WO2011132495A1 - 積層ポリエステルフィルム - Google Patents
積層ポリエステルフィルム Download PDFInfo
- Publication number
- WO2011132495A1 WO2011132495A1 PCT/JP2011/057166 JP2011057166W WO2011132495A1 WO 2011132495 A1 WO2011132495 A1 WO 2011132495A1 JP 2011057166 W JP2011057166 W JP 2011057166W WO 2011132495 A1 WO2011132495 A1 WO 2011132495A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyester film
- coating layer
- film
- urethane resin
- coating
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0268—Diffusing elements; Afocal elements characterized by the fabrication or manufacturing method
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/043—Improving the adhesiveness of the coatings per se, e.g. forming primers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/0427—Coating with only one layer of a composition containing a polymer binder
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/04—Coating
- C08J7/046—Forming abrasion-resistant coatings; Forming surface-hardening coatings
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/02—Diffusing elements; Afocal elements
- G02B5/0273—Diffusing elements; Afocal elements characterized by the use
- G02B5/0278—Diffusing elements; Afocal elements characterized by the use used in transmission
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/0001—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
- G02B6/0011—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
- G02B6/0065—Manufacturing aspects; Material aspects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2367/00—Polyesters, e.g. PET, i.e. polyethylene terephthalate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/20—Displays, e.g. liquid crystal displays, plasma displays
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
- C08J2367/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2475/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2475/04—Polyurethanes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31507—Of polycarbonate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31565—Next to polyester [polyethylene terephthalate, etc.]
Definitions
- the present invention relates to a polyester film having a coating layer having excellent adhesion to various topcoats.
- liquid crystal displays have been widely used as display devices for televisions, personal computers, digital cameras, mobile phones and the like. Since these liquid crystal displays do not have a light emitting function by a liquid crystal display unit alone, a method of displaying by irradiating light using a backlight from the back side is widespread.
- the backlight system has a structure called an edge light type or a direct type. Recently, there is a tendency to reduce the thickness of liquid crystal displays, and an edge light type is increasingly used.
- the edge light type is generally configured in the order of a reflection sheet, a light guide plate, a light diffusion sheet, and a prism sheet. As the flow of light, the light incident on the light guide plate from the backlight is reflected by the reflection sheet and emitted from the surface of the light guide plate. The light beam emitted from the light guide plate enters the light diffusion sheet, is diffused and emitted by the light diffusion sheet, and then enters the next existing prism sheet. The light beam is condensed in the normal direction by the prism sheet and emitted toward the liquid crystal layer.
- the prism sheet used in this configuration is for improving the optical efficiency of the backlight and improving the luminance.
- a polyester film is generally used in consideration of transparency and mechanical properties. In order to improve the adhesion between the base polyester film and the prism layer, these intermediate layers are easily bonded. In general, a conductive coating layer is provided.
- the easily adhesive coating layer for example, polyester resin, acrylic resin, and urethane resin are known (Patent Documents 1 to 3).
- an active energy ray-curable coating material is introduced into a prism type, irradiated with active energy rays while being sandwiched between polyester films, the resin is cured, and the prism type is removed to remove polyester.
- the method of forming on a film is mentioned.
- solventless active energy ray-curable coating material it is necessary to use a solventless active energy ray-curable coating material in order to form the prism type with precision.
- solventless paints are less permeable and swellable to the easy-adhesion layer laminated on the polyester film than solvent-based paints, and tend to have insufficient adhesion.
- a coating layer made of a specific urethane resin has been proposed to improve the adhesion, but even with such a coating layer, the adhesion is not necessarily sufficient for solventless paints. (Patent Document 4).
- JP-A-8-281890 Japanese Patent Laid-Open No. 11-286092 JP 2000-229395 A Japanese Patent Laid-Open No. 2-158633
- the present invention has been made in view of the above circumstances, and its solution is to have good adhesion even when the amount of active energy rays is small.
- the present invention is a micro-device used for a backlight unit of a liquid crystal display. It is providing the laminated polyester film which can be utilized suitably as a member for lenses or prism sheets.
- the first gist of the present invention resides in a laminated polyester film characterized by having a coating layer containing a urethane resin and an isocyanate compound derived from aliphatic or alicyclic isocyanate on at least one surface of the polyester film.
- the second gist of the present invention resides in a laminated polyester film characterized by having a coating layer containing a urethane resin having a polycarbonate structure and an isocyanate compound on at least one surface of the polyester film.
- the laminated polyester film of the present invention when a microlens, a prism layer or the like is formed, it is possible to provide a laminated polyester film excellent in adhesion and heat and moisture resistance, and its industrial value is high.
- the polyester film constituting the laminated polyester film in the present invention may have a single layer structure or a multilayer structure, and may have four or more layers as long as it does not exceed the gist of the present invention other than a two-layer or three-layer structure. It may be a multilayer, and is not particularly limited.
- the polyester used in the present invention may be a homopolyester or a copolyester.
- a homopolyester those obtained by polycondensation of an aromatic dicarboxylic acid and an aliphatic glycol are preferred.
- the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid
- examples of the aliphatic glycol include ethylene glycol, diethylene glycol, and 1,4-cyclohexanedimethanol.
- Typical polyester includes polyethylene terephthalate and the like.
- examples of the dicarboxylic acid component of the copolyester include isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, adipic acid, sebacic acid, and oxycarboxylic acid (for example, p-oxybenzoic acid).
- examples of the glycol component include one or more types such as ethylene glycol, diethylene glycol, propylene glycol, butanediol, 4-cyclohexanedimethanol, neopentyl glycol and the like.
- the polyester in the present invention is a conventionally known method, for example, a method of directly obtaining a low-polymerization degree polyester by reaction of a dicarboxylic acid and a diol, or a lower alkyl ester of a dicarboxylic acid and a diol reacted with a conventionally known transesterification catalyst. Then, it can obtain by the method of performing a polymerization reaction in presence of a polymerization catalyst.
- a known catalyst such as an antimony compound, a germanium compound, or a titanium compound may be used, but a catalyst that reduces the dullness of the film by setting the metal element amount to 100 ppm or less is preferable.
- germanium compounds and titanium compounds are more preferable than antimony compounds from the viewpoint that luminance does not decrease.
- the polyester film of the present invention when a titanium compound is used as a polymerization catalyst, it is preferable to contain both a titanium compound and a phosphorus compound.
- the titanium element content in at least one layer of the film of the present invention needs to be 20 ppm or less, preferably 10 ppm or less, and the lower limit is usually 1 ppm, but preferably 2 ppm.
- the productivity at the time of production of the polyester raw material is inferior, and the polyester raw material reaching the target degree of polymerization cannot be obtained.
- the amount of phosphorus element is preferably 1 ppm or more, more preferably 5 ppm or more, and the upper limit is 300 ppm, preferably 200 ppm, more preferably 100 ppm.
