WO2011129427A9 - 癌の診断剤および治療剤 - Google Patents

癌の診断剤および治療剤 Download PDF

Info

Publication number
WO2011129427A9
WO2011129427A9 PCT/JP2011/059356 JP2011059356W WO2011129427A9 WO 2011129427 A9 WO2011129427 A9 WO 2011129427A9 JP 2011059356 W JP2011059356 W JP 2011059356W WO 2011129427 A9 WO2011129427 A9 WO 2011129427A9
Authority
WO
WIPO (PCT)
Prior art keywords
puf60
cancer
protein
gene
nucleic acid
Prior art date
Application number
PCT/JP2011/059356
Other languages
English (en)
French (fr)
Other versions
WO2011129427A1 (ja
Inventor
眞一郎 丹羽
泰孝 牧野
智樹 生田
宏 長崎
勝徳 山本
Original Assignee
第一三共株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 第一三共株式会社 filed Critical 第一三共株式会社
Publication of WO2011129427A1 publication Critical patent/WO2011129427A1/ja
Publication of WO2011129427A9 publication Critical patent/WO2011129427A9/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5011Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/11Antisense
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Abstract

 本発明は、がんの治療または予防のために使用されるPUF60遺伝子の発現阻害物質、PUF60タンパク質の活性阻害物質、及びこれらの物質を有効成分として含有する医薬組成物を提供する。

Description

癌の診断剤および治療剤
 本発明は、癌の診断および治療のための医薬組成物に関する。特に、本発明は、PUF60遺伝子の発現阻害剤、PUF60タンパク質の活性阻害剤、およびがん診断マーカーとしてのPUF60の使用に関する。
 日本人の死亡原因第1位はがんであり、中でも大腸がんは肺がん胃がんに次いで第3位の死亡数であり、1年間に約10万人が罹患し、約4万人が亡くなっており、さらに年々増加傾向にあるとされている。大腸がんの増加の原因には、遺伝的要因、環境的要因などが考えられるが、食生活の西欧化、特に動物性脂肪の取りすぎが原因ではないかと指摘されている。また、乳がんは30歳から64歳における日本女性のがん死亡率の第1位であり、乳がん死亡数は1年間に約1万人にのぼる。現在、20人中1人の女性が一生涯の間に乳がんになり、1年間に乳がんに罹る女性は約4万人に達している。早期に発見された場合は、I期であれば手術により90%が10年生存可能であるが、IV期では20%となり、全身的な薬物療法が施されているが根治は難しく、新たな治療法の確立が求められている。
 がん薬物療法の現在の中心である化学療法は、直接がん細胞のDNAやRNAに作用し、細胞を死に至らせる殺細胞薬剤を用いる場合が多いが、がん細胞以外の、例えば、骨髄細胞、生殖細胞、毛母細胞、消化管上皮細胞など分裂がさかんな正常細胞に対しても作用し、強い副作用をもたらす。
 近年の分子細胞生物学の進歩により、がん細胞の増殖・浸潤・転移などにかかわるメカニズムが解明され、そのがん細胞の特定メカニズムに特異的に作用する分子標的薬の開発が注目されている。
 代表例として、大腸がんでは、EGFR(上皮成長因子受容体)を標的としたエルビタックス(一般名:セツキシマブ)がEGFR陽性の切除不能な進行・再発結腸直腸がんの適応について承認されており、また、乳がんでは HER2 (上皮成長因子受容体)を標的としたハーセプチン(一般名:トラスツズマブ) がHER2陽性の転移性乳がんの適応や術後補助化学療法について承認されており、高い奏効率が認められている。
 このような成功例は、がんが特定の遺伝子に依存しており、その遺伝子機能を阻害する薬により、がんは治療可能であることを示している。しかしながら、現状では未だ有効な分子標的薬は少なく、今後更なる有効な分子標的薬の開発が望まれている。
 Poly-U-binding factor 60kDa (PUF60) (FIR(FBP Interacting factor)、SIAHBP1とも呼ばれている。)はスプライシング因子であり、スプライシング因子としてよく知られているU2AF65 と相同性があり、類似のドメイン構造をとっている。また、機能的にもU2AF65 と関連があることが報告されている (Page-McCaw PS, et al., (1999) RNA. Dec;5(12):1548-60.)。
 PUF60 はU2AF65 と同様に、2 つのRNA recognition motif (RRM)とC 末端側にU2 auxiliary factor homology motif (UHM)のドメイン構造を持つ、poly-U RNA 結合型タンパク質(Hastings ML, et al., (2007) PLoS ONE. Jun 20;2(6):e538.)である。UHM ドメイン領域では、U2AF65, SF1, SF3B1 との結合が報告されており、スプライシング時にU2 snRNP をリクルートする役目を担っていると考えられている(Corsini L, et al., (2009) J Biol Chem. Jan 2;284(1):630-9.)。
 Pre-mRNA のスプライシングは、配列内のスプライスサイトに特異的なスプライシング因子が認識して結合し、段階的に進行していく (Maniatis T, Tasic B.(2002) Nature. Jul 11;418(6894):236-43.),(Rymond B.(2007) Nat Chem Biol. Sep;3(9):533-5.)。イントロン内のbranch point (A) にはSF1 が結合し(Berglund JA, et al,. (1997) Cell. May 30;89(5):781-7.),( Liu Z, et al., (2001) Science. Nov 2;294(5544):1098-102.)、polypyrimidine tract や3’側のスプライスサイトである、AG にはヘテロダイマーのU2AF65-U2AF35 が結合する(Wu S, et al., (1999) Nature. Dec 16;402(6763):832-5.),( Zorio DA & Blumenthal T. (1999) Nature. Dec 16;402(6763):835-8.)。SF1 のbranch point での結合は弱く、U2AF65 により安定化されることが報告されている(Berglund JA, et al., (1998) Genes Dev. Mar 15;12(6):858-67.)。
 PUF60は核抽出物よりpoly U Sepharose column に結合する、新規のpoly-U RNA-binding splicing factor として同定され、U2AF65 の機能を増強させると考えられている(Page-McCaw PS, et al., (1999) RNA. Dec;5(12):1548-60.)。
 PUF60 とU2AF65 との相互作用については、互いのpolypyrimidine tract RNA の結合活性を高め、いくつかの遺伝子のスプライシング時のエクソンの選択に影響を与えることが報告されている(Hastings ML, et al., (2007) PLoS ONE. Jun 20;2(6):e538.)。
 スプライシングの初期段階であるSF1 のbranch point への結合の次の段階では、U2 small ribonucleoprotein Particle (snRNP) が3’スプライスサイトにリクルートされてくる。その際、U2 snRNP の構成因子である、SF3b subunit のSF3B1(SF3b155, SAP155) のN 末(373-415aa)とp14 の相互作用により、p14 はbranch point に位置する(Schellenberg MJ, et al., (2006) Proc Natl Acad Sci U S A. Jan 31;103(5): 1266-71.)。U2snRNP とpre-RNA との結合にはSF3B1 とU2AF65 との結合とbranch point からのSF1の解離が必要となる(Gozani O, et al., (1998) Mol Cell Biol. Aug;18(8):4752-60.)。
 PUF60 はC 末のUHM とSF3B1 のN 末のUHM ligand motifs (ULM)(194-229aa)と結合し、SF3B1 のU2AF65 との結合部位とPUF60 の結合部位は異なることが報告されている(Corsini L, et al., (2009) J Biol Chem. Jan 2;284(1):630-9.)。また、PUF60 のUHM ドメインについては結晶構造解析が行われ、SF3B1 のHLM との相互作用について報告されている(Corsini L, et al., (2009) J Biol Chem. Jan 2;284(1):630-9.)。よって、U2 snRNPの3’スプライスサイトへのリクルートに、PUF60とSF3B1の相互作用が重要である可能性が推測される。
 PUF60(FIR)は大腸癌のがん部において特異的に発現していることが報告されている(国際公開パンフレットWO2004/018518号)。また、PUF60(SIAHBP1)は非小細胞肺がんにおいて発現が上昇していることが報告され、アンチセンスオリゴヌクレオチドによって非小細胞肺がん細胞の増殖が抑制されることが記載されている(国際公開パンフレットWO2004/031413号)。
 これまで核内因子を標的とした治療薬の開発は、標的分子の活性を阻害する活性だけではなく、細胞膜を通過し、さらに、核膜を通過後、標的分子に作用する性能が必要であり、難易度の高い創薬開発となるため、比較的敬遠されてきた。
 また、酵素の様な活性を持たず、タンパク質分子間の相互作用を低分子化合物により阻害することは、従来、困難であるとされてきた。それは、タンパク質間の広い相互作用界面を小さな低分子で制御することが困難であると考えられてきたからである。
 しかし、近年、微生物より単離された抗腫瘍性効果を示す天然物である、プラジエノライドB(Kotake Y, et al., (2007) Nat Chem Biol. Sep;3(9):570-5.)とスプライソスタチンA(Kaida D, et al., (2007) Nat Chem Biol. Sep;3(9):576-83.)がU2 snRNP のSF3b subunit を標的とすることが報告され、スプライソソームを標的とした抗がん剤の開発が注目されている。プラジエノライド(E7107)は米国での第I 相臨床試験(フェーズ1)に進んでいる。また、in vivo screening assay によりスプライシング阻害剤の探索の結果、植物(イチョウ)由来の天然物である、Isoginkugetin が見出されたとの報告もあり(O'Brien K, et al., (2008) J Biol Chem. Nov 28;283(48):33147-54.)、がんの治療標的としてのスプライソソーム阻害剤が注目されている (Disney MD. (2008) Nat Chem Biol. Dec;4(12):723-4.)。
国際公開パンフレットWO2004/018518号 国際公開パンフレットWO2004/031413号
Page-McCaw PS, et al., (1999) RNA. Dec;5(12):1548-60. Hastings ML, et al., (2007) PLoS ONE. Jun 20;2(6):e538. Corsini L, et al., (2009) J Biol Chem. Jan 2;284(1):630-9. Maniatis T, Tasic B.(2002) Nature. Jul 11;418(6894):236-43. Rymond B.(2007) Nat Chem Biol. Sep;3(9):533-5. Berglund JA, et al,. (1997) Cell. May 30;89(5):781-7. Liu Z, et al., (2001) Science. Nov 2;294(5544):1098-102. Wu S, et al., (1999) Nature. Dec 16;402(6763):832-5. Zorio DA & Blumenthal T. (1999) Nature. Dec 16;402(6763):835-8. Berglund JA, et al., (1998) Genes Dev. Mar 15;12(6):858-67. Page-McCaw PS, et al., (1999) RNA. Dec;5(12):1548-60. Schellenberg MJ, et al., (2006) Proc Natl Acad Sci U S A. Jan 31;103(5): 1266-71. Gozani O, et al., (1998) Mol Cell Biol. Aug;18(8):4752-60. Kotake Y, et al., (2007) Nat Chem Biol. Sep;3(9):570-5. Kaida D, et al., (2007) Nat Chem Biol. Sep;3(9):576-83. O'Brien K, et al., (2008) J Biol Chem. Nov 28;283(48):33147-54. Disney MD. (2008) Nat Chem Biol. Dec;4(12):723-4.
