WO2011132233A1 - 触媒異常診断装置 - Google Patents

触媒異常診断装置 Download PDF

Info

Publication number
WO2011132233A1
WO2011132233A1 PCT/JP2010/002949 JP2010002949W WO2011132233A1 WO 2011132233 A1 WO2011132233 A1 WO 2011132233A1 JP 2010002949 W JP2010002949 W JP 2010002949W WO 2011132233 A1 WO2011132233 A1 WO 2011132233A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
rich
lean
post
threshold
Prior art date
Application number
PCT/JP2010/002949
Other languages
English (en)
French (fr)
Inventor
北浦浩一
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN201080066348.0A priority Critical patent/CN102859160B/zh
Priority to JP2012511424A priority patent/JP5293885B2/ja
Priority to US13/642,398 priority patent/US8683856B2/en
Priority to PCT/JP2010/002949 priority patent/WO2011132233A1/ja
Publication of WO2011132233A1 publication Critical patent/WO2011132233A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • F01N11/007Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity the diagnostic devices measuring oxygen or air concentration downstream of the exhaust apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2550/00Monitoring or diagnosing the deterioration of exhaust systems
    • F01N2550/02Catalytic activity of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0412Methods of control or diagnosing using pre-calibrated maps, tables or charts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0422Methods of control or diagnosing measuring the elapsed time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/14Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
    • F01N2900/1402Exhaust gas composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1624Catalyst oxygen storage capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0814Oxygen storage amount
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an abnormality diagnosis of a catalyst, and more particularly to an apparatus for diagnosing an abnormality of a catalyst disposed in an exhaust passage of an internal combustion engine.
  • a catalyst for purifying exhaust gas is installed in the exhaust system.
  • Some of these catalysts have an oxygen storage capacity (O 2 storage capacity).
  • O 2 storage capacity oxygen storage capacity
  • the air-fuel ratio of the exhaust gas flowing into the catalyst becomes larger than the stoichiometric air-fuel ratio (stoichiometric), that is, when the engine becomes lean
  • the catalyst having oxygen storage capacity occludes excess oxygen present in the exhaust gas.
  • the fuel ratio becomes smaller than stoichiometric, that is, when it becomes rich, the stored oxygen is released.
  • air-fuel ratio control is performed so that the exhaust gas flowing into the catalyst is in the vicinity of the stoichiometric.
  • a post-catalyst sensor for detecting the exhaust air / fuel ratio downstream of the catalyst is provided, and at the same time as the output of the post-catalyst sensor is reversed, the lean control and the rich control are switched, and the measurement of the oxygen amount is finished. I am doing so.
  • one object of the present invention is to provide a catalyst abnormality diagnosis device that can reduce measurement errors, improve diagnosis accuracy, and suppress erroneous diagnosis. is there.
  • An apparatus for diagnosing abnormality of a catalyst disposed in an exhaust passage of an internal combustion engine A post-catalyst sensor for detecting an exhaust air-fuel ratio downstream of the catalyst; Active air-fuel ratio control means for alternately controlling lean and rich air-fuel ratio upstream of the catalyst; Measuring means for measuring the amount of oxygen absorbed and released by the catalyst during lean control and rich control of the air-fuel ratio; Determining means for determining whether the catalyst is normal or abnormal; With At the same time when the post-catalyst sensor output reaches a predetermined threshold, the active air-fuel ratio control means switches between the lean control and the rich control, and the measurement means ends the measurement of the oxygen amount,
  • the threshold includes a lean threshold that defines a switching timing from the lean control to the rich control, and a rich threshold that defines a switching timing from the rich control to the lean control.
  • the lean threshold is set to a value that is richer than a reference lean determination value that is set leaner than the stoichiometric equivalent value of the post-catalyst sensor output
  • the rich threshold is set to a value that is leaner than a reference rich determination value that is determined on the rich side with respect to the stoichiometric equivalent value
  • the determination means includes an oxygen amount measured until the post-catalyst sensor output reaches one of the lean threshold and the rich threshold, and after the post-catalyst sensor output reaches one of the lean threshold and the rich threshold. And determining whether the catalyst is normal or abnormal based on the behavior of the post-catalyst sensor output.
  • the determination means includes an oxygen amount measured until the post-catalyst sensor output reaches one of the lean threshold and the rich threshold, and the post-catalyst sensor output is set to one of the lean threshold and the rich threshold. Whether the catalyst is normal or abnormal is determined on the basis of the peak value of the post-catalyst sensor output that has been reached.
  • the determination means includes an oxygen amount measured until the post-catalyst sensor output reaches one of the lean threshold and the rich threshold, and the post-catalyst sensor output is set to one of the lean threshold and the rich threshold. Whether the catalyst is normal or abnormal is determined based on the change rate of the post-catalyst sensor output after reaching the threshold.
  • the rate of change is a rate of change from when the post-catalyst sensor output reaches one of the lean threshold and the rich threshold to when the post-catalyst sensor output reaches a peak.
  • the change rate is a difference between the post-catalyst sensor output from the time when the post-catalyst sensor output reaches one of the lean threshold and the rich threshold to the time when the post-catalyst sensor output reaches a predetermined value. The value divided by the amount.
  • the lean threshold and the rich threshold are set to be equal to each other.
  • the lean threshold and the rich threshold are set to a value equal to the stoichiometric value.
  • the lean threshold value is set to a value on the rich side from the stoichiometric equivalent value
  • the rich threshold value is set to a value on the lean side from the stoichiometric equivalent value.
  • the lean threshold and the rich threshold are set according to the exhaust gas flow rate.
  • the amplitude in the lean control and the rich control is set according to the amount of oxygen measured at the previous diagnosis.
  • An apparatus for diagnosing abnormality of a catalyst disposed in an exhaust passage of an internal combustion engine A post-catalyst sensor for detecting an exhaust air-fuel ratio downstream of the catalyst; Active air-fuel ratio control means for alternately controlling lean and rich air-fuel ratio upstream of the catalyst; Measuring means for measuring the amount of oxygen released by the catalyst during the rich control of the air-fuel ratio; Determining means for determining whether the catalyst is normal or abnormal; With At the same time when the post-catalyst sensor output reaches a predetermined rich threshold, the active air-fuel ratio control means switches the air-fuel ratio control from the rich control to the lean control, and the measuring means ends the measurement of the oxygen amount.
  • the rich threshold is set to a value that is leaner than a reference rich determination value that is determined on the rich side with respect to the stoichiometric equivalent value
  • the determination means is based on the amount of oxygen measured until the post-catalyst sensor output reaches the rich threshold, and the behavior of the post-catalyst sensor output after the post-catalyst sensor output reaches the rich threshold,
  • a catalyst abnormality diagnosis device is provided that determines whether the catalyst is normal or abnormal.
  • An apparatus for diagnosing abnormality of a catalyst disposed in an exhaust passage of an internal combustion engine A post-catalyst sensor for detecting an exhaust air-fuel ratio downstream of the catalyst; Active air-fuel ratio control means for alternately controlling lean and rich air-fuel ratio upstream of the catalyst; Measuring means for measuring the amount of oxygen stored by the catalyst during lean control of the air-fuel ratio; Determining means for determining whether the catalyst is normal or abnormal; With At the same time as the post-catalyst sensor output reaches a predetermined lean threshold, the active air-fuel ratio control means switches the air-fuel ratio control from the lean control to the rich control, and the measuring means ends the measurement of the oxygen amount.
  • the lean threshold is set to a value that is richer than a reference lean determination value that is set leaner than the stoichiometric equivalent value of the post-catalyst sensor output
  • the determination means is based on the amount of oxygen measured until the post-catalyst sensor output reaches the lean threshold, and the behavior of the post-catalyst sensor output after the post-catalyst sensor output reaches the lean threshold,
  • a catalyst abnormality diagnosis device is provided that determines whether the catalyst is normal or abnormal.
  • FIG. 1 is a schematic diagram showing a configuration of an embodiment of the present invention.
  • FIG. 2 is a schematic sectional view showing the structure of the catalyst.
  • FIG. 3 is a time chart of active air-fuel ratio control in the basic method.
  • FIG. 4 is a time chart showing a method for measuring the oxygen storage capacity in the basic method.
  • FIG. 5 is a graph showing output characteristics of the pre-catalyst sensor and the post-catalyst sensor.
  • FIG. 6 is a time chart showing a test result at the time of rich control, and is a case of a normal catalyst.
  • FIG. 7 is a time chart showing a test result at the time of rich control, and is a case of an abnormal catalyst.
  • FIG. 8 is a time chart showing the transition of each value in the abnormality diagnosis of this embodiment.
  • FIG. 9 is a time chart in which FIG. 3 and FIG. 4 are modified to conform to the present embodiment.
  • FIG. 10 is a diagram illustrating the relationship between FIG. 10A and FIG. 10B.
  • FIG. 10A is a flowchart regarding the first diagnostic processing method.
  • FIG. 10B is a flowchart regarding the first diagnosis processing method.
  • FIG. 11 shows a map for setting the lean amplitude and the rich amplitude.
  • FIG. 12 shows a map for setting the rich threshold.
  • FIG. 13 shows a map for calculating the remaining released oxygen amount from the rich peak.
  • FIG. 14 shows a map for determining normality / abnormality.
  • FIG. 15 is a diagram illustrating the relationship between FIG.
  • FIG. 15A is a flowchart regarding the second diagnosis processing method.
  • FIG. 15B is a flowchart regarding the second diagnosis processing method.
  • FIG. 16 shows a map for setting the lean threshold.
  • FIG. 17 shows a map for calculating the remaining stored oxygen amount from the lean peak.
  • 18 is a diagram illustrating the relationship between FIG. 18A and FIG. 18B.
  • FIG. 18A is a flowchart regarding the third diagnosis processing method.
  • FIG. 18B is a flowchart regarding the third diagnosis processing method.
  • FIG. 19 shows a map for calculating the remaining released oxygen amount from the rich change rate.
  • 20 is a diagram illustrating the relationship between FIG. 20A and FIG. 20B.
  • FIG. 20A is a flowchart relating to a fourth diagnostic processing method.
  • FIG. 20B is a flowchart regarding the fourth diagnosis processing method.
  • FIG. 21 shows a map for calculating the remaining stored oxygen amount from the lean change rate.
  • FIG. 1 is a schematic diagram showing the configuration of the present embodiment.
  • an engine 1 that is an internal combustion engine burns a mixture of fuel and air in a combustion chamber 3 formed in a cylinder block 2 and reciprocates a piston 4 in the combustion chamber 3 to drive power. Is generated.
  • the engine 1 of the present embodiment is a multi-cylinder engine for automobiles (only one cylinder is shown), and is a spark ignition type internal combustion engine, more specifically, a gasoline engine.
  • the cylinder head of the engine 1 is provided with an intake valve Vi for opening and closing the intake port and an exhaust valve Ve for opening and closing the exhaust port for each cylinder.
  • Each intake valve Vi and each exhaust valve Ve are opened and closed by a camshaft (not shown).
  • a spark plug 7 for igniting the air-fuel mixture in the combustion chamber 3 is attached to the top of the cylinder head for each cylinder.
  • the intake port of each cylinder is connected to a surge tank 8 which is an intake manifold through an intake manifold.
  • An intake pipe 13 that forms an intake manifold passage is connected to the upstream side of the surge tank 8, and an air cleaner 9 is provided at the upstream end of the intake pipe 13.
  • the intake pipe 13 includes an air flow meter 5 for detecting an air amount per unit time flowing into the engine, that is, an intake air amount Ga (g / s), and an electronically controlled throttle valve 10 in order from the upstream side. Is provided.
  • An intake passage is formed by the intake port, the intake manifold, the surge tank 8 and the intake pipe 13.
  • An injector for injecting fuel into the intake passage, particularly the intake port, that is, a fuel injection valve 12 is provided for each cylinder.
  • the fuel injected from the injector 12 is mixed with intake air to form an air-fuel mixture.
  • the air-fuel mixture is sucked into the combustion chamber 3 when the intake valve Vi is opened, compressed by the piston 4, and ignited and burned by the spark plug 7. It is done.
  • the exhaust port of each cylinder is connected to an exhaust pipe 6 forming an exhaust collecting passage through an exhaust manifold.
  • An exhaust passage is formed by the exhaust port, the exhaust manifold, and the exhaust pipe 6.
  • the exhaust pipe 6 is provided with a catalyst composed of a three-way catalyst having oxygen storage capacity, that is, an upstream catalyst 11 and a downstream catalyst 19 in series on the upstream side and the downstream side.
  • the upstream catalyst 11 is disposed immediately after the exhaust manifold, and the downstream catalyst 19 is disposed under the floor of the vehicle.
  • the pre-catalyst sensor 17 is a so-called wide-range air-fuel ratio sensor, can continuously detect the air-fuel ratio over a relatively wide range, and outputs a signal having a value proportional to the air-fuel ratio.
  • the post-catalyst sensor 18 comprises a so-called oxygen sensor (O 2 sensor), and has a characteristic (Z characteristic) in which the output value changes suddenly with the theoretical air-fuel ratio as a boundary.
  • the above-described spark plug 7, throttle valve 10, injector 12 and the like are electrically connected to an electronic control unit (hereinafter referred to as ECU) 20 as control means.
  • the ECU 20 includes a CPU, a ROM, a RAM, an input / output port, a storage device, and the like, all not shown.
  • the ECU 20 includes a crank angle sensor 14 that detects the crank angle of the engine 1, and an accelerator opening that detects the accelerator opening, as shown in the figure.
  • the degree sensor 15 and other various sensors are electrically connected via an A / D converter or the like (not shown).
  • the ECU 20 controls the ignition plug 7, the injector 12, the throttle valve 10, etc. so as to obtain a desired output based on the detection values of various sensors, etc., and the ignition timing, fuel injection amount, fuel injection timing, throttle opening. Control the degree etc.
  • the ECU 20 controls the air-fuel ratio of the air-fuel mixture supplied to the combustion chamber 3 so that the air-fuel ratio of the exhaust gas flowing into the upstream catalyst 11 and the downstream catalyst 19 matches the stoichiometry during normal operation of the engine.
  • the feedback control is performed based on the output of the pre-catalyst sensor 17 (specifically, the fuel injection amount from the injector 12).
  • the downstream catalyst 19 is configured in the same manner as the upstream catalyst 11.
  • a coating material 31 is coated on the surface of a carrier base material (not shown), and a large number of particulate catalyst components 32 are supported on the coating material 31 in a dispersed manner.
  • the catalyst 11 is exposed inside.
  • the catalyst component 32 is mainly composed of a noble metal such as Pt or Pd, and serves as an active point for reacting exhaust gas components such as NOx, HC and CO.
  • the coating material 31 plays a role of a promoter that promotes a reaction at the interface between the exhaust gas and the catalyst component 32 and includes an oxygen storage component capable of absorbing and releasing oxygen according to the air-fuel ratio of the atmospheric gas.
  • the oxygen storage component is made of, for example, cerium dioxide CeO 2 or zirconia. Note that “absorption” or “adsorption” may be used in the same meaning as “occlusion”.
  • the oxygen storage component present around the catalyst component 32 absorbs oxygen from the atmospheric gas, and as a result, NOx is reduced and purified.
  • the atmospheric gas in the catalyst is richer than the stoichiometric air-fuel ratio, oxygen stored in the oxygen storage component is released, and the released oxygen oxidizes and purifies HC and CO.
  • This oxygen absorption / release action can absorb this variation even if the actual air-fuel ratio varies somewhat with respect to stoichiometry during normal stoichiometric air-fuel ratio control.
  • the new catalyst 11 As described above, a large number of catalyst components 32 are evenly distributed, and the contact probability between the exhaust gas and the catalyst component 32 is kept high. However, when the catalyst 11 deteriorates, some of the catalyst components 32 are lost, and some of the catalyst components 32 are baked and solidified by exhaust heat (see broken lines in the figure). If it becomes like this, the contact probability of exhaust gas and the catalyst component 32 will fall, and it will become the cause of reducing a purification rate. In addition to this, the amount of the coating material 31 existing around the catalyst component 32, that is, the amount of the oxygen storage component decreases, and the oxygen storage capacity itself decreases.