- the upper limit is 300 ppm, preferably 200 ppm, more preferably 100 ppm.
- the polyester layer of the film of the present invention it is preferable to blend particles for the main purpose of imparting slipperiness and preventing scratches in each step.
- the kind of the particle to be blended is not particularly limited as long as it is a particle capable of imparting slipperiness. Specific examples thereof include silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, and phosphoric acid. Examples of the particles include magnesium, kaolin, aluminum oxide, and titanium oxide. Further, the heat-resistant organic particles described in JP-B-59-5216, JP-A-59-217755 and the like may be used.
- thermosetting urea resins examples include thermosetting urea resins, thermosetting phenol resins, thermosetting epoxy resins, benzoguanamine resins, and the like.
- precipitated particles obtained by precipitating and finely dispersing a part of a metal compound such as a catalyst during the polyester production process can also be used.
- the shape of the particles to be used is not particularly limited, and any of a spherical shape, a block shape, a rod shape, a flat shape, and the like may be used. Moreover, there is no restriction
- the average particle size of the particles used is usually in the range of 0.01 to 3 ⁇ m, preferably 0.1 to 2 ⁇ m. If the average particle size is less than 0.01 ⁇ m, the slipperiness may not be sufficiently imparted, or the particles may be aggregated to make the dispersibility insufficient, thereby reducing the transparency of the film. On the other hand, when the thickness exceeds 3 ⁇ m, the surface roughness of the film becomes too rough, and a problem may occur when a functional layer such as a prism layer or a light diffusion layer is formed in a later step.
- the particle content in the polyester layer is usually in the range of 0.0001 to 5% by weight, preferably 0.0003 to 3% by weight.
- the particle content is less than 0.0001% by weight, the slipperiness of the film may be insufficient.
- the content exceeds 5% by weight, the transparency of the film is insufficient. There is.
- the method for adding particles to the polyester layer is not particularly limited, and a conventionally known method can be adopted.
- it can be added at any stage for producing the polyester constituting each layer, but it is preferably added after completion of esterification or transesterification.
- a method of blending a slurry of particles dispersed in ethylene glycol or water with a vented kneading extruder and a polyester raw material, or a blending of dried particles and a polyester raw material using a kneading extruder is done by methods.
- antioxidants In addition to the above-mentioned particles, conventionally known antioxidants, antistatic agents, ultraviolet absorbers, heat stabilizers, lubricants, dyes, pigments, etc. may be added to the polyester film in the present invention as necessary. Can do.
- the thickness of the polyester film in the present invention is not particularly limited as long as it can be formed as a film, but is usually in the range of 10 to 350 ⁇ m, preferably 50 to 250 ⁇ m.
- a production example of the polyester film in the present invention will be specifically described, but is not limited to the following production examples. That is, a method of using the polyester raw material described above and cooling and solidifying a molten sheet extruded from a die with a cooling roll to obtain an unstretched sheet is preferable. In this case, in order to improve the flatness of the sheet, it is preferable to improve the adhesion between the sheet and the rotary cooling drum, and an electrostatic application adhesion method and / or a liquid application adhesion method is preferably employed. Next, the obtained unstretched sheet is stretched in the biaxial direction. In that case, first, the unstretched sheet is stretched in one direction by a roll or a tenter type stretching machine.
- the stretching temperature is usually 70 to 120 ° C., preferably 80 to 110 ° C., and the stretching ratio is usually 2.5 to 7 times, preferably 3.0 to 6 times.
- the film is stretched in the direction perpendicular to the first stretching direction.
- the stretching temperature is usually 70 to 170 ° C.
- the stretching ratio is usually 3.0 to 7 times, preferably 3.5 to 6 times. is there.
- heat treatment is performed at a temperature of 180 to 270 ° C. under tension or relaxation within 30% to obtain a biaxially oriented film.
- a method in which stretching in one direction is performed in two or more stages can be employed. In that case, it is preferable to carry out so that the draw ratios in the two directions finally fall within the above ranges.
- the simultaneous biaxial stretching method can be adopted for the production of the polyester film constituting the laminated polyester film.
- the simultaneous biaxial stretching method is a method in which the above-mentioned unstretched sheet is stretched and oriented simultaneously in the machine direction and the width direction in a state where the temperature is usually controlled at 70 to 120 ° C., preferably 80 to 110 ° C. Is 4 to 50 times, preferably 7 to 35 times, and more preferably 10 to 25 times in terms of area magnification. Subsequently, heat treatment is performed at a temperature of 170 to 250 ° C. under tension or under relaxation within 30% to obtain a stretched oriented film.
- a conventionally known stretching method such as a screw method, a pantograph method, or a linear driving method can be employed.
- the polyester film in the present invention has a coating layer on at least one side, but even if a similar or other coating layer or functional layer is provided on the opposite side of the film, it is naturally included in the concept of the present invention.
- the coating layer constituting the laminated polyester film in the present invention
- the coating layer it may be provided by in-line coating, which treats the film surface during the stretching process of the polyester film, or may be applied off-system on the film once manufactured, and may employ both offline coating. You may use together.
- In-line coating is preferably used in that it can be applied at the same time as film formation, and thus can be manufactured at low cost, and the thickness of the coating layer can be changed by the draw ratio.
- the in-line coating is not limited to the following, for example, in the sequential biaxial stretching, a coating treatment can be performed particularly before the lateral stretching after the longitudinal stretching is finished.
- a coating layer is provided on a polyester film by in-line coating, coating can be performed simultaneously with film formation, and the coating layer can be processed at a high temperature, and a film suitable as a polyester film can be produced.
- the coating layer of the invention according to the first aspect is a coating layer containing a urethane resin and an isocyanate compound derived from aliphatic or alicyclic isocyanate.
- the coating layer of the invention according to the second aspect is a coating layer containing a urethane resin having a polycarbonate structure and an isocyanate compound.
- the coating layer in the present invention can particularly improve the adhesion with the solventless active energy ray-curable layer.
- a prism layer or a microlens layer can be formed on the coating layer. it can.
- the urethane resin used for the coating layer of the invention according to the first aspect is a polymer compound having a urethane resin in the molecule.
- urethane resin is prepared by reaction of polyol and isocyanate.
- the polyol include polycarbonate polyols, polyester polyols, polyether polyols, polyolefin polyols, and acrylic polyols. These compounds may be used alone or in combination.
- Polycarbonate polyols are obtained from a polyhydric alcohol and a carbonate compound by a dealcoholization reaction.
- Polyhydric alcohols include ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentane Diol, 1,6-hexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,7-heptanediol, 1,8-octanediol, 1,9-nonanediol, 1,10-decane Examples thereof include diol, neopentyl glycol, 3-methyl-1,5-pentanediol, and 3,3-dimethylol heptane.
- Examples of the carbonate compound include dimethyl carbonate, diethyl carbonate, diphenyl carbonate, and ethylene carbonate.