 上記のような状況下で、がんを治療または診断するための新たな薬剤または方法が求められている。
 本発明者らは、がんが依存している遺伝子(oncogene addiction)の特徴の一つとして提唱されている遺伝子増幅を指標として用い、約30,000 遺伝子といわれているヒトゲノムの中から創薬標的遺伝子群を見出した。さらに、アレイCGH 法によるゲノムワイドな網羅解析によりがん患者検体で高頻度に遺伝子増幅が生じている遺伝子を絞込み、遺伝子ノックダウンにより増殖抑制効果を引き起こす遺伝子である、PUF60を見出した。
 したがって、本発明は、PUF60遺伝子の発現阻害物質を有効成分として含有するがんの治療または(がんの進行または転移の)予防のための医薬組成物、PUF60タンパク質の活性阻害物質を有効成分として含有するがんの治療または予防のための医薬組成物、PUF60遺伝子の発現阻害物質またはPUF60タンパク質の活性阻害物質のスクリーニング方法、スクリーニング用キット、診断マーカーとしてPUF60を使用するがんの診断方法、診断用組成物、診断用キット等を提供する。
 特に、本発明は、PUF60遺伝子の発現阻害物質としての、PUF60遺伝子に対するsiRNAまたはアンチセンス核酸の使用に関する。
 したがって、本発明は、以下を提供する。
(1)PUF60遺伝子の発現阻害物質またはPUF60タンパク質の活性阻害物質を含有する、がん細胞の増殖を抑制するための組成物。
(2)上記PUF遺伝子の発現阻害物質が、
 (a)PUF60遺伝子の発現をRNAi効果により阻害する作用を有する核酸、
 (b)PUF60遺伝子の転写産物またはその一部に対するアンチセンス核酸、
および
 (c)PUF60遺伝子の転写産物を特異的に切断するリボザイム活性を有する核酸、
からなる群から選択されるいずれかであり、
 上記PUF60タンパク質の活性阻害物質が、
 (d)PUF60タンパク質に特異的に結合する抗体、
 (e)PUF60タンパク質に特異的に結合する低分子化合物、および
 (f)PUF60タンパク質と相互作用する分子の該相互作用を阻害する低分子化合物、
からなる群から選択されるいずれかである、上記(1)に記載の組成物。
(3)上記PUF60遺伝子の発現阻害物質が、配列番号1、配列番号2、配列番号3、または配列番号4の核酸配列を含有する、上記(1)または(2)に記載の組成物。
(4)上記がんが、大腸がんまたは乳がんである、上記(1)~(3)のいずれかに記載の組成物。
(5)がんの予防または治療のための医薬として使用するための、上記(1)~(4)のいずれかに記載の組成物。
(6)(i)下記(a)または(b) に対するアンチセンス核酸分子およびsiRNA分子
  (a)PUF60遺伝子の核酸配列
  (b)PUF60タンパク質をコードする核酸配列、
ならびに
 (ii)下記の(c)および(d)のベクター
  (c)上記アンチセンス核酸分子を含むベクター
  (d)上記siRNA分子を含むベクター
からなる群から選択される、核酸分子。
(7)上記siRNA分子が、配列番号1、配列番号2、配列番号3、または配列番号4の核酸配列を含む、上記(6)に記載の核酸分子。
(8)大腸がんまたは乳がんの予防または治療のために使用する、上記(6)または(7の核酸分子。
(9)被験者由来の試料中のPUF60遺伝子、その転写産物もしくは翻訳産物、またはこれらの断片を検出する工程を含む、PUF60をがんの診断マーカーとして使用する方法。
(10)上記(9)に記載の方法であって、
(i)被験者由来の試料におけるPUF60遺伝子もしくはその転写産物もしくはこれらの断片を、該遺伝子もしくはその転写産物の核酸配列もしくはPUB60タンパク質をコードする核酸配列の全部もしくは一部に特異的にハイブリダイズする核酸分子を用いて検出する工程、
または
(ii)被験者由来の試料におけるPUF60タンパク質を、該タンパク質もしくはその断片に特異的に結合する抗体を用いて検出する工程
を含み、
 上記PUF60遺伝子、その転写産物、上記PUF60タンパク質、または上記断片の上記試料中での存在が、上記被験者ががんに罹患している可能性を示す、方法。
(11)上記がんが、大腸がんまたは乳がんである、上記(9)または(10)に記載の方法。
(12)
(i) PUF60遺伝子もしくはその転写産物の核酸配列もしくはPUF60タンパク質をコードする核酸配列の全部もしくは一部に特異的にハイブリダイズする核酸分子、または
(ii) PUF60タンパク質もしくはその断片に特異的に結合する抗体、および
(iii) 使用説明書
を含む、がんの診断用キット。
(13)上記がんが、大腸がんまたは乳がんである、上記(12)に記載の診断用キット。
(14)PUF60遺伝子の発現阻害剤のスクリーニング方法であって、
 試験化合物の存在下および非存在下で、PUF60遺伝子を発現する細胞を培養する工程、
 上記培養細胞のPUF60発現量を、PUF60遺伝子の転写産物の量またはPUF60タンパク質の量を指標に測定する工程、および
 上記試験化合物の存在下および非存在下での上記PUF60発現量を比較する工程
を含む、スクリーニング方法。
(15)PUF60タンパク質の活性阻害剤のスクリーニング方法であって、
 試験化合物を、PUF60遺伝子によってコードされるポリペプチドもしくはPUF60タンパク質と接触させる工程、
 上記ポリペプチドもしくはタンパク質の生物学的活性を測定する工程、および
 上記試験化合物非存在下での上記ポリペプチドもしくはタンパク質の生物学的活性と比較して、上記ポリペプチドもしくはタンパク質の生物学的活性を抑制する化合物を選択する工程
を含む、スクリーニング方法。
(16)がん予防剤または治療剤のスクリーニングのために使用される、上記(14)または(15)に記載のスクリーニング方法。
(17)上記がんが、大腸がんまたは乳がんである、上記(16)に記載のスクリーニング方法。
 後述の実施例に示すように、PUF60はがん組織で特異的な発現が認められ、がん細胞での遺伝子ノックダウン(RNAi)解析により顕著な細胞死誘導による増殖抑制効果を奏することから、PUF60遺伝子の発現またはPUF60タンパク質の活性の阻害剤は、がんの治療に有用であり得る。PUF60がスプライシング因子であることより、PUF60の阻害により、スプライシングの異常が引き起こされ、異常なRNAやタンパク質が増加し、細胞内ストレスにより細胞死が誘導される可能性が考えられる。
 PUF60が特に大腸がん及び乳がんで遺伝子増幅と発現亢進が認められこと、及びRNAiによる機能阻害でがん細胞の増殖抑制効果が認められたことより、PUF60の大腸がん及び乳がんの診断マーカーとしての使用のみならず、次世代の抗がん剤としてのPUF60発現阻害物質またはPUF60活性阻害物質の使用が可能となり得る。
大腸がん及び乳がん検体を用いた抗PUF60抗体での免疫組織染色による、タンパク質レベルでの発現解析結果を示す。がん部の細胞の核で強いシグナルが認められた。大腸がん(a~c)、及び乳がん(d~f)組織の観察像を示した。 定量的RT-PCR解析により測定した、PUF60遺伝子の遺伝子ノックダウン率を示すグラフである。PUF60のRNAiによるRNAレベルの発現抑制効果を示している。a~c : 大腸がん細胞株、d~f : 乳がん細胞株。NCはネガティブコントロール、NTは未処理を表す。 大腸がん及び乳がん細胞株に対してPUF60遺伝子のRNAi解析を行った結果を示す。siRNAを各細胞株にトランスフェクション後、4日目に生細胞数測定解析を行い、ネガティブコントロール(NC)に対する相対値をViability(生存率)として算出した。 PUF60遺伝子のRNAi解析結果を示す。siRNA導入後4日目(a, b)又は6日目(c~f)の生細胞数測定解析をグラフ化した。Viability(生存率)はNCに対する相対値を算出した。a~c : 大腸がん細胞株、d~f : 乳がん細胞株。RKO細胞(g), RKOE6細胞(h)でのsiRNA導入後4日目の微分干渉像。数値は生存率を示す。NCはネガティブコントロール、NTは未処理を表す。
1.がん抑制作用を有する物質(agent)
 本発明の一つの実施形態は、がんの治療または予防のために使用されるPUF60遺伝子の発現阻害物質、PUF60タンパク質の活性阻害物質、及びこれらの物質を有効成分として含有する医薬組成物に関する。
 本明細書中、「PUF60遺伝子」とは、NCBIの遺伝子データベースにおいてGeneID:22827(http://www.ncbi.nlm.nih.gov/gene/22827)で特定されるヒト由来のPUF60(poly-U binding splicing factor 60KDa)をコードする遺伝子及びその機能的等価物をいうものとする。
 PUF60遺伝子によりコードされるタンパク質(PUF60タンパク質)は、Ro ribonucleoprotein (RNP)結合タンパク質であり、Ro RNPとの相互作用は、(進化的に)Ro RNPの機能獲得をもたらしたと考えられている。PUF60タンパク質はまたFUSE(far upstream element)と三元複合体(ternary complex)を形成するFUSE結合タンパク質である。PUF60タンパク質はまた、FUSEを介してc-mycレポーターを抑制することができる。PUF60タンパク質はまた、転写因子TFIIHを標的とし、活性化された転写を抑制することが知られている。PUF60遺伝子は、色素性乾皮症と関連している。PUF60遺伝子には、異なる2つのアイソフォームをコードする、2つのオルタナティブスプライス転写バリアントの存在が知られている。(http://www.ncbi.nlm.nih.gov/gene/22827)
