WO2011132775A1 - 薄膜太陽電池の製造方法 - Google Patents

薄膜太陽電池の製造方法 Download PDF

Info

Publication number
WO2011132775A1
WO2011132775A1 PCT/JP2011/059959 JP2011059959W WO2011132775A1 WO 2011132775 A1 WO2011132775 A1 WO 2011132775A1 JP 2011059959 W JP2011059959 W JP 2011059959W WO 2011132775 A1 WO2011132775 A1 WO 2011132775A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
electrode
solar cell
film solar
manufacturing
Prior art date
Application number
PCT/JP2011/059959
Other languages
English (en)
French (fr)
Inventor
新楽 浩一郎
伊藤 憲和
稲葉 真一郎
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2012511717A priority Critical patent/JP5562413B2/ja
Priority to US13/642,736 priority patent/US9112088B2/en
Publication of WO2011132775A1 publication Critical patent/WO2011132775A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • H01L31/076Multiple junction or tandem solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0368Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors
    • H01L31/03682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table
    • H01L31/03685Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including polycrystalline semiconductors including only elements of Group IV of the Periodic Table including microcrystalline silicon, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • H01L31/1824Special manufacturing methods for microcrystalline Si, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a thin film solar cell in which a thin film is formed on a substrate.
  • a film forming apparatus for forming thin film silicon or the like on a base material such as a glass substrate has, for example, a chamber, a gas introduction path for introducing a source gas into the chamber, and a pair of electrodes arranged in the chamber.
  • a substrate for forming a deposited film is placed on one of the pair of electrodes, and a high frequency power source for applying high frequency power is connected to the other of the pair of electrodes.
  • the plasma is generated in the space between the pair of electrodes by the high frequency power applied to the other of the pair of electrodes.
  • the raw material gas is decomposed and excited to generate various active species.
  • membrane is formed because a part of these active species deposits on a base material.
  • the pressure in the chamber is set to 3 Torr (about 400 Pa) or more
  • the source gas contains a silane-based gas and a hydrogen gas
  • the flow rate of the hydrogen gas with respect to the silane-based gas is changed.
  • a technique of 50 times or more has been proposed (see, for example, Patent Document 1 below).
  • the upper limit of the film forming speed is usually less than 1.1 nm / second, and it is necessary to form a film at a high speed while maintaining a high quality film in order to increase productivity.
  • an object of the present invention is to provide a method for manufacturing a thin-film solar cell capable of high-quality film formation even when film formation is performed at high speed.
  • the manufacturing method of the thin film solar cell which concerns on this invention is a manufacturing method of the thin film solar cell which manufactures the thin film solar cell provided with the photoelectric converting layer containing the at least 1 layer of photoactive layer which has a crystalline silicon on a base material.
  • a heated hydrogen gas having a flow rate ratio between the first electrode and the second electrode is supplied between the first electrode and the second electrode, and the application of the high-frequency power to the second electrode causes the first electrode and the second electrode to Even plasma generated between Te, characterized in that it comprises a photoactive layer formation step of forming the photoactive layer on the substrate.
  • a thin film solar cell with high photoelectric conversion efficiency can be provided by forming a high quality thin film solar cell even when the film is formed at high speed.
  • FIG. 1 It is a cross-sectional schematic diagram which shows an example of the thin film formation apparatus used for the manufacturing method of the thin film solar cell which concerns on this invention. It is a figure which shows typically the structural example of the heating body used for the manufacturing method of the thin film solar cell which concerns on this invention, (a) is a fragmentary perspective view which shows a mode that a part of heating body was cut
  • FIG. 1 It is a sectional view (A), (b) is a top view which shows typically the structural example of the heating body used for the manufacturing method of the thin film solar cell which concerns on this invention, respectively. It is a figure which shows typically the structural example of the heating body used for the manufacturing method of the thin film solar cell which concerns on this invention, (a) is a top view, (b) was cut
  • the thin film forming apparatus S includes a chamber 1, a first electrode 6 positioned in the chamber 1, and a first material 6 positioned in the chamber 1 and spaced apart from the first electrode 6.
  • a second electrode 2 having a first supply part 4a capable of supplying a gas and a second supply part 4b capable of supplying a second source gas, and an introduction path connected to the first supply part 4a to introduce the first source gas And a heating means 11 arranged in the introduction path, a gas supply from the first supply part 4a, a gas supply from the second supply part 4b, and a control means for controlling the heating of the heating body 11 (not shown) And.
  • the second electrode 2 functions as a shower electrode.
  • a base material 10 on which a thin film is formed is disposed between the first electrode 6 and the second electrode 2 in the chamber 1.
  • the base material 10 may be positioned between the first electrode 6 and the second electrode 2, and is not necessarily supported directly on the first electrode 6.
  • the chamber 1 is a vacuum vessel having a reaction space that can be evacuated by at least an upper wall, a side wall, and a bottom wall.
  • the inside of the chamber 1 is evacuated by the vacuum pump 7 and the internal pressure is adjusted by a pressure regulator (not shown).
  • the chamber 1 is made of a metal member such as stainless steel or aluminum.
  • the first electrode 6 has a function of an anode electrode and incorporates a heater for adjusting the temperature of the substrate 10.
  • the first electrode 6 also functions as a temperature adjustment mechanism for the base material 10, whereby the base material 10 is adjusted to, for example, 100 to 400 ° C., more preferably 150 to 350 ° C.
  • the first electrode 6 is made of a metal material such as stainless steel or aluminum.
  • the base material 10 may be made of various materials that can withstand the above temperatures, such as a flat plate made of a glass substrate or the like, or a film made of a metal material or a resin.
  • the high frequency power source 5 is connected to the second electrode 2, and high frequency power is applied to the second electrode 2.
  • high frequency power from the high frequency power source 5 to the second electrode 2 plasma is formed in the space 8 located between the second electrode 2 and the substrate 10.
  • the second electrode 2 is disposed to face the first electrode 6 and functions as a cathode electrode.
  • the second electrode 2 has a plurality of supply parts 4 for supplying the gas introduced through the introduction path 3 into the chamber 1. These supply parts 4 are open toward the base material 10.
  • a plurality of gas cylinders (not shown) that store different gases are connected to the first introduction path 3a and the second introduction path 3b.
  • the gases introduced from the first introduction path 3a and the second introduction path 3b are not basically mixed until reaching the space 8 through the first supply part 4a and the second supply part 4b, respectively.
  • the gas supplied to the plurality of supply parts 4 includes a first raw material gas supplied to the first supply part 4a and a second raw material having a higher decomposition probability than the first raw material gas supplied to the second supply part 4b. Including gas.
  • the total gas decomposition rate is defined by the relational expression exp ( ⁇ Ea / kTe) ⁇ Ng ⁇ Ne ⁇ ve ⁇ ⁇ g.
  • ⁇ Ea is the excitation activation energy (dissociation energy) of the source gas
  • k is the Boltzmann constant
  • Te is the electron temperature
  • Ng is the source gas concentration
  • Ne is the electron concentration
  • ve the electron velocity
  • ⁇ g is the source material. Gas collision cross sections are shown respectively.
  • exp ( ⁇ Ea / kTe) means a decomposition probability.
  • exp ( ⁇ Ea / kTe) ⁇ ⁇ g is the collision cross-sectional area.
  • the flow of the first source gas flowing through the first introduction path 3a may be divided and partly flow (mixed with the second source gas) into the second introduction path 3b.
  • the first source gas and the second source gas are appropriately selected depending on the material of the thin film.
  • a Si-based thin film such as a-Si: H (hydrogenated amorphous silicon) or ⁇ c-Si: H (hydrogenated microcrystalline silicon)
  • a non-Si-based gas is used as the first source gas.
  • Si-based gas can be used as the second source gas.
  • H 2 (hydrogen) gas or the like is used as the non-Si-based gas.
  • silicon-based gas examples include SiH 4 (silane), Si 2 H 6 (disilane), SiF 4 (silicon tetrafluoride), Si 2 F 6 (disilicon hexafluoride), and SiH 2 Cl 2 (dichlorosilane) gas.
  • gases selected from the above are used.
  • B 2 H 6 (diborane) gas or the like is used when forming a p-type Si-based thin film
  • PH 3 (phosphine) gas or the like is used when forming an n-type Si-based thin film.
  • the introduction path of the doping gas either the first introduction path 3a or the second introduction path 3b can be selected as necessary. However, as will be described later, when the heating body 11 connected to the heating power source 12 is provided in the first introduction path 3a, it is desirable to introduce the doping gas through the second introduction path 3b.
  • the heating element 11 provided in the first introduction path 3a is a heated catalyst, a resistance heater, or the like.
  • the heating catalyst body functions as an excitation activation (decomposition) of the contacting gas by passing an electric current through the medium and raising the temperature by heating.
  • At least the surface of the heating catalyst body is made of a metal material.
  • the metal material is preferably made of a metal material or an alloy material containing at least one of Ta, W, Re, Os, Ir, Nb, Mo, Ru, and Pt, which are refractory metal materials.
  • a metal material as described above in a wire shape a plate shape or a mesh shape is used as the shape of the heating catalyst body. By setting the temperature of the heating catalyst body to 400 ° C. to 2000 ° C., the first source gas is heated and activated, and is also activated in the space 8.
  • the heating element 11 may be composed of a heating element 21 that is a high-temperature element and a covering member 22 that covers the outer periphery of the heating element 21.
  • the contact with the heat generating body 21 and 1st raw material gas is reduced.
  • hydrogen absorption into the heating element 21 due to the first source gas and hydrogen embrittlement due to the hydrogenation reaction of the heating element material is reduced. Therefore, the life of the heating element 11 can be greatly extended. As a result, the frequency of maintenance that accompanies the stoppage of the apparatus is reduced, and productivity can be improved.
  • the heating element 21 for example, a metal material such as an iron-chromium-aluminum alloy or nickel-chromium alloy having resistance heating, or a metal material such as platinum, molybdenum, tantalum, or tungsten, which is a refractory metal material, is used. Used.
  • the covering member 22 may be a member having heat resistance.
  • a metal member such as stainless steel, or ceramics such as alumina or silicon nitride can be used.
  • coated member 22 can be aimed at by filling insulating materials, such as magnesium oxide, between the heat generating body 21 and a metal member.
  • the covering member 22 may have a multilayer structure.
  • coated member 22 is comprised with a member with high heat conductivity.
  • a high-temperature fluid may be used as the heating element 21, and the high-temperature fluid is allowed to flow through the covering member serving as a pipe, thereby maintaining the high-speed film-forming effect of the high-quality film by heat activation of the first source gas.
  • the life of 11 can be greatly extended.
  • the flat plate shape provided with many through-holes 23 may be sufficient.
  • the first source gas can be efficiently heated by increasing the surface area of the heating body 11.
  • the first source gas passes through the through-hole 23, so that the first source gas is changed. While dispersing, the gas flow can be made uniform and the first source gas can be efficiently heated.
  • the first source gas can be uniformly contacted with the heating body 11 and the first source gas can be efficiently heated. .
  • the heating temperature of the heating body 11 may be 400 to 1000 ° C., and the first raw material gas is heated and activated, and further activated in the space 8. Further, by setting the heating temperature to a low temperature of 1000 ° C. or less, the warpage of the peripheral member constituting the chamber 1 or the second electrode 2 can be reduced, and the mechanical life of the peripheral member or the like can be improved.
  • the higher-order silane formation reaction is suppressed in the space 8 due to the gas heating effect.
  • the higher-order silane formation reaction is 1) SiH 4 + SiH 2 ⁇ Si 2 H 6 2) Si 2 H 6 + SiH 2 ⁇ Si 3 H 8 ... Similar SiH 2 insertion reaction continues ... That is, a reaction in which a high molecular polymer is generated by SiH 2 insertion reaction.
  • This SiH 2 is generated together with SiH 3 which is the main component of film formation when SiH 4 collides with electrons in the plasma.
  • SiH 3 which is the main component of film formation when SiH 4 collides with electrons in the plasma.
  • more high-order silane molecules are also generated.
  • This higher-order silane production reaction is an exothermic reaction, and proceeds by discharging heat generated by the reaction into the space.
  • the space from which reaction heat is to be discharged specifically, the space containing hydrogen gas as a main component
  • the heating body 11 As described above, by using the heating body 11, a high-quality silicon film can be formed even under high-speed film forming conditions where the plasma excitation power is large.
  • the heating element 11 is not particularly limited as long as it can heat the gas to a predetermined temperature.
  • first supply unit 4a and the second supply unit 4b may be arranged in various patterns such as a dot-like lattice pattern or a staggered pattern arranged in an orderly manner.
  • the number of the 1st supply part 4a and the 2nd supply part 4b may differ.
  • the gas flow rate of the first raw material gas is different from the gas flow rate of the second raw material gas, for example, when the gas flow rate of the first raw material gas is higher than that of the second raw material gas, the first raw material gas is higher than the second supply unit 4b.
  • first introduction path 3a and the second introduction path 3b may be connected to a gas adjustment unit that adjusts the flow rate, flow rate, temperature, and the like of the gas.
  • the vacuum pump 7 it is desirable to use a dry vacuum pump such as a turbo molecular pump in order to suppress contamination of impurities into the film from the exhaust system.
  • the ultimate vacuum is preferably at least 1 ⁇ 10 ⁇ 3 Pa or less, preferably 1 ⁇ 10 ⁇ 4 Pa or less.
  • the thin film forming apparatus S includes control means (not shown) for controlling the timing of gas supply from the first supply unit 4a, gas supply from the second supply unit 4b, and heating of the heating body 11.
  • the heating body 11 is controlled to a predetermined temperature by controlling the power applied by the heating power source 12 to the heating body 11 by the control means.
  • the timing of the gas supply from the 1st supply part 4a and the gas supply from the 2nd supply part 4b is controlled by detecting the temperature of the heating body 11.
  • this control means performs opening / closing control of a supply valve that supplies gas, heating control of the heating element 11 through a DC power source, and the like.
  • the heating of the heating body 11 can promote the decomposition of the first source gas. Further, the first raw material gas that has not been decomposed or the first raw material gas that has been recombined after the decomposition has the gas temperature itself increased, so that the gas decomposition is further promoted in the space 8.
  • the second source gas is supplied by the second supply unit 4b without being brought into contact with the heating body 11 and is activated in the space 8, the second source gas is rapidly decomposed without being excessively decomposed. A high quality thin film can be formed simultaneously.