- Examples of the polycarbonate-based polyols obtained from these reactions include poly (1,6-hexylene) carbonate, poly (3- And methyl-1,5-pentylene) carbonate.
- Polyester polyols include polycarboxylic acids (malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, fumaric acid, maleic acid, terephthalic acid, isophthalic acid, etc.) or their acid anhydrides.
- polycarboxylic acids malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, sebacic acid, fumaric acid, maleic acid, terephthalic acid, isophthalic acid, etc.
- polyhydric alcohol ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, tripropylene glycol, butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 2-methyl-1,3-propanediol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 2-methyl-2,4-pentanediol 2-methyl-2-propyl- , 3-propanediol, 1,8-octanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2,5-dimethyl-2,5-hexane Diol, 1,9-nonanediol
- polyether polyols examples include polyethylene glycol, polypropylene glycol, polyethylene propylene glycol, polytetramethylene ether glycol, polyhexamethylene ether glycol and the like.
- polycarbonate polyols are more preferably used in order to improve adhesion with various topcoat layers.
- polyisocyanate compound used for obtaining the urethane resin examples include aromatic isocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate, ⁇ , ⁇ , ⁇ ′, ⁇ ′.
- -Aliphatic isocyanates having aromatic rings such as tetramethylxylylene diisocyanate, aliphatic isocyanates such as methylene diisocyanate, propylene diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyl Methane diisocyanate Sulfonates, alicyclic isocyanates such as isopropylidene dicyclohexyl diisocyanates. These may be used alone or in combination. Among the above isocyanates, aliphatic isocyanates or alicyclic isocyanates are more preferable than aromatic isocyanates from the viewpoint of preventing yellowing due to ultraviolet rays.
- a chain extender may be used when synthesizing the urethane resin, and the chain extender is not particularly limited as long as it has two or more active groups that react with an isocyanate group. Alternatively, a chain extender having two amino groups can be mainly used.
- chain extender having two hydroxyl groups examples include aliphatic glycols such as ethylene glycol, propylene glycol, butanediol and pentanediol, aromatic glycols such as xylylene glycol and bishydroxyethoxybenzene, neopentyl glycol and neopentyl.
- aliphatic glycols such as ethylene glycol, propylene glycol, butanediol and pentanediol
- aromatic glycols such as xylylene glycol and bishydroxyethoxybenzene
- neopentyl glycol and neopentyl examples include glycols such as ester glycols such as glycol hydroxypivalate.
- chain extender having two amino groups examples include aromatic diamines such as tolylenediamine, xylylenediamine, diphenylmethanediamine, ethylenediamine, propylenediamine, hexanediamine, 2,2-dimethyl-1,3- Propanediamine, 2-methyl-1,5-pentanediamine, trimethylhexanediamine, 2-butyl-2-ethyl-1,5-pentanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10- Aliphatic diamines such as decane diamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, dicyclohexylmethanediamine, isoprobilitin cyclohexyl-4,4′-diamine, 1,4-diaminocyclohexane, 1 , 3-Bisaminomethylcyclohexane Alicyclic diamines such as isophorone diamine,
- the urethane resin in the present invention may be one using a solvent as a medium, but is preferably one containing water as a medium.
- a forced emulsification type using an emulsifier there are a forced emulsification type using an emulsifier, a self-emulsification type in which a hydrophilic group is introduced into the urethane resin, and a water-soluble type.
- a self-emulsification type in which an ionic group is introduced into the skeleton of a urethane resin to form an ionomer is preferable because of excellent storage stability of the liquid and water resistance, transparency, and adhesion of the resulting coating layer.
- Examples of the ionic group to be introduced include various groups such as a carboxyl group, sulfonic acid, phosphoric acid, phosphonic acid, quaternary ammonium salt, and the like, and a carboxyl group is preferable.
- a method for introducing a carboxyl group into a urethane resin various methods can be taken in each stage of the polymerization reaction. For example, there are a method of using a carboxyl group-containing resin as a copolymer component during prepolymer synthesis, and a method of using a component having a carboxyl group as one component such as polyol, polyisocyanate, and chain extender.
- a method in which a desired amount of carboxyl groups is introduced using a carboxyl group-containing diol depending on the amount of this component charged is preferred.
- dimethylolpropionic acid, dimethylolbutanoic acid, bis- (2-hydroxyethyl) propionic acid, bis- (2-hydroxyethyl) butanoic acid, and the like are copolymerized with a diol used for polymerization of a urethane resin.
- the carboxyl group is preferably in the form of a salt neutralized with ammonia, amine, alkali metal, inorganic alkali or the like. Particularly preferred are ammonia, trimethylamine and triethylamine.
- the isocyanate compound derived from an aliphatic or alicyclic isocyanate used in the coating layer of the invention according to the first aspect refers to an aliphatic isocyanate and a compound derived from a blocked isocyanate derivative in which the isocyanate group is blocked.
- an aliphatic isocyanate having an aromatic ring such as ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethylxylylene diisocyanate
- an aliphatic isocyanate such as methylene diisocyanate, propylene diisocyanate, lysine diisocyanate, trimethylhexamethylene diisocyanate, hexamethylene diisocyanate
- Examples thereof include alicyclic isocyanates such as cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, methylene bis (4-cyclohexyl isocyanate), and isopropylidene dicyclohexyl diisocyanate. These may be used alone or in combination.
- hexamethylene diisocyanate is preferable from the viewpoint of improving the adhesion with the active energy ray-curable resin.
- Examples of the blocking agent for the blocked isocyanate in the present invention include phenol compounds such as bisulfites, phenol, cresol, and ethyl phenol, alcohol compounds such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol, and ethanol, and malonic acid.
- phenol compounds such as bisulfites, phenol, cresol, and ethyl phenol
- alcohol compounds such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol, and ethanol, and malonic acid.
- Active methylene compounds such as dimethyl, diethyl malonate, methyl acetoacetate, ethyl acetoacetate, acetylacetone, mercaptan compounds such as butyl mercaptan, dodecyl mercaptan, lactam compounds such as ⁇ -caprolactam, ⁇ -valerolactam, diphenylaniline, Amine compounds such as aniline and ethyleneimine, acetanilide, acid amide compounds of acetic acid amide, formaldehyde, acetoaldoxime And oxime compounds such as acetone oxime, methyl ethyl ketone oxime, and cyclohexanone oxime. These may be used alone or in combination of two or more.
- a crosslinking agent may be used in the coating layer within the range not impairing the gist of the present invention, and various known resins can be used, for example, amino resin-based melamine, benzoguanamine, oxazoline-based, carbodiimide-based, epoxy System compounds and the like.