 PUF60遺伝子の転写産物(すなわち、mRNA)及び翻訳産物(すなわち、タンパク質)には、上記のように、2つのオルタナティブスプライス転写バリアントを含め3種類が知られており、それぞれ、NCBIのデータベースにおいてNM_078480及びNP_510965(アイソフォームa)、NM_014281及びNP_055096(アイソフォームb)、NM_001136033及びNP_001129505(アイソフォームc)のアクセッション番号で特定される。
 本明細書中、「PUF60遺伝子の転写産物」とは、PUF60遺伝子の転写により生じるmRNA、すなわち、「PUF60 mRNA」のことをいうものとする。
 本明細書中、「PUF60の翻訳産物」とは、PUF60 mRNAの核酸配列に基づいて合成される「PUF60タンパク質」のことをいうものとする。
 本明細書中、「PUF60」という用語は、「PUF60」として単独で使用される場合、PUF60遺伝子、PUF60 mRNA、PUF60タンパク質、これらのいずれか2つ、またはこれらの全てを意味し得る。いずれの意味であるかは、その用語が使用されている文脈により、当業者ならば自ずと明らかであろう。
 本明細書中、「遺伝子の発現阻害」とは、遺伝子からタンパク質生成までの一連の事象(例えば、転写(mRNAの生成)、翻訳(タンパク質の生成)を含む)のうちのいずれかまたは両方の事象を阻害することによってその遺伝子によってコードされるタンパク質の生成を阻害することを意味するものとする。
 本明細書中、GeneID(NCBI):22827で特定されるヒト由来のPUF60をコードする遺伝子(以下、「元の遺伝子」)の「機能的等価物」とは、ヒトPUF60タンパク質と同じ生物学的活性を保持するタンパク質をコードするが、ヒトPUF60タンパク質の遺伝子と比較していくつかのヌクレオチドが変化しているもの(例えば、遺伝子コードの縮重によるもの、または異なるバリアントをコードすることによるものなど)のことを意味する。あるいは、より一般的にいえば、1つ以上のヌクレオチドの置換、欠失、付加、挿入、またはこれらのいずれか2つ以上の組み合わせの変異を有することによって核酸配列が元の遺伝子のそれと比較して変化しているが、それがコードするタンパク質の機能または生物学的活性は元の遺伝子がコードするタンパク質と同じ機能または生物学的活性を保持している天然または人工の変異遺伝子を意味する。
 本明細書中、「PUF60タンパク質」という場合、上記3種類のPUF60タンパク質のいずれか(以下、「元のタンパク質」)、及びこれらのタンパク質と同じ機能または生物学的活性(例えば、ブランチサイトの下流、3'スプライス部位の上流にある、ピリミジンに富んだ領域(ポリピリミジントラクト)に結合し、U2AF65やU2 snRNP の構成因子である、SF3b subunit のSF3B1やSF1などのスプライシング関連因子との相互作用による、スプライシング調節活性及び、Ro RNP結合能、FUSEとの三元複合体形成能、c-mycの転写抑制能、TFIIHによる転写活性化の抑制能など)を保持し、そのタンパク質のアミノ酸配列に対して1~複数個のアミノ酸残基の欠失、置換、挿入、付加、またはこれらのいずれか2つ以上の組み合わせの変異が生じたアミノ酸配列からなる天然または人工の変異タンパク質を意味するものとする。
 上記変異タンパク質における、アミノ酸の変異部位および個数は、変異タンパク質が元のタンパク質と同じ機能または生物学的活性を保持している限り特に制限はないが、変異個数は、例えば、1~50個、1~40個、1~30個、1~25個、1~20個、1~15個、1~10個、1~9個、1~8個、1~7個、1~6個(1~数個)、1~5個、1~4個、1~3個、1~2個、1個である。変異個数は一般的に少ない程好ましい。また、このような変異タンパク質は、元のタンパク質のアミノ酸配列と約70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上の同一性を有するアミノ酸配列を有し、かつ元のタンパク質と同じ機能または生物学的活性を有するタンパク質を含む。上記相同性の数値は一般的に大きい程好ましい。
 上記PUF60タンパク質には、PUF60タンパク質の「部分ペプチド」(または「断片」)も含まれる。PUF60タンパク質の部分ペプチドとしては、上記のPUF60タンパク質のアミノ酸配列の一部の連続するアミノ酸の配列からなる部分ペプチドであって、好ましくは、前述のPUF60タンパク質の活性と同様の活性を有するものであればいずれのものでも良い。例えば、上記3種類のバリアントのアミノ酸配列において、少なくとも20個、好ましくは少なくとも50個、さらに好ましくは少なくとも70個、より好ましくは少なくとも100個、最も好ましくは少なくとも200個のアミノ酸残基からなるアミノ酸配列を有するポリペプチドなどが挙げられる。好ましくは、これらのポリペプチドは、PUF60タンパク質の活性に関与する部分に対応するアミノ酸配列を含有する。また、本発明で使用される部分ペプチドは、上記のポリペプチドにおいて、そのアミノ酸配列中の1または複数個(例えば、1~20個程度、より好ましくは1~10個程度、さらにより好ましくは1~5個程度)のアミノ酸残基が欠失、付加、置換、挿入、またはこれらのいずれか2つ以上の組み合わせの変異により変更されているものでもよい。
 本発明で用いるPUF60タンパク質は、そのタンパク質を発現している細胞や組織から調製することができる。また、これらのタンパク質は、公知のペプチド合成機によっても合成できるし、原核生物あるいは真核生物から選択される適当な宿主細胞を用いた組換え方法によっても調製することができる。本発明で用いるPUF60タンパク質は、いずれの種由来のものでもよいが、好ましくはヒト由来である。
 「同じ機能または生物学的活性」とは、それらの機能または活性が性質的に同等であることを示す。したがって、例えば、poly-U結合能、U2AF65結合能、SF3B1結合能やRo RNP結合能のような元のタンパク質の活性と同質の活性を有していれば、これらの活性の程度やタンパク質の分子量などの量的要素は異なっていてもよい(例えば、約0.01~100倍、好ましくは約0.5~20倍、より好ましくは約0.5~2倍)。活性の測定は、poly-U結合能(Page-McCaw PS, et al., (1999) RNA. Dec;5(12):1548-60.)、U2AF65結合能(Hastings ML, et al., (2007) PLoS ONE. Jun 20;2(6):e538.)、SF3B1結合能(Corsini L, et al., (2009) J Biol Chem. Jan 2;284(1):630-9.)やRo RNP結合能(Bouffard P, et al., (2000) RNA.  Jan;6(1):66-78.)などの文献に記載の公知の方法に準じて行うことができる。
 なお、アミノ酸配列や塩基配列の同一性は、カーリンおよびアルチュールによるアルゴリズムBLAST(Proc.Natl.Acad.Sci.USA 872264-2268,1990; Proc.Natl.Acad.Sci USA 90: 5873, 1993)を用いて決定できる。BLASTのアルゴリズムに基づいたBLASTNやBLASTXと呼ばれるプログラムが開発されている(Altschul SF, et al: J Mol Biol 215: 403,1990)。BLASTNを用いて塩基配列を解析する場合は、パラメーターは、例えばscore=100、wordlength=12とする。また、BLASTXを用いてアミノ酸配列を解析する場合は、パラメーターは、例えばscore=50、wordlength=3とする。BLASTとGapped BLASTプログラムを用いる場合は、各プログラムのデフォルトパラメーターを用いる。
 本明細書中、「がん(癌)」という用語は、当該分野において一般に認識されている意味で用いられ、呼吸器系癌、胃腸系癌、泌尿生殖器系癌、精巣癌、乳癌、前立腺癌、内分泌系癌、および黒色腫を含む上皮組織または内分 泌組織の悪性疾患を指す。例えば、癌は、子宮頸部、肺、前立腺、乳房、頭部および頸部、結腸(または大腸)、および卵巣の組織から形成されるものを含む。本用語は、例えば癌性組織および肉腫性の組織から構成される悪性腫瘍を含む癌肉腫をも含む。「腺癌」は、腺の組織に由来する、または腫瘍細胞が認識可能な腺構造を形成しているような癌を指す。なお、本願明細書中、用語「癌(または、がん)」と「腫瘍」とは同じ意味を有する用語として使用される。本発明の方法が治療または予防に使用され得るがんの例には、大腸がん、乳がん、胃がん、肺がん、前立腺がん、食道がん、肝臓がん、胆道がん、脾臓がん、腎がん、膀胱がん、子宮がん、精巣がん、甲状腺がん、膵臓がん、卵巣がん、脳腫瘍、血液腫瘍などが含まれる。
 本明細書中、「がんの治療もしくは予防のための医薬組成物」または「がんの予防剤もしくは治療剤」という用語は、抗癌剤、癌転移阻害剤、癌細胞のアポトーシス誘導剤、癌細胞の増殖抑制剤、癌細胞の浸潤抑制剤、がん予防剤等を含む意味で使用される。また、本明細書中、がんの「予防」とは、がんの進行または転移を抑制することを意味する。
 したがって、本発明の1つの実施形態では、PUF60遺伝子の発現阻害物質が提供され、それには、以下の(a)~(h)が含まれる。
 PUF60遺伝子からPUF60 mRNAへの転写を阻害する物質の例として、
(a)PUF60遺伝子またはその一部に対するアンチセンス核酸、
(b)PUF60遺伝子またはその一部に対するデコイ核酸、
(c)PUF60遺伝子またはその一部に対してドミナントネガティブに作用するPUF60遺伝子変異体、及び
(d)その他の転写阻害化合物。
 また、PUF60 mRNAからPUF60タンパク質への翻訳を阻害する物質の例として、
(e)PUF60 mRNAまたはその一部に対してRNAi作用を有するポリヌクレオチド(例えば、siRNA)、
(f)PUF60 mRNAまたはその一部に対するアンチセンスポリヌクレオチド、
(g)PUF60 mRNAまたはその一部に対してリボザイム活性を有するポリヌクレオチド、及び