  • the abnormality diagnosis of this embodiment is based on the following method based on the Cmax method described above.
  • the active air-fuel ratio control is executed by the ECU 20. That is, the ECU 20 controls the air-fuel ratio on the upstream side of the catalyst, specifically, the air-fuel ratio of the air-fuel mixture in the combustion chamber 3 alternately and richly and lean, with the stoichiometric A / Fs being the central air-fuel ratio as a boundary.
  • the air-fuel ratio of the exhaust gas supplied to the catalyst 11 is also controlled to be rich and lean alternately.
  • active air-fuel ratio control and diagnosis are executed only when predetermined preconditions are satisfied. This precondition will be described later.
  • the broken line indicates the target air-fuel ratio A / Ft
  • the solid line indicates the output of the pre-catalyst sensor 17 (however, the converted value to the pre-catalyst air-fuel ratio A / Ffr).
  • the solid line indicates the output of the post-catalyst sensor 18 (however, the output voltage Vr).
  • the target air-fuel ratio A / Ft is set to a lean air-fuel ratio A / Fl (for example, 15.1), and a lean gas having an air-fuel ratio equal to the target air-fuel ratio A / Ft is supplied to the catalyst 11.
  • the catalyst 11 continues to occlude oxygen. However, when the oxygen is occluded until it is saturated, that is, full, it can no longer occlude oxygen. As a result, the lean gas passes through the catalyst 11 and flows out downstream of the catalyst 11.
  • the output of the post-catalyst sensor 18 changes to the lean side, and at the time t1 when the output voltage Vr reaches a predetermined lean determination value VL (for example, 0.2 V), the target air-fuel ratio A / Ft becomes the rich air-fuel ratio A / It is switched to Fr (for example, 14.1).
  • VL for example, 0.2 V
  • Fr for example, 14.1
  • the air-fuel ratio control is switched from lean control to rich control, and rich gas having an air-fuel ratio equal to the target air-fuel ratio A / Ft is supplied.
  • the catalyst 11 When the rich gas is supplied, the catalyst 11 continues to release the stored oxygen. When the stored oxygen is eventually released from the catalyst 11, the catalyst 11 cannot release oxygen at that time, and the rich gas passes through the catalyst 11 and flows out downstream of the catalyst 11. When this happens, the output of the post-catalyst sensor 18 changes to the rich side, and at the time t2 when the output voltage Vr reaches a predetermined rich determination value VR (for example, 0.6 V), the target air-fuel ratio A / Ft becomes the lean air-fuel ratio A / It is switched to Fl. As a result, the air-fuel ratio control is switched from rich control to lean control, and a lean gas having an air-fuel ratio equal to the target air-fuel ratio A / Ft is supplied.
  • a predetermined rich determination value VR for example, 0.6 V
  • a set of adjacent lean control and rich control is defined as one cycle of active air-fuel ratio control.
  • Active air-fuel ratio control is executed in a predetermined N cycle (N is an integer of 2 or more).
  • the lean determination value VL is a threshold value that defines the switching timing from lean control to rich control. As shown in FIG. 5, the lean determination value VL is set to a value smaller (lean side) than the stoichiometric equivalent value Vst of the post-catalyst sensor output.
  • the rich determination value VR serves as a threshold value that defines the switching timing from the rich control to the lean control. As shown in FIG. 5, the rich determination value VR is set in advance to a value that is larger (rich side) than the stoichiometric equivalent value Vst of the post-catalyst sensor output.
  • the oxygen storage capacity OSC of the catalyst 11 is measured by the following method.
  • the oxygen storage capacity OSC is measured as follows. As shown in FIG. 4, immediately after the target air-fuel ratio A / Ft is switched to the rich air-fuel ratio A / Fr at time t1, the pre-catalyst air-fuel ratio A / Ff as an actual value is slightly delayed with the rich air-fuel ratio A / Ff. Switch to Fr. From the time t11 when the pre-catalyst air-fuel ratio A / Ff reaches the stoichiometric A / Fs to the time t2 when the post-catalyst sensor output Vr is next reversed, the oxygen storage capacity for each predetermined calculation cycle is obtained by the following equation (1).
  • the oxygen storage capacity OSC as the final integrated value during the rich control, that is, the amount of released oxygen indicated by OSCb in FIG. 4 is measured.
  • the oxygen storage capacity that is, the stored oxygen amount indicated by OSCa in FIG. 4 is measured.
  • the released oxygen amount and the stored oxygen amount are alternately measured.
  • the normality / abnormality of the catalyst is determined by the following method.
  • the ECU 20 calculates an average value OSCav of the measured values of the released oxygen amount and the stored oxygen amount.
  • the average value OSCav is compared with a predetermined abnormality determination value ⁇ .
  • the ECU 20 determines that the catalyst 11 is normal when the average value OSCav is greater than the abnormality determination value ⁇ , and determines that the catalyst 11 is abnormal when the average value OSCav is less than or equal to the abnormality determination value ⁇ .
  • a warning device not shown
  • a check lamp such as a check lamp
  • Oxygen storage capacity OSC and “oxygen amount” are terms that encompass “amount of stored oxygen OSCa” and “amount of released oxygen OSCb”.
  • FIG. 6 shows the case of a normal catalyst
  • FIG. 7 shows the case of an abnormal catalyst. Both figures show the test results when switching from lean control to rich control. However, even when the post-catalyst sensor output Vr is reversed (that is, even when the rich determination value VR is reached), switching to lean control is not performed.
  • (A) shows the target air-fuel ratio A / Ft, the pre-catalyst air-fuel ratio A / Ff (line a) detected by the pre-catalyst sensor 17, and the post-catalyst air-fuel ratio A / Fr (line b).
  • an air-fuel ratio sensor similar to the pre-catalyst sensor 17 is installed for testing on the downstream side of the catalyst, and the air-fuel ratio detected by this air-fuel ratio sensor is set as the post-catalyst air-fuel ratio A / Fr.
  • (B) shows the post-catalyst sensor output Vr
  • (C) shows the integrated value of the released oxygen amount OSCb.
  • the post-catalyst sensor output Vr can vary within the range of 0 to 1 (V).
  • the rich determination value VR of the post-catalyst sensor output Vr is 0.6 (V).
  • the post-catalyst air-fuel ratio A / Fr is slightly richer than stoichiometric during this period t1 to t3.
  • the area of the region d sandwiched between the stoichiometry and the post-catalyst air-fuel ratio A / Fr is the portion of the rich gas that could not be actually processed by the catalyst, in other words, the amount of oxygen that could not be released from the catalyst (OSCe for convenience) Represents.
  • the area of the region d corresponds to an error in the total released oxygen amount OSCb at time t3.
  • the value obtained by subtracting the area (OSCe) of the region d from the area (OSCb) of the region c represents the amount of oxygen actually released from the catalyst.
  • the measured released oxygen amount OSCb includes the actually released oxygen amount OSCe.
  • the error itself cannot be measured alone.
  • the region c sandwiched between the stoichiometry and the pre-catalyst air-fuel ratio A / Ff is measured as the released oxygen amount OSCb.
  • the post-catalyst air-fuel ratio A / Fr starts to decrease to the rich side at time t2 between time t1 and time t3, and the post-catalyst sensor output
  • the rate of increase or change rate of Vr to the rich side has begun to increase. This is considered to mean that the release of oxygen from the catalyst is substantially completed at time t2, and thereafter oxygen remaining in the catalyst is released relatively slowly. Alternatively, it is considered that the main oxygen release of the catalyst is completed at the time t2, and then the secondary residual oxygen is released.
  • (C) schematically shows the amount of oxygen OSCe corresponding to the error.
  • the proportion of the oxygen amount OSCe corresponding to the error is relatively small.
  • the ratio of the error is very large in the released oxygen amount OSCb measured in the period t2 to t3.
  • the error amount in the period t2 to t3 accounts for a large proportion of the total released oxygen amount. it is conceivable that.
  • (C) schematically shows the amount of oxygen OSCe corresponding to the error.
  • the proportion of the oxygen amount OSCe corresponding to the error is large.
  • the error rate immediately before reversing the sensor output after the catalyst increases compared to the case of a normal catalyst, and the rate of increase of the measured value with respect to the true value also increases.
  • an abnormal catalyst is actually misdiagnosed as normal.
  • the difference in the measured oxygen amount between the normal catalyst and the abnormal catalyst cannot be enlarged, and there is a possibility that sufficient diagnostic accuracy cannot be ensured particularly in the case of a catalyst where these differences are originally small.
  • This problem is also caused by a control delay near the time when the sensor output after the catalyst is reversed. That is, the post-catalyst sensor 18 has a response delay that the output does not immediately switch to the rich side even when the rich gas is actually supplied. There is also a transport delay in which it takes time for the rich gas to reach the vicinity of the catalyst after the air-fuel ratio in the combustion chamber 3 is switched to rich. Control delay including these response delays and transport delays. During the control delay period, the unpurified rich gas is exhausted from the catalyst, so that the emission deteriorates.
  • the measurement method is changed as follows. Briefly speaking, first, the measurement of the oxygen amount itself ends at a timing earlier than before, for example, at a timing such as time t2 shown in FIGS. As a result, it is possible to avoid as much as possible the measurement of the amount of oxygen that is not actually absorbed and released after the oxygen absorption and release of the catalyst is substantially completed, and the error rate can be greatly reduced.
  • the degree of abnormality of the catalyst is also expressed by the value of the measured oxygen amount. Therefore, in this embodiment, it is determined whether the catalyst is normal or abnormal based on the value of the measured oxygen amount and the behavior of the post-catalyst sensor output after the measurement is completed.
  • FIG. 8 shows the transition of each value in the abnormality diagnosis of this embodiment.
  • A shows the target air-fuel ratio A / Ft and the pre-catalyst air-fuel ratio A / Ff in the case of a normal catalyst.
  • B shows the target air-fuel ratio A / Ft and the pre-catalyst air-fuel ratio A / Ff in the case of an abnormal catalyst.
  • (C) shows the post-catalyst sensor output Vr in the case of a normal catalyst and in the case of an abnormal catalyst.
  • (D) shows the NOx concentration of the exhaust gas discharged from the upstream catalyst 11.
  • the air-fuel ratio control is switched from rich control to lean control. Thereafter, in the case of a normal catalyst, the air-fuel ratio control is switched to rich control at time t2n and switched to lean control at time t3n. In the case of an abnormal catalyst, the air-fuel ratio control is switched to rich control at time t2a, switched to lean control at time t3a, and switched to rich control at time t4a.
  • the measurement of the amount of absorbed and released oxygen is completed at the same time as the lean control and the rich control are switched.
  • the threshold value of the post-catalyst sensor output Vr that defines these switching timings is composed of two types of threshold values, and defines the lean threshold value VLX that defines the switching timing from lean control to rich control, and the switching timing from rich control to lean control. And a rich threshold value VRX.
  • the lean threshold value VLX is set to a value on the rich side with respect to the lean determination value VL
  • the rich threshold value VRX is set to a value on the lean side with respect to the rich determination value VRX.
  • the lean threshold value VLX and the rich threshold value VRX are set to the same value, and in particular, set to the same value as the stoichiometric equivalent value Vst (eg, 0.5 (V)) shown in FIG. ing.
  • the inversion timing of the post-catalyst sensor output Vr, the measurement end timing of the amount of absorbed and released oxygen, and the switching timing of the air-fuel ratio control are earlier than the basic method described above (FIGS. 3 and 4). Therefore, measurement of the amount of oxygen that is not actually absorbed and released can be avoided as much as possible, and the measurement error can be greatly reduced.
  • FIG. 8 what should be noted in FIG. 8 is the behavior of the post-catalyst sensor output Vr after the post-catalyst sensor output Vr reaches the threshold values VLX and VRX.
  • the post-catalyst sensor output Vr rises more rapidly than in the case of a normal catalyst, and the value of its maximum peak (rich peak Pr) Is also big.
  • the post-catalyst sensor output Vr after switching changes more rapidly and greatly. Therefore, the degree of abnormality of the catalyst can be estimated based on the post-catalyst sensor output Vr at the predetermined timing after switching, preferably at the timing tp (tpa, tpn) at which the post-catalyst sensor output Vr peaks.
  • the degree of abnormality of the catalyst can be estimated from the peak value of the post-catalyst sensor output Vr itself.
  • the degree of abnormality of the catalyst can be estimated from the absolute value of the difference between the peak value of the post-catalyst sensor output Vr and the post-catalyst sensor output Vr (threshold values VLX, VRX) at the time of switching.
  • the degree of abnormality of the catalyst can be estimated from the change rate H (or slope) of the post-catalyst sensor output Vr from the switching time (for example, t1) to a predetermined timing, preferably the peak timing tp.
  • the rate of change H (Pr ⁇ VRX) / (tpa ⁇ It can be defined by t1).
  • the denominator of the rate of change H can be defined as time, and the rate of change H can be defined as the rate of change per unit time.
  • the denominator of the rate of change H as the exhaust gas amount and define the rate of change H as the rate of change per exhaust gas amount.
  • the exhaust gas flow rate is integrated from time t1 to the peak timing tpa immediately thereafter, and the amount M of exhaust gas that has passed through the catalyst within that period is obtained. Then, (Pr-VRX) is divided by this exhaust gas amount M, and the obtained value is defined as a change rate H.
  • the exhaust gas flow rate may be directly detected by separately providing an exhaust gas flow rate sensor, but in the case of this embodiment, the value of the intake air amount Ga detected by the air flow meter 5 is substituted.
  • the numerator of the change rate H is not necessarily the difference between the rich peak Pr and the post-catalyst sensor output VRX at the time of switching (Pr ⁇ VRX).
  • the difference (Vr2 ⁇ VRX) between the post-catalyst sensor output Vr2 at the timing when the pre-catalyst air-fuel ratio A / Ff reaches the stoichiometry immediately after the switching and the post-catalyst sensor output VRX at the switching time may be used.
  • the NOx concentration Cn shown in FIG. 8D is the concentration of NOx discharged from the catalyst immediately after the end of the lean control (t1 to t2n or t1 to t2a).
  • This NOx concentration Cn has a correlation with the behavior of the post-catalyst sensor output Vr immediately after the end of lean control. That is, as the catalyst tends to be abnormal and the post-catalyst sensor output Vr changes rapidly and rapidly (that is, the absolute value of the rate of change H is large or the value of the lean peak Pl is small), the NOx concentration rapidly increases. There is a big increase and emissions tend to get worse.
  • the degree of emission deterioration is less than that of the basic method.
  • FIG. 9 is a diagram in which FIG. 3 and FIG. 4 are modified to conform to the present embodiment in order to make the difference from the basic method easy to understand.
  • the lean threshold value VLX and the rich threshold value VRX are set equal to the stoichiometric equivalent value Vst.
  • switching is not performed unless the post-catalyst sensor output Vr rises to a rich determination value VR larger than the stoichiometric equivalent value Vst.
  • switching is performed when the post-catalyst sensor output Vr increases to the rich threshold value VRX on the lean side from the rich determination value VR, and switching is performed at an earlier timing.
  • the rich threshold value VRX can also be set to a value smaller (lean side) than the stoichiometric equivalent value Vst. It is set to a value VRX ′ smaller than the lean determination value VL (eg, 0.2 V), set to a value VRX ′′ equal to the lean determination value VL, or a value VRX ′′ between the lean determination value VL and the stoichiometric equivalent value Vst. It can also be set to '.
  • the value of the post-catalyst sensor output Vr at the timing when the post-catalyst sensor output Vr starts to rise specifically, the timing at which the differential value of the post-catalyst sensor output Vr becomes larger than a predetermined positive value, It may be defined as VRX.
  • a predetermined positive value It may be defined as VRX.
  • this timing is considered to be a timing at which the catalyst substantially ends oxygen release.
  • the use of the differential value of the post-catalyst sensor output Vr may preferably detect the substantial oxygen absorption / release end timing of the catalyst.