- a polymer type crosslinking agent etc. which copolymerized the reactive group of the above crosslinkable functional groups in the frame
- the average particle size of the particles is preferably in the range of 0.15 ⁇ m or less, more preferably in the range of 0.12 ⁇ m or less from the viewpoint of the transparency of the film. Further, from the viewpoints of adhesion and slipperiness, the average particle size is preferably in the range of 0.03 ⁇ m or more, more preferably in the range of 0.05 ⁇ m or more.
- the content of the particles is preferably in the range of 3 to 25% by weight, more preferably in the range of 5 to 15% by weight, and in the range of 5 to 10% by weight, based on the weight ratio of the entire coating layer. More preferably it is.
- the particles used include inorganic particles such as silica, alumina, and metal oxide, or organic particles such as crosslinked polymer particles.
- silica particles are preferred from the viewpoint of dispersibility in the coating layer and transparency of the resulting coating film.
- the coating layer in the present invention is other than the urethane resin described above in order to improve the coating surface shape, improve the visibility when various microlens layers and prism layers are formed on the coating surface, and improve the transparency.
- These binder polymers can also be used in combination.
- the “binder polymer” has a number average molecular weight (Mn) measured by gel permeation chromatography (GPC) according to a polymer compound safety evaluation flow scheme (hosted by the Chemical Substances Council in November 1985). It is defined as a polymer compound of 1000 or more and having a film-forming property.
- binder polymer examples include polyester resin, acrylic resin, urethane resin having no polycarbonate structure, polyvinyl (polyvinyl alcohol, polyvinyl chloride, vinyl chloride vinyl acetate copolymer, etc.), polyalkylene glycol, polyalkyleneimine, methylcellulose. , Hydroxycellulose, starches and the like.
- the coating layer has an antifoaming agent, a coating property improving agent, a thickener, an organic lubricant, an antistatic agent, an ultraviolet absorber, an antioxidant, foaming as necessary. Agents, dyes and the like may be contained.
- the content of the urethane resin in the coating layer is usually 5 to 90% by weight, preferably 10 to 80% by weight, more preferably 10 to 75% by weight.
- the adhesion may not be sufficient due to the small amount of the urethane resin component.
- the coating layer is formed by a small amount of the aliphatic or alicyclic isocyanate-derived isocyanate compound. It may become brittle and adhesion may not be sufficient, or heat and humidity resistance may not be sufficient.
- the content of the isocyanate compound derived from the aliphatic or alicyclic isocyanate in the coating layer is usually 5 to 90% by weight, preferably 10 to 85% by weight, more preferably 20 to 70% by weight. . If it is less than 5% by weight, the coating layer becomes brittle due to the small amount of isocyanate compound, and adhesion may not be sufficient or heat and humidity resistance may not be sufficient. If the amount is small, the adhesion may not be sufficient.
- Analysis of various components in the coating layer can be performed by surface analysis such as TOF-SIMS.
- the coating layer of the invention according to the second aspect is a coating layer containing a urethane resin having a polycarbonate structure and an isocyanate compound.
- the urethane resin is limited to a urethane resin having a polycarbonate structure
- the isocyanate compound is not limited to an isocyanate compound derived from aliphatic or alicyclic isocyanate, and is aromatic. It differs in that it may be an isocyanate compound. Therefore, the explanation of the coating layer of the invention according to the second aspect is based on the above differences, and unless otherwise specified, all of the above description of the coating layer of the invention according to the first aspect is made. Applied.
- the urethane resin having the above polycarbonate structure has a glass transition point (hereinafter sometimes referred to as Tg) of preferably 0 ° C. or less, more preferably ⁇ 15 ° C. or less, and further preferably ⁇ 30 ° C. or less.
- Tg glass transition point
- easy adhesion may be insufficient.
- Tg said here refers to the temperature which created the dry film
- examples of the aromatic isocyanate compound that can be used in the coating layer of the invention according to the second aspect include tolylene diisocyanate, xylylene diisocyanate, methylene diphenyl diisocyanate, phenylene diisocyanate, naphthalene diisocyanate, and tolidine diisocyanate. From the viewpoint of avoiding yellowing due to ultraviolet rays, an aliphatic isocyanate or an alicyclic isocyanate is more preferable than an aromatic isocyanate.
- a coating layer When providing a coating layer by in-line coating, apply the above-mentioned series of compounds as an aqueous solution or aqueous dispersion and apply a coating solution adjusted to a solid content concentration of about 0.1 to 50% by weight on the polyester film. It is preferable to produce a laminated polyester film. Moreover, in the range which does not impair the main point of this invention, a small amount of organic solvents may be contained in the coating liquid for the purpose of improving dispersibility in water, improving film-forming properties, and the like. Only one type of organic solvent may be used, or two or more types may be used as appropriate.
- the coating amount of the coating layer provided on the polyester film is usually 0.002 to 1.0 g / m 2 , more preferably 0.005 to 0.5 g / m 2 , still more preferably.
- the range is 0.01 to 0.2 g / m 2 . If the coating amount is less than 0.002 g / m 2, sufficient adhesion may not be obtained, and if it exceeds 1.0 g / m 2 , the appearance, transparency, and film blocking properties may be deteriorated. There is sex.
- a conventionally known coating method such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, curtain coating or the like can be used.
- the coating method there is an example described in “Coating Method”, published by Yoji Harasaki, published in 1979.
- the drying and curing conditions for forming the coating layer on the polyester film are not particularly limited.
- the coating layer is provided by off-line coating, it is usually 3 to 40 at 80 to 200 ° C.
- the heat treatment should be performed for a second, preferably 100 to 180 ° C. for 3 to 40 seconds.
- the coating layer is provided by in-line coating, it is usually preferable to perform heat treatment at 70 to 280 ° C. for 3 to 200 seconds as a guide.
- polyester film constituting the laminated polyester film in the present invention may be subjected to surface treatment such as corona treatment or plasma treatment in advance.
- a prism layer, a microlens layer, or the like is provided on the coated layer of the laminated polyester film of the present invention in order to improve luminance.
- various shapes have been proposed for the prism layer in order to improve the luminance efficiently.
- prism layers are formed by arranging prism rows having a triangular cross section in parallel.
- various shapes of the microlens layer have been proposed, but in general, a large number of hemispherical convex lenses are provided on the film. Any layer can have a conventionally known shape.
- Examples of the shape of the prism layer include those having a triangular section with a thickness of 10 to 500 ⁇ m, a pitch of prism rows of 10 to 500 ⁇ m, and an apex angle of 40 ° to 100 °.
- conventionally known materials can be used, for example, those made of an active energy ray-curable resin, such as polyester resin, epoxy resin, polyester (meth) acrylate, epoxy Examples include (meth) acrylate resins such as (meth) acrylate and urethane (meth) acrylate.
- the shape of the microlens layer is, for example, a hemispherical shape having a thickness of 10 to 500 ⁇ m and a diameter of 10 to 500 ⁇ m, but it may be shaped like a cone or a polygonal pyramid.