(h)その他の翻訳阻害化合物。
 本明細書中、「核酸」または「(ポリ)ヌクレオチド」とは、DNAまたはRNAを意味する。ここでいう「核酸」は、プリンおよびピリミジン塩基を含有するのみでなく、修飾されたその他の複素環型塩基をもつようなものを含んでいてもよい。こうした修飾物は、メチル化されたプリンおよびピリミジン、アシル化されたプリンおよびピリミジン、アシル化されたプリンおよびピリミジン、あるいはその他の複素環を含むものであって良い。修飾されたヌクレオシドおよび修飾されたヌクレオチドはまた、糖部分が修飾されていて良く、例えば、1個以上の水酸基がハロゲンとか、脂肪族基などで置換されているか、あるいはエーテル、アミンなどの官能基に変換されていてよい。
 上記のように、本発明のがん治療剤においては、PUF60遺伝子の発現をRNAi効果により阻害する作用を有する核酸を有効成分として用いることができる。RNAiとは、標的遺伝子配列と同一もしくは類似した配列を有する二重鎖RNAを細胞内に導入すると、導入した外来遺伝子および標的内在性遺伝子の発現がいずれも阻害される現象のことをいう。ここで用いられるRNAとしては、例えば、19~30塩基長のRNA干渉を生ずる二重鎖RNA、例えば、dsRNA(double strand RNA)、siRNA(small interfering RNA)又はshRNA(short hairpin RNA)が挙げられる。このようなRNAは、リポソームなどの送達システムにより所望の部位に局所送達させることも可能であり、また上記二重鎖RNAが生成されるようなベクターを用いてこれを局所発現させることができる。このような二重鎖RNA(dsRNA、siRNAまたはshRNA)の調製方法、使用方法などは、多くの文献から公知である(特表2002-516062号;米国公開許第2002/086356A号; Nature Genetics, 24(2), Feb., 180-183; Genesis, 26(4), April, 240-244; Nature,Spe.21,407:6802,319-20; Genes & Dev., Vol.16,(8), Apr.16,948-958; Proc. Natl. Acad. Sci. USA., 99(8),16 Apr., 5515-5520; Science, 296(5567), 19 Apr., 550-553; Proc Natl. Acad. Sci. USA, Apr.30,99:9, 6047-6052; Nature Biotechnology, Vol.20 (5), May,497-500; Nature Biotechnology, Vol. 20(5)など)。
 本発明で用いられるRNAi効果を奏する二重鎖RNAの長さは、通常、19~30塩基、好ましくは20~27塩基、より好ましくは21~25塩基、最も好ましくは21~23塩基である。本発明においては、具体的には、下記siRNA(実施例3で使用)を用いることができる。
siRNA a : UGUACGACCAGGAGCGUUUUU(配列番号1)
siRNA b : CAGCCUACAGUGCGGAUAAUU(配列番号2)
siRNA c : GCUUCAUUGAGUACGAGAAUU(配列番号3)
siRNA d : CCAUCAAGAGCAUCGACAUUU(配列番号4)
 本明細書中、「アンチセンス核酸」、または「アンチセンスポリヌクレオチド」とは、ある対象となるDNA領域の少なくとも一部に相補的なポリヌクレオチドを有し、そのポリヌクレオチドが当該領域の少なくとも一部とハイブリダイズすることができる核酸のことをいう。本発明のアンチセンス核酸は、RNA、DNA、あるいは修飾された核酸(RNA、DNA)である。本発明のアンチセンス核酸は、RNA、DNA、あるいは修飾された核酸(RNA、DNA)である。それらは二本鎖DNA、一本鎖DNA、二本鎖RNA、一本鎖RNA、さらにDNA:RNAハイブリッドであってもよい。修飾された核酸の具体例としては、核酸の硫黄誘導体やチオホスフェート誘導体、さらにはポリヌクレオチドアミドやオリゴヌクレオチドアミドの分解に抵抗性を有するものなどが挙げられるが、それらに限定されるものではない。
 使用されるアンチセンス核酸は、適当なプロモーターの下流に連結され、好ましくは3’側に転写終結シグナルを含む配列が連結される。このようにして調製された核酸は、公知の方法を用いることで、所望の動物へ形質転換できる。アンチセンス核酸の配列は、形質転換される動物が持つ内在性遺伝子またはその一部と相補的な配列であることが好ましいが、遺伝子の発現を有効に抑制できる限りにおいて、完全に相補的でなくてもよい。
 例えば、PUF60遺伝子のmRNAの5’端近傍の非翻訳領域に相補的なアンチセンス配列を設計すれば、遺伝子の翻訳阻害に効果的である。コード領域もしくは3’側の非翻訳領域に相補的な配列も使用することができる。遺伝子の翻訳阻害に効果的なアンチセンス核酸は、標的遺伝子の転写産物に対して約70%以上、好ましくは約80%以上、より好ましくは約90%以上、最も好ましくは約95%以上の相補性を有する。
 アンチセンス核酸を用いて標的遺伝子の発現を効果的に抑制するには、アンチセンス核酸の長さは少なくとも約10塩基以上(例えば、10~40個程度)、好ましくは約15塩基以上であり、より好ましくは約100塩基以上であり、さらに好ましくは約500塩基以上である。アンチセンス核酸は公知の文献を参照して設計することができる(例えば、平島および井上、新生化学実験講座2 核酸IV遺伝子の複製と発現、日本生化学会編、東京化学同人、1993、p.319-347、J.Kawakami et al.,Pharm Tech Japan. Vol.8, p.247, 1992; S. T. Crooke et al., ed., Antisense Research and Applications, CRC Press, 1993など参照)。
 また、本発明のがん治療剤においては、PUF60遺伝子の転写産物を特異的に切断するリボザイム活性を有する核酸を有効成分として用いることができる。ここでいう「リボザイム活性」とは、ターゲットとする遺伝子の転写産物であるmRNAを部位特異的に切断する核酸のことをいう。リボザイムには、グループIイントロン型やRNasePに含まれるM1 RNAのように400ヌクレオチド以上の大きさのものもあるが、ハンマーヘッド型やヘアピン型と呼ばれる40ヌクレオチド程度の活性ドメインを有するものもある(タンパク質核酸酵素、1990、35、p.2191)。ハンマーヘッド型リボザイムについては、例えば、FEBS Lett, 1988, 228, p.228; FEBS Lett, 1988, 239, p.285;タンパク質核酸酵素,1990, 35, p.2191; Nucl Acids Res, 1989, 17, p.7059などを参照することができる。また、ヘアピン型リボザイムについては、例えば、Nature, 1986, 323, p.349; Nucl Acids Res, 1991, 19, p.6751;菊池洋,化学と生物,1992, 30, p.112などを参照することができる。このようなリボザイムを用いて本発明におけるPUF60遺伝子の転写産物を特異的に切断することで、該遺伝子の発現を阻害することができる。
 さらに、本発明は、PUF60遺伝子の転写活性を阻害する核酸以外の化合物を有効成分として用いることができる。そのような化合物は、例えば、PUF60遺伝子の発現・転写に関与する因子に結合する化合物である。このような化合物は、天然物でも合成化合物でもよい。このような化合物は、後述のスクリーニング方法によって、取得することが可能である。
 本発明の別の(another)実施形態では、PUF60タンパク質の活性阻害物質が提供され、それには、以下の(a)~(d)が含まれる。
 (a)PUF60タンパク質に特異的に結合する抗体、
 (b)PUF60タンパク質に対してドミナントネガティブの性質を有するPUF60タンパク質変異体、
 (c)PUF60タンパク質に特異的に結合する(低分子)化合物(上記抗体および変異体を除く)、及び
 (d)PUF60タンパク質と相互作用する分子の該相互作用を阻害する(低分子)化合物。
 本明細書における「抗体」とはタンパク質の全長又は断片に反応する抗体を意味する。本発明の抗体の形態には、特に制限はなく、本発明のPUF60タンパク質に特異的に結合する限り、上記ポリクローナル抗体、モノクローナル抗体のほかに、ヒト抗体、遺伝子組み換えによるヒト型化抗体、さらにその抗体断片や抗体修飾物も含まれる。PUF60タンパク質に特異的に結合する抗体(抗PUF60抗体)は、当業者に公知の方法により調製することが可能である。
 本明細書における「PUF60タンパク質に対してドミナントネガティブの性質を有するPUF60タンパク質変異体」とは、それをコードする遺伝子を発現させることによって、内在性の野生型PUF60タンパク質の活性を消失もしくは低下させる機能を有するタンパク質を指す。
 さらに、本発明においては、PUF60タンパク質の活性を阻害し得る物質として、PUF60タンパク質に結合する、上記抗体または変異体以外の化合物、またはPUF60タンパク質と相互作用する分子の該相互作用を阻害する、上記抗体または変異体以外の化合物を有効成分として用いることができる。そのような化合物は、例えば、PUF60タンパク質に結合し、その活性を阻害する化合物であり、あるいはPUF60タンパク質と相互作用す(ることによってPUF60の生物学的活性を発揮させ)る分子の該相互作用を阻害することによってPUF60の活性を阻害する化合物であり得る。このような化合物は、天然物でも合成化合物でもよい。このような化合物は、後述のスクリーニング方法によって、取得することが可能である。
 上記した本発明のPUF60タンパク質の活性を阻害し得る物質は、がんの予防剤もしくは治療剤として使用することができる。