  • the thin film forming apparatus S has a configuration in which a plurality of film forming chambers are connected to a front chamber (not shown) having a mechanism for transporting the base material 10 via an on-off valve body that blocks the flow of the source gas. Also good.
  • a device including a p-type film forming film forming chamber, an i-type film forming film forming chamber, and an n-type film forming film forming chamber is used.
  • Two film forming chambers may have the above structure.
  • productivity can be improved, for example, a thin film solar cell with high conversion efficiency can be formed. it can.
  • the 1st electrode 6 In the chamber 1 provided with the 1st electrode 6 which functions as an anode, and the 2nd electrode 2 which is provided facing the 1st electrode 6 and functions as a cathode to which high frequency electric power is applied, the 1st electrode 6
  • the base material preparation process which arrange
  • the base material 10 may be arranged so that the distance between the surface of the base material 10 and the surface of the second electrode 2 opposed to the surface is 5 mm or more and 15 mm or less.
  • a silicon-based gas containing silicon (second source gas) and a heated hydrogen gas (first source gas) having a flow rate ratio of 25 to 58 times that of the silicon-based gas The photoactive layer is formed on the substrate 10 by plasma generated between the first electrode 6 and the second electrode 2 by applying high-frequency power to the second electrode 2 while being supplied between the second electrode 2 and the second electrode 2.
  • the photoactive layer formation process formed on this is required.
  • a first source gas and a second source gas different from the first source gas are supplied onto the substrate 10 disposed in the chamber 1. Then, the plasma generated in the space 8 forms a film on the base material 10, but the heating step of heating the heating body 11 used for heating the first source gas, the first source gas and the second source material
  • the photoactive layer may be formed by setting the gas pressure in the chamber 1 to 1000 Pa or more.
  • a heating catalyst body or a resistance heater is disposed as the heating body 11 in the first source gas flow path, and the heating body 11 is heated to a temperature below its melting point.
  • the first source gas may be heated by Further, in the photoactive layer forming step, the power density of the high-frequency power as 0.5 W / cm 2 or more 1.7 W / cm 2 or less or applying a high frequency power to the second electrode 2.
  • the said photoactive layer formation process it is good to adjust a flow rate ratio in the middle of a process so that the flow ratio of the 1st source gas with respect to 2nd source gas may become small in the middle of a process rather than the time of a process start. Furthermore, it is good to heat the base material 10 at the temperature of 180 degreeC or more and 220 degrees C or less after the said photoactive layer formation process.
  • a microcrystalline silicon film has a wavelength sensitivity up to a long wavelength region as compared to an amorphous silicon film. However, since the light absorption coefficient is small, it is necessary to form a thick film. A membrane is required.
  • the pressure during film formation is set to 1000 Pa or more. This is because even when the film is formed at a high speed by increasing the power density of the high-frequency power, the ion temperature can be reduced and the film can be formed by reducing the electron temperature by using this high pressure condition. It is.
  • the first source gas whose temperature has been increased by the heating body 11 is supplied to the space 8, the high-order silane generation reaction is reduced due to the gas heating effect, even in a high-pressure condition. This is because a quality film can be formed.
  • the upper limit of pressure should just be about 2500 Pa from relations, such as abnormal discharge.
  • productivity can be improved and manufacturing cost can be reduced.
  • the flow rate ratio of the first source gas that is hydrogen gas to the second source gas that is silicon-based gas is preferably 25 times or more and 58 times or less (particularly 25 times or more and less than 50 times).
  • the frequency of the high frequency power applied to the second electrode 2 is a frequency of about 13.56 MHz to 100 MHz.
  • a frequency of about 60 MHz or less is used.
  • the frequency is set to 40.68 MHz or less, the film unevenness of the film formed on the large area substrate can be further reduced.
  • a frequency of 13.56 MHz or 27.12 MHz is used.
  • manufacturing cost can be reduced, and the area can be easily increased, so that productivity can be improved.
  • the power density of the high-frequency power is preferably 0.5 W / cm 2 or more and 2 W / cm 2 or less. In particular, it is preferable that the 0.5 W / cm 2 or more 1.7 W / cm 2 or less. If it is the said range, it can film-form at high-speed, reducing the ion damage to a film
  • the Raman peak intensity ratio (crystalline phase peak intensity / amorphous phase peak intensity) in the Raman scattering spectrum is preferably 2.5 or more and 6 or less.
  • the crystal phase peak intensity is defined as the peak intensity at 520 cm ⁇ 1
  • the amorphous phase peak intensity is defined as the peak intensity at 480 cm ⁇ 1 .
  • the Raman spectrum is measured using, for example, a Renishaw Ramanscope System 1000 using a He—Ne laser (wavelength 632.8 nm) as excitation light.
  • the crystallization rate of the microcrystalline silicon film is 50% to 70% from the relationship between the Raman peak area ratio and the Raman peak intensity ratio.
  • the heating temperature of the heating element 11 is lowered to 400 ° C. or more and 1000 ° C. or less, and the gas flow rate ratio of H 2 / SiH 4 is 50/1 or less and H 2 . Even if the flow rate is reduced, the crystallization rate can be reduced to about 50 to 70%.
  • the thin film solar cell formed using the above-described manufacturing method is formed from a high-quality film at high speed, a thin film solar cell with high productivity and high conversion efficiency can be formed.
  • a first conductive layer 31 made of a light-transmitting conductive material such as SnO 2 , ITO, or ZnO is formed on a light-transmitting base material 10 such as glass, plastic, or resin.
  • the film thickness of the first conductive layer 21 is about 100 nm to 1 ⁇ m.
  • the i-type semiconductor layer functions as a photoactive layer on the first conductive layer 31, and the photoactive layer is made of an amorphous semiconductor such as amorphous silicon and has a pin junction inside.
  • an i-type semiconductor layer functions as a photoactive layer
  • a second photoelectric conversion layer 33 made of a microcrystalline semiconductor such as microcrystalline silicon and having a pin junction therein is formed as the photoactive layer.
  • the first p layer and the n layer of the first photoelectric conversion layer 32 are about 5 to 30 nm, respectively, and the thickness of the first i-type semiconductor layer is about 200 nm to 1 ⁇ m.
  • the second p layer and the n layer of the second photoelectric conversion layer 33 are each about 5 to 30 nm, and the thickness of the second i-type semiconductor layer is about 1 to 5 ⁇ m.
  • a second conductive layer 34 made of a light-transmitting conductive material such as SnO 2 , ITO, or ZnO is formed on the second photoelectric conversion layer 33.
  • a third conductive layer 35 made of a material such as silver having a high reflectance with respect to light is formed on the second conductive layer 34.
  • the thickness of the second conductive layer 34 is about 5 nm to 2 ⁇ m, and the thickness of the third conductive layer 35 is about 100 to 500 nm.
  • One of the second conductive layer 34 and the third conductive layer 35 may be formed.
  • the second conductive layer 34 may be formed of a metal material such as silver.
  • the present embodiment not only the tandem structure as described above, but also a semiconductor made of an amorphous silicon film, a semiconductor made of an amorphous silicon germanium film and a semiconductor made of a microcrystalline silicon film, or a semiconductor made of an amorphous silicon film, a microcrystal
  • the present invention can also be applied to a triple structure thin film solar cell in which a semiconductor made of a silicon film and a semiconductor made of a microcrystalline silicon germanium film are stacked.
  • a microcrystalline silicon film that needs to be formed at least thickly is formed using the above manufacturing method, whereby a thin film solar cell with high productivity and high conversion efficiency can be manufactured.
  • the film forming process may be divided into two, and the flow rate of the first raw material gas relative to the second raw material gas in the latter half of the film formation may be smaller than in the first half of the film formation.
  • the film forming speed can be increased and the conversion efficiency can be increased. This is because the crystallization rate of the microcrystalline silicon film is not always constant and tends to be high in the latter half of the film formation under a constant dilution condition. It can be considered that the increase in the crystallization rate is reduced.
  • the dilution rate at the end of film formation may be about 3 to 15% lower than the dilution rate at the start of film formation as compared to the time at the start of film formation.
  • the substrate may be heated at 180 ° C. or higher and 220 ° C. or lower. That is, heat treatment is performed after the thin film solar cell is formed. By performing the heat treatment, the conversion efficiency can be further increased. This is because the open-circuit voltage is improved by increasing the conductivity of the p-type semiconductor layer and the n-type semiconductor layer of the photoelectric conversion layer and increasing the activation energy. Further, it is presumed that hydrogen-induced defects in the film including the i-type semiconductor layer are reduced by hydrogen in the film being transferred to a stable site by heat treatment.
  • the heat treatment time may be about 15 to 90 minutes.
  • the first source gas may be supplied before the second source gas.
  • the base material 10 may be disposed in the chamber 1.
  • the supply of the second source gas may be stopped before the supply of the first source gas is stopped.
  • the base material 10 may be taken out of the chamber 1.
  • the heating body 11 when the heating body 11 is composed of a heating catalyst body, the heating body 11 may be heated to 800 ° C. or higher.
  • the heating body 11 In the exhaust process, when the heating body 11 is made of a heating catalyst body, the heating body 11 may be heated to 800 ° C. or higher.
  • the following steps 1 and 2 are sequentially performed before generating plasma for forming a thin film between the first electrode 6 and the second electrode 2. Good.
  • Process 1 (heating process): The heating body 11 made of a heating catalyst body is heated to 800 ° C. or higher in a state where the chamber 1 is evacuated (1 Pa or less, preferably 0.1 Pa or less).
  • Step 2 gas supply step: a first source gas (hydrogen gas) is supplied from the first supply unit 4a and a second source gas (for example, silane) is supplied into the chamber 1 from the second supply unit 4b.
  • the pressure is adjusted to a predetermined value. At this time, when the temperature of the heating body 11 does not reach a predetermined value necessary for forming a thin film, the heating body 11 is further heated.
  • the first source gas is supplied into the chamber 1 before the second source gas in step 2, so that the second source gas is changed to the second source gas. Since it is possible to reduce the backflow to the first supply path 3a, it is possible to reduce the deterioration of the heating body 11 due to the contact with the second source gas.
  • the source gas is excited and activated by plasma generated by applying high-frequency power to the second electrode 2 in a state where the inside of the chamber 1 is adjusted to a predetermined pressure, and a predetermined amount is applied to the substrate 10 placed on the first electrode 6.
  • a thin film having a thickness of 5 mm is formed. Thereafter, the following steps 3 to 4 are sequentially performed.
  • Step 3 exhaust step: With the heating element 11 made of the heating catalyst body heated to 800 ° C. or higher, the supply of the first source gas and the second source gas is stopped, and the source gas in the chamber 1 is sufficiently exhausted. To do.
  • Process 4 (cooling process): The heating body 11 is cooled in a state where the inside of the chamber 1 is evacuated.
  • the heating catalyst body When a heating catalyst body made of, for example, Ta (tantalum) or W (tungsten) is used as the heating body 11, the heating catalyst body absorbs hydrogen components such as hydrogen molecules and hydrogen atoms in the source gas, and the hydrogen Since the component forms a hydride at the crystal grain boundary, it is considered that a phenomenon that facilitates fracture at the crystal grain boundary, that is, hydrogen embrittlement occurs. According to the above steps 1 and 2, since the hydrogen gas of the first source gas is supplied into the chamber 1 in a state where the heating catalyst body is heated, hydrogen absorption into the heating catalyst body is reduced. In particular, when hydrogen gas is supplied in a state where the heating catalyst body is heated to 800 ° C.
  • the second source gas is changed to the second source gas by stopping the supply of the second source gas before the supply of the first source gas in Step 3. It is possible to reduce backflow to the one supply path 3a. Thereby, deterioration of the heating catalyst body accompanying the contact with the second source gas can be reduced.
  • the thin film forming apparatus S includes a front chamber (not shown) connected to the chamber 1 so that the base material 10 can be carried in and out without the atmospheric pressure inside the chamber 1.
  • a front chamber (not shown) connected to the chamber 1 so that the base material 10 can be carried in and out without the atmospheric pressure inside the chamber 1.
  • the heating body 11 is heated so as to overlap in time with the operation in which the base material 10 is carried into the chamber 1. Further, in the step 4, it is preferable that the heating body 11 is cooled so that the operation of the substrate 10 being carried out of the chamber 1 overlaps in time. As a result, the process is shortened, and the productivity can be further improved.
  • the processing time required for forming the thin film is increased by newly adding heating and cooling time for the heating element 11 in a vacuum state in the chamber 1.
  • the loading / unloading operation of the base material 10 with the front chamber is performed.
  • the heating / cooling step of the heating body 11 in a time-overlapping manner, the time required for forming a substantial thin film is shortened, and productivity can be maintained.
  • the heating body 11 does not necessarily need to be heated and cooled, and may always be maintained at 800 ° C. or higher.
  • H 2 gas is supplied to the first introduction path 3 a and SiH 4 gas is supplied to the second supply path 5.
  • the gas pressure may be set to 50 to 700 Pa
  • the gas flow ratio of H 2 / SiH 4 may be set to 2/1 to 40/1
  • the high frequency power density may be set to 0.02 to 0.2 W / cm 2 .
  • the first source gas whose temperature has been increased by the heating body 11 is supplied to the space 8. For this reason, the high-order silane formation reaction in the space 8 is suppressed by the gas heating effect, crystallization of the microcrystalline silicon film can be promoted, and the film can be formed at high speed.
  • the area A ⁇ b> 1 occupied by the heating body 11 may be wider than the thin film forming area A ⁇ b> 2 of the base material 10.
  • the 1st source gas heated with the heating body 11 is uniformly supplied on the base material 10, maintaining the temperature.
  • the space occupation density of the heating body 11 is small in the outer peripheral area of the heating body 11, so that efficient heating of the first source gas is difficult.
  • the first source gas whose temperature has increased is in contact with the first source gas outside the region of the heating element 11 and the inner wall of the first introduction path 3a, the heat is removed and the temperature is lowered.
  • the first source gas is kept on the base material 10 while maintaining a sufficiently high temperature. Since it is supplied uniformly, the quality of the thin film formed in the surface of the base material 10 becomes uniform, and a thin film solar cell having a uniform photoelectric conversion characteristic distribution can be formed.
  • the area A3 occupied by the first supply unit 4a may be equal to or narrower than the area A1 occupied by the heating body 11, and may be wider than the thin film forming area A2 of the substrate 10.
  • the first raw material gas can be uniformly brought into contact with the heating body 11, and the first raw material gas can be efficiently and uniformly heated.
  • the first opening 13a for the first source gas to pass through is provided in the dispersion plate 13, and the heating element 11 occupies the area A4 occupied by the first opening 13a. It may be narrower than A1 and wider than the region A3 occupied by the first supply unit 4a.
