856A (zh) * 2007-12-28 2008-09-17 烟台正海磁性材料有限公司 耐蚀性优异的高性能R-Fe-B系烧结磁体及其制造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140127072A1 (en) * 2012-11-08 2014-05-08 Shenyang General Magnetic Co., Ltd Continuous sintering method for rare earth permanent magnetic alloy and equipment therefor
US20150243433A1 (en) * 2013-05-05 2015-08-27 China North Magnetic & Electronic Technology Co., LTD Method for producing neodymium-iron-boron rare earth permanent magnetic material
US9415445B2 (en) * 2013-05-05 2016-08-16 China North Magnetic & Electronic Technology Co., LTD Method for producing neodymium-iron-boron rare earth permanent magnetic material
CN113223807A (zh) * 2021-05-31 2021-08-06 包头金山磁材有限公司 一种钕铁硼永磁体及其制备方法和应用

Also Published As

Publication number Publication date
CN101826386A (zh) 2010-09-08

Similar Documents

Publication Publication Date Title
WO2011134179A1 (zh) 一种稀土永磁材料的成分和制造工艺
WO2021098224A1 (zh) 钕铁硼磁体材料、原料组合物及制备方法和应用
US10109401B2 (en) Method for increasing coercive force of magnets
CN104599801A (zh) 一种稀土永磁材料及其制备方法
WO2012048654A1 (zh) 高耐蚀性烧结钕铁硼磁体及其制备方法
CN103646742B (zh) 一种钕铁硼磁体及其制备方法
CN102220538A (zh) 一种提高内禀矫顽力和耐腐蚀性能的烧结钕铁硼制备方法
CN1725394B (zh) 晶界相中添加纳米氮化硅提高钕铁硼工作温度和耐蚀性方法
TWI751788B (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
CN100517520C (zh) 纳米铝粉晶界改性制备高矫顽力、高耐蚀性磁体方法
TW202121453A (zh) 釹鐵硼磁體材料、原料組合物及製備方法和應用
CN106710765A (zh) 一种高矫顽力烧结钕铁硼磁体及其制备方法
CN111326306B (zh) 一种r-t-b系永磁材料及其制备方法和应用
CN111640549B (zh) 一种高温度稳定性烧结稀土永磁材料及其制备方法
CN104575901A (zh) 一种添加铽粉的钕铁硼磁体及其制备方法
CN104575902A (zh) 一种添加铈的钕铁硼磁体及其制备方法
CN111243812B (zh) 一种r-t-b系永磁材料及其制备方法和应用
CN101447268B (zh) 一种钕铁硼永磁材料及其制备方法
CN106910585B (zh) 一种钕铁硼永磁材料及其制备方法和电机
WO2016058132A1 (zh) 一种稀土永磁体的制备方法
CN111312463B (zh) 一种稀土永磁材料及其制备方法和应用
CN111243808B (zh) 一种钕铁硼材料及其制备方法和应用
CN111091945B (zh) 一种r-t-b系永磁材料、原料组合物、制备方法、应用
US20130049908A1 (en) Component and manufacring process of rare earth permanent magnet material
CN113871120B (zh) 一种混合稀土永磁材料及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12995469

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850511

Country of ref document: EP

Kind code of ref document: A1