2.癌マーカーとしてのPUF60の使用方法
 本発明者らは、PUB60遺伝子が、がん、特に、大腸がん及び乳がん患者由来の検体において高頻度で遺伝子増幅が生じていることを見出した(実施例1及び2)。
 したがって、本発明の一実施形態では、がんの診断マーカーとしてのPUB60の使用方法が提供される。
 より具体的には、本発明は、被験者由来の試料中のPUF60遺伝子、またはその転写産物もしくは翻訳産物を検出する工程を含む、PUF60を大腸がんまたは乳がんの診断マーカーとして使用する方法を提供する。
 本明細書中、「被験者」とは、ヒトである患者及び健常者を指し、特に、がんに罹患する危険性がある者、がんに罹患していることが疑われる者、がんに罹患している者などが含まれる。
 本明細書中、「試料」とは、被験者由来の臓器、組織、細胞、または体液(例えば、血液(全血、血漿、血清等を含む)、尿、リンパ液、唾液、汗、精液等)を含む。
 PUB60をがんの診断マーカーとして使用する本発明の方法のより具体的な実施形態では、
(i)被験者から採取した試料におけるPUF60遺伝子もしくはその転写産物もしくはその断片が、該遺伝子もしくはその転写産物の核酸配列の全部もしくは一部に特異的にハイブリダイズする核酸分子(プローブ)を用いて検出される。
 その結果、試料中に、PUF60遺伝子、その転写産物、またはこれらの断片が存在することが確認された場合には、その被験者が、がん、特に、大腸がんまたは乳がんに罹患している可能性が高いと診断され得る。
 ここで、「核酸」または「(ポリ)ヌクレオチド」とは、DNAまたはRNAを意味し、それらは二本鎖または一本鎖であり得、あるいはさらにDNA:RNAハイブリッドであってもよい。
 本明細書中、核酸分子が「特異的にハイブリダイズする」とは、その核酸分子が、ストリンジェントなハイブリダイゼーション条件下で特定の核酸配列にハイブリダイズする場合のような、任意の核酸配列には結合しないが、特定の核酸配列に対してのみ結合することを意味する。
 ハイブリダイゼーションは、公知の方法あるいはそれに準じる方法、例えば、モレキュラー・クローニング(Molecular Cloning Third Edition, J. Sambrook et al., Cold Spring Harbor Lab. Press. 2001)に記載の方法などに従って行うことができる。また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って行うことができる。ここで、「ストリンジェントなハイブリダイゼーション条件」は、特定の核酸配列が、本発明において使用するプローブ核酸によってその他の任意の核酸配列と区別して結合されうる限り、低ストリンジェントな条件、中ストリンジェントな条件及び高ストリンジェントな条件のいずれでもよい。「低ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5% SDS、50%ホルムアミド、32℃の条件である。また、「中ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5% SDS、50%ホルムアミド、42℃の条件である。「高ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5% SDS、50%ホルムアミド、50℃の条件である。これらの条件において、温度を上げるほど高い相同性を有するDNAが効率的に得られることが期待できる。ただし、ハイブリダイゼーションのストリンジェンシーに影響する要素としては温度、プローブ濃度、プローブの長さ、イオン強度、時間、塩濃度など複数の要素が考えられ、当業者であればこれら要素を適宜選択することで同様のストリンジェンシーを実現することが可能である。
 ハイブリダイズ可能な核酸分子としては、FASTA、BLASTなどの相同性検索ソフトウェアにより、デフォルトのパラメーターを用いて計算したときに、PUF60の核酸配列と、例えば、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上の同一性を有する核酸分子をあげることができる。
 本発明の診断方法においては、PUF60遺伝子の核酸配列に基づいて設計されるプローブ又はプライマーを用いることができる。具体的には、そのような診断方法は、例えば、(a)被験者由来の生体試料と、PUF60遺伝子またはその断片の核酸配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な核酸配列からなるポリヌクレオチド(プローブ)とを接触させる工程、および(b)前記試料中での前記ポリヌクレオチドと、PUF60遺伝子またはその断片とのハイブリダイゼーションを検出および/または定量する工程を包含する。
 上記本発明の方法では、被験者由来の生体試料中のPUF60遺伝子のDNAまたはRNA(またはその断片)を、上記プローブを使用して検出および/または定量する。プローブとして用いる核酸配列の長さは、例えば、12塩基以上、15塩基以上、18塩基以上、21塩基以上、24塩基以上、27塩基以上、30塩基以上、またはさらに長い長さのポリヌクレオチド断片であり得る。ハイブリダイゼーションには、上記した低、中又は高ストリンジェントな条件を使用し得る。なお、本明細書中、「PUF60遺伝子またはその断片の核酸配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な核酸配列」には、PUF60遺伝子またはその断片の核酸配列に相補的な核酸配列も当然に含まれる。プローブおよび核酸のハイブリダイゼーションの方法は当業者に知られており、例えば国際公開公報第89/06698号、EP-A0200362、米国特許第2,915,082号、EP-A0063879、EP-A0173251、EP-A0128018に記載されている。
 本発明の診断方法においては、PUF60遺伝子に対する特異的ポリヌクレオチドプローブまたはプライマーを用いて、公知の手法を用いて標的配列を検出または定量することができる。そのような公知の手法として、例えば、サザンハイブリダイゼーション、ノーザンハイブリダイゼーション、RT-PCR法、PCR-SSCP法(Genomics,第5巻,874~879頁(1989年))、Proceedings of the National Academy of Sciences of the United States of America, 第86巻, 2766~2770頁(1989年))、FISH法、DNAチップあるいはアレイCGH(Comparative Genomic Hybridization)法などを用いることができる。定量的な検出は、定量RT-PCRによって実施可能である。
 アレイCGH法は、染色体CGH法(Kallioniemi, A. et al. (1992) Science 258, 818-821)を応用した方法で、スライド上に染色体領域をカバーするゲノムDNA断片(BAC, PAC, YACなど)を高密度にスポットしたDNAチップを用いて、別々の色素で標識したがん由来DNAと正常DNAを、スライド上のゲノムDNA断片に対して同時にハイブリダイゼーションを行い、その結合状態を検出することにより、がんにおけるDNAコピー数異常を高解像度に検出する方法である(Pinkel, D. et al. (1998) Nat. Genet. 20, 207-211)。
 なお、本発明においては、PUF60遺伝子の発現が上方制御されるか否かを検出するために、細胞のPUF60のmRNAレベルを標準遺伝子(ハウスキーピング遺伝子(例えば、Shaper, N.L., J. Mammary Gland Biol. Neoplasia 3 (1998) 315-324; Wu, Y. Y.およびRees, J. L., Acta Derm. Venereol. 80 (2000) 2-3)のmRNAレベルと、好ましくはRT-PCRによって比較することもできる。
 上記のような手法によって標的配列(DNA、mRNAなど)を検出および/または定量し、PUF60遺伝子の発現(または発現過多)が確認された場合は、例えば、PUF60の発現(または過剰発現)に起因する疾患(例えば、癌(例:大腸がん、乳がん))に罹患している可能性が高い、あるいは将来罹患する可能性が高いと診断することができる。
 あるいは、上記本発明の方法の具体的な実施形態の代替的な態様では、
(ii)被験者から採取した試料におけるPUF60タンパク質が、該タンパク質もしくはその断片に特異的に結合する抗体を用いて検出される。
 その結果、試料中に、PUF60タンパク質またはその断片が存在することが確認された場合には、その被験者が、がん、特に、大腸がんまたは乳がんに罹患している可能性が高い、あるいは将来罹患する可能性が高いと診断され得る。
 本明細書中、用語「PUF60タンパク質もしくはその断片に特異的に結合する抗体」と「抗PUF60抗体」とは互換的に使用され、PUF60タンパク質、その断片(部分ペプチド)もしくはその塩に特異的に結合する抗体を意味する。本発明において使用される抗PUF60抗体は、ポリクローナル抗体であってもよいし、モノクローナル抗体であってもよい。抗体のクラスは、特に限定されず、IgG、IgM、IgA、IgD、またはIgE等のいずれのアイソタイプを有する抗体をも包含する。好ましくは、IgGまたはIgMであり、精製の容易性等を考慮すると、より好ましくはIgGである。また、ここでいう「抗体」という用語は、任意の抗体断片または誘導体を含む意味で用いられ、例えば、Fab、Fab’2、CDR、ヒト化抗体、多機能抗体、単鎖抗体(ScFv)などを含む。本発明の抗体は、公知の方法で製造することができる。このような抗体の製造法は当該分野で周知である(例えばHarlow E. & Lane D., Antibody, Cold Spring Harbor Laboratory Press (1988) を参照)。