  • the radiation blocking member 14 it is preferable to provide the radiation blocking member 14 so as to cover the first supply unit 4a on the downstream side of the heating body 1 so that the radiant heat irradiated from the heating body 11 does not directly reach the base material 10. At this time, it is preferable that the radiation blocking member 14 has a function as a reflector that reflects the radiation irradiated from the heating body 11.
  • the radiation blocking member 14 is provided with a second opening 14a through which the first source gas passes.
  • the region A5 occupied by the second opening 14a may be equal to or narrower than the region A1 occupied by the heating body 11 and wider than the region A3 occupied by the first supply unit 4a.
  • the above configuration also makes it difficult for the first source gas having a low temperature in the outer peripheral region of the heating body 11 and the vicinity thereof to be supplied to the space 8, and thus the quality of the thin film formed in the surface of the base material 10 becomes uniform, A thin film solar cell having a uniform photoelectric conversion characteristic distribution can be formed.
  • a heat generating element such as a sheathed heater or a heat exchange pipe in which a high-temperature fluid such as gas or liquid is circulated may be used.
  • a temperature of the edge part heating body 19 200 degreeC or more and 500 degrees C or less are preferable.
  • the dispersion plate 13 and the radiation shielding member 14 have a plurality of support members 15 attached to the first introduction path 3a perpendicularly to the planar direction of each member. .
  • the support member 15 in the central region of the dispersion plate 13 and the radiation blocking member 14, it is possible to reduce the warpage of the dispersion plate 13 and the radiation blocking member 14 due to the high temperature of the heating body 11.
  • the gas flow passing through the radiation blocking member 14 can be maintained uniformly.
  • the dispersion plate 13 and the radiation blocking member 14 may be subdivided into a plurality of pieces and fixed by the support member 15.
  • the amount of warpage per sheet of the dispersion plate 13 and the radiation blocking member 14 accompanying the increase in the temperature of the heating element 11 can be reduced. 13 and the radiation flow through the radiation blocking member 14 can be maintained uniformly.
  • the heating body 11 when the heating body 11 consists of a wire-shaped heating catalyst body as shown in FIG. 9, you may provide the auxiliary member 16 which supports the heating body 11 between the heating bodies 11 installed from one end to the other end. Absent.
  • the auxiliary member 16 in the central portion of the heating body 11 installed from one end to the other end, the influence of heat with repeated use compared to the heating body 11 without the auxiliary member 16 shown in FIG. Since the possibility that the heated body 11 that has extended in contact with the first introduction path 3a or the adjacent heated bodies 11 come into contact with each other can be reduced, the replacement frequency of the heated body 11 can be reduced. And productivity can be improved. Further, when the heating body 11 extends and deforms, the distribution of the heating of the first source gas is generated, and the possibility that the quality of the thin film formed in the surface of the base material 10 becomes nonuniform can be reduced.
  • one heating element 11 is bent at the end portion so that the heating element 11 is arranged in a certain region.
  • a plurality of heating elements 11 may be arranged on the other end.
  • the heating element 11 extended from one end is bent toward the one end by bending the heating element 11 in the auxiliary member 16 provided in the center, and extended from the other end.
  • the heating body 11 may be bent at the auxiliary member 16 provided in the center portion, and again toward the other end.
  • auxiliary members 16 may be provided as shown in FIG.
  • a heating mechanism 17 having a heating body 11 provided on a support frame 18 movable in the horizontal direction may be provided.
  • the heating mechanism 17 may be moved from the side of the thin film forming apparatus S into and out of the apparatus. Thereby, the exchange operation
  • power may be supplied to the heating body 11 by supplying power to the heating body 11 through the power line in the support frame 18.
  • the coupling portion 18a is provided on the support frame 18 so that the heating body mechanisms 17 are coupled to each other so that the coupling portion 18a has an energization function. Electric power can be supplied from the heating body mechanism 17 connected to the power source 12 to another heating body mechanism 17.
  • the heating body 11 located in the lower stage is replaced by using a heating body mechanism 17 that can move in the horizontal direction. Exchange work can be simplified and productivity can be improved.
  • a first conductive layer made of an SnO 2 film having a thickness of 800 nm was formed on a glass substrate by a thermal CVD method. And the 1st photoelectric converting layer was formed on the 1st conductive layer using the thin film forming apparatus S shown in FIG.
  • the first photoelectric conversion layer p-type, i-type and n-type amorphous silicon films were sequentially laminated, and an n-type microcrystalline silicon film was laminated thereon.
  • the film thickness of the i-type amorphous silicon film was 250 nm.
  • a second photoelectric conversion layer was formed on the first photoelectric conversion layer.
  • the second photoelectric conversion layer p-type and i-type microcrystalline silicon films were sequentially laminated, and an n-type amorphous silicon film was laminated thereon.
  • the film thickness of the i-type microcrystalline silicon film was 2.5 ⁇ m.
  • Silane gas and hydrogen gas were used as source gases.
  • B 2 H 6 (diborane) was used for the p-type semiconductor layer as a doping gas
  • PH 3 (phosphine) was used for the n-type semiconductor layer.
  • a second conductive layer made of a 10 nm thick ZnO film and a third conductive layer made of 300 nm thick silver were laminated on the second photoelectric conversion layer by sputtering.
  • the heating catalyst body made of a tantalum wire is heated to 1500 ° C. to heat the hydrogen gas, and in other films, the heating catalyst body is heated. Did not do. No. of Table 1 which is a comparative example. In any of 14 to 21, heating element 11 was not heated.
  • An i-type microcrystalline silicon film was formed according to the film forming conditions shown in Table 1.
  • the temperature of the glass substrate was adjusted to 190 ° C.
  • the distance between the glass substrate and the second electrode was 6 mm.
  • the photoelectric conversion efficiency was measured in the thin film solar cell produced on each condition, and while showing the result in Table 1, No. 1 of Table 1 is shown. Nos. 1 to 13 and No. 1 as a comparative example.
  • FIG. 16 shows the relationship between the film forming speed and the conversion efficiency for 14 to 21.
  • the comparative example No Furthermore, by heating the source gas with the heating element 11, the comparative example No. It was confirmed that a thin film solar cell with high speed and high conversion efficiency was formed even when the dilution rate of silicon-based gas with hydrogen gas was lower than that of 14-21.
  • the Raman peak intensity ratio was 2.85 or more and 5.32 or less and 2.5 or more and 6 or less.
  • the film thickness up to 2 ⁇ m is No. in Table 1.
  • Film formation was performed under the conditions of No. 5, and the remaining 0.5 ⁇ m was formed by changing the flow rate of hydrogen gas relative to the silane gas from 42 times to 40 times. As a result, the film forming speed was 1.6 nm / second, and the change efficiency was improved to 12.72%.
  • a thin film forming apparatus S shown in FIG. 1 is used to supply hydrogen gas as a first source gas from the first supply unit 4a and supply silane gas as a second source gas into the chamber 1 from the second supply unit 4b. did. And the temperature of the heating body 11 which is a heating catalyst body at the time of thin film formation was fixed to 1500 degreeC, and the hydrogenated microcrystal silicon film
  • the heating element 11 was a wire made of tantalum having a thickness of ⁇ 0.5 mm and formed into a zigzag shape.
  • the temperature of the heating element 11 is 25 ° C. (temperature change E1: test 22 (comparative example)), 400 ° C. (temperature change E2: No) in a state where the evacuation is performed before supplying hydrogen gas to the space 8 in the chamber 1. .23), 600 ° C. (temperature change E3: No. 24), 800 ° C. (temperature change E4: No. 25), and 1500 ° C. (temperature change E5: No. 26) in advance, Hydrogen gas was supplied into the chamber 1 while maintaining the temperature.
  • Hydrogen gas was introduced into the space 8 in the chamber 1 and the pressure in the chamber 1 was adjusted to 1300 Pa. For 22 to 25, the temperature of the heating element 11 was further heated to the heating temperature (1500 ° C.) at the time of forming the thin film.
  • silane gas was supplied to the space 8 in the chamber 1, and high frequency power was applied to the second electrode 2 at 450 W to excite plasma. Then, a hydrogenated microcrystalline silicon film was formed on the substrate 10.
  • FIG. 18 also shows the relationship between the supply and stop of the source gas accompanying the temperature change of the heating element 11.
  • a series of steps of heating process ⁇ gas supply process ⁇ film forming process ⁇ evacuation process ⁇ cooling process is performed in 50 cycles, 100 cycles and 150 cycles. confirmed. This deterioration state was evaluated by the presence or absence of breakage when the heating element 11 after each cycle was simply bent by hand.
  • Table 3 shows the results. In Table 3, “NG” means that the thermal catalyst 11 was broken when it was bent, and “G” means that it was not broken. “NA” means that the heating element 11 is not evaluated by bending.
  • No. in Table 3 is a comparative example. In No. 22, when 50 cycles of the series of steps had elapsed, the heating element 11 was already bent and easily broken. No. in Table 3 23 and no. In 24 (temperature changes E2 and E3), the fracture was confirmed when 100 cycles of the series of steps were performed. No. in Table 3 In 25 and 26 (temperature change E5 and temperature change E6), even after 150 cycles of the series of steps, the heating element 11 did not break and maintained ductility, and could be used further. From the above results, it was confirmed that the deterioration of the heating body 11 was reduced by setting the temperature of the heating body 11 to 800 ° C. or higher and supplying the hydrogen gas while maintaining the temperature.
  • the thermal desorption analysis (TDS) method is used for hydrogen absorbed in the heated body 11 that has broken and in the heated body 11 that has not broken, or hydrogen that has been taken in as a hydride. ), A large amount of hydrogen was confirmed in the fractured heating element 11, but almost no hydrogen was identified in the heating element 11 that did not fracture. As described above, it was confirmed that the heating body 11 was also deteriorated by the hydrogen absorption by the preheating of the heating body 11 or the suppression of the hydride formation reaction by the TDS method.
  • the heating catalyst body is preheated to 800 ° C. or higher, and then hydrogen gas is supplied, so that the heating catalyst body can be deteriorated without changing the film forming parameters or changing the material or structure of the heating catalyst body. It has been found that the productivity can be improved by extending the maintenance cycle without affecting the film quality and the film forming speed.
  • Hydrogen gas which is the first source gas
  • the silane gas which is 2nd raw material gas was supplied in the chamber 1 from the 2nd supply part 4b.
  • the gas flow rate ratio of H 2 / SiH 4 was set to 45/1, and the high frequency power density (frequency: 27 MHz) was set to 0.96 W / cm 2 .
  • the hydrogenated microcrystalline silicon film was formed on the white glass substrate 10 by changing the temperature of the heating element 11 when forming the thin film by dividing the gas pressure into 300 Pa or 1300 Pa.
  • the crystal phase peak intensity was defined as the peak intensity at 520 cm ⁇ 1
  • the amorphous phase peak intensity was defined as the peak intensity at 480 cm ⁇ 1 .
  • the Raman spectrum was measured using a Renishaw Ramanscope System 1000 using a He—Ne laser (wavelength 632.8 nm) as excitation light. The results are shown in Table 4.
  • the crystallization rate is 5% or less when the temperature of the heating element 11 is 1000 ° C. or less.
  • the temperature of the heating body was 400 ° C. or lower, crystallization could not be confirmed.
  • the crystallization rate is 53 % Or more and crystallization was confirmed.
  • a thin film solar cell was formed using a thin film forming apparatus S as shown in FIG.
  • a first conductive layer made of SnO 2 film having a thickness of 800nm on a substrate 10 of glass substrate by a thermal CVD method.
  • a first photoelectric conversion layer was formed on the first conductive layer.
  • an n-type microcrystalline silicon film was stacked on a layer in which p-type, i-type, and n-type amorphous silicon films were sequentially stacked.
  • the film thickness of the i-type amorphous silicon film was 250 nm.
  • the 2nd photoelectric converting layer was formed on the 1st photoelectric converting layer.
  • an n-type amorphous silicon film was stacked on a layer in which p-type and i-type microcrystalline silicon films were sequentially stacked.
  • the film thickness of the i-type microcrystalline silicon film was 2.5 ⁇ m.
  • silane gas and hydrogen gas were used as the source gas
  • B 2 H 6 was used as the p-type semiconductor layer as a doping gas
  • PH 3 was used as the n-type semiconductor layer.
  • a second conductive layer made of a ZnO film having a thickness of 10 nm and a third conductive layer made of silver having a thickness of 300 nm were formed on the second photoelectric conversion layer.
  • the heating element 11 as the heating catalyst is heated to 1500 ° C. to heat the hydrogen gas, and in the other films, the thermal catalyst is used. No heating was performed.
  • the heating element 11 was made of the same material and shape as in Example 1.
  • the area A1 occupied by the heating element 11 is wider than the area A2 of the base material by 20 mm outside and 40 mm outside, respectively.
  • 41 and 42 are areas where the area A1 occupied by the thermal catalyst is narrower 20 mm inside and 40 mm inside than the area A2 of the base material, respectively.
  • the area A3 occupied by the first supply unit was an area wider by 30 mm than the area A2 of the base material.
  • the dispersion plate 13 and the radiation preventing member 14 provided with a plurality of gas ejection holes of ⁇ 0.5 mm are widened upstream of the heating body 11 and downstream of the heating body 11 and 30 mm outside the area A2. installed.
  • the conversion efficiency was measured in the thin film solar cell produced by each condition, and the difference of the average conversion efficiency in the center part of the base material 10 and the average conversion efficiency in the four corners of the base material 10 was compared. The results are shown in Table 5.
  • the heating body was held only by the heating body support frame, and the heating body formed in a zigzag shape as in Example 2 was used.
  • an auxiliary member made of quartz was attached to the support frame, and the heating body was held in the auxiliary member in addition to the support frame.
  • Example 2 a first photoelectric conversion layer having an i-type amorphous silicon film and a second photoelectric conversion layer having an i-type microcrystalline silicon film were sequentially laminated to produce a thin film solar cell.
  • the heating body was heated to a temperature of 1500 ° C. to form the film. And it repeated 100 times and produced the thin film solar cell.
  • the thin film solar cell produced according to each condition was divided into 16 and the conversion efficiency was measured in each region. And the lowest conversion efficiency of the in-plane area
  • Method 1 the thin-film solar cell produced for the 100th time had a photoelectric conversion efficiency of 22% lower than that of the thin-film solar cell produced for the first time, whereas in Method 2, the reduction was only 5%. .
  • the high rate of decrease in photoelectric conversion efficiency in Method 1 is considered to be due to deformation of the heating element. In other words, it is considered that the characteristics deteriorated because the crystallization rate in the thin film solar cell produced by the adjacent heating bodies deformed and densely increased and exceeded the crystallization rate suitable for the photoelectric conversion efficiency.
  • Chamber 2 2nd electrode 4: Supply part 4a: 1st supply part 4b: 2nd supply part 5: High frequency power supply 6: 1st electrode 10: Base material 11: Heating body 31: 1st conductive layer 32: 1st 1 photoelectric conversion layer 33: 2nd photoelectric conversion layer 34: 2nd conductive layer 35: 3rd conductive layer S: Thin film formation apparatus