  • the lean threshold value VLX can be set to a value larger (rich side) than the stoichiometric equivalent value Vst.
  • Set to a value VLX ′ larger than the rich determination value VR (for example, 0.6 V) set to a value VLX ′′ equal to the rich determination value VR, or a value VLX ′′ between the rich determination value VR and the stoichiometric equivalent value Vst It can also be set to '.
  • the value of the post-catalyst sensor output Vr at the timing when the post-catalyst sensor output Vr starts to decrease, specifically, the timing at which the differential value of the post-catalyst sensor output Vr becomes smaller than a predetermined negative value is expressed as the lean threshold value VLX. It may be determined. In any case, the rich threshold value VRX and the lean threshold value VLX can be set to optimum values in consideration of test results and the like.
  • the released oxygen amount OSCb is integrated and measured from time t11 to time t2. This measured value is less than that obtained by the basic method. Then, after time t2, during the lean control period after switching, the rich peak Pr of the post-catalyst sensor output Vr is detected, or the rich change rate Hr until reaching the rich peak Pr is detected. Whether the catalyst is normal or abnormal is determined based on the measured released oxygen amount OSCb and the detected rich peak Pr or rich change rate Hr.
  • the occluded oxygen amount OSCa is integratedly measured from time t21 to time t3 even during the lean control period from t2 to t3. Then, after time t3, during the rich control period after switching, the lean peak Pl of the post-catalyst sensor output Vr is detected, or the lean change rate Hl until reaching the lean peak Pl is detected. Whether the catalyst is normal or abnormal is determined based on the measured stored oxygen amount OSCa and the lean peak Pl or lean change rate Hl.
  • this embodiment can be implemented as follows. That is, whether the stored oxygen amount OSCa is measured during the lean control and the post-catalyst sensor output behavior during the subsequent rich control is determined. At this time, the lean threshold value VLX is set to a richer value than the stoichiometric equivalent value Vst.
  • the post-catalyst sensor output may be controlled to approach a target value slightly richer than the stoichiometric equivalent value Vst.
  • the change amount of the post-catalyst sensor output when changing from the lean threshold value VLX to the lean side can be increased, and the resolution is improved.
  • the diagnosis permission flag is turned on when a precondition for diagnosis execution is satisfied.
  • the precondition here includes a condition that (1) the intake air amount Ga and the catalyst temperature Tc satisfy a predetermined relationship.
  • the intake air amount Ga is detected by the air flow meter 5.
  • the catalyst temperature Tc is estimated by the ECU 20 based on the engine operating state, but may be detected directly by a temperature sensor.
  • the relationship between the intake air amount Ga during normal operation and the catalyst temperature Tc is mapped in advance, and diagnosis is permitted as normal operation when both actual values are within a predetermined range centered on the map value. .
  • diagnosis is prohibited because the operation is unsteady. This makes it possible to ensure a certain level of diagnostic accuracy.
  • the preconditions are (2) at least the upstream catalyst 11 is activated, (3) the pre-catalyst sensor 17 and the post-catalyst sensor 18 are activated, and (4) the diagnosis is not completed during the current trip. Each condition is included.
  • the trip refers to the period from one start to stop of the engine.
  • the diagnosis is executed once per trip, and (4) is established when the diagnosis has not been completed once during the current trip.
  • diagnosis permission flag is not turned on (if turned off), it enters a standby state. On the other hand, when the diagnosis permission flag is turned on, the lean amplitude Al and rich amplitude Ar of the active air-fuel ratio control are set in step S102.
  • the reference value of the lean amplitude Al and the rich amplitude Ar is, for example, 0.5.
  • the target air-fuel ratio A / Ft at the time of lean control is 15.1 for example, and the target air-fuel ratio A / Ft at the time of rich control is 14.1, for example.
  • the lean amplitude Al and the rich amplitude Ar are set according to the degree of abnormality.
  • the lean amplitude Al and the rich amplitude Ar are set based on the oxygen storage capacity OSC (previous OSC) measured at the time of the previous diagnosis according to a map as shown in FIG.
  • the previous OSC is used because this value best reflects the current degree of catalyst abnormality.
  • the lean amplitude Al and the rich amplitude Ar are set to a constant reference value (0.5) regardless of the previous OSC. . If the amplitude is small, the measurement time becomes long, and the probability that the precondition is not satisfied during the measurement and the diagnosis is stopped increases. That is, the probability of losing a diagnosis opportunity increases. However, in the present embodiment, the amplitude is reduced only when the previous OSC is smaller than the predetermined value OSC1, so the probability of losing a diagnosis opportunity can be reduced.
  • the lean amplitude Al and the rich amplitude Ar may be set smaller as the exhaust gas flow rate or the intake air amount Ga that is a substitute value thereof is larger. This also reduces the product of the amplitude and the exhaust gas flow rate, making it easy to ensure sufficient measurement accuracy.
  • step S103 the target air-fuel ratio A / Ft is set to rich, and rich control is executed.
  • step S104 it is determined whether or not the pre-catalyst air-fuel ratio A / Ff is equal to or lower than the stoichiometric value.
  • the standby state is entered.
  • the determination is yes, the released oxygen amount OSCb is measured in step S105.
  • the rich threshold value VRX is set based on the exhaust gas flow rate, specifically, the intake air amount Ga that is the substitute value. That is, here, the rich threshold value VRX is not fixed to the stoichiometric equivalent value Vst, but is changed according to the intake air amount Ga.
  • the rich threshold value VRX is set according to a map stored in advance as shown in FIG.
  • the rich threshold value VRX becomes smaller (to the lean side) as the intake air amount Ga increases, and the measurement of the released oxygen amount OSCb is completed at an earlier timing. As a result, the influence of the exhaust gas flow rate on the rich peak Pr can be reduced.
  • step S107 the post-catalyst sensor output Vr is compared with the rich threshold value VRX.
  • the process returns to step S105 and the measurement of the released oxygen amount OSCb is continued.
  • the process proceeds to step S108, and the measurement of the released oxygen amount OSCb is ended.
  • step S109 the target air-fuel ratio A / Ft is set to lean, and lean control is executed.
  • step S110 it is determined whether or not the post-catalyst sensor output Vr has reached the peak on the rich side. This is determined based on whether or not the differential value of the post-catalyst sensor output Vr has changed from positive to negative.
  • step S111 the value of the post-catalyst sensor output Vr at the peak arrival time is detected as the rich peak Pr.
  • the value of the residual oxygen amount OSCbx is calculated from the value of the rich peak Pr.
  • the residual oxygen amount is, for example, the amount of residual oxygen of the catalyst released during the rich control in FIG. 6 from time t2 to time t3, or is stored in the catalyst within the same period during the lean control (not shown). Refers to the amount of oxygen that is produced
  • the former is also referred to as a residual released oxygen amount, and the latter is also referred to as a residual stored oxygen amount.
  • the residual oxygen amount OSCbx here is calculated from a map stored in advance as shown in FIG.
  • the map shown in FIG. 13 is such that the smaller the rich peak Pr, the smaller the residual oxygen amount OSCbx.
  • steps S113 to S115 whether the catalyst is normal or abnormal is determined based on the released oxygen amount OSCb measured in step S108 and the residual oxygen amount OSCbx calculated in step S112.
  • step S113 it is determined whether or not the released oxygen amount OSCb and the residual oxygen amount OSCbx are in a predetermined normal region. This determination is made according to a map stored in advance as shown in FIG.
  • This map is a two-dimensional map using the released oxygen amount OSCb (or stored oxygen amount OSCa) (horizontal axis) and the remaining released oxygen amount OSCbx (or remaining stored oxygen amount OSCax) (vertical axis) as parameters.
  • the area in the map is divided into a normal area and an abnormal area.
  • the boundary ⁇ between the normal region and the abnormal region is formed at a position where the released oxygen amount OSCb is small, and is inclined with respect to the vertical axis so that the abnormality determination is performed with a larger released oxygen amount OSCb as the residual oxygen amount OSCbx is smaller. Yes.
  • step S114 If the released oxygen amount OSCb and the residual oxygen amount OSCbx are in the normal region on the map, it is determined in step S114 that the catalyst is normal. On the other hand, if the released oxygen amount OSCb and the residual oxygen amount OSCbx are not in the normal region on the map (that is, in the abnormal region), it is determined in step S115 that the catalyst is abnormal.
  • step S116 the diagnosis permission flag is turned off, and the routine is terminated.
  • the normal / abnormality determination is performed based on the released oxygen amount OSCb, the rich peak Pr, and the residual oxygen amount OSCbx one by one. However, a plurality of them are acquired, and the normal / abnormal determination is performed based on their average values. May be performed. This also applies to the diagnostic processing described later.
  • the second diagnostic processing method is a method using the value of the lean peak Pl of the post-catalyst sensor output Vr.
  • the second diagnostic processing method is generally the same as the first diagnostic processing method, except that the rich and lean relationship is reversed. Hereinafter, the difference will be mainly described.
  • Steps S201 to S202 are the same as steps S101 to S102.
  • step S203 the target air-fuel ratio A / Ft is set to lean, and lean control is executed.
  • step S204 it is determined whether or not the pre-catalyst air-fuel ratio A / Ff is equal to or higher than the stoichiometric value.
  • the standby state is entered.
  • the stored oxygen amount OSCa is measured in step S205.
  • the lean threshold value VLX is set based on the exhaust gas flow rate, specifically, the intake air amount Ga that is the substitute value. Again, the lean threshold value VLX is not fixed to the stoichiometric equivalent value Vst, and can be changed according to the intake air amount Ga.
  • the lean threshold VLX is set according to a map stored in advance as shown in FIG. This map has a reverse relationship to the map shown in FIG. 12, and the lean threshold VLX is increased (to the rich side) as the intake air amount Ga increases. Accordingly, the measurement of the stored oxygen amount OSCa is completed at an earlier timing.
  • step S207 the post-catalyst sensor output Vr is compared with the lean threshold value VLX.
  • the process returns to step S205 and the measurement of the stored oxygen amount OSCa is continued.
  • the process proceeds to step S208, and the measurement of the stored oxygen amount OSCa is ended.
  • step S209 the target air-fuel ratio A / Ft is set to rich and rich control is executed.
  • step S210 it is determined whether the post-catalyst sensor output Vr has reached a lean peak. This is determined based on whether or not the differential value of the post-catalyst sensor output Vr has changed from negative to positive.
  • step S211 the value of the post-catalyst sensor output Vr when the peak is reached is detected as the lean peak Pl.
  • step S212 the value of the residual oxygen amount OSCax is calculated from the value of the lean peak Pl.
  • the residual oxygen amount OSCax is calculated from a map stored in advance as shown in FIG.
  • the map shown in FIG. 17 is such that the smaller the lean peak Pl value, the smaller the residual oxygen amount OSCax.
  • steps S213 to S215 a determination as to whether the catalyst is normal or abnormal is made based on the stored oxygen amount OSCa measured in step S208 and the residual oxygen amount OSCax calculated in step S212.
  • step S213 it is determined whether or not the stored oxygen amount OSCa and the residual oxygen amount OSCax are in a predetermined normal region. This determination is made using another map having the same tendency as the map shown in FIG.
  • step S214 If the occluded oxygen amount OSCa and the residual oxygen amount OSCax are in the normal region on the map, it is determined in step S214 that the catalyst is normal. On the other hand, if the stored oxygen amount OSCa and the residual oxygen amount OSCax are not in the normal region on the map (that is, in the abnormal region), it is determined in step S215 that the catalyst is abnormal.
  • step S216 the diagnosis permission flag is turned off, and the routine is terminated.
  • the first diagnostic processing method and the second diagnostic processing method described above can be combined.
  • an average value of the measured released oxygen amount OSCb and the stored oxygen amount OSCa is calculated.
  • an average value of the absolute value of the difference between the rich peak Pr and the rich threshold value VRX (Pr ⁇ VRX) and the absolute value of the difference between the lean peak Pl and the lean threshold value VLX (P1 ⁇ VLX) is calculated, and from this average value
  • the residual oxygen amount is calculated according to a predetermined map. Then, it is determined whether the catalyst is normal or not by determining whether the average value of the released oxygen amount OSCb and the stored oxygen amount OSCa and the residual oxygen amount are in a predetermined normal region.
  • This third diagnostic processing method is a method using the rich change rate Hr of the post-catalyst sensor output Vr.
  • This third diagnostic processing method is generally different from the first diagnostic processing method (FIGS. 10A and 10B) only in that step S311A is added and step S112 is changed to step S312.
  • step S311A is added and step S112 is changed to step S312.
  • Steps S301 to S311 are the same as steps S101 to S111.
  • step S311A the rich change rate Hr of the post-catalyst sensor output Vr when the post-catalyst sensor output Vr changes from the rich threshold value VRX to the rich peak Pr is calculated by the following equation (2).
  • ⁇ Ga is a value obtained by integrating the intake air amount Ga from tVRX when the post-catalyst sensor output Vr reaches the rich threshold value VRX to tPr when the post-catalyst sensor output Vr reaches the rich peak Pr. .
  • the rich change rate Hr increases as the degree of abnormality of the catalyst increases. Note that (tPr-tVRX) can be used instead of ⁇ Ga.
  • step S312 the value of the residual oxygen amount OSCbx is calculated from the value of the rich change rate Hr.
  • the residual oxygen amount OSCbx is calculated from a map stored in advance as shown in FIG. Similar to the map shown in FIG. 13, this map is such that the smaller the rich change rate Hr, the smaller the residual oxygen amount OSCbx.
  • steps S313 to S316 are the same as steps S113 to S116.
  • the map used for the normal / abnormal determination is also the same map as shown in FIG.
  • the fourth diagnostic processing method is a method using the lean change rate Hl of the post-catalyst sensor output Vr.
  • This fourth diagnostic processing method is generally different from the second diagnostic processing method (FIGS. 15A and 15B) only in that step S411A is added and step S212 is changed to step S412.
  • step S411A is added and step S212 is changed to step S412.
  • Steps S401 to S411 are the same as Steps S201 to S211.
  • step S411A the lean change rate Hl of the post-catalyst sensor output Vr when the post-catalyst sensor output Vr changes from the lean threshold value VLX to the lean peak Pl is calculated by the following equation (3).
  • ⁇ Ga is a value obtained by integrating the intake air amount Ga from tVLX when the post-catalyst sensor output Vr reaches the lean threshold value VLX to tPl when the post-catalyst sensor output Vr reaches the lean peak Pl. It is.
  • tVLX ⁇ tPl, but Pl ⁇ VLX.
  • Hl the lean change rate Hl increases in the negative direction. Note that (tPl-tVLX) can be used instead of ⁇ Ga.
  • step S412 the value of the residual oxygen amount OSCax is calculated from the value of the lean change rate Hl.
  • the residual oxygen amount OSCax is calculated from a map stored in advance as shown in FIG. Similar to the map shown in FIG. 17, this map is such that the smaller the lean change rate Hl, the smaller the residual oxygen amount OSCax.
  • steps S413 to S416 are the same as steps S213 to S216.
  • the map used for the normal / abnormal determination is also the same map as shown in FIG.
  • the third diagnostic processing method and the fourth diagnostic processing method described above can be combined.
  • an average value of the measured released oxygen amount OSCb and the stored oxygen amount OSCa is calculated.
  • an average value of the absolute value of the rich change rate Hr and the absolute value of the lean change rate Hl is calculated, and the residual oxygen amount is calculated from the average value according to a predetermined map.
  • it is determined whether the catalyst is normal or not by determining whether the average value of the released oxygen amount OSCb and the stored oxygen amount OSCa and the residual oxygen amount are in a predetermined normal region.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 触媒上流側の空燃比をリーンおよびリッチに交互に制御するアクティブ空燃比制御を実行し、リーン制御中およびリッチ制御中に触媒が吸放出する酸素量を計測する。触媒後センサ出力が所定の閾値に達したと同時に、リーン制御とリッチ制御とを切り替え、酸素量の計測を終了する。触媒後センサ出力が所定の基準値に達するよりも早く閾値に達するよう、閾値を設定する。触媒後センサ出力が閾値に達するまでに計測された酸素量と、触媒後センサ出力が閾値に達した後の触媒後センサ出力の挙動とに基づき、触媒が正常か異常かを判定する。