- the material used for the microlens layer conventionally known materials can be used as in the prism layer, and examples thereof include an active energy ray curable resin.
- Active energy ray curable resin composition A composition comprising 80 parts by weight of “KARAYAD DPHA” manufactured by Nippon Kayaku, 20 parts by weight of “KARAYAD R-128H” manufactured by Nippon Kayaku, and 5 parts by weight of “IRGACURE651” manufactured by Ciba Specialty Chemicals.
- the polyester used in the examples and comparative examples was prepared as follows.
- the reaction was stopped at a time corresponding to an intrinsic viscosity of 0.63 due to a change in stirring power of the reaction tank, and the polymer was discharged under nitrogen pressure to obtain a polyester (A) having an intrinsic viscosity of 0.63.
- polyester (C) ⁇ Method for producing polyester (C)>
- polyester was used except that 0.2 parts of silica particles having an average particle diameter of 2 ⁇ m dispersed in ethylene glycol were added and the polycondensation reaction was stopped at a time corresponding to an intrinsic viscosity of 0.66.
- a polyester (C) having an intrinsic viscosity of 0.66 was obtained.
- Examples of compounds constituting the coating layer are as follows. However, “part” in the text represents the weight ratio in the resin solid content.
- Triethylamine is a urethane resin composed of 400 parts of polycarbonate polyol composed of 1,6-hexanediol and diethyl carbonate having a number average molecular weight of 2000, 14 parts of butanediol, 15 parts of pentaethylene glycol, 100 parts of isophorone diisocyanate, and 75 parts of dimethylolpropionic acid.
- U3 Urethane resin
- a prepolymer comprising 400 parts of a polycarbonate polyol composed of 1,6-hexanediol and diethyl carbonate having a number average molecular weight of 2000, 10.4 parts of neopentyl glycol, 58.4 parts of cyclohexane diisocyanate, and 74.3 parts of dimethylolbutanoic acid.
- U4 Urethane resin
- Tg 10 ° C.
- C1 isocyanate compound
- a blocked isocyanate obtained by blocking an isocyanate group of polyisocyanate comprising 158 parts of hexamethylene diisocyanate trimer and 26 parts of methoxypolyethylene glycol having a number average molecular weight of 1400 with 66 parts of methyl ethyl ketone oxime, 1,6-hexanediol and diethyl carbonate
- a urethane obtained by neutralizing a prepolymer comprising 115 parts of a polycarbonate polyol having a number average molecular weight of 2000, 1 part of trimethylolpropane, 40 parts of isophorone diisocyanate and 8 parts of dimethylolpropionic acid with triethylamine and extending the chain with diethylenetriamine.
- C2 isocyanate compound
- 100 parts of trimethylolpropane adduct of tolylene diisocyanate, 21 parts of methoxypolyethylene glycol having a number average molecular weight of 2000, and 11 parts of polyisocyanate consisting of 11 parts of tetramethylolethylenediamine are obtained by blocking with 23 parts of methyl ethyl ketone oxime. Block polyisocyanate compound.
- C4 oxazoline compound
- a polymer type crosslinking agent having an oxazoline group branched to an acrylic resin manufactured by Nippon Shokubai Co., Ltd., WS-500.
- (C5: isocyanate compound) Blocking the isocyanate group of polyisocyanate consisting of 200 parts of a polyester having a number average molecular weight of 2000 consisting of 2-methylene adduct of bisphenol A and maleic acid and 33.6 parts of hexamethylene diisocyanate with 84 parts of 30% sodium bisulfite Polyester resin-containing blocked isocyanate compound obtained.
- the coating liquid 1A shown in Table 1 below was applied to one side of the longitudinally stretched film and led to a tenter. Stretch 4.0 times at 120 ° C in the transverse direction, heat treatment at 225 ° C, relax 2% in the transverse direction, and the coating amount (after drying) has a coating layer whose thickness is 188 ⁇ m as shown in Table 2 A polyester film was obtained.
- Example 2A-10A In Example 1A, it manufactured like Example 1A except having changed the coating agent composition into the composition shown in Table 1, and obtained the polyester film. The finished polyester film had good adhesion as shown in Table 2.
- Comparative Examples 1A-4A In Example 1A, it manufactured like Example 1A except having changed the coating agent composition into the composition shown in Table 1, and obtained the polyester film. When the finished polyester film was evaluated, it was as shown in Table 2 and had poor adhesion.