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 基材の上に、結晶シリコンを有する少なくとも1層の光活性層を含む光電変換層を備えた薄膜太陽電池を製造する薄膜太陽電池の製造方法であって、アノード用の第1電極と、該第1電極に対向して配置されて高周波電力が印加されるカソード用の第2電極とを備えているチャンバー内に、前記第1電極と前記第2電極との間に前記基材を配置する基材準備工程と、前記チャンバー内のガス圧が1000Pa以上になるように、シリコンを含むシリコン系ガスと該シリコン系ガスの25倍以上58倍以下の流量比の加熱した水素ガスとを前記第1電極と前記第2電極との間に供給して、前記第2電極への前記高周波電力の印加によって前記第1電極と前記第2電極との間に発生させたプラズマでもって、前記光活性層を前記基材の上に形成する光活性層形成工程とを含むことを特徴とする。

Description

薄膜太陽電池の製造方法
 本発明は、基材上に薄膜を形成する薄膜太陽電池の製造方法に関する。
 従来、ガラス基板等の基材上に薄膜シリコンなどを形成する膜形成装置は、例えば、チャンバーと、チャンバー内に原料ガスを導入するガス導入経路と、チャンバー内に配置された一対の電極とが設けられて、一対の電極の一方には、堆積膜形成用の基材が載置され、一対の電極の他方には、高周波電力を印加するための高周波電源が接続されている。
 一対の電極の他方に印加された高周波電力によって、一対の電極に挟まれた空間においてプラズマを生成させる。このプラズマでもって原料ガスを分解・励起活性化させて、種々の活性種を生じさせる。そして、これら活性種の一部が基材上に堆積することで膜が形成される。
 現在、薄膜シリコン系太陽電池においては、薄膜太陽電池の光電変換効率の向上および製造コスト低減のために、高速に製膜する場合であっても高品質な薄膜を形成できる製造方法が望まれている。
 高品質な膜を実現する製膜方法として、チャンバー内の圧力を3Torr(約400Pa)以上に設定して、原料ガスがシラン系ガスと水素ガスとを含み、シラン系ガスに対する水素ガスの流量を50倍以上とする技術が提案されている(例えば、下記特許文献1を参照)。
特開平11-145499号公報
 しかしながら、通常、製膜速度の上限は1.1nm/秒未満であり、生産性を高めるためには高品質な膜を維持しつつ高速に製膜する必要がある。
 また、チャンバー内のガス圧力を高くすれば製膜速度が向上するものの、圧力を高くしすぎると、製膜の主成分となるSiHよりも高次シランが多く生成するようになり、膜の品質が低下するおそれがある。また、高次シランの生成を低減するために水素の流量を大きくしても、シラン系ガスの絶対量が少なくなることから製膜速度が低下する。
 また、製膜速度を上げるために高い高周波電力を印加すれば、膜へのダメージが増加して膜の品質を低下させる。
 そこで本発明では、高速に製膜する場合であっても高品質な製膜が可能な薄膜太陽電池の製造方法を提供することを目的とする。
 本発明に係る薄膜太陽電池の製造方法は、基材の上に、結晶シリコンを有する少なくとも1層の光活性層を含む光電変換層を備えた薄膜太陽電池を製造する薄膜太陽電池の製造方法であって、アノード用の第1電極と、該第1電極に対向して配置されて高周波電力が印加されるカソード用の第2電極とを備えているチャンバー内に、前記第1電極と前記第2電極との間に前記基材を配置する基材準備工程と、前記チャンバー内のガス圧が1000Pa以上になるように、シリコンを含むシリコン系ガスと該シリコン系ガスの25倍以上58倍以下の流量比の加熱した水素ガスとを前記第1電極と前記第2電極との間に供給して、前記第2電極への前記高周波電力の印加によって前記第1電極と前記第2電極との間に発生させたプラズマでもって、前記光活性層を前記基材の上に形成する光活性層形成工程とを含むことを特徴とする。
 上記の薄膜太陽電池の製造方法によれば、高速に製膜する場合であっても高品質な薄膜太陽電池を形成することができることによって、光電変換効率の高い薄膜太陽電池を提供することができる。
本発明に係る薄膜太陽電池の製造方法に用いる薄膜形成装置の一例を示す断面模式図である。 本発明に係る薄膜太陽電池の製造方法に用いる加熱体の構造例を模式的に示す図であり、(a)は加熱体の一部が切断された様子を示す部分斜視図であり、(b)は加熱体の形状の一例を示す平面図であり、(c)は平板状の加熱体の一例を示す斜視図である。 本発明に係る薄膜太陽電池の製造方法に用いる薄膜形成装置の一例を示す断面模式図である。 本発明に係る薄膜太陽電池の製造方法で製造した薄膜太陽電池の一例を示す断面模式図である。 本発明に係る薄膜太陽電池の製造方法に用いる薄膜形成装置の一例を示す断面模式図である。 本発明に係る薄膜太陽電池の製造方法に用いる薄膜形成装置の一例を示す断面模式図である。 本発明に係る薄膜太陽電池の製造方法に用いる薄膜形成装置の一例を示す断面模式図である。 本発明に係る薄膜太陽電池の製造方法に用いる薄膜形成装置の一例を示す断面模式図である。 本発明に係る薄膜太陽電池の製造方法に用いる加熱体の構造例を模式的に示す図であり、(a)は平面図であり、(b)は(a)においてC1-C1方向で切断した断面図である 本発明に係る薄膜太陽電池の製造方法に用いる加熱体の構造例を模式的に示す平面図である 本発明に係る薄膜太陽電池の製造方法に用いる加熱体の構造例を模式的に示す図であり、(a)は平面図であり、(b)は(a)においてC2-C2方向で切断した断面図である (a)、(b)はそれぞれ本発明に係る薄膜太陽電池の製造方法に用いる加熱体の構造例を模式的に示す平面図である 本発明に係る薄膜太陽電池の製造方法に用いる加熱体の構造例を模式的に示す図であり、(a)は平面図であり、(b)は(a)においてC3-C3方向で切断した断面図である 本発明に係る薄膜太陽電池の製造方法に用いる薄膜形成装置の一例を示す断面模式図である。 本発明に係る薄膜太陽電池の製造方法に用いる薄膜形成装置の一例を示す断面模式図である。 実施例の結果を説明する図であり、製膜速度と変換効率との関係を示すグラフである。 実施例の結果を説明する図であり、基材と第2電極との距離と、製膜速度との関係を示すグラフである。 本発明に係る薄膜太陽電池の製造方法の実施例を説明する図であり、時間と加熱触媒体の温度との関係を示すグラフである。
 以下、本発明に係る薄膜太陽電池の製造方法の実施形態について図面を参照しながら詳細に説明する。
 <薄膜形成装置の基本構造>
 まず、本実施形態で使用する薄膜形成装置の基本構造について説明する。図1に示すように、薄膜形成装置Sは、チャンバー1と、チャンバー1内に位置している第1電極6と、チャンバー1内に第1電極6と離間して位置して、第1原料ガスを供給できる第1供給部4aおよび第2原料ガスを供給できる第2供給部4bを備えた第2電極2と、第1供給部4aに接続されて第1原料ガスが導入される導入経路と、この導入経路内に配置されている加熱体11と、第1供給部4aからのガス供給、第2供給部4bからのガス供給および加熱体11の加熱を制御する制御手段(不図示)とを備えている。
 ここで、第2電極2はシャワー電極として機能する。また、薄膜が形成される基材10がチャンバー1内の第1電極6と第2電極2との間に配置されている。なお、基材10は第1電極6と第2電極2との間に位置させるようにすればよく、必ずしも第1電極6の上に直接支持されていなくてもよい。
 チャンバー1は、少なくとも上壁、側壁および底壁によって構成される真空排気可能な反応空間を有する真空容器である。このようなチャンバー1の内部は、真空ポンプ7によって真空排気されて、圧力調整器(不図示)により内部の圧力が調整される。チャンバー1はステンレスまたはアルミニウム等の金属部材から構成される。
 第1電極6は、アノード電極の機能を有しており、基材10の温度を調整するヒーターを内蔵する。このように、第1電極6は基材10の温度調整機構としても機能し、これにより、基材10は例えば100~400℃に、より好ましくは150~350℃に調整される。第1電極6はステンレスまたはアルミニウム等の金属材料から構成される。
 基材10はガラス基板等からなる平板状のもの、または、金属材料もしくは樹脂等からなるフィルム状のもの等、上記温度に耐える各種材料を用いることができる。
 高周波電源5は第2電極2に接続されて、この第2電極2に高周波電力が印加される。高周波電源5から第2電極2に高周波電力を印加することにより、第2電極2と基材10の間に位置する空間8においてプラズマが形成される。
 第2電極2は第1電極6と対向して配置されており、カソード電極として機能する。この第2電極2には、導入経路3を通して導入されたガスをチャンバー1内に供給する複数の供給部4を有する。これら供給部4は基材10に向かって開口している。
 第1導入経路3aおよび第2導入経路3bは、それぞれ異なるガスを貯留する複数のガスボンベ(不図示)が連結されている。第1導入経路3aおよび第2導入経路3bから導入されたガスは、それぞれ第1供給部4aおよび第2供給部4bを通して空間8に達するまで基本的に混合しない。
 複数の供給部4に供給されるガスは、第1供給部4aに供給される第1原料ガスと、第2供給部4bに供給されるこの第1原料ガスよりも分解確率の高い第2原料ガスとを含む。ガスの総分解速度はexp(-ΔEa/kTe)×Ng×Ne×ve×σgの関係式で定義される。なお、この関係式中のΔEaは原料ガスの励起活性化エネルギー(解離エネルギー)、kはボルツマン定数、Teは電子温度、Ngは原料ガス濃度、Neは電子濃度、veは電子速度、σgは原料ガスの衝突断面積をそれぞれ示す。また、exp(-ΔEa/kTe)は分解確率を意味する。なお、exp(-ΔEa/kTe)×σgを衝突断面積とする場合もある。また、後述するように、第1導入経路3aを流れる第1原料ガスの流れを分けて、一部を第2導入経路3bに流す(第2原料ガスと混合させる)場合もある。
 第1原料ガスおよび第2原料ガスは薄膜の材質によって適宜選択される。例えば、a-Si:H(水素化アモルファスシリコン)またはμc-Si:H(水素化微結晶シリコン)等のSi系薄膜を形成する場合は、第1原料ガスとしては非Si系ガスを用い、第2原料ガスとしてはSi系ガスをそれぞれ用いることができる。非Si系ガスとしてはH(水素)ガス等が用いられる。シリコン系ガスとしてはSiH(シラン)、Si(ジシラン)、SiF(四フッ化珪素)、Si(六フッ化二珪素)およびSiHCl(ジクロロシラン)ガス等から選択される1種以上のガスが用いられる。なお、ドーピングガスを導入する場合、p型Si系薄膜形成時はB(ジボラン)ガス等を用い、n型Si系薄膜形成時はPH(ホスフィン)ガス等を用いる。ドーピングガスの導入経路としては、第1導入経路3aまたは第2導入経路3bのいずれかを必要に応じて選択することができる。ただし、後述するように、第1導入経路3a内に加熱用電源12に接続された加熱体11を設ける場合、ドーピングガスは第2導入経路3bを通して導入することが望ましい。
 第1導入経路3a内に設けられた、加熱体11は加熱触媒体(heated catalyzer)または抵抗加熱ヒーター等が用いられる。例えば、加熱触媒体は、媒体に電流を流して加熱高温化することで接触するガスを励起活性化(分解)させるものとして機能する。加熱触媒体は、少なくともその表面が金属材料からなる。この金属材料は好ましくは高融点金属材料であるTa、W、Re、Os、Ir、Nb、Mo、RuおよびPtのうちの少なくとも1種を含む金属材料または合金材料からなることが望ましい。また、加熱触媒体の形状は、例えば、上記のような金属材料をワイヤ状にしたもの、板状またはメッシュ状にしたものが用いられる。加熱触媒体の温度を400℃~2000℃にすることで、第1原料ガスは加熱され活性化されるとともに、空間8においても活性化される。
 例えば図2(a)に示すように、加熱体11は、高温体となる発熱体21と、発熱体21の外周を覆う被覆部材22とから構成されていてもよい。このように構成することで、発熱体21と第1原料ガスとの接触が低減される。これにより、第1原料ガスの加熱活性化による高品質膜の高速製膜効果を保ちつつ、第1原料ガスを起因とした発熱体21への水素吸収および発熱体材料の水素化反応による水素脆化が大幅に低減されて、加熱体11の寿命を大幅に延ばすことができる。その結果として、装置の停止を伴うメンテナンスの頻度が減少して、生産性を向上させることができる。
 発熱体21としては、例えば、抵抗加熱を有する鉄-クロム-アルミニウム系合金もしくはニッケル-クロム系合金等の金属材料、または、高融点金属材料である白金、モリブデン、タンタルもしくはタングステン等の金属材料が用いられる。
 被覆部材22は耐熱性を有する部材であればよく、例えばステンレス等の金属部材、または、アルミナもしくは窒化珪素等のセラミックスを用いることができる。なお、金属部材を用いる際には、発熱体21と金属部材との間に酸化マグネシウム等の絶縁性材料を充填することによって、発熱体21と被覆部材22との絶縁性を図ることができる。このように、被覆部材22は多層構造であっても構わない。また、被覆部材22は伝熱性の高い部材で構成されることが好ましい。
 また、発熱体21として高温流体を用いてもよく、配管となる被覆部材に高温流体を流すことにより、第1原料ガスの加熱活性化によって高品質膜の高速製膜効果を保ちつつ、加熱体11の寿命を大幅に延ばすことができる。
 加熱体11の形状としては、図2(b)に示すように、複数個所を折り曲げた管状としてもよい。または、図2(c)に示すように、例えば貫通孔23を多数設けた平板状であってもよい。このように、加熱体11の表面積を増大させることにより、効率よく第1原料ガスを加熱することができる。
 また、図2(c)に示すように、貫通孔23を設けた平板状の加熱体11を採用した場合には、第1原料ガスが貫通孔23を通過することによって、第1原料ガスを分散させてガスの流れを均一化するとともに、第1原料ガスを効率よく加熱することができる。
 また、図3に示すように、加熱体11の上部に分散板13を設けることによって、第1原料ガスが均一に加熱体11と接触して、効率よく第1原料ガスを加熱することができる。