Description

触媒異常診断装置
 本発明は、触媒の異常診断に係り、特に、内燃機関の排気通路に配置された触媒の異常を診断する装置に関する。
 例えば自動車用内燃機関において、その排気系には排気ガスを浄化するための触媒が設置されている。この触媒の中には酸素吸蔵能(Oストレージ能)を有するものがある。この酸素吸蔵能を有する触媒は、触媒に流入する排気ガスの空燃比が理論空燃比(ストイキ)よりも大きくなると、即ちリーンになると排気ガス中に存在する過剰酸素を吸蔵し、排気ガスの空燃比がストイキよりも小さくなると、即ちリッチになると吸蔵した酸素を放出する。例えばガソリンエンジンでは触媒に流入する排気ガスがストイキ近傍となるよう空燃比制御が行われるが、酸素吸蔵能を有する三元触媒を使用すると、運転条件により実際の空燃比がストイキから多少ズレてしまっても、三元触媒の酸素吸蔵・放出作用により、かかる空燃比ズレを吸収することができる。
 一方、触媒が劣化すると触媒の浄化率が低下する。触媒の劣化度と酸素吸蔵能の低下度との間には相関関係がある。よって、酸素吸蔵能の低下を検出することで触媒の劣化ないし異常を検出することができる。一般的には、触媒上流側の空燃比をリッチおよびリーンに交互に制御するアクティブ空燃比制御を行い、それらリーン制御中およびリッチ制御中に前記触媒が吸放出する酸素量を計測し、この酸素量に基づき触媒の異常を診断する方法(所謂Cmax法)が採用される(例えば特許文献1参照)。
 ところでこのCmax法では、触媒の下流側の排気空燃比を検出する触媒後センサを設け、触媒後センサの出力が反転するのと同時にリーン制御とリッチ制御を切り替え、且つ酸素量の計測を終了するようにしている。
 しかしながら酸素量の計測に際しては、実際には吸放出されていない酸素量が併せて計測されてしまうという計測誤差の問題がある。特に、従来のCmax法だと、異常触媒の場合に、正常触媒の場合に比べ、触媒後センサ出力反転直前における誤差割合が大きくなり、計測値が真の値より大きくなる傾向が強まる。こうなると、実際には異常な触媒を正常と誤診断することに繋がりかねない。また正常触媒と異常触媒の間での酸素量計測値の差を拡大することができず、特にこれらの差が元々小さい触媒の場合では、十分な診断精度を確保できない虞がある。
 そこで本発明は以上の事情に鑑みて創案されたものであり、その一の目的は、計測誤差を縮小して診断精度を向上し、誤診断を抑制し得る触媒異常診断装置を提供することにある。
特開2002-364428号公報
 本発明の一の態様によれば、
 内燃機関の排気通路に配置された触媒の異常を診断する装置であって、
 前記触媒の下流側の排気空燃比を検出する触媒後センサと、
 触媒上流側の空燃比をリーンおよびリッチに交互に制御するアクティブ空燃比制御手段と、
 前記空燃比のリーン制御中およびリッチ制御中に前記触媒が吸放出する酸素量を計測する計測手段と、
 前記触媒が正常か異常かを判定する判定手段と、
 を備え、
 前記触媒後センサ出力が所定の閾値に達したと同時に、前記アクティブ空燃比制御手段が前記リーン制御と前記リッチ制御とを切り替え、前記計測手段が前記酸素量の計測を終了し、
 前記閾値は、前記リーン制御から前記リッチ制御への切替タイミングを規定するリーン閾値と、前記リッチ制御から前記リーン制御への切替タイミングを規定するリッチ閾値とからなり、
 前記リーン閾値は、前記触媒後センサ出力のストイキ相当値よりもリーン側に定められた基準のリーン判定値よりもリッチ側の値に設定され、
 前記リッチ閾値は、前記ストイキ相当値よりもリッチ側に定められた基準のリッチ判定値よりもリーン側の値に設定され、
 前記判定手段は、前記触媒後センサ出力が前記リーン閾値および前記リッチ閾値の一方に達するまでに計測された酸素量と、前記触媒後センサ出力が前記リーン閾値および前記リッチ閾値の一方に達した後の前記触媒後センサ出力の挙動とに基づき、前記触媒が正常か異常かを判定する
 ことを特徴とする触媒異常診断装置が提供される。
 好ましくは、前記判定手段は、前記触媒後センサ出力が前記リーン閾値および前記リッチ閾値の一方に達するまでに計測された酸素量と、前記触媒後センサ出力が前記リーン閾値および前記リッチ閾値の一方に達した後の前記触媒後センサ出力のピークの値とに基づき、前記触媒が正常か異常かを判定する。
 好ましくは、前記判定手段は、前記触媒後センサ出力が前記リーン閾値および前記リッチ閾値の一方に達するまでに計測された酸素量と、前記触媒後センサ出力が前記リーン閾値および前記リッチ閾値の一方に達した後の前記触媒後センサ出力の変化率とに基づき、前記触媒が正常か異常かを判定する。
 好ましくは、前記変化率が、前記触媒後センサ出力が前記リーン閾値および前記リッチ閾値の一方に達した時から、前記触媒後センサ出力がピークに達する時までの変化率である。
 好ましくは、前記変化率が、前記触媒後センサ出力が前記リーン閾値および前記リッチ閾値の一方に達した時から所定値に達する時までの当該触媒後センサ出力の差を、当該期間内の排気ガス量で除してなる値である。
 好ましくは、前記リーン閾値と前記リッチ閾値が、互いに等しい値に設定されている。
 好ましくは、前記リーン閾値と前記リッチ閾値が、前記ストイキ相当値と等しい値に設定されている。
 好ましくは、前記リーン閾値が、前記ストイキ相当値よりリッチ側の値に設定され、前記リッチ閾値が、前記ストイキ相当値よりリーン側の値に設定されている。
 好ましくは、前記リーン閾値と前記リッチ閾値が、排気ガス流量に応じて設定される。
 好ましくは、前記リーン制御と前記リッチ制御における振幅が、前回診断時に計測された酸素量に応じて設定される。
 本発明の別の態様によれば、
 内燃機関の排気通路に配置された触媒の異常を診断する装置であって、
 前記触媒の下流側の排気空燃比を検出する触媒後センサと、
 触媒上流側の空燃比をリーンおよびリッチに交互に制御するアクティブ空燃比制御手段と、
 前記空燃比のリッチ制御中に前記触媒が放出する酸素量を計測する計測手段と、
 前記触媒が正常か異常かを判定する判定手段と、
 を備え、
 前記触媒後センサ出力が所定のリッチ閾値に達したと同時に、前記アクティブ空燃比制御手段が前記空燃比制御を前記リッチ制御から前記リーン制御に切り替え、前記計測手段が前記酸素量の計測を終了し、
 前記リッチ閾値は、前記ストイキ相当値よりもリッチ側に定められた基準のリッチ判定値よりもリーン側の値に設定され、
 前記判定手段は、前記触媒後センサ出力が前記リッチ閾値に達するまでに計測された酸素量と、前記触媒後センサ出力が前記リッチ閾値に達した後の前記触媒後センサ出力の挙動とに基づき、前記触媒が正常か異常かを判定する
 ことを特徴とする触媒異常診断装置が提供される。
 本発明のさらなる別の態様によれば、
 内燃機関の排気通路に配置された触媒の異常を診断する装置であって、
 前記触媒の下流側の排気空燃比を検出する触媒後センサと、
 触媒上流側の空燃比をリーンおよびリッチに交互に制御するアクティブ空燃比制御手段と、
 前記空燃比のリーン制御中に前記触媒が吸蔵する酸素量を計測する計測手段と、
 前記触媒が正常か異常かを判定する判定手段と、
 を備え、
 前記触媒後センサ出力が所定のリーン閾値に達したと同時に、前記アクティブ空燃比制御手段が前記空燃比制御を前記リーン制御から前記リッチ制御に切り替え、前記計測手段が前記酸素量の計測を終了し、
 前記リーン閾値は、前記触媒後センサ出力のストイキ相当値よりもリーン側に定められた基準のリーン判定値よりもリッチ側の値に設定され、
 前記判定手段は、前記触媒後センサ出力が前記リーン閾値に達するまでに計測された酸素量と、前記触媒後センサ出力が前記リーン閾値に達した後の前記触媒後センサ出力の挙動とに基づき、前記触媒が正常か異常かを判定する
 ことを特徴とする触媒異常診断装置が提供される。
図1は、本発明の実施形態の構成を示す概略図である。 図2は、触媒の構成を示す概略断面図である。 図3は、基本方法におけるアクティブ空燃比制御のタイムチャートである。 図4は、基本方法における酸素吸蔵容量の計測方法を示すタイムチャートである。 図5は、触媒前センサ及び触媒後センサの出力特性を示すグラフである。 図6は、リッチ制御時の試験結果を示すタイムチャートであり、正常触媒の場合である。 図7は、リッチ制御時の試験結果を示すタイムチャートであり、異常触媒の場合である。 図8は、本実施形態の異常診断における各値の推移を示すタイムチャートである。 図9は、図3および図4を本実施形態に即するよう修正したタイムチャートである。 図10は、図10Aと図10Bの関係を示す図である。 図10Aは、第1の診断処理方法に関するフローチャートである。 図10Bは、第1の診断処理方法に関するフローチャートである。 図11は、リーン振幅およびリッチ振幅を設定するためのマップを示す。 図12は、リッチ閾値を設定するためのマップを示す。 図13は、リッチピークから残存放出酸素量を算出するためのマップを示す。 図14は、正異常判定のためのマップを示す。 図15は、図15Aと図15Bの関係を示す図である。 図15Aは、第2の診断処理方法に関するフローチャートである。 図15Bは、第2の診断処理方法に関するフローチャートである。 図16は、リーン閾値を設定するためのマップを示す。 図17は、リーンピークから残存吸蔵酸素量を算出するためのマップを示す。 図18は、図18Aと図18Bの関係を示す図である。 図18Aは、第3の診断処理方法に関するフローチャートである。 図18Bは、第3の診断処理方法に関するフローチャートである。 図19は、リッチ変化率から残存放出酸素量を算出するためのマップを示す。 図20は、図20Aと図20Bの関係を示す図である。 図20Aは、第4の診断処理方法に関するフローチャートである。 図20Bは、第4の診断処理方法に関するフローチャートである。 図21は、リーン変化率から残存吸蔵酸素量を算出するためのマップを示す。
 以下、本発明の好適実施形態を添付図面に基づき説明する。
 図1は、本実施形態の構成を示す概略図である。図示されるように、内燃機関たるエンジン1は、シリンダブロック2に形成された燃焼室3の内部で燃料および空気の混合気を燃焼させ、燃焼室3内でピストン4を往復移動させることにより動力を発生する。本実施形態のエンジン1は自動車用多気筒エンジン(1気筒のみ図示)であり、火花点火式内燃機関、より具体的にはガソリンエンジンである。
 エンジン1のシリンダヘッドには、吸気ポートを開閉する吸気弁Viと、排気ポートを開閉する排気弁Veとが気筒ごとに配設されている。各吸気弁Viおよび各排気弁Veは図示しないカムシャフトによって開閉させられる。また、シリンダヘッドの頂部には、燃焼室3内の混合気に点火するための点火プラグ7が気筒ごとに取り付けられている。
 各気筒の吸気ポートは吸気マニホールドを介して吸気集合室であるサージタンク8に接続されている。サージタンク8の上流側には吸気集合通路をなす吸気管13が接続されており、吸気管13の上流端にはエアクリーナ9が設けられている。そして吸気管13には、上流側から順に、エンジンに流入する単位時間当たりの空気量すなわち吸入空気量Ga(g/s)を検出するためのエアフローメータ5と、電子制御式スロットルバルブ10とが設けられている。なお吸気ポート、吸気マニホールド、サージタンク8及び吸気管13により吸気通路が形成される。
 吸気通路、特に吸気ポート内に燃料を噴射するインジェクタすなわち燃料噴射弁12が気筒ごとに配設される。インジェクタ12から噴射された燃料は吸入空気と混合されて混合気をなし、この混合気が吸気弁Viの開弁時に燃焼室3に吸入され、ピストン4で圧縮され、点火プラグ7で点火燃焼させられる。
 一方、各気筒の排気ポートは、排気マニホールドを介して排気集合通路をなす排気管6に接続されている。これら排気ポート、排気マニホールド及び排気管6により排気通路が形成される。排気管6には、その上流側と下流側に、酸素吸蔵能を有する三元触媒からなる触媒、即ち上流触媒11及び下流触媒19が直列に設けられている。例えば、上流触媒11は排気マニホールドの直後に配置され、下流触媒19は車両の床下などに配置される。
 上流触媒11の上流側及び下流側に、それぞれ、酸素濃度に基づいて排気ガスの空燃比を検出する空燃比センサ、即ち触媒前センサ17及び触媒後センサ18が設けられている。図5に示すように、触媒前センサ17は所謂広域空燃比センサからなり、比較的広範囲に亘る空燃比を連続的に検出可能で、その空燃比に比例した値の信号を出力する。他方、触媒後センサ18は所謂酸素センサ(Oセンサ)からなり、理論空燃比を境に出力値が急変する特性(Z特性)を持つ。
 上述の点火プラグ7、スロットルバルブ10及びインジェクタ12等は、制御手段としての電子制御ユニット(以下ECUと称す)20に電気的に接続されている。ECU20は、何れも図示されないCPU、ROM、RAM、入出力ポート、および記憶装置等を含むものである。またECU20には、図示されるように、前述のエアフローメータ5、触媒前センサ17、触媒後センサ18のほか、エンジン1のクランク角を検出するクランク角センサ14、アクセル開度を検出するアクセル開度センサ15、その他の各種センサが図示されないA/D変換器等を介して電気的に接続されている。ECU20は、各種センサの検出値等に基づいて、所望の出力が得られるように、点火プラグ7、インジェクタ12、スロットルバルブ10等を制御し、点火時期、燃料噴射量、燃料噴射時期、スロットル開度等を制御する。
 上流触媒11及び下流触媒19は、これに流入する排気ガスの空燃比A/Fが理論空燃比(ストイキ、例えばA/Fs=14.6)のときにNOx ,HCおよびCOを同時に高効率で浄化する。よってこの特性に合わせて、ECU20は、エンジンの通常運転時、上流触媒11及び下流触媒19に流入する排気ガスの空燃比がストイキに一致するよう、燃焼室3に供給される混合気の空燃比(具体的にはインジェクタ12からの燃料噴射量)を触媒前センサ17の出力に基づきフィードバック制御する。
 ここで、異常診断の対象となる上流触媒11についてより詳細に説明する。なお下流触媒19も上流触媒11と同様に構成されている。図2に示すように、触媒11においては、図示しない担体基材の表面上にコート材31が被覆され、このコート材31に微粒子状の触媒成分32が多数分散配置された状態で担持され、触媒11内部で露出されている。触媒成分32は主にPt,Pd等の貴金属からなり、NOx ,HCおよびCOといった排ガス成分を反応させる際の活性点となる。他方、コート材31は、排気ガスと触媒成分32との界面における反応を促進させる助触媒の役割を担うと共に、雰囲気ガスの空燃比に応じて酸素を吸放出可能な酸素吸蔵成分を含む。酸素吸蔵成分は例えば二酸化セリウムCeOやジルコニアからなる。なお、「吸蔵」と同義で「吸収」または「吸着」を用いることもある。