 上記のような被験者由来の生体試料におけるPUF60の発現を検出するための免疫測定は、がんを有すると疑われるか、がんの危険性を有する被験体から採取した生体試料を、特異的抗原-抗体結合を生じさせる条件下で抗PUF60抗体と接触させ、次いで、抗体による免疫特異的結合量を測定することを包含する。このような抗体の結合を使用して、PUF60タンパク質の存在および/または増大した発現が検出される。この場合、増大したPUF60タンパク質発現の検出が疾病状態の指標となる。必要に応じて、生体試料中のPUF60タンパク質のレベルを、がんを有しない健常者のレベルと比較してもよい。
 上記免疫測定法の1つの態様では、例えば、血清試料などの生体試料を、試料中に存在する全部のタンパク質を固定する目的で、ニトロセルロースなどの固相支持体または担体と接触させる。次いで、この支持体を緩衝液で洗浄し、続いて検出可能に標識した抗PUF60抗体により処理する。次いで、この固相支持体を緩衝液で2回洗浄し、未結合抗体を除去する。固相支持体上の結合した抗体の量を、周知の方法に従って測定する。各測定に適する検出条件は、慣用的な試験方法を使用して当業者により適宜決定され得る。
 抗PUF60抗体を検出可能に標識する方法の1つにおいて、当該抗体を、酵素、例えば、酵素イムノアッセイ(EIA)に使用されるもののような酵素に結合させる[Voiler, A., "The Enzyme Linked Immunosorbent Assay" ELISA, 1978, Diagnostic Horizons, 2:1-7, Microbiological Associates Quarterly Publication, Walkersville. MD; Voiler, A., J. Clin. Pathol., 31:507-520, 1978; Butier, J. E., Meth. Enzymol., 73:482-523, 1981]。抗体に結合する酵素を、例えば分光光度測定により、可視手段による蛍光測定により検出することができる化学分子が生成されるような方法で、適当な基質、好ましくは色素原性基質と反応させる。抗体に検出可能な標識を付けるために使用することができる酵素は、ペルオキシダーゼおよびアルカリ性ホスファターゼを包含するが、これらに限定されない。この検出はまた、酵素に対する色素原性基質を用いる比色法により達成することができる。
 その他の本発明において使用し得る方法としては、ラジオイムノアッセイ(RIA)、サンドイッチ免疫測定法、イムノメトリック法、ネフロメトリー、蛍光免疫測定法(FIA)、時間分解蛍光免疫測定法(TRFIA)、酵素免疫測定法(EIA)、発光免疫測定法(LIA)、電気化学発光免疫測定法(ECLIA)、ラテックス凝集法、免疫沈降アッセイ、沈降素反応法、ゲル拡散沈降素反応法、免疫拡散検定法、凝集素検定法、補体結合検定法、免疫放射分析検定法、およびプロテインA免疫検定法からなる群から選択される免疫測定法などが挙げられる(例えば、WO00/14227号公報、EP1111047A2号公報)。
 以上のように、本発明の抗体を用いるPUF60タンパク質の定量法を利用することにより、PUF60タンパク質の機能不全に関連する各種疾患の診断をすることができる。例えば、PUF60タンパク質の濃度増加が検出された場合は、例えば、PUF60タンパク質の過剰発現に起因する疾患(例えば、がん(例:大腸がん、乳がん))である可能性が高いまたは将来罹患する可能性が高いと診断することができる。
 なお、本発明の抗PUF60抗体は、in vivoでの診断に用いることもできる。ここで使用し得る抗体調製物の調製および使用方法は当該分野でよく知られている。例えば、抗体-キレート剤について、Nucl. Med. Biol. 1990 17:247-254に記載されている。また、磁気共鳴イメージングで用いる標識としての常磁性イオンを有する抗体については、例えば、Magnetic Resonance in Medicine 1991 22:339-342に記載されている。
3.診断用キット
 本発明はまた、PUF60遺伝子またはその一部の核酸配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な核酸配列を含有する、被験者由来の試料中のPUF60遺伝子またはその断片をがんマーカーとして検出および/または定量するためのキットをも提供する。さらに、本発明は、抗PUF60抗体を含有する、被験者の試料中のPUF60タンパク質またはその断片をがんマーカーとして検出および/または定量するためのキットを提供する。これらのキットは、上述のハイブリダイゼーション法または免疫学的手法等により、がんマーカーを検出するために用いられる。このようながんとしては、例えば、大腸がん、乳がん、胃がん、肺がん、前立腺がん、食道がん、肝臓がん、胆道がん、脾臓がん、腎がん、膀胱がん、子宮がん、精巣がん、甲状腺がん、膵臓がん、卵巣がん、脳腫瘍、血液腫瘍などが含まれる。本発明の診断用キットは、特に、大腸がん及び乳がんの診断に使用されうる。
 上記第一の態様のキットは、PUF60遺伝子またはその一部の核酸配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な核酸配列からなるポリヌクレオチドを含有する。例えば、本発明のキットは、DNAチップ上に固定された上記ポリヌクレオチドを含有し得る。
 上記第二の態様のキットは、被験者からの体液試料中のPUF60抗原(PUF60タンパク質およびその部分ペプチド(または断片)を含む)を検出および/または定量する成分を含有する。例えば、PUF60タンパク質がELISAで検出および/または定量される場合、このような成分は、例えば、組織切片、または血液や尿のような体液試料中のPUF60のレベルを検出および/または定量するために使用され得る。このような抗体は放射能、蛍光、比色、または酵素標識で標識されていてもよい。本発明のキットは、標識された二次抗体を含有していてもよい。
 本発明のキットは、PUF60遺伝子またはその一部の核酸配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な核酸配列、抗PUF60抗体等の他に、容器およびラベルを含んでいてもよい。容器上のまたは容器に伴うラベルには、薬剤が大腸がんマーカーまたは乳がんマーカーの検出に使用されることが示されていてもよい。また、他のアイテム、例えば、使用説明書等がさらに含まれていてもよい。
4.PUF60タンパク質の活性もしくは発現を阻害する物質のスクリーニング方法
 本発明は、がん抑制作用を有する候補化合物のスクリーニング方法をも提供する。
 一つの好ましい態様は、PUF60タンパク質と被検化合物との結合を指標とする方法である。通常、PUF60タンパク質と結合する化合物は、PUF60タンパク質の活性を阻害する効果を有することが期待される。ここで、該化合物は、PUF60タンパク質の活性部位に結合することが好ましい。本方法においては、まず、PUF60タンパク質と被検化合物とを接触させる。PUF60タンパク質は、被検化合物との結合を検出するための指標に応じて、例えば、PUF60タンパク質の精製された形態、細胞内または細胞外に発現した形態、あるいはアフィニティーカラムに結合した形態であり得る。この方法に用いる被検化合物は必要に応じて適宜標識して用いることができる。標識としては、例えば、放射標識、蛍光標識等を挙げることができる。
 本方法においては、次いで、PUF60タンパク質と被検化合物との結合を検出する。
 本方法に用いる被検化合物としては、特に制限はない。例えば、天然化合物、有機化合物、無機化合物、タンパク質、ペプチドなどの単一化合物、並びに、化合物ライブラリー、遺伝子ライブラリーの発現産物、細胞抽出物、細胞培養上清、発酵微生物産生物、海洋生物抽出物、植物抽出物等が挙げられるが、これらに限定されない。
 PUF60タンパク質と被検化合物との結合は、例えば、PUF60タンパク質に結合した被検化合物に付された標識によって検出することができる。また、細胞内または細胞外に発現しているPUF60タンパク質への被検化合物の結合により生じるPUF60タンパク質の活性の変化を指標として検出することもできる。タンパク質と被検化合物との結合活性は、公知の手法によって測定することができる(例えば、Sullivan, F. X., et al. (1998) J. Biol. Chem. 273, 8193-8202 ; Ohyama, C. et al. (1998) J. Biol. Chem. 273, 14582-14587 ; Noda, K., et al. (2003) Cancer Res. 63, 6282-6289参照)。
 本方法においては、次いで、PUF60タンパク質と結合し、その活性を阻害する被検化合物を選択する。
 本方法により単離される化合物は、がん抑制作用を有することが期待され、がんの予防剤または治療剤として有用である。
 本発明のスクリーニング方法の他の態様は、PUF60遺伝子の発現を指標とする方法である。
 本方法においては、まず、PUF60遺伝子を発現する細胞に、被検化合物を接触させる。用いられる「細胞」の由来としては、ヒト、マウス、ネコ、イヌ、ウシ、ヒツジ、トリなど、ペット、家畜等に由来する細胞が挙げられるが、これら由来に制限されない。「PUF60遺伝子を発現する細胞」としては、内因性のPUF60遺伝子を発現している細胞、または外因性のPUF60遺伝子が導入され、該遺伝子が発現している細胞を利用することができる。外因性のPUF60遺伝子が発現した細胞は、通常、それぞれPUF60遺伝子が挿入された発現ベクターを宿主細胞へ導入することにより作製することができる。該発現ベクターは、一般的な遺伝子工学技術によって作製することができる。