 加熱体11の加熱温度を400~1000℃にしてもよく、第1原料ガスは加熱され活性化されるとともに、さらに空間8においても活性化される。また、加熱温度を1000℃以下の低い温度にすることによって、チャンバー1または第2電極2を構成する周辺部材の反りを低減して、周辺部材等の機械的な寿命を向上させることができる。
 特に、加熱体11によって温度上昇した第1原料ガスが空間8に供給されるため、ガスヒーティング効果によって空間8で高次シラン生成反応が抑制される。
 ここで、高次シラン生成反応とは、
1) SiH+SiH→Si
2) Si+SiH→Si
・・・ 以下、同様なSiH挿入反応が続く・・・
といった、SiH挿入反応によって高分子重合体が生成していく反応である。
 このSiHは、SiHがプラズマ中の電子と衝突することで製膜主成分となるSiHとともに生成される。SiHは特に製膜速度を上げるためにプラズマ励起電力を高めるほどより多く生成するようになり、その結果、高次シラン分子もより多く生成するようになる。
 このようにして生じた高次シラン分子は、製膜表面に付着すると、製膜表面での堆積反応(膜成長反応)を乱して膜質を悪化させ、また膜中に取り込まれることでも膜構造を乱して膜質を悪化させる。この高次シラン生成反応は発熱反応であり、反応によって生じる熱を空間に排出することで進む反応である。しかし、上記ガスヒーティング効果によって、反応熱が排出されるべき空間(具体的には水素ガスが主成分の空間)が既にあたためられていると、空間に反応熱が排出されにくくなる。すなわち発熱反応たる高次シラン生成反応が進みにくくなる。
 以上述べたように、加熱体11を用いることによって、プラズマ励起電力が大きい高速製膜条件下においても高品質のシリコン膜を製膜することができる。なお、加熱体11はガスを所定温度に加熱できるものであれば、特に限定されない。
 また、第1供給部4aおよび第2供給部4bは、それぞれ例えば整然と配置された点状の格子状パターンまたは千鳥状パターン等、種々のパターンで配列してもよい。また、第1供給部4aと第2供給部4bとの数が異なっていてもよい。第1原料ガスのガス流量と第2原料ガスのガス流量とが異なる場合、例えば、第2原料ガスよりも第1原料ガスのガス流量が多い場合には、第2供給部4bよりも第1供給部4aの数を多くすることによって、供給バランスが保たれて均一な膜厚・膜質分布を有する堆積膜を形成することができる。
 また、第1導入経路3aおよび第2導入経路3bはガスの流量、流速および温度などを調整するガス調整部と連結されていてもよい。
 真空ポンプ7は排気系からの膜中への不純物混入を抑制するために、ターボ分子ポンプ等のドライ系の真空ポンプを用いることが望ましい。到達真空度は少なくとも1×10-3Pa以下、好適には1×10-4Pa以下とすることが好ましい。
 また、薄膜形成装置Sは、第1供給部4aからのガス供給、第2供給部4bからのガス供給、および加熱体11の加熱のタイミングを制御する制御手段(不図示)を備えている。制御手段によって加熱電源12が加熱体11に印加する電力を制御することにより、加熱体11が所定の温度に制御される。また、加熱体11の温度を検知して、第1供給部4aからのガス供給および第2供給部4bからのガス供給のタイミングが制御される。具体的には、この制御手段により、ガス供給を行なう供給弁の開閉制御、および直流電源を通じた加熱体11の加熱制御等を行なう。
 以上により、上述した薄膜形成装置Sの構造によれば、加熱体11の加熱によって、第1原料ガスの分解を促進させることができる。さらに、分解しなかった第1原料ガス、または分解後に、再度結合した第1原料ガスは、ガス温度自体が上昇しているため、空間8にてガス分解がより促進される。加えて、第2原料ガスを加熱体11に接触させずに第2供給部4bによって供給して、空間8にて励起活性化させることから、第2原料ガスを過剰に分解することなく、高速に製膜できると同時に高品質な薄膜を形成することができる。
 なお、薄膜形成装置Sは基材10を搬送させる機構を備えた前室(不図示)に複数の製膜室が原料ガスの流れを遮断する開閉弁体を介して接続された構成であってもよい。
 また、薄膜太陽電池を形成する場合、p型膜形成用製膜室、i型膜形成用製膜室およびn型膜形成用製膜室が含まれた装置を用いて、この装置において少なくとも1つの製膜室が上記構造を有するものとすればよい。特に、膜厚が厚く、高品質な膜が要求されるi型膜形成用製膜室に上記構造を有することにより、生産性を向上させ、例えば変換効率の高い薄膜太陽電池を形成することができる。
 <製造方法>
 次に、薄膜太陽電池の製造方法の一例について説明する。基材10の上に、シリコン結晶相を有する少なくとも1層の光活性層を含む光電変換層を備えた薄膜太陽電池を製造するには、以下に示す工程が必要である。
 まず、アノードとして機能する第1電極6と、第1電極6に対向して設けられて高周波電力が印加されるカソードとして機能する第2電極2とを備えたチャンバー1内において、第1電極6と第2電極2との間に基材10を配置する基材準備工程が必要である。この基材準備工程において、基材10の表面とこの表面に対向させる第2電極2の表面との距離が5mm以上15mm以下となるように基材10を配置するとよい。
 次に、シリコンを含むシリコン系ガス(第2原料ガス)と、このシリコン系ガスの25倍以上58倍以下の流量比の加熱した水素ガス(第1原料ガス)とを、第1電極6と第2電極2との間に供給した状態で、第2電極2に高周波電力を印加して第1電極6と第2電極2との間に発生させたプラズマにより、光活性層を基材10の上に形成する光活性層形成工程が必要である。
 上記光活性層形成工程は、上述した薄膜形成装置Sにおいて、チャンバー1内に配置した基材10の上に、第1原料ガスと、第1原料ガスとは異なる第2原料ガスとを供給して、空間8にて発生させたプラズマにより、基材10上に膜を形成するが、第1原料ガスの加熱に用いられる加熱体11を加熱する加熱工程と、第1原料ガスおよび第2原料ガスを供給するガス供給工程と、第1原料ガスおよび第2原料ガスを供給したチャンバー1内にプラズマを発生させて、チャンバー1内に配置した基材10に膜を形成する膜形成工程とを含む。
 上記光活性層形成工程において、チャンバー1内のガス圧を1000Pa以上にして光活性層を形成するとよい。また、上記光活性層形成工程において、第1原料ガスの流路に特に加熱体11として加熱触媒体または抵抗加熱ヒーター等を配置して、この加熱体11をその融点未満の温度に加熱することによって第1原料ガスを加熱するとよい。また、上記光活性層形成工程において、高周波電力のパワー密度を0.5W/cm以上1.7W/cm以下として、高周波電力を第2電極2に印加するとよい。また、上記光活性層形成工程において、高周波電力の周波数を13.56MHz以上40.68MHz以下に設定するとよい。また、上記光活性層形成工程において、第2原料ガスに対する第1原料ガスの流量比が工程開始時よりも工程途中で小さくなるように、工程途中で流量比を調整するとよい。さらに、上記光活性層形成工程の後に、基材10を180℃以上220℃以下の温度で加熱するとよい。
 以下、i型の微結晶シリコン膜の製膜条件について説明する。微結晶シリコン膜はアモルファスシリコン膜に比べて、結晶シリコンと同様に波長感度が長波長域まで有するが、光吸収係数が小さいことから厚い膜を形成する必要があるため、より高速で高品質な膜が要求される。
 製膜条件として製膜時の圧力は1000Pa以上とする。なぜなら、高周波電力のパワー密度を高くして高速に製膜する場合であっても、この高圧条件とすることにより、電子温度が低下することからイオンダメージを低減して製膜することができるからである。また、加熱体11によって温度上昇した第1原料ガスが空間8に供給されるため、ガスヒーティング効果によって、高圧条件とした場合であっても、高次シラン生成反応が低減し、高速かつ高品質な膜を形成することができるからである。なお、圧力の上限は異常放電等の関係から2500Pa程度であればよい。
 製膜速度は1.1nm/秒以上、より好ましくは1.4nm/秒以上で製膜されることによって生産性が向上し、製造コストを低減することができる。
 シリコン系ガスである第2原料ガスに対する水素ガスである第1原料ガスの流量比は25倍以上58倍以下(特に、25倍以上50倍未満)とすることが好ましい。第1原料ガスによる第2原料ガスの希釈率を低くすることによって製膜速度を速くすることができ、第1原料ガスの供給量も低減することができるので、生産性を向上させつつ、製造コストも低減することができる。また、希釈率を小さくした場合、結晶化を抑制する方向となるが、加熱体11の加熱により原子状水素の再結合が低減され、チャンバー内の原子状水素の濃度を高く維持できるので必要な結晶化率を維持することができる。
 第2電極2に印加される高周波電力の周波数は13.56MHz~100MHz程度の周波数が用いられるが、例えば、1m以上の大面積基材に製膜する場合には、60MHz程度以下の周波数が好適に用いられる。特に、周波数を40.68MHz以下とすることにより、大面積基材に製膜される膜の膜ムラをさらに低減することができる。好ましくは、13.56MHzまたは27.12MHzの周波数が用いられる。また、低い周波数の電源を用いることにより、製造コストを低減することができ、大面積化も容易となるので生産性も向上させることができる。
 高周波電力のパワー密度は0.5W/cm以上2W/cm以下とすることが好ましい。特に、0.5W/cm以上1.7W/cm以下とすることが好ましい。上記範囲であれば、膜へのイオンダメージを低減して、膜品質の低下を低減しつつ、高速に製膜することができる。
 また、ラダー電極等を用いずに平行平板型の薄膜形成装置を用いることにより、装置コストを低減することができ、さらに上記製膜条件により、高速で高品質な膜を製膜することが可能となる。基材10の表面と第2電極2の表面との距離は5mm以上15mm以下とすることによって、イオンダメージを低減して製膜することができる。
 また、上記製膜条件により製膜した微結晶シリコン膜において、ラマン散乱スペクトルにおけるラマンピーク強度比(結晶相ピーク強度/非晶質相ピーク強度)は2.5以上6以下となることが好ましい。なお、結晶相ピーク強度は520cm-1でのピーク強度とし、また、非晶質相ピーク強度は480cm-1でのピーク強度として定義するものとする。ここで、ラマンスペクトルの測定は、例えば励起光にHe-Neレーザー(波長632.8nm)を用いたRenishaw製Ramanscope System 1000を使用する。また、上記ラマン強度比を有する場合、ラマンピーク面積比とラマンピーク強度比の関係から微結晶シリコン膜の結晶化率は50%以上70%以下となる。
 また、ガス圧力を1000Pa以上とすることにより、加熱体11の加熱温度を400℃以上1000℃以下と低くして、また、H/SiHのガス流量比を50/1以下とHの流量を少なくしても、結晶化率を50~70%程度にすることができる。
 また、上記製法を用いて形成される薄膜太陽電池は、高速に高品質な膜より形成されるため、生産性を高め変換効率の高い薄膜太陽電池を形成することができる。
 作製する薄膜太陽電池の一例について、図4を用いて説明する。ガラス、プラスチックまたは樹脂等の透光性を有する基材10にSnO、ITOまたはZnO等の透光性を有する導電性材料をからなる第1導電層31を形成する。第1導電層21の膜厚は100nm~1μm程度とする。
 次に、第1導電層31の上にi型半導体層が光活性層として機能し、光活性層としてアモルファスシリコン等の非晶質半導体からなり、内部にpin接合を有する第1光電変換層32と、その上にi型半導体層が光活性層として機能し、光活性層として微結晶シリコン等の微結晶半導体からなり内部にpin接合を有する第2光電変換層33とを形成する。第1光電変換層32の第1のp層およびn層はそれぞれ5~30nm程度として、第1のi型半導体層の膜厚は200nm~1μm程度とする。また、第2光電変換層33の第2のp層およびn層はそれぞれ5~30nm程度として、第2のi型半導体層の膜厚は1~5μm程度とする。
 次に、第2光電変換層33の上にSnO、ITOまたはZnO等の透光性を有する導電性材料をからなる第2導電層34を形成する。さらに、第2導電層34の上に光に対して反射率の高い銀などの材料からなる第3導電層35を形成する。第2導電層34の膜厚は5nm~2μm程度として、第3導電層35の膜厚は100~500nm程度とする。なお、第2導電層34および第3導電層35はいずれか一方を形成してもよく、例えば、第2導電層34を銀等の金属材料で形成してもよい。
 また、本実施形態では上記のようなタンデム構造だけではなく、アモルファスシリコン膜からなる半導体、アモルファスシリコンゲルマニウム膜からなる半導体および微結晶シリコン膜からなる半導体、または、アモルファスシリコン膜からなる半導体、微結晶シリコン膜からなる半導体および微結晶シリコンゲルマニウム膜からなる半導体が積層されてなるトリプル構造の薄膜太陽電池等にも適用することができる。
 このとき、少なくとも膜厚を厚く形成する必要のある微結晶シリコン膜は上記製法を用いて形成することにより、生産性を高め変換効率の高い薄膜太陽電池を作製することができる。
 また、上記製法において例えば製膜工程を二分して、その製膜前半時に比べて製膜後半時の第2原料ガスに対する第1原料ガスの流量を少なくしてもよい。第1原料ガスによる第2原料ガスの希釈率を低くすることにより、製膜速度を速くすることができるとともに、変換効率を高めることができる。これは、微結晶シリコン膜の結晶化率が常に一定ではなく、一定の希釈条件のままでは製膜後半において高くなる傾向にあることから、希釈率を意図的に低くすることによって製膜後半において結晶化率が高くなるのを低減したことによると考えることができる。製膜開始時に比べて製膜終了時の希釈率は製膜開始時の希釈率から3~15%程度低くなるようにすればよい。
 また、基材に、第1導電層と、光電変換層と、第2導電層(第3導電層)とを形成した後に、180℃以上220℃以下で加熱してもよい。つまり、薄膜太陽電池を形成した後に加熱処理を行なう。加熱処理を行なうことにより、変換効率をさらに高めることができる。これは、光電変換層のp型半導体層およびn型半導体層の導電率が向上し、活性化エネルギーが増加することによって、開放電圧が向上するためである。また、加熱処理によって膜中の水素が安定サイトに移ることによって、i型半導体層を含めた膜中の水素誘起欠陥が低減したことによるものと推察される。加熱処理時間は15~90分間程度行なえばよい。例えば、上記製法で作製し、加熱処理前の変換効率が11~11.2%程度の薄膜太陽電池に対して、上記温度範囲、加熱処理時間で加熱処理を行なうことにより、加熱処理後の変換効率は12~13%程度に向上する。