 例えば、触媒内の雰囲気ガスが理論空燃比よりリーンであると、触媒成分32の周囲に存在する酸素吸蔵成分が雰囲気ガスから酸素を吸収し、この結果NOxが還元され、浄化される。他方、触媒内の雰囲気ガスが理論空燃比よりリッチであると、酸素吸蔵成分に吸蔵されていた酸素が放出され、この放出された酸素によりHCおよびCOが酸化され、浄化される。
 この酸素吸放出作用により、通常のストイキ空燃比制御に際して実際の空燃比がストイキに対して多少ばらついたとしても、このばらつきを吸収することができる。
 ところで、新品状態の触媒11では前述したように多数の触媒成分32が均等に分散配置されており、排気ガスと触媒成分32との接触確率が高い状態に維持されている。しかしながら、触媒11が劣化してくると、一部の触媒成分32に消失が見られるほか、触媒成分32同士が排気熱で焼き固まって焼結状態になるものがある(図の破線参照)。こうなると排気ガスと触媒成分32との接触確率が低下し、浄化率を落としめる原因となる。そしてこのほかに、触媒成分32の周囲に存在するコート材31の量、即ち酸素吸蔵成分の量が減少し、酸素吸蔵能自体が低下する。
 このように、触媒11の劣化度と触媒11の酸素吸蔵能低下度との間には相関関係がある。そこで本実施形態では、特にエミッションへの影響が大きい上流触媒11の酸素吸蔵能を検出することにより、上流触媒11の劣化度を検出し、上流触媒11の異常を診断することとしている。ここで触媒11の酸素吸蔵能は、現状の触媒11が吸蔵または放出し得る酸素量である酸素吸蔵容量(OSC;O Storage Capacity、単位はg)の大きさによって表される。
[異常診断の基本方法]
 本実施形態の異常診断は、前述のCmax法に基づき、以下の方法を基本とする。異常診断に際しては、ECU20によりアクティブ空燃比制御が実行される。すなわちECU20は、触媒上流側の空燃比、具体的には燃焼室3内の混合気の空燃比を、中心空燃比であるストイキA/Fsを境に、リッチおよびリーンに交互に制御する。これにより、触媒11に供給される排気ガスの空燃比も、リッチおよびリーンに交互に制御されることとなる。
 また、アクティブ空燃比制御および診断は、所定の前提条件が満たされているときに限って実行される。この前提条件については後述する。
 以下、図3及び図4を用いて、上流触媒11の酸素吸蔵容量の計測方法を説明する。
 図3(A)において、破線は目標空燃比A/Ft、実線は触媒前センサ17の出力(但し触媒前空燃比A/Ffrへの換算値)を示す。また図3(B)において、実線は触媒後センサ18の出力(但しその出力電圧Vr)を示す。
 図示するように、時刻t1より前では、空燃比をリーンに切り替えるリーン制御が実行されている。このとき、目標空燃比A/Ftはリーン空燃比A/Fl(例えば15.1)とされ、触媒11には、目標空燃比A/Ftと等しい空燃比のリーンガスが供給されている。このとき触媒11は酸素を吸蔵し続けているが、飽和状態即ち満杯まで酸素を吸蔵した時点でそれ以上酸素を吸蔵できなくなる。この結果、リーンガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒後センサ18の出力がリーン側に変化し、出力電圧Vrが所定のリーン判定値VL(例えば0.2V)に達した時点t1で、目標空燃比A/Ftがリッチ空燃比A/Fr(例えば14.1)に切り替えられる。これにより空燃比制御はリーン制御からリッチ制御に切り替えられ、目標空燃比A/Ftと等しい空燃比のリッチガスが供給されるようになる。
 リッチガスが供給されると、触媒11は吸蔵酸素を放出し続ける。やがて触媒11から吸蔵酸素が放出され尽くすとその時点で触媒11は酸素を放出できなくなり、リッチガスが触媒11を通り抜けて触媒11の下流側に流れ出す。こうなると触媒後センサ18の出力がリッチ側に変化し、出力電圧Vrが所定のリッチ判定値VR(例えば0.6V)に達した時点t2で、目標空燃比A/Ftがリーン空燃比A/Flに切り替えられる。これにより空燃比制御はリッチ制御からリーン制御に切り替えられ、目標空燃比A/Ftと等しい空燃比のリーンガスが供給されるようになる。
 再び、触媒11が満杯まで酸素を吸蔵し、触媒後センサ18の出力電圧Vrがリーン判定値VLに達すると、その時点t3で、目標空燃比A/Ftがリッチ空燃比A/Frに切り替えられ、リッチ制御が開始される。
 こうして、触媒後センサ18の出力が反転する毎に、リーン制御とリッチ制御とが交互に繰り返し実行される。隣り合うリーン制御とリッチ制御の組をアクティブ空燃比制御の1周期とする。アクティブ空燃比制御は所定のN周期(Nは2以上の整数)実行される。
 ここでリーン判定値VLは、リーン制御からリッチ制御への切替タイミングを規定する閾値の基準をなす。このリーン判定値VLは、図5にも示すように、触媒後センサ出力のストイキ相当値Vstよりも小さい(リーン側の)値に予め定められている。
 同様に、リッチ判定値VRは、リッチ制御からリーン制御への切替タイミングを規定する閾値の基準をなす。このリッチ判定値VRは、図5にも示すように、触媒後センサ出力のストイキ相当値Vstよりも大きい(リッチ側の)値に予め定められている。
 このアクティブ空燃比制御の実行中、次の方法で触媒11の酸素吸蔵容量OSCが計測される。
 触媒11の有する酸素吸蔵容量が大きいほど、酸素を吸蔵或いは放出し続けることのできる時間が長くなる。つまり、触媒が劣化していない場合は触媒後センサ出力Vrの反転周期(例えばt1からt2までの時間)が長くなり、触媒の劣化が進むほどその反転周期は短くなる。
 そこで、このことを利用して酸素吸蔵容量OSCが次のようにして計測される。図4に示すように、時刻t1で目標空燃比A/Ftがリッチ空燃比A/Frに切り替えられた直後、僅かに遅れて実際値としての触媒前空燃比A/Ffがリッチ空燃比A/Frに切り替わる。そして触媒前空燃比A/FfがストイキA/Fsに達した時点t11から、次に触媒後センサ出力Vrが反転する時点t2まで、次式(1)により、所定の演算周期毎の酸素吸蔵容量dOSCが逐次的に算出され、且つこの酸素吸蔵容量dOSCが時刻t11から時刻t2まで逐次的に積算される。こうして、リッチ制御時における最終積算値としての酸素吸蔵容量OSC、すなわち図4にOSCbで示す放出酸素量が計測される。
Figure JPOXMLDOC01-appb-M000001
 Qは燃料噴射量であり、空燃比差ΔA/Fに燃料噴射量Qを乗じるとストイキに対し不足又は過剰分の空気量を算出できる。σは空気に含まれる酸素割合(約0.23)を表す定数である。
 リーン制御時にも同様に酸素吸蔵容量、すなわち図4にOSCaで示す吸蔵酸素量が計測される。そしてリッチ制御とリーン制御が交互に行われる度に、放出酸素量と吸蔵酸素量が交互に計測される。
 こうして複数ずつの放出酸素量と吸蔵酸素量との計測値が得られたならば、次の方法により触媒の正異常判定が行われる。
 まずECU20は、これら放出酸素量と吸蔵酸素量との計測値の平均値OSCavを算出する。そしてこの平均値OSCavを所定の異常判定値αと比較する。ECU20は、平均値OSCavが異常判定値αより大きいときには触媒11を正常と判定し、平均値OSCavが異常判定値α以下のときには触媒11を異常と判定する。なお触媒を異常と判定した場合、その事実をユーザに知らせるため、チェックランプ等の警告装置(図示せず)を起動させるのが好ましい。
[本実施形態の異常診断方法]
 次に、本実施形態の異常診断方法を説明する。なお「酸素吸蔵容量OSC」および「酸素量」とは、「吸蔵酸素量OSCa」と「放出酸素量OSCb」を包括する用語である。
 前述したように、酸素吸蔵容量OSCの計測に際しては、実際には吸放出されていない酸素量が併せて計測されてしまうという計測誤差の問題がある。特に、従来のCmax法だと、異常触媒の場合に、正常触媒の場合に比べ、触媒後センサ出力反転直前における誤差割合が大きくなり、計測値が真の値より大きくなる傾向が強まる。こうなると、実際には異常な触媒を正常と誤診断する可能性がある。
 この点を図6および図7を用いて詳しく説明する。図6は正常触媒の場合、図7は異常触媒の場合である。両図は、リーン制御からリッチ制御に切り替えたときの試験結果を示している。但し、触媒後センサ出力Vrが反転しても(すなわちリッチ判定値VRに達しても)リーン制御への切り替えは行っていない。
 両図において、(A)には目標空燃比A/Ftと、触媒前センサ17によって検出された触媒前空燃比A/Ff(線a)と、触媒後空燃比A/Fr(線b)とを示す。ここでは触媒前センサ17と同様の空燃比センサを触媒下流側に試験用に設置し、この空燃比センサにより検出された空燃比を触媒後空燃比A/Frとしている。
 (B)には触媒後センサ出力Vrを示し、(C)には放出酸素量OSCbの積算値を示す。触媒後センサ出力Vrは0~1(V)の範囲内で変化し得る。触媒後センサ出力Vrのリッチ判定値VRは0.6(V)である。
 まず図6の正常触媒の場合を説明する。触媒前空燃比A/Ffが低下してストイキ(=14.6)に到達した時点t1から、触媒後センサ出力Vrがリッチ側に上昇してリッチ判定値VRに到達する時点t3まで、放出酸素量OSCbが積算される。この放出酸素量OSCbの時刻t3での最終積算値は、(A)に示す領域cの面積で表すことができる。この領域cは、時刻t1から時刻t3までの、ストイキ(14.6)と触媒前空燃比A/Ffとで挟まれた領域である。
 一方、この期間t1~t3内において、触媒後空燃比A/Frはストイキより若干リッチとなっている。ストイキと触媒後空燃比A/Frとで挟まれた領域dの面積が、触媒で実際に処理しきれなかったリッチガスの部分、言い換えれば触媒から放出できなかった酸素の量(便宜上OSCeとする)を表す。この領域dの面積が、時刻t3における全放出酸素量OSCbのうちの誤差分に相当する。
 領域cの面積(OSCb)から、領域dの面積(OSCe)を差し引いて得られた値が、実際に触媒から放出された酸素量を表すことになる。このように、計測された放出酸素量OSCbには、実際には放出されていない酸素量OSCeが含まれている。
 なお本実施形態の装置構成では、触媒後空燃比A/Frの絶対値まで検出できる空燃比センサがないので、誤差分自体を単独で計測することができない。便宜上、ストイキと触媒前空燃比A/Ffとで挟まれた領域cを放出酸素量OSCbとして計測しているのである。
 ところで、触媒後空燃比A/Frと触媒後センサ出力Vrに着目すると、時刻t1と時刻t3の間の時刻t2において、触媒後空燃比A/Frがリッチ側に低下し始め、触媒後センサ出力Vrのリッチ側への上昇速度ないし変化率が増大し始めている。これは、時刻t2で触媒の酸素放出が実質的に終了し、その後は触媒に残存している酸素が比較的ゆっくりと放出されていることを意味すると考えられる。或いは、時刻t2で触媒のメインの酸素放出が終了し、その後は副次的な残存酸素の放出が行われていることを意味すると考えられる。
 もっとも、時刻t2から時刻t3までの期間でも、触媒後空燃比A/Frと触媒前空燃比A/Ffとの間には差があり、実際に酸素が放出され、リッチガスが処理されている。よってこの期間t2~t3で計測された放出酸素量OSCbのうち、誤差分が占める割合は比較的少ないものと考えられる。そして正常触媒の場合、全期間t1~t3で計測される全放出酸素量の値が大きいことから、この全放出酸素量のうち、期間t2~t3内の誤差分が占める割合は比較的少ないと考えられる。
 (C)に、誤差分に相当する酸素量OSCeを概略的に示す。時刻t3における全放出酸素量OSCbのうち、誤差分に相当する酸素量OSCeの割合は比較的少ない。
 これとは対照的に、図7に示す異常触媒の場合だと、時刻t2から時刻t3までの間の期間において、触媒後空燃比A/Frと触媒前空燃比A/Ffとの間には差が殆ど無い。これは、触媒が実質的に酸素を放出していないことを意味する。しかしながら、この期間t2~t3でも、ストイキと触媒前空燃比A/Ffとの差が積算され、あたかも触媒が酸素を放出しているかのように放出酸素量OSCbが計測されている。
 よってこの期間t2~t3で計測された放出酸素量OSCbのうち、誤差分が占める割合は非常に多いと考えられる。そして異常触媒の場合、全期間t1~t3で計測される全放出酸素量の値が比較的小さいことから、この全放出酸素量のうち、期間t2~t3内の誤差分が占める割合も多いものと考えられる。
 (C)に、誤差分に相当する酸素量OSCeを概略的に示す。時刻t3における全放出酸素量OSCbのうち、誤差分に相当する酸素量OSCeの割合は多い。
 このように、基本方法だと、異常触媒の場合に、正常触媒の場合に比べ、触媒後センサ出力反転直前における誤差割合が大きくなり、計測値の真の値に対する増加割合も大きくなる。こうなると、実際には異常な触媒を正常と誤診断する可能性がある。
 また、正常触媒と異常触媒の間での酸素量計測値の差を拡大することができず、特にこれらの差が元々小さい触媒の場合では、十分な診断精度を確保できない虞がある。近年では、触媒の貴金属量を低減する傾向にあり、こうした触媒では、正異常触媒間での吸放出可能な酸素量の差が元々小さい。よって誤差割合が大きいと、正異常触媒間での微妙な酸素量の差を見分けることができず、十分な診断精度を確保できない虞がある。
 こうした問題は、触媒後センサ出力の反転時付近における制御遅れにも起因している。すなわち、触媒後センサ18には、リッチガスが実際に供給されても出力が直ぐにリッチ側に切り替わらないという応答遅れがある。また、燃焼室3内の空燃比がリッチに切り替えられてから、そのリッチガスが触媒付近に到達するまでに時間を要するという輸送遅れも存在する。これら応答遅れと輸送遅れを含めて制御遅れという。制御遅れ期間中は、未浄化のリッチガスが触媒から排出されるので、エミッションが悪化する。
 図7の例において、リッチガスが触媒から顕著に漏れ出した時刻t2で、瞬時に触媒後センサ出力Vrがリッチ判定値VRに達すれば、応答遅れによるエミッション悪化は抑制される。しかしながら実際にはそうならないために応答遅れによるエミッション悪化が顕著となる。また、仮に時刻t3で空燃比がリーンに切り替えられたとしても、輸送遅れ期間中は触媒にリッチガスが供給され、かつそのリッチガスを触媒では処理できない。よって輸送遅れによるエミッション悪化も発生する。