 本方法に用いる被検化合物としては、特に制限はないが、例えば、天然化合物、有機化合物、無機化合物、タンパク質、ペプチドなどの単一化合物、並びに、化合物ライブラリー、遺伝子ライブラリーの発現産物、細胞抽出物、細胞培養上清、発酵微生物産生物、海洋生物抽出物、植物抽出物等が用いられる。
 PUF60遺伝子を発現する細胞への被検化合物の「接触」は、通常、それぞれPUF60遺伝子を発現する細胞の培養液に被検化合物を添加することによって行うが、この方法に限定されない。被検化合物がタンパク質等の場合には、該タンパク質を発現するDNAベクターを、該細胞へ導入することにより、「接触」を行うことができる。
 本方法においては、次いで、該PUF60遺伝子の発現レベルを測定する。ここで「遺伝子の発現」には、転写および翻訳の双方が含まれる。遺伝子の発現レベルの測定は、当業者に公知の方法によって行うことができる。例えば、PUF60遺伝子を発現する細胞からmRNAを常法に従って抽出し、このmRNAを鋳型としたノーザンハイブリダイゼーション法またはRT-PCR法を実施することによって該遺伝子の転写レベルの測定を行うことができる。あるいは、PUF60遺伝子のプロモーター領域を常法に従って単離し、その下流に標識遺伝子(例えば、ルシフェラーゼ、GFP、ガラクトシダーゼ等の発光、蛍光、発色などを指標に検出可能な遺伝子が挙げられるが、これらに限定されない)をつなげ、その標識遺伝子の活性を見ることによっても該遺伝子の転写レベルの測定を行うことができる。また、PUF60遺伝子を発現する細胞からタンパク質画分を回収し、それぞれPUF60タンパク質の発現をSDS-PAGE等の電気泳動法で検出することにより、遺伝子の翻訳レベルの測定を行うこともできる。さらに、PUF60タンパク質に対する抗体を用いて、ウエスタンブロッティング法を実施することにより該タンパク質の発現を検出することにより、遺伝子の翻訳レベルの測定を行うことも可能である。PUF60タンパク質の検出に用いる抗体としては、検出可能な抗体であれば、特に制限はないが、例えばモノクローナル抗体、またはポリクローナル抗体の両方を利用することができる。
 本方法においては、次いで、被検化合物を接触させない場合(コントロール)と比較して、該発現レベルを低下させる化合物を選択する。このようにして選択された化合物は、がん治療剤のための候補化合物となる。
5.製剤化および製剤の投与方法
 本発明のPUF60遺伝子の発現阻害物質を含有するがんの予防剤または治療剤、PUF60タンパク質の活性阻害物質を含有するがんの予防剤または治療剤、本発明の抗PUF60抗体を含有するがんの予防剤または治療剤、または本発明において使用する抗PUF60抗体が、放射性同位元素、治療タンパク質、低分子の薬剤、および治療遺伝子を担持したウイルスベクターもしくは非ウイルスベクターのうちのいずれか、またはこれらの任意の組み合わせと化学的または遺伝子工学的に結合されているがんの予防剤または治療剤は、公知の手法に基づいて製剤化することができる。
 本発明の予防剤または治療剤の製剤化にあたっては、常法に従い、必要に応じて薬学的に許容される担体を添加することができる。例えば、界面活性剤、賦形剤、着色料、着香料、保存料、安定剤、緩衝剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等が挙げられるが、これらに制限されず、その他常用の担体を適宜使用することができる。具体的には、軽質無水ケイ酸、乳糖、結晶セルロース、マンニトール、デンプン、カルメロースカルシウム、カルメロースナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアセタールジエチルアミノアセテート、ポリビニルピロリドン、ゼラチン、中鎖脂肪酸トリグリセライド、ポリオキシエチレン硬化ヒマシ油60、白糖、カルボキシメチルセルロース、コーンスターチ、無機塩類等を挙げることができる。
 本発明の予防剤または治療剤の剤型の種類としては、例えば、経口剤として錠剤、粉末剤、丸剤、散剤、顆粒剤、細粒剤、軟・硬カプセル剤、フィルムコーティング剤、ペレット剤、舌下剤、ペースト剤等、非経口剤として注射剤、坐剤、経皮剤、軟膏剤、硬膏剤、外用液剤等が挙げられ、当業者においては投与経路や投与対象等に応じた最適の剤型を選ぶことができる。有効成分としてのPUF60タンパク質の活性(またはPUF60遺伝子の発現)阻害物質は、製剤中0.1から99.9重量%含有することができる。
 本発明の薬剤の有効成分の投与量は、投与対象、対象臓器、症状、投与方法などにより差はあるが、経口投与の場合、一般的に例えば、患者(60kgとして)に対して一日につき約0.1mg~1000mg、好ましくは約1.0~100mg、より好ましくは約1.0~50mgである。非経口的に投与する場合は、その一回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常例えば、患者(60kgに対して)、一日につき約0.01から30mg程度、好ましくは約0.1から20mg程度、より好ましくは約0.1~10mg程度を静脈注射により投与するのが好都合である。しかしながら、最終的には、剤型の種類、投与方法、患者の年齢や体重、患者の症状等を考慮して、医師または獣医師の判断により適宜決定することができる。
 このようにして得られる製剤は、例えば、ヒトやその他の哺乳動物(例えば、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して投与することができる。ヒト以外の動物の場合も、上記の60kg当たりに換算した量を投与することができる。
 本発明の予防剤または治療剤は、がん(例えば、大腸がん、胃がん、肺がん、乳がん、前立腺がん、食道がん、肝臓がん、胆道がん、脾臓がん、腎がん、膀胱がん、子宮がん、精巣がん、甲状腺がん、膵臓がん、卵巣がん、脳腫瘍、血液腫瘍など)の予防・治療、好ましくは、大腸がんまたは乳がんの予防・治療に用いられる。
 本発明の薬剤は、PUF60タンパク質の活性阻害物質またはPUF60遺伝子の発現阻害物質を有効成分として含有しているため、抗癌剤、癌転移阻害剤、癌細胞のアポトーシス誘導剤等として使用し得る。対象となる細胞、組織、臓器、または癌の種類は特定のものに限定されない。また、本発明の薬剤は、PUF60タンパク質の活性阻害物質およびPUF60遺伝子の発現阻害物質の両方を含んでいても良い。
 本発明の予防剤または治療剤において、アンチセンス核酸を用いる場合、該アンチセンス核酸を単独あるいはレトロウイルスベクター、アデノウイルスベクター、アデノウイルスアソシエーテッドウイルスベクターなどの適当なベクターに挿入した後、公知の手段に従って投与することができる。アンチセンス核酸は、単独で、あるいは生理学的に認められる担体とともに製剤化し、遺伝子銃やハイドロゲルカテーテルのようなカテーテルによって投与することができる。
 また、本発明において組換えアデノウイルス粒子のようなウイルスベクターと抗PUF60抗体との組み合わせを癌治療のために使用する場合は、これら単独で使用してもよいが、一般には製薬的に許容できる担体と共に使用される。そのような担体としては、既に上記したような担体、ならびに水、生理食塩水、グルコース、ヒトアルブミン等の水性等張溶液が好ましい。更に、製薬的に通常使用される添加剤、保存剤、防腐剤、衡量等を添加することもできる。そのように調製した医薬組成物は、治療すべき疾病に依存して適切な投与形態、投与経路によって投与することができる。投与形態としては、例えば、乳剤、シロップ剤、カプセル、錠剤、顆粒剤、注射剤、軟膏等が挙げられる。本発明の抗PUF60抗体-ウイルスベクター粒子またはこれを含む医薬組成物を治療のために投与する場合は、通常成人一人当たり1回に10~1015個のウイルス粒子を投与するのが好ましいが、疾病の状態や標的細胞・組織の性質によって変更してよい。投与回数は、1日1回~数回でよく、投与期間は1日~数ヶ月以上にわたってもよく、1~数回の投入を1セットとして、長期にわたって断続的に多数セットを投与してもよい。また、本発明において使用されるウイルスベクター粒子またはウイルスベクター核酸分子は、特定の細胞および/または組織の検出、または疾病状態の診断に使用することができる。例えば、ウイルスベクターの核酸分子に検出可能なマーカー遺伝子を組込み、これを適切な宿主細胞にトランスフェクションして得られたウイルスベクター粒子は、抗PUF60抗体と組み合わせて腫瘍細胞を検出診断するために使用することができる。あるいは、抗PUF60抗体に検出可能な標識を結合させて腫瘍細胞を検出診断するために使用することができる。
 以下、実施例を用いて本発明をより具体的に説明するが、本発明の範囲は、これらの実施例によって限定されない。
実施例1 : アレイCGHによるがん特異的増幅遺伝子の同定
 本実施例では、大腸がん特異的な遺伝子増幅を特定するために、大腸がん検体100症例についてアレイCGH法(当該分野において公知技術(Snijders AM, et al., (2003) Brief Funct Genomic Proteomic. Apr;2(1):37-45. ; de Leeuw RJ, et al., (2004) Hum Mol Genet. Sep 1;13(17):1827-37. ; Veltman JA, et al., (2002) Am J Hum Genet. May;70(5):1269-76.))による解析を実施した。
 その結果、PUF60 (Poly-U-binding factor 60kDa) (NCBI Accession No. : NM_078480) 遺伝子が大腸がん検体において高頻度で増幅していることを見出した(表1)。さらに、乳がん46症例についても評価した結果、遺伝子増幅が認められた(表1)。
Figure JPOXMLDOC01-appb-T000001
実施例2 : 免疫組織染色法によるがん特異的発現亢進