 次に、製造方法のさらに好適な例について説明する。なお、上述した内容と重複する工程については省略する。ガス供給工程において、第1原料ガスを第2原料ガスよりも先に供給するとよい。また、加熱体11の加熱工程において、基材10をチャンバー1内に配置するとよい。また、膜形成工程の後に、加熱した第1原料ガスおよび第2原料ガスの供給を停止し、チャンバー1内を排気する排気工程と、加熱体11を冷却する冷却工程とを有するとよい。また、排気工程において、第2原料ガスの供給の停止を第1原料ガスの供給の停止よりも先に行なうとよい。また、冷却工程において、基材10をチャンバー1の外に出すとよい。また、加熱工程において、加熱体11が加熱触媒体からなる場合には、加熱体11を800℃以上に加熱するとよい。また、排気工程において、加熱体11が加熱触媒体からなる場合には、加熱体11を800℃以上に加熱するとよい。
 具体的には、図1に示す薄膜形成装置Sにおいて、第1電極6と第2電極2との間に薄膜形成のためのプラズマを発生させる前に、下記の工程1,2を順次行なうとよい。
 工程1(加熱工程):チャンバー1内を真空排気(1Pa以下、好適には0.1Pa以下)した状態で、加熱触媒体からなる加熱体11を800℃以上に加熱する。
 工程2(ガス供給工程):第1供給部4aから第1原料ガス(水素ガス)および第2供給部4bから第2原料ガス(例えば、シラン)がチャンバー1内に供給され、チャンバー1内の圧力が所定値に調整される。このとき、加熱体11の温度が薄膜形成に必要な所定の値に達していない場合には、加熱体11はさらに加熱される。
 また、第2原料ガスにシラン等のシリコン系ガスを用いた場合、工程2において第1原料ガスが第2原料ガスよりも先にチャンバー1内に供給されることにより、第2原料ガスが第1供給経路3aに逆流することを低減できるため、第2原料ガスとの接触に伴う加熱体11の劣化を低減することができる。
 チャンバー1内を所定の圧力に調整した状態で、高周波電力を第2電極2に印加して発生したプラズマにより原料ガスを励起・活性化し、第1電極6に載置された基材10に所定の膜厚の薄膜を形成する。その後、下記の工程3~4を順次行なう。
 工程3(排気工程):加熱触媒体からなる加熱体11を800℃以上に加熱した状態で、第1原料ガスおよび第2原料ガスの供給を停止し、チャンバー1内の原料ガスを十分に排気する。
 工程4(冷却工程):チャンバー1内を真空にした状態で加熱体11を冷却する。
 加熱体11として、例えばTa(タンタル)またはW(タングステン)等からなる加熱触媒体を用いた場合は、加熱触媒体が原料ガス中の水素分子、水素原子等の水素成分を吸収し、その水素成分が結晶粒界において水素化物を形成するため、結晶粒界で破断しやすくなる現象、すなわち水素脆化が起こると考えられる。上記工程1,2によると、加熱触媒体が加熱された状態で第1原料ガスの水素ガスがチャンバー1内に供給されるため、加熱触媒体への水素吸収が低減される。特に、加熱触媒体が800℃以上に加熱された状態で、水素ガスが供給されることにより、加熱触媒体への水素吸収はほとんど起こらず、加えて水素化物生成反応が起こりにくい温度領域となっている。このため、水素脆化による加熱触媒体の劣化が大きく低減される。工程3,4においても、同様に水素脆化が効率的に回避される。
 また、第2原料ガスとしてシラン等のシリコン系ガスを用いた場合、工程3において第2原料ガスの供給が第1原料ガスの供給よりも先に停止されることにより、第2原料ガスが第1供給経路3aに逆流することを低減できる。これによって、第2原料ガスとの接触に伴う加熱触媒体の劣化を低減することができる。
 薄膜形成装置Sはチャンバー1に接続された前室(不図示)を備えることにより、チャンバー1内を大気圧にすることなく基材10を搬入・搬出することが可能である。基材10に薄膜形成する場合、前室内と図1におけるチャンバー1内とが真空状態になった後、基材10が前室からチャンバー1内に搬入される。また、薄膜形成を完了した基材10は、前室内とチャンバー1内とが真空状態になった後、基材10がチャンバー1から前室に搬出される。
 このとき、工程1は、基材10がチャンバー1内に搬入される動作と時間的に重複するように加熱体11が加熱されることが好ましい。また、工程4は、基材10がチャンバー1から搬出される動作と時間的に重複するように加熱体11が冷却されることが好ましい。これによって、プロセスが時間短縮されるため、生産性をより向上させることができる。
 チャンバー1内が真空状態による加熱体11の加熱、冷却時間が新たに加わることで、薄膜形成に要する処理時間が長くなるが、上述したように前室との基材10の搬入・搬出動作と加熱体11の加熱・冷却工程とを時間的に重複して行なうことにより、実質的な薄膜の形成に要する時間が短縮されて、生産性を維持することができる。なお、加熱体11は、必ずしも加熱・冷却させる必要はなく、常に800℃以上を維持させてもよい。
 次に、水素化アモルファスシリコン膜を形成する場合の好適例について説明する。水素化アモルファスシリコン膜を形成する場合は、Hガスを第1導入経路3aに、SiHガスを第2供給経路5にそれぞれ供給する。また、ガス圧力を50~700Paに設定し、H/SiHのガス流量比を2/1~40/1とし、高周波電力密度を0.02~0.2W/cmとすればよい。
 本実施形態の製造方法では、加熱体11によって温度の上昇した第1原料ガスが空間8に供給される。このため、ガスヒーティング効果によって空間8での高次シラン生成反応が抑制され、微結晶シリコン膜の結晶化を促進することができ、高速に製膜することができる。
 また、SiHガスの流量がHガスに比べて非常に少ない場合、第1供給経路3aに供給していたHガス(第1原料ガス)の一部を第2供給経路3bに分割供給することにより、第2供給部4bから供給されるガスの総流量を大きくすることもできる。これにより、第2供給経路3b内のガス圧力(全圧)が大きくなるので、SiHガスを複数の第2供給部4bから均一に噴出でき、均一な製膜を実現できる。
 <製造方法の変形例>
 次に、製造方法の変形例について説明する。図5に示すように、薄膜形成装置Sにおいて、加熱体11が占有する領域A1を基材10の薄膜形成領域A2よりも広くしてもよい。上記構成とすることによって、加熱体11で加熱された第1原料ガスがその温度を維持しつつ基材10上に均一に供給される。領域A1が領域A2より狭い場合、加熱体11の外周領域においては加熱体11の空間占有密度が小さいため、第1原料ガスの効率的な加熱が難しい。さらに、温度上昇した第1原料ガスが加熱体11の領域外にある第1原料ガスおよび第1導入経路3aの内壁に接触することよって熱を奪われ、温度が低下することから、十分なガスヒーティング効果が加熱体11の外周領域に近くなるほど得られにくい。
 しかしながら、上記構成のように、加熱体11が占有する領域A1よりも基材10の薄膜形成領域A2が狭い場合は、第1原料ガスは十分に温度が高く維持されたまま基材10上に均一に供給されることから、基材10面内に形成された薄膜の品質が均一となり、均一な光電変換特性分布を有する薄膜太陽電池を形成することができる。
 また、第1供給部4aが占有する領域A3を加熱体11が占有する領域A1と同等かそれよりも狭く、基材10の薄膜形成領域A2よりも広くしてもよい。上記構成とすることによって、加熱体11の外周領域およびその近傍の温度の低い第1原料ガスが空間8に供給されにくくなることから、基材10面内に供給される第1原料ガスの温度の均一性がさらに向上して薄膜の品質が均一となる。これにより、均一な光電変換特性分布を有する太陽電池を形成することができる。
 また、加熱体11の上流側に分散板13を設けることにより、加熱体11に第1原料ガスを均一に接触させることができて、効率よく均一に第1原料ガスを加熱することができる。このとき、図6に示すように、分散板13に第1原料ガスが通過するための第1開口部13aを設けて、第1開口部13aが占有する領域A4を加熱体11が占有する領域A1よりも狭く、第1供給部4aが占有する領域A3よりも広くしてもよい。上記構成とすることによって、第1開口部13aから導入された第1原料ガスは加熱体11で効率的に加熱され、また第1原料ガスが第1導入経路3aの内壁側へ流れる際に、第1原料ガスは加熱体11と接触する時間が長くなり、第1原料ガスの温度を高く維持できる確率が高くなる。
 また、加熱体11から照射される輻射熱が直接、基材10に達しないように、加熱体1の下流側に第1供給部4aを覆うように輻射遮断部材14を設けることが好ましい。このとき、輻射遮断部材14は加熱体11から照射される輻射を反射させる反射板としての機能を備えることが好ましい。
 また、図6に示すように、輻射遮断部材14には第1原料ガスが通過するための第2開口部14aが設けられる。また、第2開口部14aが占有する領域A5を加熱体11が占有する領域A1と同等かそれよりも狭く、第1供給部4aが占有する領域A3よりも広くしてもよい。上記構成によって、同じく加熱体11の外周領域およびその近傍の温度の低い第1原料ガスが空間8に供給されにくくなることから、さらに基材10面内に形成された薄膜の品質が均一となり、均一な光電変換特性分布を有する薄膜太陽電池を形成することができる。
 また、図7に示すように、加熱体11が設けられる第1導入経路3aの外周部に端部加熱体19を設けてもよい。第1導入経路3aの内壁の温度を上昇させることによって、第1加熱体11で温度上昇した第1原料ガスが第1導入経路3aの内壁で温度低下する際の温度低下量を低減することができて、同じく温度の低い第1原料ガスが空間8に供給されにくくなることから、さらに基材10面内に形成された薄膜の品質が均一となり、均一な光電変換特性分布を有する太陽電池を形成することができる。端部加熱体19としては、シーズヒータ等の発熱体を用いたり、気体または液体等の高温流体を循環させた熱交換配管を用いてもよい。なお、端部加熱体19の温度としては200℃以上500℃以下が好ましい。
 また、図8に示すように、分散板13および輻射遮断部材14は、各部材が有している平面方向に対して垂直に第1導入経路3aに取り付けられる支持部材15を複数有することが好ましい。特に、分散板13および輻射遮断部材14の中央領域に支持部材15を設けることにより、加熱体11の高温化に伴う分散板13および輻射遮断部材14の反りを低減することができ、分散板13および輻射遮断部材14を通過するガスの流れを均一に維持することができる。
 また、分散板13および輻射遮断部材14を複数枚に細分化して、支持部材15によって固定するようにしても構わない。このように分散板13および輻射遮断部材14を細分化することにより、加熱体11の高温化に伴う分散板13および輻射遮断部材14の1枚当たりの反り量を小さくすることができ、分散板13および輻射遮断部材14を通過するガスの流れを均一に維持することができる。
 また、図9に示すように加熱体11がワイヤ状の加熱触媒体からなる場合、一端から他端へと設置された加熱体11の間に加熱体11を支える補助部材16を設けても構わない。特に、一端から他端へと設置された加熱体11の中央部に補助部材16を設けることによって、図10に示す補助部材16のない加熱体11に比べて繰り返しの使用に伴って熱の影響を受けて伸びた加熱体11が第1導入経路3aに接触する、または、隣り合う加熱体11同士が接触する可能性を低減することができるため、加熱体11の交換頻度を低減することができて、生産性を向上させることができる。また、加熱体11が伸びて変形することにより第1原料ガスの加熱に分布が生じ、基材10の面内に形成された薄膜の品質が不均一になる可能性を低減することができる。
 また、図9においては1本の加熱体11を端部で折り曲げて一定領域に加熱体11が配置されるようにしているが、図11に示すように、端部で折り曲げずに、一端から他端へと複数本の加熱体11を配置するようにしてもよい。
 また、図12(a)に示すように、一端から伸びた加熱体11を中央部に設けられた補助部材16において加熱体11を折り曲げて再度一端に向かうようにして、また他端から伸びた加熱体11を中央部に設けられた補助部材16において折り曲げて、再度他端に向かうようにしてもよい。
 さらに、図12(b)に示すように、補助部材16を複数設けるようにしても構わない。
 また、図13に示すように、水平方向に移動可能な支持枠18に設けた加熱体11を有する加熱機構17を設けてもよい。
 また、図14に示すように、加熱機構17を薄膜形成装置Sの側部から装置内外へ移動できるようにしても構わない。これにより、加熱体11の交換作業を単純化することができて、生産性を向上させることができる。このとき、加熱体11への電力供給は支持枠18内に電力線を通して加熱体11に電力を供給すればよい。また、複数の加熱体機構17を設ける場合であっても、支持枠18に結合部18aを設けて互いの加熱体機構17を結合させて、結合部18aに通電機能を持たせることによって、加熱電源12に接続された加熱体機構17から別の加熱体機構17に電力を供給することができる。
 さらに、図15に示すように、製膜領域を垂直方向に複数設ける場合において、下段に位置する加熱体11の交換は水平方向に移動可能な加熱体機構17を用いることにより、加熱体11の交換作業を単純化することができ、生産性を向上させることができる。
 次に、本実施形態をより具体化した実施例について説明する。
 ガラス基板の上に厚さ800nmのSnO膜からなる第1導電層を熱CVD法に形成した。そして、図1に示す薄膜形成装置Sを用いて、第1導電層の上に第1光電変換層を形成した。第1光電変換層はp型、i型およびn型のアモルファスシリコン膜を順次積層して、その上にn型の微結晶シリコン膜を積層した。ここで、i型のアモルファスシリコン膜の膜厚は250nmとした。
 次に、第1光電変換層の上に第2光電変換層を形成した。第2光電変換層はp型およびi型の微結晶シリコン膜を順次積層して、その上にn型のアモルファスシリコン膜を積層した。ここで、i型の微結晶シリコン膜の膜厚は2.5μmとした。なお、原料ガスにはシランガスと水素ガスとを用いた。また、ドーピングガスとしてp型半導体層にはB(ジボラン)を用いて、n型半導体層にはPH(ホスフィン)を用いた。