 上述の例はリッチ制御の場合であるが、リーン制御の場合にも同様の問題がある。
 そこでこの問題を解決するため、本実施形態では次のように計測方法を変更する。概略的に述べると、まず酸素量の計測自体を、従来より早いタイミング、例えば図6および図7に示した時刻t2の如きタイミングで終了する。これにより、触媒の酸素吸放出が実質的に終了した後に、実際に吸放出されてない酸素量が計測されてしまうことをできるだけ回避し、誤差割合を大幅に縮小することができる。
 次に、計測終了後の触媒後センサ出力の挙動に着目し、これを利用する。触媒の酸素吸放出が実質的に終了した後は、触媒中で未反応のガス(リッチガスまたはリーンガス)が触媒から流出する。このとき、触媒の異常度合いが大きいほど、未反応ガスのリッチ度合いまたはリーン度合いが強く、触媒後センサ出力は速く大きく変化する傾向にある。よって計測終了後の触媒後センサ出力の挙動を利用すれば、触媒の異常度合いを推定することができる。
 勿論、触媒の異常度合いは、計測された酸素量の値によっても表される。よって本実施形態では、この計測された酸素量の値と、計測終了後の触媒後センサ出力の挙動とに基づき、触媒が正常か異常かを判定する。
 図8には、本実施形態の異常診断における各値の推移を示す。(A)は、正常触媒の場合における目標空燃比A/Ftと触媒前空燃比A/Ffとを示す。(B)は、異常触媒の場合における目標空燃比A/Ftと触媒前空燃比A/Ffとを示す。
 (C)は、正常触媒の場合と異常触媒の場合における触媒後センサ出力Vrを示す。(D)は、上流触媒11から排出される排気ガスのNOx濃度を示す。
 図示するように、時刻t1で、空燃比制御はリッチ制御からリーン制御に切り替えられている。その後、正常触媒の場合だと、空燃比制御は時刻t2nでリッチ制御に切り替えられ、時刻t3nでリーン制御に切り替えられている。異常触媒の場合では、空燃比制御が時刻t2aでリッチ制御に切り替えられ、時刻t3aでリーン制御に切り替えられ、時刻t4aでリッチ制御に切り替えられている。図示しないが、リーン制御およびリッチ制御が切り替わったのと同時に吸放出酸素量の計測が終了されている。
 これら切替タイミングを規定する触媒後センサ出力Vrの閾値は、二種類の閾値からなり、リーン制御からリッチ制御への切替タイミングを規定するリーン閾値VLXと、リッチ制御からリーン制御への切替タイミングを規定するリッチ閾値VRXとからなる。
 図9に示すが、リーン閾値VLXは、リーン判定値VLよりもリッチ側の値に設定され、リッチ閾値VRXは、リッチ判定値VRXよりもリーン側の値に設定されている。特に図8に示す例では、リーン閾値VLXとリッチ閾値VRXとが互いに等しい値に設定されており、とりわけ図5に示すストイキ相当値Vst(例えば0.5(V))と等しい値に設定されている。
 これによると、触媒後センサ出力Vrの反転タイミング、吸放出酸素量の計測終了タイミング、および空燃比制御の切替タイミングが、上述の基本方法(図3,図4)よりも早くなる。よって、実際に吸放出されてない酸素の量を計測することをできるだけ回避し、計測誤差を大幅に縮小することができる。
 また、図8で着目すべきは、触媒後センサ出力Vrが閾値VLX,VRXに達した後の触媒後センサ出力Vrの挙動である。例えばリーン制御への切り替え(t1)の後、異常触媒の場合には、正常触媒の場合よりも、触媒後センサ出力Vrが急速にリッチ側に上昇し、その最大ピーク(リッチピークPr)の値も大きい。
 逆にリッチ制御への切り替え(t2n,t2a)の後だと、異常触媒の場合には、正常触媒の場合よりも、触媒後センサ出力Vrが急速にリーン側に低下し、その最小ピーク(リーンピークPl)の値も小さい。
 このように、触媒が異常傾向にあるほど、切替後の触媒後センサ出力Vrはより急速に、大きく変化する。従って、切替後の所定タイミング、好ましくは触媒後センサ出力Vrがピークとなるタイミングtp(tpa,tpn)での当該触媒後センサ出力Vrに基づき、触媒の異常度合いを推定可能である。
 具体的には、触媒後センサ出力Vrのピーク値自体により触媒の異常度合いを推定可能である。或いは、触媒後センサ出力Vrのピーク値と、切替時点での触媒後センサ出力Vr(閾値VLX,VRX)との差の絶対値により、触媒の異常度合いを推定可能である。
 あるいは、切替時点(例えばt1)から所定タイミング、好ましくはピークタイミングtpまでの間の触媒後センサ出力Vrの変化率H(あるいは傾き)によっても、触媒の異常度合いを推定可能である。
 ここで触媒後センサ出力Vrの変化率について、例えば異常触媒の場合で且つ時刻t1からその直後のピークタイミングtpaまでの期間で考えると、変化率HはH=(Pr-VRX)/(tpa-t1)で定義することができる。変化率Hの分母を時間とし、変化率Hを単位時間当たりの変化率と定義することができる。
 一方、こうすると、排気ガス流量の大小によって変化率Hが変化し、排気ガス流量が多いほど変化率Hが大きくなってしまうという問題が懸念される。
 そこでこの排気ガス流量の影響を無くすためには、変化率Hの分母を排気ガス量とし、変化率Hを排気ガス量当たりの変化率で定義するのが好ましい。具体的には、時刻t1からその直後のピークタイミングtpaまで、排気ガス流量を積算してその期間内に触媒を通過した排気ガス量Mを求める。そしてこの排気ガス量Mで(Pr-VRX)を除し、得られた値を変化率Hとする。
 排気ガス流量は、排気ガス流量センサを別途設けて直接検出してもよいが、本実施形態の場合、エアフローメータ5で検出された吸入空気量Gaの値を以て代用する。
 また、変化率Hの分子は、必ずしもリッチピークPrと切替時点での触媒後センサ出力VRXの差(Pr-VRX)でなくてもよい。例えば、切替時点から所定値(例えば0.1(V))だけ触媒後センサ出力Vrが上昇したタイミングでの触媒後センサ出力Vr1と、切替時点での触媒後センサ出力VRXとの差(Vr1-VRX)としてもよい。あるいは、切替直後に触媒前空燃比A/Ffがストイキに達したタイミングでの触媒後センサ出力Vr2と、切替時点での触媒後センサ出力VRXとの差(Vr2-VRX)としてもよい。
 図8(D)に示すNOx濃度Cnは、リーン制御(t1~t2n若しくはt1~t2a)の終了直後に触媒から排出されるNOxの濃度である。このNOx濃度Cnは、リーン制御終了直後の触媒後センサ出力Vrの挙動と相関関係がある。すなわち、触媒が異常傾向にあり、触媒後センサ出力Vrが急速に大きく変化するほど(すなわち変化率Hの絶対値が大きいか若しくはリーンピークPlの値が小であるほど)、NOx濃度は急速に大きく増大し、エミッションは悪化する傾向にある。
 もっとも、触媒後センサ出力Vrの反転タイミングが基本方法より早められているので、エミッションの悪化度合いは基本方法よりは少ない。
 図9は、基本方法との違いを分かり易くするため、図3および図4を本実施形態に即するよう修正した図である。リーン閾値VLXとリッチ閾値VRXとはストイキ相当値Vstに等しく設定されている。
 例えばリッチ制御期間中(本実施形態ではt1~t2)、基本方法では触媒後センサ出力Vrが、ストイキ相当値Vstよりも大きなリッチ判定値VRまで上昇しなければ、切り替えが行われなかった。これに対し本実施形態だと、触媒後センサ出力Vrが、リッチ判定値VRよりリーン側のリッチ閾値VRXに上昇すれば切り替えが行われ、より早いタイミングで切り替えが行われる。
 リッチ閾値VRXは、ストイキ相当値Vstよりも小さな(リーン側の)値に設定することもできる。リーン判定値VL(例えば0.2V)よりも小さな値VRX’に設定したり、リーン判定値VLと等しい値VRX”に設定したり、リーン判定値VLとストイキ相当値Vstの間の値VRX”’に設定したりすることも可能である。
 或いは、触媒後センサ出力Vrが上昇し始めたタイミング、具体的には触媒後センサ出力Vrの微分値が所定の正の値より大きくなったタイミングにおける当該触媒後センサ出力Vrの値を、リッチ閾値VRXと定めてもよい。このタイミングが、触媒が酸素放出を実質的に終了したタイミングと考えられるからである。特に異常度合いの大きい触媒の場合、触媒後センサ出力Vrの微分値を用いた方が触媒の実質的な酸素吸放出終了タイミングを好適に検知できる場合がある。
 他方、リーン制御期間中(本実施形態ではt2~t3)、基本方法では触媒後センサ出力Vrが、ストイキ相当値Vstよりも小さなリーン判定値VLまで低下しなければ、切り替えは行われなかった。これに対し本実施形態だと、触媒後センサ出力Vrが、リーン判定値VLよりリッチ側のリーン閾値VLXに低下すれば切り替えが行われ、より早いタイミングで切り替えが行われる。
 リーン閾値VLXは、ストイキ相当値Vstよりも大きな(リッチ側の)値に設定することもできる。リッチ判定値VR(例えば0.6V)よりも大きな値VLX’に設定したり、リッチ判定値VRと等しい値VLX”に設定したり、リッチ判定値VRとストイキ相当値Vstの間の値VLX”’に設定したりすることも可能である。触媒後センサ出力Vrが低下し始めたタイミング、具体的には触媒後センサ出力Vrの微分値が所定の負の値より小さくなったタイミングにおける当該触媒後センサ出力Vrの値を、リーン閾値VLXと定めてもよい。いずれにしても、リッチ閾値VRXおよびリーン閾値VLXは、試験結果等を考慮して最適な値に定めることができる。
 例えばt1~t2のリッチ制御期間中、時刻t11から時刻t2まで、放出酸素量OSCbが積算計測される。この計測値は基本方法で得られるものより少ない値となる。そして時刻t2の後、切替後のリーン制御期間中に、触媒後センサ出力VrのリッチピークPrが検出され、若しくはリッチピークPrに至るまでのリッチ変化率Hrが検出される。これら計測された放出酸素量OSCbと、検出されたリッチピークPr若しくはリッチ変化率Hrとに基づき、触媒が正常か異常かが判定される。
 同様に、t2~t3のリーン制御期間中でも、時刻t21から時刻t3まで吸蔵酸素量OSCaが積算計測される。そして時刻t3の後、切替後のリッチ制御期間中に、触媒後センサ出力VrのリーンピークPlが検出され、若しくはリーンピークPlに至るまでのリーン変化率Hlが検出される。これら計測された吸蔵酸素量OSCaと、リーンピークPl若しくはリーン変化率Hlとに基づき、触媒が正常か異常かが判定される。
 ところで、本実施形態は次のような実施例も可能である。すなわち、リーン制御時に計測された吸蔵酸素量OSCaと、その後のリッチ制御時の触媒後センサ出力挙動のみに基づいて正異常判定する。そしてこのときリーン閾値VLXを、ストイキ相当値Vstよりリッチ側の値に設定する。
 エミッションの観点からすると、空燃比がストイキに対しリッチ側にずれたときよりも、空燃比がストイキに対しリーン側にずれたときの方が、エミッションが悪化する。すなわち前者で排出されるCO,HCよりも、後者で排出されるNOxの方がエミッションへの悪影響が大きい。なおこの観点から、通常のストイキ制御のときに、触媒後センサ出力が、ストイキ相当値Vstよりも若干リッチ側の目標値に近づくよう制御する場合がある。
 また、リーン閾値VLXをストイキ相当値Vstよりリッチ側の値に設定すると、リーン閾値VLXからリーン側に変化するときの触媒後センサ出力の変化代を大きく取れ、分解能が高まる。
 よって本実施例のようにすれば、診断精度向上と診断時のエミッション悪化抑制に有利である可能性がある。
[本実施形態の異常診断処理]
 次に、ECU20が実行する本実施形態の異常診断処理について説明する。まず図10A,図10Bを用いて、第1の診断処理方法を説明する。この第1の診断処理方法は、触媒後センサ出力VrのリッチピークPrの値を用いる方法である。
 最初のステップS101では、診断許可フラグがオンとなったか否かが判断される。診断許可フラグは、診断実行の前提条件が成立した場合にオンとなる。ここでいう前提条件には、(1)吸入空気量Gaと触媒温度Tcとが所定の関係を満たしている、という条件が含まれる。吸入空気量Gaはエアフローメータ5で検出される。触媒温度Tcは、エンジン運転状態に基づきECU20により推定されるが、温度センサで直接検出してもよい。
 エンジンが定常運転している場合、即ちエンジンの回転速度と負荷がほぼ一定の場合、吸入空気量Gaと触媒温度Tcとの間には一定の相関関係が存在する。他方、両者が大きくかけ離れているときは、エンジンが定常運転状態になく、加速又は減速即ち過渡運転が行われている状態とみなせる。
 そこで定常運転時の吸入空気量Gaと触媒温度Tcとの関係を予めマップ化し、マップ値を中心とした所定範囲内に両者の実際値があるときに、定常運転中であるとして診断を許可する。逆に、その所定範囲内に両者の実際値がないときは、非定常運転中であるとして診断を禁止する。こうすることで一定以上の診断精度を確保可能となる。
 また前提条件には、(2)少なくとも上流触媒11が活性化している、(3)触媒前センサ17および触媒後センサ18が活性化している、(4)現トリップ中で診断が未完了である、の各条件が含まれる。
 (2)については、推定触媒温度が所定の活性温度域に入っていれば、成立する。(3)については、ECU20によって推定される触媒前センサ17および触媒後センサ18の素子温度が所定の活性温度域に入っていれば、成立する。(4)について、トリップとは、エンジンの1回の始動から停止までの期間をいう。本実施形態では1トリップ当たりに1回、診断を実行するようにしており、現トリップ中で未だ診断が1回も完了していない場合に(4)が成立する。
 診断許可フラグがオンとなってない場合(オフの場合)、待機状態となる。他方、診断許可フラグがオンとなった場合には、ステップS102において、アクティブ空燃比制御のリーン振幅Alおよびリッチ振幅Arが設定される。
 リーン振幅Alおよびリッチ振幅Arの基準値は例えば0.5である。このときストイキ(例えば14.6)を中心として、リーン制御時の目標空燃比A/Ftは例えば15.1、リッチ制御時の目標空燃比A/Ftは例えば14.1である。
 ところで、触媒の異常度合いが大きく、振幅と排気ガス流量の積も大きい場合、計測開始から極短時間で瞬間的に未浄化ガスが排出されてしまい、十分な計測精度を確保するのが困難なことがある。