- Example 1A a polyester film was obtained in the same manner as in Example 1A except that the coating composition was changed to the composition shown in Table 2 below.
- the finished polyester film had good adhesion as shown in Table 3.
- Comparative Examples 1B-6B In Example 1A, it manufactured like Example 1A except having changed the coating agent composition into the composition shown in Table 2, and obtained the polyester film. When the finished polyester film was evaluated, it was as shown in Table 3 and had poor adhesion.
- the film of the present invention can be suitably used for applications that require good adhesion to a microlens layer or a prism layer, such as a backlight unit of a liquid crystal display.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Laminated Bodies (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
Abstract
Description
本発明における積層ポリエステルフィルムを構成するポリエステルフィルムは単層構成であっても多層構成であってもよく、2層、3層構成以外にも本発明の要旨を越えない限り、4層またはそれ以上の多層であってもよく、特に限定されるものではない。
第1の要旨に係る発明の塗布層は、ウレタン樹脂と脂肪族又は脂環族イソシアネート由来のイソシアネート化合物を含有する塗布層である。
第2の要旨に係る発明の塗布層は、ポリカーボネート構造を有するウレタン樹脂とイソシアネート系化合物を含有する塗布層である。
第1の要旨に係る発明の塗布層に使用するウレタン樹脂とは、ウレタン樹脂を分子内に有する高分子化合物のことである。通常ウレタン樹脂はポリオールとイソシアネートの反応により作成される。ポリオールとしては、ポリカーボネートポリオール類、ポリエステルポリオール類、ポリエーテルポリオール類、ポリオレフィンポリオール類、アクリルポリオール類が挙げられ、これらの化合物は単独で用いても、複数種用いてもよい。
粒子の平均粒子径はフィルムの透明性の観点から0.15μm以下の範囲であるのが好ましく、より好ましくは0.12μm以下の範囲である。また、固着性および滑り性の観点から、平均粒子径は好ましくは0.03μm以上の範囲、より好ましくは0.05μm以上の範囲である。
粒子の含有量としては、塗布層全体の重量比で、3~25重量%の範囲であることが好ましく、5~15重量%の範囲であることがより好ましく、5~10重量%の範囲であることがさらに好ましい。3重量%未満の場合、滑り性の付与やブロッキングを防止する効果が不十分となる場合がある。また25重量%を超える場合、塗布層の透明性の低下、塗布層の連続性が損なわれることによる塗膜強度の低下、あるいは易接着性の低下が懸念される。
第2の要旨に係る発明の塗布層は、前述の通り、ポリカーボネート構造を有するウレタン樹脂とイソシアネート系化合物を含有する塗布層である。
第1の要旨に係る発明の塗布層と比較すると、ウレタン樹脂がポリカーボネート構造を有するウレタン樹脂に限定され、イソシアネート系化合物が脂肪族又は脂環族イソシアネート由来のイソシアネート化合物に限定されてなく、芳香族イソシアネート化合物であってもよい点で異なる。
従って、第2の要旨に係る発明の塗布層の説明については、上記の相違点を考慮し、また、特に断りがない限り、第1の要旨に係る発明の塗布層の前述の説明の全てが適用される。
ポリエステルに非相溶な他のポリマー成分および顔料を除去したポリエステル1gを精秤し、フェノール/テトラクロロエタン=50/50(重量比)の混合溶媒100mlを加えて溶解させ、30℃で測定した。
遠心沈降式粒度分布測定装置(株式会社島津製作所社製SA-CP3型)を使用して測定した等価球形分布における積算(重量基準)50%の値を平均粒径とした。
ウレタン樹脂の水分散液をシャーレ内で乾燥させて樹脂皮膜を得た。得られた皮膜をNETZSCH社製DSC 204F Phoenixを用いて、-100℃~100℃の温度範囲で、10℃/分の速度で昇温させてDSCチャートを測定し、さらに熱容量の変化からガラス転移点を測定した。
ポリエステルフィルムの塗布層上に、下記に示す活性エネルギー線硬化樹脂組成物を硬化後の厚さが3μmになるように塗布し、紫外線照射装置から紫外線を水銀ランプ80Wで25mJ/cm2照射して樹脂を硬化させ<ポリエステルフィルム/塗布層/活性エネルギー線硬化樹脂層>という構成の積層フィルムを得た。その直後(密着性1)およびカッターナイフで5mm間隔にキズをつけて(密着性2)、24mm幅のテープ(ニチバン株式会社製セロテープ(登録商標)CT-24)を貼り付け、180度の剥離角度で急激にはがした後、剥離面を観察し、剥離面積が5%以下ならば◎、5%を超え20%以下なら○、20%を超え50%以下ならば△、50%を超えるならば×とした。
・活性エネルギー線硬化樹脂組成物:
日本化薬製「KARAYAD DPHA」80重量部、日本化薬製「KARAYAD R-128H」20重量部、チバスペシャリティケミカルズ製「IRGACURE651」5重量部からなる組成物。
テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒としてテトラブトキシチタネートを、Ti(チタン)含有量として5ppmとなるように反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた後、4時間重縮合反応を行った。
すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度0.63に相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させ、極限粘度0.63のポリエステル(A)を得た。
テレフタル酸ジメチル100重量部とエチレングリコール60重量部とを出発原料とし、触媒として酢酸マグネシウム・四水塩を加えて反応器にとり、反応開始温度を150℃とし、メタノールの留去とともに徐々に反応温度を上昇させ、3時間後に230℃とした。4時間後、実質的にエステル交換反応を終了させた。この反応混合物を重縮合槽に移し、正リン酸をP(リン)含有量として1000ppmとなるように添加した後、二酸化ゲルマニウムを加えて、4時間重縮合反応を行った。すなわち、温度を230℃から徐々に昇温し280℃とした。一方、圧力は常圧より徐々に減じ、最終的には0.3mmHgとした。反応開始後、反応槽の攪拌動力の変化により、極限粘度0.65に相当する時点で反応を停止し、窒素加圧下ポリマーを吐出させ、極限粘度0.65のポリエステル(B)を得た。
ポリエステル(A)の製造方法において、エチレングリコールに分散させた平均粒子径2μmのシリカ粒子0.2部を加えて、極限粘度0.66に相当する時点で重縮合反応を停止した以外は、ポリエステル(A)の製造方法と同様の方法を用いて、極限粘度0.66のポリエステル(C)を得た。
1,6-ヘキサンジオールとジエチルカーボネートからなる数平均分子量が2000のポリカーボネートポリオール80部、数平均分子量400のポリエチレングリコール4部、メチレンビス(4-シクロヘキシルイソシアネート)12部、ジメチロールブタン酸4部からなるウレタン樹脂をトリエチルアミンで中和した、ウレタン樹脂の水分散体(ウレタン樹脂のTg:-32℃)。
1,6-ヘキサンジオールとジエチルカーボネートからなる数平均分子量が2000のポリカーボネートポリオール400部、ブタンジオール14部、ペンタエチレングリコール15部、イソホロンジイソシアネート100部、ジメチロールプロピオン酸75部からなるウレタン樹脂をトリエチルアミンで中和した、ウレタン樹脂の水分散体(ウレタン樹脂のTg:-3℃)。
1,6-ヘキサンジオールとジエチルカーボネートからなる数平均分子量が2000のポリカーボネートポリオール400部、ネオペンチルグリコール10.4部、シクロヘキサンジイソシアネート58.4部、ジメチロールブタン酸74.3部からなるプレポリマーをトリエチルアミンで中和し、イソホロンジアミンで鎖延長した、ウレタン樹脂の水分散体(ウレタン樹脂のTg:-30℃)。
Tgが10℃の水分散型ポリエステル構造を有するウレタン樹脂(DIC製、ハイドランAP-30)。
ヘキサメチレンジイソシアネートトリマー158部、数平均分子量が1400のメトキシポリエチレングリコール26部からなるポリイソシアネートのイソシアネート基を、メチルエチルケトンオキシム66部でブロックして得られるブロックイソシアネートと、1,6-ヘキサンジオールとジエチルカーボネートからなる数平均分子量が2000のポリカーボネートポリオール115部、トリメチロールプロパン1部、イソホロンジイソシアネート40部、ジメチロールプロピオン酸8部からなるプレポリマーをトリエチルアミンで中和し、ジエチレントリアミンで鎖延長して得られるウレタン樹脂を含有する、水性ブロックイソシアネート系化合物。