 さらに、スパッタリング法によって第2光電変換層の上に厚さ10nmのZnO膜からなる第2導電層と厚さ300nmの銀からなる第3導電層とを積層した。ここで、i型の微結晶シリコン膜を製膜する際にのみタンタル製のワイヤからなる加熱触媒体を1500℃に加熱して水素ガスを加熱し、それ以外の膜においては加熱触媒体の加熱は行なわなかった。比較例である表1のNo.14~21においては、いずれも加熱体11の加熱は行なわなかった。
 表1に示す製膜条件によって、i型の微結晶シリコン膜を製膜した。なお、ガラス基板の温度は190℃に調整した。また、ガラス基板と第2電極との距離は6mmとした。そして、各条件により作製した薄膜太陽電池において光電変換効率を測定して、その結果を表1に示すとともに、表1のNo.1~13と比較例であるNo.14~21とについて製膜速度と変換効率との関係を図16に示す。
Figure JPOXMLDOC01-appb-T000001
 表1および図16の結果から、加熱体11により原料ガスを加熱するとともに1000Pa以上の高圧条件で製膜することによって、高速かつ変換効率の高い薄膜太陽電池を形成することが確認できた。
 また、周波数が40.68MHz以下であっても1.1nm/秒以上の製膜速度で変換効率の高い薄膜太陽電池を形成することが確認できた。
 さらに、加熱体11により原料ガスを加熱することによって、比較例のNo.14~21に比べて水素ガスによるシリコン系ガスの希釈率を低くしても、高速かつ変換効率の高い薄膜太陽電池を形成することが確認できた。
 また、表1のNo.6およびNo.8~10の条件で作製した薄膜太陽電池について、微結晶シリコン膜のラマン散乱スペクトルにおける結晶相ピーク強度/非晶質相ピーク強度よりなるラマンピーク強度比を測定した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、ラマンピーク強度比は2.85以上5.32以下であり、2.5以上6以下となることが確認できた。
 次に、表1のNo.9および10の条件で作製した薄膜太陽電池において、ガラス基板と第2電極との距離を6mmから8mmおよび10mmに変えたときにおける製膜速度について確認した。その結果を図17に示す。
 図17に示すように、基材と第2電極との距離を広くしても製膜速度が速く、1.1nm/秒以上の製膜速度で製膜できることを確認した。
 次に、第1光電変換層のi型微結晶シリコン膜において、膜厚が2μmまでは表1のNo.5の条件で製膜を行ない、残り0.5μmにおいてシランガスに対する水素ガスの流量を42倍から40倍に変更して製膜を行なった。その結果、製膜速度が1.6nm/秒となり変更効率も12.72%に向上した。
 次に、図18に示すグラフおよび表3を参照しながら、水素化微結晶シリコン膜を製膜する場合の加熱触媒体である加熱体11の温度変化と劣化状況についての結果について説明する。
Figure JPOXMLDOC01-appb-T000003
 図1に示す薄膜形成装置Sを用いて、第1原料ガスである水素ガスを第1供給部4aから供給して、第2原料ガスであるシランガスを第2供給部4bからチャンバー1内に供給した。そして、薄膜形成時における加熱触媒体である加熱体11の温度を1500℃に固定して、白板ガラス製の基材10上に水素化微結晶シリコン膜の製膜を行なった。なお、図18に示した製造工程中における加熱体11の表面の温度変化E1~E5は、表3のNo.22~26に対応する。
 加熱体11は太さφ0.5mmのタンタル製からなるワイヤをジグザグ状に成形したものを用いた。
 チャンバー1内の空間8に水素ガスを供給する前の真空排気した状態で、加熱体11の温度を、25℃(温度変化E1:試験22(比較例))、400℃(温度変化E2:No.23)、600℃(温度変化E3:No.24)、800℃(温度変化E4:No.25)、1500℃(温度変化E5:No.26)のそれぞれの温度に予め加熱しておき、その温度を保持したままチャンバー1内に水素ガスを供給した。
 ここで、加熱体11の温度は、加熱体11に印加した直流電力の電圧V、電流Iおよび熱触媒体11の断面積S、全長Lから抵抗率ρをρ=R×S/L=V/I×S/Lを用いて算出し、熱触媒体材料(ここではタンタル)の抵抗率と温度の関係より求めた。
 水素ガスをチャンバー1内の空間8に導入し、チャンバー1内の圧力を1300Paに調圧した後に、表3のNo.22~25については、加熱体11の温度を薄膜形成時の加熱温度(1500℃)までさらに加熱した。
 その後、シランガスをチャンバー1内の空間8へ供給して、第2電極2へ高周波電力を450Wで印加してプラズマ励起させた。そして、基材10上に水素化微結晶シリコン膜を製膜した。
 所定時間製膜後、高周波電力の印加を停止して、シランガスの供給を停止した。その後、水素ガスを供給したまま、表3のNo.22~25については、熱触媒体11の温度を25℃(温度変化E1:No.22(比較例))、400℃(温度変化E2:No.23)、600℃(温度変化E3:No.24)、800℃(温度変化E4:No.25)のそれぞれの温度まで冷却して、その後水素ガスの供給を停止した。表3のNo.26(温度変化E5)の場合は、水素ガスの供給中は1500℃の温度を維持し続けた。
 図18に加熱体11の温度変化に伴う原料ガスの供給および停止の関係についても示す。各例において、加熱工程→ガス供給工程→製膜工程→排気工程→冷却工程の一連の工程を50サイクル、100サイクルおよび150サイクルで行ない、各サイクルの経過後において、加熱体11の劣化状況について確認した。この劣化状況は、各サイクルの経過後の加熱体11を単純に手で折り曲げた際の破断の有無により評価した。表3にこの結果を示す。なお、表3において、「NG」は熱触媒体11を折り曲げた際に破断したことを意味し、「G」は破断しなかったことを意味する。また、「NA」は加熱体11の折り曲げによる評価を実施していないことを意味する。
 比較例である表3のNo.22では、前記一連の工程を50サイクル経過した時点において、加熱体11を折り曲げると既に延性がなく容易に破断した。表3のNo.23およびNo.24(温度変化E2およびE3)では、前記一連の工程を100サイクル行なった時点で、破断を確認した。表3のNo.25および26(温度変化E5および温度変化E6)では、一連の工程を150サイクル行なった後でも、加熱体11は破断せず延性を維持し、さらに使用することが可能な状態であった。上記結果より、加熱体11の温度を800℃以上とし、前記温度を維持した状態で水素ガスを供給することによって、加熱体11の劣化を低減することが確認できた。
 また、上記評価において、破断した加熱体11と破断しなかった加熱体11とに吸収された水素、または水素化物として取り込まれた水素について、昇温脱離分析法(TDS(Thermal Desorption Spectroscopy)法)を用いて確認したところ、破断した加熱体11においては、大量の水素が確認されたが、破断しなかった加熱体11においては、ほとんど水素は確認されなかった。このように、TDS法によっても加熱体11を予め加熱することによる水素吸収、または水素化物形成反応の抑制による加熱体11の劣化低減を確認できた。
 このように、加熱触媒体を800℃以上にあらかじめ加熱し、その後水素ガスを供給することで、製膜パラメータの変更や加熱触媒体の材質あるいは構造の変更を加えることなく加熱触媒体の劣化を抑制することが可能であり、膜品質および製膜速度に何ら影響を及ぼすことなくメンテナンスサイクルの長期化による生産性の向上を可能とすることがわかった。
 次に、水素化微結晶シリコン膜の結晶化率を評価した結果について説明する。図1の薄膜形成装置Sを用いて第1原料ガスである水素ガスを第1供給部4aからチャンバー1内に供給した。また、第2原料ガスであるシランガスを第2供給部4bからチャンバー1内に供給した。このとき、H/SiHのガス流量比を45/1として、高周波電力密度(周波数:27MHz)を0.96W/cmとした。また、ガス圧力を300Paまたは1300Paの場合に分けて、薄膜形成時の加熱体11の温度を変化させて白板ガラス製の基材10上に水素化微結晶シリコン膜を製膜した。
 具体的には表4に示すNo.27~38において、表4に示すチャンバー1内の圧力および加熱体11の温度の条件で製膜した水素化微結晶シリコン膜について結晶化率を評価した。結晶化率はラマン散乱スペクトルにおけるラマンピーク強度比(結晶相ピーク強度/非晶質相ピーク強度)を確認し、ラマンピーク面積比とラマンピーク強度比との関係(市川幸美他著「プラズマ半導体プロセス工学」内田老鶴圃出版(2003),p.178を参照)から結晶化率を算出した。なお、結晶相ピーク強度は520cm-1でのピーク強度とし、また、非晶質相ピーク強度は480cm-1でのピーク強度として定義した。また、ラマンスペクトルの測定は、励起光にHe-Neレーザー(波長632.8nm)を用いたRenishaw製Ramanscope System 1000を使用した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果から、チャンバー1内のガス圧力が300Paの低圧条件で製膜した水素化微結晶シリコン膜では、加熱体11の温度が1000℃以下の場合、結晶化率が5%以下であり、加熱体の温度が400℃以下では結晶化を確認できなかった。一方、チャンバー1内のガス圧力が1300Paの高圧条件で製膜した水素化微結晶シリコン膜では、加熱体11の温度が1000℃以下(ただし、非加熱を除く)の場合、結晶化率が53%以上であり結晶化を確認することができた。
 次に、上述した製造方法の変形例の実施例について説明する。図6に示すような薄膜形成装置Sを用いて薄膜太陽電池を形成した。
 まず、ガラス基板の基材10の上に厚さ800nmのSnO膜からなる第1導電層を熱CVD法にて形成した。次に、第1導電層の上に第1光電変換層を形成した。第1光電変換層はp型、i型およびn型のアモルファスシリコン膜を順次積層した層の上にn型の微結晶シリコン膜を積層した。ここで、i型のアモルファスシリコン膜の膜厚は250nmとした。そして、第1光電変換層の上に第2光電変換層を形成した。第2光電変換層はp型およびi型の微結晶シリコン膜を順次積層した層の上にn型のアモルファスシリコン膜を積層した。ここで、i型の微結晶シリコン膜の膜厚は2.5μmとした。なお、原料ガスにはシランガスと水素ガスを用い、ドーピングガスとしてp型半導体層にはBを用いて、n型半導体層にはPHを用いた。そして、第2光電変換層の上に厚さ10nmのZnO膜からなる第2導電層と厚さ300nmの銀からなる第3導電層を形成した。
 この実施例においては、i型の微結晶シリコン膜を製膜する際にのみ加熱触媒体である加熱体11を1500℃に加熱して水素ガスを加熱し、それ以外の膜においては熱触媒体の加熱は行なわなかった。なお、加熱体11は実施例1と同様な材質および形状のものを使用した。
 表5のNo.39,40は、加熱体11の占有する領域A1は基材の領域A2よりもそれぞれ20mm外側、40mm外側に広い領域とし、比較例である表5のNo.41,42は、熱触媒体の占有する領域A1が基材の領域A2よりそれぞれ20mm内側、40mm内側に狭い領域とした。なお、第1供給部の占有する領域A3は基材の領域A2よりも30mm外側に広い領域とした。またφ0.5mmの複数個のガス噴出孔を設けた分散板13および輻射防止部材14をそれぞれ加熱体11の上流および加熱体11の下流に、領域A2よりも30mm外側に広い領域となるように設置した。そして、各条件によって作製した薄膜太陽電池において変換効率を測定し、基材10の中央部における平均変換効率と基材10の四隅における平均変換効率との差を比較した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5の結果からわかるように、領域A1<領域A2の場合、基材10の四隅では好適な結晶状態の膜を形成できずに、アモルファスとなったために平均変換効率は5%以下となった。一方、領域A1>領域A2の場合は膜の面内の結晶化率分布は良好となり、変換効率の面内均一性は向上した。また、表5のNo.39とNo.40とを比較すると、加熱体11の占有する領域A1>分散板13のガス噴出孔領域A4としたことで、ガスヒーティング効果を弱めることなく基材10の四隅の平均変換効率が向上することを確認した。
 次に、加熱触媒体である加熱体の保持方法を変更した具体例について説明する。方法1では、加熱体支持枠のみで加熱体を保持して、実施例2と同様にジグザグ状に形成した加熱体を用いた。一方、方法2では支持枠に石英からなる補助部材を取り付け、支持枠に加えて補助部材においても加熱体を保持した。
 そして実施例1と同様にして、i型アモルファスシリコン膜を有する第1光電変換層およびi型微結晶シリコン膜を有する第2光電変換層を順次積層して薄膜太陽電池を作製した。ここで、i型微結晶シリコン膜形成時に加熱体を1500℃の温度に加熱して膜の形成を行なった。そして、100回繰り返して薄膜太陽電池の作製を行なった。
 各条件により作製した薄膜太陽電池を16分割して、それぞれの領域において変換効率を測定した。そして、1回目に作製した薄膜太陽電池における面内領域の最低の変換効率と100回目に作製した薄膜太陽電池における面内領域の最低の変換効率とを比較した。
 その結果、方法1では、100回目に作製した薄膜太陽電池は1回目に作製した薄膜太陽電池に比べて光電変換効率が22%低下したのに対して、方法2では5%の低下に止まった。方法1の光電変換効率の低下率の高さは加熱体の変形によるものと考えられる。つまり、隣接する加熱体が変形して密集したことで作製された薄膜太陽電池において結晶化率が著しく高くなり、光電変換効率に好適な結晶化率を超えたため特性が悪化したと考えられる。
1  :チャンバー
2  :第2電極
4  :供給部
4a :第1供給部
4b :第2供給部
5  :高周波電源
6  :第1電極
10 :基材
11 :加熱体
31 :第1導電層
32 :第1光電変換層
33 :第2光電変換層
34 :第2導電層
35 :第3導電層
S  :薄膜形成装置