 そこで、触媒の異常度合いが大きいときは、その異常度合いに応じてリーン振幅Alおよびリッチ振幅Arを設定する。具体的には、ECU20に予め記憶された図11に示すようなマップに従い、前回診断時に計測された酸素吸蔵容量OSC(前回OSC)に基づき、リーン振幅Alおよびリッチ振幅Arを設定する。前回OSCを用いるのは、この値が現状の触媒の異常度合いを最も良く反映しているからである。
 このマップによれば、触媒の異常度合いが大きい領域、すなわち前回OSCが所定値OSC1より小さい領域において、前回OSCが小さくなるほど小さいリーン振幅Alおよびリッチ振幅Arが得られる。よって触媒の異常度合いが大きくなるほどリーン振幅Alおよびリッチ振幅Arを減少し、振幅と排気ガス流量の積を減少することができる。そして計測時間を長期化し、十分な計測精度を確保し易くすることができる。
 また、触媒の異常度合いが大きくない領域、すなわち前回OSCが所定値OSC1以上の領域においては、前回OSCに拘わらず、リーン振幅Alおよびリッチ振幅Arは一定の基準値(0.5)とされる。振幅が小さいと計測時間が長くなり、計測途中で前提条件が非成立となって診断が中止される確率が高くなる。つまり、診断機会を喪失する確率が高くなる。しかし本実施形態では、前回OSCが所定値OSC1より小さい場合に限って振幅を減少するので、診断機会の喪失確率を低減することができる。
 なお、代替的に、前回OSCが所定値OSC1より小さいとき、排気ガス流量若しくはその代用値である吸入空気量Gaが大きいほどリーン振幅Alおよびリッチ振幅Arを小さく設定してもよい。これによっても振幅と排気ガス流量の積を減少して、十分な計測精度を確保し易くすることができる。
 次に、ステップS103において、目標空燃比A/Ftがリッチに設定され、リッチ制御が実行される。
 ステップS104では、触媒前空燃比A/Ffがストイキ以下になったか否かが判断される。判定がノーのときは待機状態となり、判定がイエスのときはステップS105で放出酸素量OSCbが計測される。
 次いでステップS106で、排気ガス流量、具体的にはその代用値である吸入空気量Gaに基づき、リッチ閾値VRXが設定される。すなわちここではリッチ閾値VRXがストイキ相当値Vstに固定されておらず、吸入空気量Gaに応じて変化させられる。リッチ閾値VRXは、図12に示すような予め記憶されたマップに従って設定される。
 このマップによれば、吸入空気量Gaが多いほどリッチ閾値VRXが小さく(リーン側に)され、より早いタイミングで放出酸素量OSCbの計測が終了される。これにより、排気ガス流量の大小がリッチピークPrに及ぼす影響を少なくすることができる。
 次にステップS107で、触媒後センサ出力Vrがリッチ閾値VRXと比較される。触媒後センサ出力Vrがリッチ閾値VRX未満の場合、ステップS105に戻って放出酸素量OSCbの計測が続行される。他方、触媒後センサ出力Vrがリッチ閾値VRX以上の場合には、ステップS108に進んで放出酸素量OSCbの計測が終了される。
 次にステップS109で、目標空燃比A/Ftがリーンに設定され、リーン制御が実行される。
 ステップS110では、触媒後センサ出力Vrがリッチ側のピークに達したか否かが判断される。これは、触媒後センサ出力Vrの微分値が正から負に転じたか否かを以て判断される。
 判定がノーのときは待機状態となる。判定がイエスのときは、ステップS111で、ピーク到達時点での触媒後センサ出力Vrの値がリッチピークPrとして検出される。
 次にステップS112で、リッチピークPrの値から、残存酸素量OSCbxの値が算出される。残存酸素量とは、例えば図6のリッチ制御時に時刻t2から時刻t3までの間に放出される触媒の残存酸素の量をいい、或いは、図示しないリーン制御時に同様の期間内に触媒に吸蔵される酸素の量をいう。前者を残存放出酸素量、後者を残存吸蔵酸素量ともいう。ここでの残存酸素量OSCbxは、図13に示すような予め記憶されたマップから算出される。
 リッチピークPrの値が大きいほど、残存酸素の量は少ないと考えられる。よって図13に示すマップは、リッチピークPrの値が大きいほど、小さい残存酸素量OSCbxが得られるようになっている。
 この後、ステップS113~S115において、ステップS108で計測された放出酸素量OSCbと、ステップS112で算出された残存酸素量OSCbxとに基づき、触媒の正異常判定がなされる。
 まずステップS113では、放出酸素量OSCbと残存酸素量OSCbxとが所定の正常領域にあるか否かが判断される。この判断は、図14に示すような予め記憶されたマップに従ってなされる。
 このマップは、放出酸素量OSCb(または吸蔵酸素量OSCa)(横軸)と、残存放出酸素量OSCbx(または残存吸蔵酸素量OSCax)(縦軸)とをパラメータとする二次元マップである。そしてマップ内の領域は正常領域と異常領域とに分けられている。正常領域と異常領域の境界βは、放出酸素量OSCbが小となる位置に形成され、残存酸素量OSCbxが小さいほどより大きな放出酸素量OSCbで異常判定するよう、縦軸に対して傾斜されている。
 放出酸素量OSCbと残存酸素量OSCbxとがマップ上の正常領域にある場合、ステップS114で触媒は正常と判定される。他方、放出酸素量OSCbと残存酸素量OSCbxとがマップ上の正常領域にない場合(すなわち異常領域にある場合)、ステップS115で触媒は異常と判定される。
 そしてステップS116で診断許可フラグがオフされ、ルーチンが終了される。
 なお、ここでは一つずつの放出酸素量OSCb、リッチピークPrおよび残存酸素量OSCbxに基づいて正異常判定を行ったが、それらを複数ずつ取得し、それらの各平均値に基づいて正異常判定を行ってもよい。この点は後述の診断処理においても同様である。
 次に、第2の診断処理方法を図15A,図15Bを用いて説明する。この第2の診断処理方法は、触媒後センサ出力VrのリーンピークPlの値を用いる方法である。
 この第2の診断処理方法は、概ね、第1の診断処理方法と比較してリッチおよびリーンの関係が逆転するだけで、その内容はほぼ同様である。以下、相違点を中心に説明する。
 ステップS201~S202は前記ステップS101~S102と同様である。ステップS203では、目標空燃比A/Ftがリーンに設定され、リーン制御が実行される。
 ステップS204では、触媒前空燃比A/Ffがストイキ以上になったか否かが判断される。判定がノーのときは待機状態となり、判定がイエスのときはステップS205で吸蔵酸素量OSCaが計測される。
 次いでステップS206で、排気ガス流量、具体的にはその代用値である吸入空気量Gaに基づき、リーン閾値VLXが設定される。ここでもリーン閾値VLXがストイキ相当値Vstに固定されておらず、吸入空気量Gaに応じて変化させられる。
 リーン閾値VLXは、図16に示すような予め記憶されたマップに従って設定される。このマップは、図12に示したマップと逆の関係にあり、吸入空気量Gaが多いほどリーン閾値VLXが大きく(リッチ側に)させられる。これにより、より早いタイミングで吸蔵酸素量OSCaの計測が終了されるようになる。
 ステップS207では、触媒後センサ出力Vrがリーン閾値VLXと比較される。触媒後センサ出力Vrがリーン閾値VLXより大きい場合、ステップS205に戻って吸蔵酸素量OSCaの計測が続行される。他方、触媒後センサ出力Vrがリーン閾値VLX以下の場合、ステップS208に進んで吸蔵酸素量OSCaの計測が終了される。
 ステップS209では、目標空燃比A/Ftがリッチに設定され、リッチ制御が実行される。
 ステップS210では、触媒後センサ出力Vrがリーン側のピークに達したか否かが判断される。これは、触媒後センサ出力Vrの微分値が負から正に転じたか否かを以て判断される。
 判定がノーのときは待機状態となる。判定がイエスのときは、ステップS211で、ピーク到達時点での触媒後センサ出力Vrの値がリーンピークPlとして検出される。
 次にステップS212で、リーンピークPlの値から、残存酸素量OSCaxの値が算出される。残存酸素量OSCaxは、図17に示すような予め記憶されたマップから算出される。
 この図17に示すマップは、図13に示したマップとは逆に、リーンピークPlの値が小さいほど、小さい残存酸素量OSCaxが得られるようになっている。
 この後、ステップS213~S215において、ステップS208で計測された吸蔵酸素量OSCaと、ステップS212で算出された残存酸素量OSCaxとに基づき、触媒の正異常判定がなされる。
 ステップS213では、吸蔵酸素量OSCaと残存酸素量OSCaxとが所定の正常領域にあるか否かが判断される。この判断は、図14に示したマップと同様の傾向を有する別のマップを使用してなされる。
 吸蔵酸素量OSCaと残存酸素量OSCaxとがマップ上の正常領域にある場合、ステップS214で触媒は正常と判定される。他方、吸蔵酸素量OSCaと残存酸素量OSCaxとがマップ上の正常領域にない場合(すなわち異常領域にある場合)、ステップS215で触媒は異常と判定される。
 そしてステップS216で診断許可フラグがオフされ、ルーチンが終了される。
 なお、上述の第1の診断処理方法と第2の診断処理方法とは当然組み合わせることも可能である。この場合、まず計測された放出酸素量OSCbと吸蔵酸素量OSCaの平均値を算出する。次いで、リッチピークPrおよびリッチ閾値VRXの差(Pr-VRX)の絶対値と、リーンピークPlおよびリーン閾値VLXの差(Pl-VLX)の絶対値との平均値を算出し、この平均値から残存酸素量を所定のマップに従い算出する。そして放出酸素量OSCbと吸蔵酸素量OSCaの平均値と、残存酸素量とが所定の正常領域にあるか否かを判定することにより、触媒の正異常判定を行う。
 次に、第3の診断処理方法を図18A,図18Bを用いて説明する。この第3の診断処理方法は、触媒後センサ出力Vrのリッチ変化率Hrを用いる方法である。
 この第3の診断処理方法は、概ね、第1の診断処理方法(図10A,図10B)と比較して、ステップS311Aが追加され、ステップS112がステップS312に変更された点のみが異なる。以下、相違点を中心に説明する。
 ステップS301~S311は前記ステップS101~S111と同様である。ステップS311Aでは、触媒後センサ出力Vrがリッチ閾値VRXからリッチピークPrに変化するときの触媒後センサ出力Vrのリッチ変化率Hrが次式(2)により算出される。
Figure JPOXMLDOC01-appb-M000002
 ここで、ΣGaは、触媒後センサ出力Vrがリッチ閾値VRXに達した時tVRXから、触媒後センサ出力VrがリッチピークPrに達した時tPrまで、吸入空気量Gaを積算してなる値である。またVRX<Pr、tVRX<tPrである。触媒の異常度合いが大きいほどリッチ変化率Hrは大きくなる。なおΣGaの代わりに、(tPr-tVRX)を用いることも可能である。
 次にステップS312では、リッチ変化率Hrの値から、残存酸素量OSCbxの値が算出される。残存酸素量OSCbxは、図19に示すような予め記憶されたマップから算出される。このマップは、図13に示したマップと同様、リッチ変化率Hrの値が大きいほど、小さい残存酸素量OSCbxが得られるようになっている。
 この後のステップS313~S316は、前記ステップS113~S116と同様である。正異常判定に用いられるマップも図14に示したのと同様のマップである。
 次に、第4の診断処理方法を図20A,図20Bを用いて説明する。この第4の診断処理方法は、触媒後センサ出力Vrのリーン変化率Hlを用いる方法である。
 この第4の診断処理方法は、概ね、第2の診断処理方法(図15A,図15B)と比較して、ステップS411Aが追加され、ステップS212がステップS412に変更された点のみが異なる。以下、相違点を中心に説明する。
 ステップS401~S411は前記ステップS201~S211と同様である。ステップS411Aでは、触媒後センサ出力Vrがリーン閾値VLXからリーンピークPlに変化するときの触媒後センサ出力Vrのリーン変化率Hlが次式(3)により算出される。
Figure JPOXMLDOC01-appb-M000003
 ここでのΣGaも同様に、触媒後センサ出力Vrがリーン閾値VLXに達した時tVLXから、触媒後センサ出力VrがリーンピークPlに達した時tPlまで、吸入空気量Gaを積算してなる値である。ここではtVLX<tPlであるが、Pl<VLXである。触媒の異常度合いが大きいほど、リーン変化率Hlはマイナス方向に大きくなる。なおΣGaの代わりに、(tPl-tVLX)を用いることも可能である。
 次にステップS412では、リーン変化率Hlの値から、残存酸素量OSCaxの値が算出される。残存酸素量OSCaxは、図21に示すような予め記憶されたマップから算出される。このマップは、図17に示したマップと同様、リーン変化率Hlの値が小さいほど、小さい残存酸素量OSCaxが得られるようになっている。
 この後のステップS413~S416は、前記ステップS213~S216と同様である。正異常判定に用いられるマップも図14に示したのと同様のマップである。
 なお、上述の第3の診断処理方法と第4の診断処理方法とは当然組み合わせることも可能である。この場合、まず計測された放出酸素量OSCbと吸蔵酸素量OSCaの平均値を算出する。次いで、リッチ変化率Hrの絶対値と、リーン変化率Hlの絶対値との平均値を算出し、この平均値から残存酸素量を所定のマップに従い算出する。そして放出酸素量OSCbと吸蔵酸素量OSCaの平均値と、残存酸素量とが所定の正常領域にあるか否かを判定することにより、触媒の正異常判定を行う。
 このように、本実施形態によれば、計測誤差を縮小して診断精度を向上し、誤診断を抑制することが可能である。
 以上、本発明の実施形態について詳細に述べたが、本発明の実施形態は他にも様々なものが考えられる。例えば内燃機関の用途や形式等は任意であり、自動車用以外であってもよいし、直噴式等であってもよい。上記の説明ではリーン側とリッチ側若しくは吸蔵側と放出側の一方のみしか説明していない箇所があるが、この一方に対する説明によって他方も理解されることが当業者にとって明らかであろう。
 本発明には、特許請求の範囲によって規定される本発明の思想に包含されるあらゆる変形例や応用例、均等物が含まれる。従って本発明は、限定的に解釈されるべきではなく、本発明の思想の範囲内に帰属する他の任意の技術にも適用することが可能である。