トリレンジイソシアネートのトリメチロールプロパン付加体100部、数平均子量が2000のメトキシポリエチレングリコール21部、テトラメチロールエチレンジアミン11部からなるポリイソシアネートのイソシアネート基をメチルエチルケトンオキシム23部でブロックして得られる、水性ブロックポリイソシアネート化合物。
メトキシメチロールメラミン
オキサゾリン基がアクリル系樹脂にブランチされたポリマー型架橋剤(日本触媒社製、WS-500)。
ビスフェノールAのエチレンオキサイド2モル付加物とマレイン酸からなる数平均分子量2000のポリエステル200部と、ヘキサメチレンジイソシアネート33.6部からなるポリイソシアネートのイソシアネート基を30%重亜硫酸ナトリウム84部でブロックして得られる、ポリエステル樹脂含有ブロックイソシアネート系化合物。
ポリグリセロールポリグリシジルエーテルである、水溶性エポキシ化合物(ナガセケムテックス社製 EX-521)。
粒径65nmのシリカゾル
ポリエステル(A)、(B)、(C)をそれぞれ85%、5%、10%の割合で混合した混合原料を最外層(表層)の原料とし、ポリエステル(A)、(B)をそれぞれ95%、5%の割合で混合した混合原料を中間層の原料として、2台の押出機に各々を供給し、各々290℃で溶融した後、40℃に設定した冷却ロール上に、2種3層(表層/中間層/表層=1/18/1の吐出量)の層構成で共押出し冷却固化させて未延伸シートを得た。次いで、ロール周速差を利用してフィルム温度85℃で縦方向に3.4倍延伸した後、この縦延伸フィルムの片面に、下記表1に示す塗布液1Aを塗布し、テンターに導き、横方向に120℃で4.0倍延伸し、225℃で熱処理を行った後、横方向に2%弛緩し、塗布量(乾燥後)が表2に示すような塗布層を有する厚さ188μmのポリエステルフィルムを得た。
実施例1Aにおいて、塗布剤組成を表1に示す組成に変更する以外は実施例1Aと同様にして製造し、ポリエステルフィルムを得た。出来上がったポリエステルフィルムは表2に示すとおり密着性は良好であった。
実施例1Aにおいて、塗布剤組成を表1に示す組成に変更する以外は実施例1Aと同様にして製造し、ポリエステルフィルムを得た。出来上がったポリエステルフィルムを評価したところ、表2に示すとおりであり、密着性が弱いものであった。
実施例1Aにおいて、塗布剤組成を下記表2に示す組成に変更する以外は実施例1Aと同様にして製造し、ポリエステルフィルムを得た。出来上がったポリエステルフィルムは表3に示すとおり密着性は良好であった。
実施例1Aにおいて、塗布剤組成を表2に示す組成に変更する以外は実施例1Aと同様にして製造し、ポリエステルフィルムを得た。出来上がったポリエステルフィルムを評価したところ、表3に示すとおりであり、密着性が弱いものであった。
Claims (5)
- ポリエステルフィルムの少なくとも片面に、ウレタン樹脂と脂肪族又は脂環族イソシアネート由来のイソシアネート化合物を含有する塗布層を有することを特徴とする積層ポリエステルフィルム。
- 脂肪族イソシアネートがヘキサメチレンジイソシアネートである請求項1に記載の積層ポリエステルフィルム。
- ポリエステルフィルムの少なくとも片面に、ポリカーボネート構造を有するウレタン樹脂とイソシアネート系化合物を含有する塗布層を有することを特徴とする積層ポリエステルフィルム。
- ポリカーボネート構造を有するウレタン樹脂のガラス転移点が0℃以下である請求項3に記載の積層ポリエステルフィルム。
- イソシアネート系化合物が脂肪族イソシアネートまたは脂環族イソシアネートである請求項3又は4に記載の積層ポリエステルフィルム。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/641,733 US20130052466A1 (en) | 2010-04-19 | 2011-03-24 | Laminated polyester film |
EP11771832.0A EP2561985A4 (en) | 2010-04-19 | 2011-03-24 | LAMINATED POLYESTER FILM |
KR1020127024542A KR20130057968A (ko) | 2010-04-19 | 2011-03-24 | 적층 폴리에스테르 필름 |
CN2011800154019A CN102821954A (zh) | 2010-04-19 | 2011-03-24 | 叠层聚酯膜 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-096109 | 2010-04-19 | ||
JP2010-096072 | 2010-04-19 | ||
JP2010096109A JP5476199B2 (ja) | 2010-04-19 | 2010-04-19 | 積層ポリエステルフィルム |
JP2010096072A JP2011224849A (ja) | 2010-04-19 | 2010-04-19 | 積層ポリエステルフィルム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011132495A1 true WO2011132495A1 (ja) | 2011-10-27 |
Family
ID=44834031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/057166 WO2011132495A1 (ja) | 2010-04-19 | 2011-03-24 | 積層ポリエステルフィルム |
Country Status (5)
Country | Link |
---|---|
US (1) | US20130052466A1 (ja) |
EP (1) | EP2561985A4 (ja) |
KR (1) | KR20130057968A (ja) |
CN (1) | CN102821954A (ja) |
WO (1) | WO2011132495A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2955024A4 (en) * | 2013-02-06 | 2016-09-14 | Mitsubishi Plastics Inc | ANTI-ADHERENT FILM |
WO2018061524A1 (ja) * | 2016-09-27 | 2018-04-05 | 株式会社Adeka | 水系ポリウレタン樹脂組成物 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140011036A1 (en) * | 2011-02-22 | 2014-01-09 | Mitsubishi Plastics, Inc. | Laminated polyester film |
JP2015021014A (ja) * | 2013-07-16 | 2015-02-02 | 三菱樹脂株式会社 | 積層ポリエステルフィルム |
EP3029091B1 (en) * | 2013-07-28 | 2020-03-25 | Mitsubishi Chemical Corporation | Coating film |
KR101896350B1 (ko) * | 2014-12-13 | 2018-09-07 | 미쯔비시 케미컬 주식회사 | 도포 필름 |
CN107429128B (zh) | 2016-03-09 | 2024-08-02 | 三菱化学株式会社 | 粘接膜及其制造方法 |
US20220119603A1 (en) * | 2019-02-13 | 2022-04-21 | Toyobo Co., Ltd. | Laminated polyester film |
JP7103507B2 (ja) * | 2019-10-29 | 2022-07-20 | 東洋紡株式会社 | 積層ポリエステルフィルム |
CN111548750B (zh) * | 2020-06-06 | 2022-07-22 | 江苏澳盛复合材料科技有限公司 | 一种用于真空成型件的表面保护薄膜 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS595216B2 (ja) | 1979-01-25 | 1984-02-03 | ダイアホイル株式会社 | ポリエステルフイルム |
JPS59217755A (ja) | 1983-04-16 | 1984-12-07 | ヘキスト・アクチエンゲゼルシヤフト | ポリエステル原料及びフイルム |
JPH02158633A (ja) | 1988-12-12 | 1990-06-19 | Diafoil Co Ltd | 積層フィルム |
JPH08281890A (ja) | 1995-04-10 | 1996-10-29 | Toray Ind Inc | 積層ポリエステルフィルム及び昇華型感熱転写材 |
JPH11286092A (ja) | 1998-04-02 | 1999-10-19 | Toray Ind Inc | 積層ポリエステルフィルムおよびその製造方法 |
JP2000229395A (ja) | 1999-02-12 | 2000-08-22 | Toyobo Co Ltd | 光学用易接着フィルム |
JP2008179148A (ja) * | 2008-02-08 | 2008-08-07 | Toray Ind Inc | レンズシート用フィルム |
WO2009116230A1 (ja) * | 2008-03-17 | 2009-09-24 | 三菱樹脂株式会社 | 易接着性フィルム |