Claims (14)

  1.  基材の上に、結晶シリコンを有する少なくとも1層の光活性層を含む光電変換層を備えた薄膜太陽電池を製造する薄膜太陽電池の製造方法であって、
    アノード用の第1電極と、該第1電極に対向して配置されて高周波電力が印加されるカソード用の第2電極とを備えているチャンバー内に、前記第1電極と前記第2電極との間に前記基材を配置する基材準備工程と、
    前記チャンバー内のガス圧が1000Pa以上になるように、シリコンを含むシリコン系ガスと該シリコン系ガスの25倍以上58倍以下の流量比の加熱した水素ガスとを前記第1電極と前記第2電極との間に供給して、前記第2電極への前記高周波電力の印加によって前記第1電極と前記第2電極との間に発生させたプラズマでもって、前記光活性層を前記基材の上に形成する光活性層形成工程とを含むことを特徴とする薄膜太陽電池の製造方法。
  2.  前記シリコン系ガスとして、シラン、ジシラン、四フッ化珪素、六フッ化二珪素およびジクロロシランから選択される1種以上のガスを用いることを特徴とする請求項1に記載の薄膜太陽電池の製造方法。
  3.  前記基材準備工程において、前記基材の表面と該表面に対向させる前記第2電極の表面との距離が5mm以上15mm以下となるように前記基材を配置することを特徴とする請求項1または2に記載の薄膜太陽電池の製造方法。
  4.  前記光活性層形成工程において、前記水素ガスの流路に加熱体を配置して、該加熱体によって前記水素ガスを加熱することを特徴とする請求項1乃至3のいずれかに記載の薄膜太陽電池の製造方法。
  5.  前記加熱体として、加熱触媒体または抵抗加熱ヒーターを用いることを特徴とする請求項4に記載の薄膜太陽電池の製造方法。
  6.  前記加熱体を800℃以上に加熱することを特徴とする請求項4または5に記載の薄膜太陽電池の製造方法。
  7.  前記光活性層形成工程において、前記高周波電力のパワー密度を0.5W/cm以上1.7W/cm以下に設定することを特徴とする請求項1乃至6のいずれかに記載の薄膜太陽電池の製造方法。
  8.  前記光活性層形成工程において、前記高周波電力の周波数を13.56MHz以上40.68MHz以下に設定することを特徴とする請求項1乃至7のいずれかに記載の薄膜太陽電池の製造方法。
  9.  前記光活性層形成工程において、前記シリコン系ガスに対する前記水素ガスの流量比が工程開始時よりも工程途中で小さくなるように、工程途中で前記流量比を調整することを特徴とする請求項1乃至8のいずれかに記載の薄膜太陽電池の製造方法。
  10.  前記水素ガスを前記シリコン系ガスよりも先に前記第1電極と前記第2電極との間に供給することを特徴とする請求項1乃至9のいずれかに記載の薄膜太陽電池の製造方法。
  11.  前記光活性層形成工程の後に、前記基材を180℃以上220℃以下の温度で加熱することを特徴とする請求項1乃至10のいずれかに記載の薄膜太陽電池の製造方法。
  12.  前記光活性層形成工程の後に、前記水素ガスおよび前記シリコン系ガスの供給を停止して、前記チャンバー内を排気する排気工程と、前記加熱体を冷却する冷却工程とをさらに有することを特徴とする請求項4乃至11のいずれかに記載の薄膜太陽電池の製造方法。
  13.  前記排気工程において、前記シリコン系ガスの供給の停止を前記水素ガスの供給の停止よりも先に行なうことを特徴とする請求項12に記載の薄膜太陽電池の製造方法。
  14.  前記冷却工程において、前記基材を前記チャンバーの外に出すことを特徴とする請求項12または13に記載の薄膜太陽電池の製造方法。
PCT/JP2011/059959 2010-04-22 2011-04-22 薄膜太陽電池の製造方法 WO2011132775A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012511717A JP5562413B2 (ja) 2010-04-22 2011-04-22 薄膜太陽電池の製造方法
US13/642,736 US9112088B2 (en) 2010-04-22 2011-04-22 Method for manufacturing a thin-film solar cell using a plasma between parallel electrodes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010098994 2010-04-22
JP2010-098994 2010-04-22
JP2010-290412 2010-12-27
JP2010290412 2010-12-27

Publications (1)

Publication Number Publication Date
WO2011132775A1 true WO2011132775A1 (ja) 2011-10-27

Family

ID=44834289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059959 WO2011132775A1 (ja) 2010-04-22 2011-04-22 薄膜太陽電池の製造方法

Country Status (3)

Country Link
US (1) US9112088B2 (ja)
JP (1) JP5562413B2 (ja)
WO (1) WO2011132775A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065522A1 (ja) * 2011-10-31 2013-05-10 三洋電機株式会社 光起電力装置及びその製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099505A (zh) * 2008-07-30 2011-06-15 京瓷株式会社 沉积膜形成装置及沉积膜形成方法
KR102451499B1 (ko) * 2014-05-16 2022-10-06 어플라이드 머티어리얼스, 인코포레이티드 샤워헤드 설계
WO2017217560A1 (ko) * 2016-06-13 2017-12-21 주식회사 디씨티 도판트가 도핑된 실리콘 나노소재 제조방법 및 이의 국부적 도핑방법
US11434568B2 (en) * 2018-04-17 2022-09-06 Applied Materials, Inc. Heated ceramic faceplate
US10844490B2 (en) * 2018-06-11 2020-11-24 Hermes-Epitek Corp. Vapor phase film deposition apparatus
JP2020004859A (ja) * 2018-06-28 2020-01-09 堺ディスプレイプロダクト株式会社 薄膜トランジスタ、表示装置及び薄膜トランジスタの製造方法
CN115305460A (zh) * 2022-08-02 2022-11-08 江苏微导纳米科技股份有限公司 半导体处理腔室及pecvd镀膜设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174310A (ja) * 1998-12-09 2000-06-23 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置の製造方法
JP2003173980A (ja) * 2001-09-26 2003-06-20 Kyocera Corp 熱触媒体内蔵カソード型pecvd装置、それを用いて作製した光電変換装置並びにその製造方法、および熱触媒体内蔵カソード型pecvd法、それを用いるcvd装置、その方法により形成した膜並びにその膜を用いて形成したデバイス
JP2007208093A (ja) * 2006-02-03 2007-08-16 Canon Inc 堆積膜の形成方法及び光起電力素子の形成方法
WO2010013746A1 (ja) * 2008-07-30 2010-02-04 京セラ株式会社 堆積膜形成装置および堆積膜形成方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0498580A1 (en) * 1991-02-04 1992-08-12 Canon Kabushiki Kaisha Method for depositing a metal film containing aluminium by use of alkylaluminium halide
JP3364137B2 (ja) 1997-11-10 2003-01-08 鐘淵化学工業株式会社 シリコン系薄膜光電変換装置の製造方法
DE69936906T2 (de) 1998-10-12 2008-05-21 Kaneka Corp. Verfahren zur Herstellung einer siliziumhaltigen photoelektrischen Dünnschicht-Umwandlungsanordnung
US7205205B2 (en) * 2003-11-12 2007-04-17 Applied Materials Ramp temperature techniques for improved mean wafer before clean
TW200833866A (en) * 2007-02-15 2008-08-16 Promos Technologies Inc Method for improving atom layer deposition performance and apparatus thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174310A (ja) * 1998-12-09 2000-06-23 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置の製造方法
JP2003173980A (ja) * 2001-09-26 2003-06-20 Kyocera Corp 熱触媒体内蔵カソード型pecvd装置、それを用いて作製した光電変換装置並びにその製造方法、および熱触媒体内蔵カソード型pecvd法、それを用いるcvd装置、その方法により形成した膜並びにその膜を用いて形成したデバイス
JP2007208093A (ja) * 2006-02-03 2007-08-16 Canon Inc 堆積膜の形成方法及び光起電力素子の形成方法
WO2010013746A1 (ja) * 2008-07-30 2010-02-04 京セラ株式会社 堆積膜形成装置および堆積膜形成方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013065522A1 (ja) * 2011-10-31 2013-05-10 三洋電機株式会社 光起電力装置及びその製造方法

Also Published As

Publication number Publication date
JPWO2011132775A1 (ja) 2013-07-18
JP5562413B2 (ja) 2014-07-30
US20130040414A1 (en) 2013-02-14
US9112088B2 (en) 2015-08-18

Similar Documents

Publication Publication Date Title
JP5562413B2 (ja) 薄膜太陽電池の製造方法
JP4727000B2 (ja) 堆積膜形成装置および堆積膜形成方法
JP5570528B2 (ja) 堆積膜形成装置
JP5566389B2 (ja) 堆積膜形成装置および堆積膜形成方法
KR20090031492A (ko) 광전 소자용 미정질 실리콘 막을 증착하기 위한 방법 및장치
JP2007266094A (ja) プラズマcvd装置及びプラズマcvdによる半導体薄膜の成膜方法
AU746388B2 (en) Apparatus and method for forming a deposited film by means of plasma CVD
JP5430662B2 (ja) 堆積膜形成装置および堆積膜形成方法
JP2000252218A (ja) プラズマcvd装置およびシリコン系薄膜光電変換装置の製造方法
WO2011099205A1 (ja) 成膜装置
JP2008177419A (ja) シリコン薄膜形成方法
JP5488051B2 (ja) プラズマcvd装置及びシリコン系薄膜の製造方法
JP5173132B2 (ja) 光電変換装置の製造方法
US6526910B2 (en) Apparatus and method for forming a deposited film by means of plasma CVD
JP4510242B2 (ja) 薄膜形成方法
JP5460080B2 (ja) 薄膜形成装置のクリーニング方法
JP2010073970A (ja) 薄膜形成装置および薄膜形成方法
US20110263074A1 (en) Apparatus and methods for reducing light induced damage in thin film solar cells
JP4212501B2 (ja) 薄膜の形成方法
JP2001152347A (ja) プラズマcvd装置およびシリコン系薄膜光電変換装置の製造方法
JP2002246619A (ja) 薄膜光電変換装置の製造方法
JP2000273643A (ja) プラズマcvd装置およびシリコン系薄膜光電変換装置の製造方法
JP2001196310A (ja) プラズマcvd装置およびシリコン系薄膜光電変換装置の製造方法
JP2011181602A (ja) 半導体膜の製造方法および半導体膜の製造装置
JPWO2013051450A1 (ja) 光電変換装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11772106

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511717

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13642736

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11772106

Country of ref document: EP

Kind code of ref document: A1