Claims (12)

  1.  内燃機関の排気通路に配置された触媒の異常を診断する装置であって、
     前記触媒の下流側の排気空燃比を検出する触媒後センサと、
     触媒上流側の空燃比をリーンおよびリッチに交互に制御するアクティブ空燃比制御手段と、
     前記空燃比のリーン制御中およびリッチ制御中に前記触媒が吸放出する酸素量を計測する計測手段と、
     前記触媒が正常か異常かを判定する判定手段と、
     を備え、
     前記触媒後センサ出力が所定の閾値に達したと同時に、前記アクティブ空燃比制御手段が前記リーン制御と前記リッチ制御とを切り替え、前記計測手段が前記酸素量の計測を終了し、
     前記閾値は、前記リーン制御から前記リッチ制御への切替タイミングを規定するリーン閾値と、前記リッチ制御から前記リーン制御への切替タイミングを規定するリッチ閾値とからなり、
     前記リーン閾値は、前記触媒後センサ出力のストイキ相当値よりもリーン側に定められた基準のリーン判定値よりもリッチ側の値に設定され、
     前記リッチ閾値は、前記ストイキ相当値よりもリッチ側に定められた基準のリッチ判定値よりもリーン側の値に設定され、
     前記判定手段は、前記触媒後センサ出力が前記リーン閾値および前記リッチ閾値の一方に達するまでに計測された酸素量と、前記触媒後センサ出力が前記リーン閾値および前記リッチ閾値の一方に達した後の前記触媒後センサ出力の挙動とに基づき、前記触媒が正常か異常かを判定する
     ことを特徴とする触媒異常診断装置。
  2.  前記判定手段は、前記触媒後センサ出力が前記リーン閾値および前記リッチ閾値の一方に達するまでに計測された酸素量と、前記触媒後センサ出力が前記リーン閾値および前記リッチ閾値の一方に達した後の前記触媒後センサ出力のピークの値とに基づき、前記触媒が正常か異常かを判定する
     ことを特徴とする請求項1に記載の触媒異常診断装置。
  3.  前記判定手段は、前記触媒後センサ出力が前記リーン閾値および前記リッチ閾値の一方に達するまでに計測された酸素量と、前記触媒後センサ出力が前記リーン閾値および前記リッチ閾値の一方に達した後の前記触媒後センサ出力の変化率とに基づき、前記触媒が正常か異常かを判定する
     ことを特徴とする請求項1に記載の触媒異常診断装置。
  4.  前記変化率が、前記触媒後センサ出力が前記リーン閾値および前記リッチ閾値の一方に達した時から、前記触媒後センサ出力がピークに達する時までの変化率である
     ことを特徴とする請求項3に記載の触媒異常診断装置。
  5.  前記変化率が、前記触媒後センサ出力が前記リーン閾値および前記リッチ閾値の一方に達した時から所定値に達する時までの当該触媒後センサ出力の差を、当該期間内の排気ガス量で除してなる値である
     ことを特徴とする請求項3または4に記載の触媒異常診断装置。
  6.  前記リーン閾値と前記リッチ閾値が、互いに等しい値に設定されている
     ことを特徴とする請求項1~5の何れか一項に記載の触媒異常診断装置。
  7.  前記リーン閾値と前記リッチ閾値が、前記ストイキ相当値と等しい値に設定されている
     ことを特徴とする請求項1~6の何れか一項に記載の触媒異常診断装置。
  8.  前記リーン閾値が、前記ストイキ相当値よりリッチ側の値に設定され、前記リッチ閾値が、前記ストイキ相当値よりリーン側の値に設定されている
     ことを特徴とする請求項1~5の何れか一項に記載の触媒異常診断装置。
  9.  前記リーン閾値と前記リッチ閾値が、排気ガス流量に応じて設定される
     ことを特徴とする請求項1~8の何れか一項に記載の触媒異常診断装置。
  10.  前記リーン制御と前記リッチ制御における振幅が、前回診断時に計測された酸素量に応じて設定される
     ことを特徴とする請求項1~9の何れか一項に記載の触媒異常診断装置。
  11.  内燃機関の排気通路に配置された触媒の異常を診断する装置であって、
     前記触媒の下流側の排気空燃比を検出する触媒後センサと、
     触媒上流側の空燃比をリーンおよびリッチに交互に制御するアクティブ空燃比制御手段と、
     前記空燃比のリッチ制御中に前記触媒が放出する酸素量を計測する計測手段と、
     前記触媒が正常か異常かを判定する判定手段と、
     を備え、
     前記触媒後センサ出力が所定のリッチ閾値に達したと同時に、前記アクティブ空燃比制御手段が前記空燃比制御を前記リッチ制御から前記リーン制御に切り替え、前記計測手段が前記酸素量の計測を終了し、
     前記リッチ閾値は、前記ストイキ相当値よりもリッチ側に定められた基準のリッチ判定値よりもリーン側の値に設定され、
     前記判定手段は、前記触媒後センサ出力が前記リッチ閾値に達するまでに計測された酸素量と、前記触媒後センサ出力が前記リッチ閾値に達した後の前記触媒後センサ出力の挙動とに基づき、前記触媒が正常か異常かを判定する
     ことを特徴とする触媒異常診断装置。
  12.  内燃機関の排気通路に配置された触媒の異常を診断する装置であって、
     前記触媒の下流側の排気空燃比を検出する触媒後センサと、
     触媒上流側の空燃比をリーンおよびリッチに交互に制御するアクティブ空燃比制御手段と、
     前記空燃比のリーン制御中に前記触媒が吸蔵する酸素量を計測する計測手段と、
     前記触媒が正常か異常かを判定する判定手段と、
     を備え、
     前記触媒後センサ出力が所定のリーン閾値に達したと同時に、前記アクティブ空燃比制御手段が前記空燃比制御を前記リーン制御から前記リッチ制御に切り替え、前記計測手段が前記酸素量の計測を終了し、
     前記リーン閾値は、前記触媒後センサ出力のストイキ相当値よりもリーン側に定められた基準のリーン判定値よりもリッチ側の値に設定され、
     前記判定手段は、前記触媒後センサ出力が前記リーン閾値に達するまでに計測された酸素量と、前記触媒後センサ出力が前記リーン閾値に達した後の前記触媒後センサ出力の挙動とに基づき、前記触媒が正常か異常かを判定する
     ことを特徴とする触媒異常診断装置。
PCT/JP2010/002949 2010-04-23 2010-04-23 触媒異常診断装置 WO2011132233A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080066348.0A CN102859160B (zh) 2010-04-23 2010-04-23 催化剂异常诊断装置
JP2012511424A JP5293885B2 (ja) 2010-04-23 2010-04-23 触媒異常診断装置
US13/642,398 US8683856B2 (en) 2010-04-23 2010-04-23 Catalyst abnormality diagnosis apparatus
PCT/JP2010/002949 WO2011132233A1 (ja) 2010-04-23 2010-04-23 触媒異常診断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/002949 WO2011132233A1 (ja) 2010-04-23 2010-04-23 触媒異常診断装置

Publications (1)

Publication Number Publication Date
WO2011132233A1 true WO2011132233A1 (ja) 2011-10-27

Family

ID=44833798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002949 WO2011132233A1 (ja) 2010-04-23 2010-04-23 触媒異常診断装置

Country Status (4)

Country Link
US (1) US8683856B2 (ja)
JP (1) JP5293885B2 (ja)
CN (1) CN102859160B (ja)
WO (1) WO2011132233A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098869A (ja) * 2013-11-19 2015-05-28 ゼネラル・エレクトリック・カンパニイ 内燃機関における車載の触媒状態監視/制御システムの適合
JP2017089461A (ja) * 2015-11-06 2017-05-25 三菱自動車工業株式会社 触媒の劣化判定装置
WO2023199508A1 (ja) * 2022-04-15 2023-10-19 日立Astemo株式会社 内燃機関制御装置及び内燃機関制御方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132232A1 (ja) * 2010-04-23 2011-10-27 トヨタ自動車株式会社 触媒異常診断装置
WO2013179373A1 (ja) * 2012-05-28 2013-12-05 トヨタ自動車株式会社 触媒劣化判定システム
CN104279035B (zh) * 2013-07-11 2016-05-11 苏州奥易克斯汽车电子有限公司 发动机的催化器的诊断方法
JP6358148B2 (ja) 2015-03-31 2018-07-18 トヨタ自動車株式会社 内燃機関の排気浄化装置
KR101822562B1 (ko) 2015-03-31 2018-01-29 도요타지도샤가부시키가이샤 내연 기관의 배기 정화 장치
JP6537148B2 (ja) * 2017-08-04 2019-07-03 株式会社Subaru 触媒異常診断装置及び触媒異常診断方法
FR3085715B1 (fr) * 2018-09-07 2021-05-14 Renault Sas Dispositif et procede de controle de l'etat de fonctionnement d'un organe de traitement d'effluents gazeux d'une ligne d'echappement d'un moteur a combustion interne
JP6624321B1 (ja) * 2019-03-22 2019-12-25 トヨタ自動車株式会社 空燃比センサの異常検出装置、空燃比センサの異常検出システム、データ解析装置、内燃機関の制御装置、および空燃比センサの異常検出方法
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031901A (ja) * 2006-07-27 2008-02-14 Toyota Motor Corp 内燃機関の触媒劣化検出装置
JP2009167987A (ja) * 2008-01-18 2009-07-30 Toyota Motor Corp 内燃機関の制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364428A (ja) 2001-06-01 2002-12-18 Toyota Motor Corp 触媒劣化判定装置
JP4513714B2 (ja) * 2005-10-21 2010-07-28 トヨタ自動車株式会社 触媒劣化検出方法
JP4537417B2 (ja) * 2007-03-06 2010-09-01 トヨタ自動車株式会社 NOxセンサの異常診断装置
JP4665923B2 (ja) * 2007-03-13 2011-04-06 トヨタ自動車株式会社 触媒劣化判定装置
JP5260978B2 (ja) 2008-02-15 2013-08-14 トヨタ自動車株式会社 燃料性状判定装置及びこれを備えた触媒劣化診断装置
WO2011132232A1 (ja) * 2010-04-23 2011-10-27 トヨタ自動車株式会社 触媒異常診断装置
JP5206774B2 (ja) * 2010-11-25 2013-06-12 トヨタ自動車株式会社 触媒劣化の診断装置
US8387448B2 (en) * 2011-01-19 2013-03-05 GM Global Technology Operations LLC Method for monitoring exhaust gas aftertreatment devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008031901A (ja) * 2006-07-27 2008-02-14 Toyota Motor Corp 内燃機関の触媒劣化検出装置
JP2009167987A (ja) * 2008-01-18 2009-07-30 Toyota Motor Corp 内燃機関の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098869A (ja) * 2013-11-19 2015-05-28 ゼネラル・エレクトリック・カンパニイ 内燃機関における車載の触媒状態監視/制御システムの適合
JP2017089461A (ja) * 2015-11-06 2017-05-25 三菱自動車工業株式会社 触媒の劣化判定装置
WO2023199508A1 (ja) * 2022-04-15 2023-10-19 日立Astemo株式会社 内燃機関制御装置及び内燃機関制御方法

Also Published As

Publication number Publication date
US8683856B2 (en) 2014-04-01
CN102859160A (zh) 2013-01-02
JP5293885B2 (ja) 2013-09-18
CN102859160B (zh) 2015-09-09
JPWO2011132233A1 (ja) 2013-07-18
US20130180322A1 (en) 2013-07-18

Similar Documents

Publication Publication Date Title
JP5293885B2 (ja) 触媒異常診断装置
JP5273297B2 (ja) 触媒異常診断装置
JP5062529B2 (ja) 触媒の劣化を診断するための装置及び方法
JP2008031901A (ja) 内燃機関の触媒劣化検出装置
JP2009138604A (ja) 内燃機関の触媒劣化診断装置
WO2010119554A1 (ja) 触媒異常診断装置
JP2010185371A (ja) 触媒劣化診断装置
JP5229628B2 (ja) 触媒劣化診断装置
JP4761223B2 (ja) 内燃機関の触媒劣化検出装置
JP5212826B2 (ja) 触媒異常診断装置
JP5494571B2 (ja) 燃料性状判定装置及びこれを備えた触媒異常診断装置
JP2009127597A (ja) 触媒劣化診断装置
JP2010159701A (ja) 触媒劣化診断装置
JP2012219803A (ja) 燃料性状判定装置及びこれを備えた触媒異常診断装置
JP2009036172A (ja) 内燃機関の触媒劣化診断装置
JP2010255490A (ja) 触媒異常診断装置
JP2009150367A (ja) 内燃機関の触媒劣化診断装置
JP4853792B2 (ja) 触媒劣化診断装置
JP2010168923A (ja) 触媒劣化診断装置
WO2013157048A1 (ja) 触媒異常診断装置
JP2011231626A (ja) 触媒異常診断装置
JP2009215924A (ja) 燃料性状判別装置及びこれを備えた触媒劣化診断装置
JP2014005797A (ja) 硫黄被毒判定装置
JP5392615B2 (ja) 触媒異常診断装置
JP5088632B2 (ja) 触媒劣化診断装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066348.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10850180

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511424

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13642398

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10850180

Country of ref document: EP

Kind code of ref document: A1