WO2010026773A1 (ja) * | 2008-09-08 | 2010-03-11 | 三菱樹脂株式会社 | 積層ポリエステルフィルム |
JP2010064256A (ja) * | 2008-09-08 | 2010-03-25 | Mitsubishi Plastics Inc | 光拡散シート用積層ポリエステルフィルム |
JP2011031561A (ja) * | 2009-08-05 | 2011-02-17 | Toyobo Co Ltd | 光学用易接着性ポリエステルフィルム |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4637299B2 (ja) * | 2001-08-16 | 2011-02-23 | 三菱樹脂株式会社 | 塗布フィルム |
CN101218279A (zh) * | 2005-07-12 | 2008-07-09 | 三菱化学株式会社 | 脂环式聚酯、其制造方法以及树脂组合物 |
CN1951977B (zh) * | 2005-10-19 | 2010-09-29 | 东丽纤维研究所(中国)有限公司 | 聚酯的生产方法 |
JP4805806B2 (ja) * | 2006-12-31 | 2011-11-02 | 三菱樹脂株式会社 | 熱プレス成型用離型ポリエステルフィルム |
JP4916339B2 (ja) * | 2007-02-27 | 2012-04-11 | 三菱樹脂株式会社 | 反射防止フィルム用積層ポリエステルフィルム |
JP5174592B2 (ja) * | 2008-09-08 | 2013-04-03 | 三菱樹脂株式会社 | 光拡散シート用積層ポリエステルフィルム |
JP5467752B2 (ja) * | 2008-10-06 | 2014-04-09 | 三菱樹脂株式会社 | 二軸延伸ポリエステルフィルム |
US20110262753A1 (en) * | 2008-10-06 | 2011-10-27 | Taishi Kawasaki | Laminated polyester film |
DE102009009791A1 (de) * | 2009-02-20 | 2010-08-26 | Mitsubishi Plastics, Inc. | Weiße, beschichtete Polyesterfolie, Verfahren zu ihrer Herstellung und ihre Verwendung als Rückseitenabdeckung in Solarmodulen |
US8778500B2 (en) * | 2009-04-22 | 2014-07-15 | Mitsubishi Plastics, Inc. | Laminated polyester film |
-
2011
- 2011-03-24 EP EP11771832.0A patent/EP2561985A4/en not_active Withdrawn
- 2011-03-24 KR KR1020127024542A patent/KR20130057968A/ko not_active Application Discontinuation
- 2011-03-24 US US13/641,733 patent/US20130052466A1/en not_active Abandoned
- 2011-03-24 WO PCT/JP2011/057166 patent/WO2011132495A1/ja active Application Filing
- 2011-03-24 CN CN2011800154019A patent/CN102821954A/zh active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS595216B2 (ja) | 1979-01-25 | 1984-02-03 | ダイアホイル株式会社 | ポリエステルフイルム |
JPS59217755A (ja) | 1983-04-16 | 1984-12-07 | ヘキスト・アクチエンゲゼルシヤフト | ポリエステル原料及びフイルム |
JPH02158633A (ja) | 1988-12-12 | 1990-06-19 | Diafoil Co Ltd | 積層フィルム |
JPH08281890A (ja) | 1995-04-10 | 1996-10-29 | Toray Ind Inc | 積層ポリエステルフィルム及び昇華型感熱転写材 |
JPH11286092A (ja) | 1998-04-02 | 1999-10-19 | Toray Ind Inc | 積層ポリエステルフィルムおよびその製造方法 |
JP2000229395A (ja) | 1999-02-12 | 2000-08-22 | Toyobo Co Ltd | 光学用易接着フィルム |
JP2008179148A (ja) * | 2008-02-08 | 2008-08-07 | Toray Ind Inc | レンズシート用フィルム |
WO2009116230A1 (ja) * | 2008-03-17 | 2009-09-24 | 三菱樹脂株式会社 | 易接着性フィルム |
WO2010026773A1 (ja) * | 2008-09-08 | 2010-03-11 | 三菱樹脂株式会社 | 積層ポリエステルフィルム |
JP2010064256A (ja) * | 2008-09-08 | 2010-03-25 | Mitsubishi Plastics Inc | 光拡散シート用積層ポリエステルフィルム |
JP2011031561A (ja) * | 2009-08-05 | 2011-02-17 | Toyobo Co Ltd | 光学用易接着性ポリエステルフィルム |
Non-Patent Citations (1)
Title |
---|
See also references of EP2561985A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2955024A4 (en) * | 2013-02-06 | 2016-09-14 | Mitsubishi Plastics Inc | ANTI-ADHERENT FILM |
WO2018061524A1 (ja) * | 2016-09-27 | 2018-04-05 | 株式会社Adeka | 水系ポリウレタン樹脂組成物 |
JPWO2018061524A1 (ja) * | 2016-09-27 | 2019-07-04 | 株式会社Adeka | 水系ポリウレタン樹脂組成物 |
Also Published As
Publication number | Publication date |
---|---|
EP2561985A1 (en) | 2013-02-27 |
KR20130057968A (ko) | 2013-06-03 |
EP2561985A4 (en) | 2014-01-08 |
US20130052466A1 (en) | 2013-02-28 |
CN102821954A (zh) | 2012-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5271204B2 (ja) | 積層ポリエステルフィルム | |
JP5174606B2 (ja) | 積層ポリエステルフィルム | |
WO2011132495A1 (ja) | 積層ポリエステルフィルム | |
WO2010041384A1 (ja) | 積層ポリエステルフィルム | |
JP5739783B2 (ja) | 積層ポリエステルフィルム | |
EP2727726B1 (en) | Coating film | |
JP5344744B2 (ja) | 積層ポリエステルフィルム | |
JP5344745B2 (ja) | 積層ポリエステルフィルム | |
JP5686867B2 (ja) | 積層ポリエステルフィルム | |
WO2016047431A1 (ja) | 塗布フィルム | |
JP5894241B2 (ja) | 積層ポリエステルフィルム | |
JP5476199B2 (ja) | 積層ポリエステルフィルム | |
JP5174592B2 (ja) | 光拡散シート用積層ポリエステルフィルム | |
JP5385581B2 (ja) | 積層ポリエステルフィルム | |
JP5719062B2 (ja) | 積層ポリエステルフィルム | |
JP5871474B2 (ja) | 積層ポリエステルフィルム | |
JP5342631B2 (ja) | 積層ポリエステルフィルム | |
JP2010253736A (ja) | 積層ポリエステルフィルム | |
JP2011224849A (ja) | 積層ポリエステルフィルム | |
JP5344746B2 (ja) | 積層ポリエステルフィルム | |
JP2014014992A (ja) | 積層ポリエステルフィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180015401.9 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11771832 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127024542 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011771832 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13641733 Country of ref document: US |