 PUF60遺伝子が、がん検体組織でがん特異的に発現していることを、当該技術分野で公知の免疫組織染色法により評価した。
 具体的には、大腸がん組織アレイスライド(Super Bio chip、型番:CDA)または乳がん組織アレイスライド(Biochain、型番:Z7020005)を、60℃の恒温槽で1時間インキュベートした後、キシレンに30分間浸し、さらに新しいキシレンで2回洗うことでパラフィンの除去を行った。その後、一連の段階的濃度(100%~75%)のエタノールで処理した後、組織切片を純水で水和させた。スライドを10mMクエン酸緩衝液(pH6.0)に浸し、121℃で15分間、オートクレーブによる抗原賦活化処理を行った後、30分間室温で放冷した。スライドをTBST(25mM Tris-HCl pH7.4,130mMNaCl,2.5mMKCl,0.1%Tween20)で5分間3回洗浄した後、メタノールで3%に希釈した過酸化水素水に15分間浸した。TBSTで5分間3回洗浄を行った後、ブロックエース(DSファーマ)で30分間ブロッキング反応を行い、PUF60 antibody(abcam、型番:ab22819)を100倍希釈で1時間、室温で反応させた。TBSTで5分間3回洗浄を行った後、VECTASTAIN Elite ABC Goat IgG Kit(Vector Laboratories)およびMetal Enhanced DAB Substrate Kit(Thermo Scientific)を用いて、指定のプロトコールに従い、一次抗体の反応を検出した。TBSTへの浸して検出反応を停止させた後、TBSTで5分間3回洗浄を行い、ヘマトキシリン3G(サクラファインテック)による対比染色を行った。段階的濃度のエタノール(75%~100%)による脱水、キシレンによる透徹を行い、マウントクイック(大道産業)で封入した後、BX51-34-FL-1(オリンパス)を用い、スライドの検鏡を行った。
結果
 大腸がん, 乳がんそれぞれ10症例の組織切片を用いて、免疫組織染色を実施した結果、共に10検体中10検体(100%)でがん特異的な染色が認められた。
PUF60はがん特異的に発現亢進しており、がんの治療薬の標的としてだけではなく、診断マーカーとしても有用である。
Figure JPOXMLDOC01-appb-T000002
実施例3 : 大腸がん及び乳がん細胞株を用いたPUF60のRNAi解析による抗腫瘍性効果の評価
 大腸がん及び乳がん検体において遺伝子増幅と発現亢進が認められたPUF60遺伝子について、機能阻害時のがん細胞に与える影響をRNAi法により評価した。RNAi法による遺伝子ノックダウン率については、定量的RT-PCR解析により評価し、がん細胞に与える影響については、生細胞数測定解析により細胞の生存率を求め、評価した。
 <RNAi解析>
 細胞株はATCCより購入し、指定のプロトコールに従い培養を行った。siRNAはON-TARGET plus SMART pool siRNA (Dharmacon)を用いた。このsiRNAはOff-target回避のための修飾が施され、さらに以下の4種のsiRNAが混合されている。
siRNA a : UGUACGACCAGGAGCGUUUUU(配列番号1)
siRNA b : CAGCCUACAGUGCGGAUAAUU(配列番号2)
siRNA c : GCUUCAUUGAGUACGAGAAUU(配列番号3)
siRNA d : CCAUCAAGAGCAUCGACAUUU(配列番号4)
 siRNAの培養細胞内への導入は、Lipofectamin RNAiMAX(Invitrogen)を使用し、10nMのsiRNAを試薬添付のプロトコールに従い細胞に導入した。対照にはON-TARGET plus Non-Targeting Pool(Dharmacon)を使用した。
 <定量的RT-PCR解析>
 遺伝子ノックダウン率について評価するために、siRNAの効果をmRNAレベルで検証した。siRNA導入後24時間の細胞から、SV96 Total RNA Isolation System(Promega)を使用して、試薬添付のプロトコールに従い、全RNAを抽出した。その後、SuperScript III First-Strand Synthesis System for RT-PCR(Invitrogen)を使用して、試薬添付のプロトコールに従い、cDNAを合成した。
 このcDNAを鋳型にして、定量的RT-PCRを実施した。定量的PCRは、Power SYBR Green Master Mix(Applied Biosystems)を使用して、試薬添付のプロトコールに従い、7500 Real-Time PCR System(Applied Biosystems)を用いて実施した。内在性コントロールとして、TATA binding protein(TBP)を用い、ネガティブコントロール(NC)との相対比を比較Ct法(ΔΔCt)により算出した。
 <生細胞数測定解析>
 siRNA導入後の生細胞数をAlamar Blue(Biosource)を用いて、試薬添付のプロトコールに従い、Wallac 1420 Multilabel/Luminescence Counter ARVO(PerkinElmer)もしくは、インフィニット M200(TECAN)により測定した。
 結果
 図2に、PUF60遺伝子のsiRNAを導入後、24時間で回収した大腸がん及び乳がん細胞株を用いて行った定量的RT-PCR解析の結果を示す。PUF60の発現量はネガティブコントロール(NC)に対する相対量で示した。NCはどの遺伝子の転写産物もターゲットにしない配列のsiRNAを使用した。図2に示されるように、RNAレベルでのRNAi法による発現抑制効果を定量的RT-PCRで評価した結果、siRNAの導入によりNCに対して十分な発現抑制が認められた。
 図3に、大腸がん及び乳がん細胞株に対してPUF60遺伝子のRNAi解析を行った結果を示した。siRNAを各細胞株にトランスフェクション後、4日目に生細胞数測定解析を行い、コントロール(NC)に対する相対値をViability(生存率)として算出した。
 その結果、大腸がん細胞株RKO, RKOE6, WiDr細胞株で、それぞれ約67, 39, 58%の明らかな増殖抑制効果が認められた。さらに、乳がん細胞株HCC1086, MDA-MB-231, BT-20細胞株で、それぞれ約56, 69, 58%の明らかな増殖抑制効果が認められた。
 PUF60遺伝子のノックダウン時の細胞の表現型を顕微鏡観察により詳細に評価した結果、細胞死の誘導や細胞周期の延長により増殖抑制効果が引き起こされていることが明らかとなった。
 これらのことから、大腸がんや乳がん細胞株の増殖においてPUF60遺伝子は重要であり、発現抑制によりがん細胞の増殖を抑制することから、PUF60の機能阻害剤が抗がん剤として有効である可能性が示唆された。
 上記実施例に示すように、PUF60が特に大腸がん及び乳がんで遺伝子増幅と発現亢進が認められこと、及びRNAiによる機能阻害でがん細胞の増殖抑制効果が認められたこと等から、本発明は、PUF60の大腸がん及び乳がんの診断マーカーとして、及び次世代の抗がん剤としてのPUF60発現阻害物質またはPUF60活性阻害物質等として有用である。

Claims (17)

  1.  PUF60遺伝子の発現阻害物質またはPUF60タンパク質の活性阻害物質を含有する、がん細胞の増殖を抑制するための組成物。
  2.  前記PUF遺伝子の発現阻害物質が、
     (a)PUF60遺伝子の発現をRNAi効果により阻害する作用を有する核酸、
     (b)PUF60遺伝子の転写産物またはその一部に対するアンチセンス核酸、
    および
     (c)PUF60遺伝子の転写産物を特異的に切断するリボザイム活性を有する核酸、
    からなる群から選択されるいずれかであり、
     前記PUF60タンパク質の活性阻害物質が、
     (d)PUF60タンパク質に特異的に結合する抗体、
     (e)PUF60タンパク質に特異的に結合する低分子化合物、および
     (f)PUF60タンパク質と相互作用する分子の該相互作用を阻害する低分子化合物、
    からなる群から選択されるいずれかである、請求項1に記載の組成物。
  3.  前記PUF60遺伝子の発現阻害物質が、配列番号1、配列番号2、配列番号3、または配列番号4の核酸配列を含有する、請求項1または2に記載の組成物。
  4.  前記がんが、大腸がんまたは乳がんである、請求項1~3のいずれかに記載の組成物。
  5.  がんの予防または治療のための医薬として使用するための、請求項1~4のいずれかに記載の組成物。
  6.  (i)下記(a)または(b) に対するアンチセンス核酸分子およびsiRNA分子
      (a)PUF60遺伝子の核酸配列
      (b)PUF60タンパク質をコードする核酸配列、
    ならびに
     (ii)下記の(c)および(d)のベクター
      (c)前記アンチセンス核酸分子を含むベクター
      (d)前記siRNA分子を含むベクター
    からなる群から選択される、核酸分子。
  7.  前記siRNA分子が、配列番号1、配列番号2、配列番号3、または配列番号4の核酸配列を含む、請求項6に記載の核酸分子。
  8.  大腸がんまたは乳がんの予防または治療のために使用する、請求項6または7の核酸分子。
  9.  被験者由来の試料中のPUF60遺伝子、その転写産物もしくは翻訳産物、またはこれらの断片を検出する工程を含む、PUF60をがんの診断マーカーとして使用する方法。
  10.  請求項9に記載の方法であって、
    (i)被験者由来の試料におけるPUF60遺伝子もしくはその転写産物もしくはこれらの断片を、該遺伝子もしくはその転写産物の核酸配列もしくはPUB60タンパク質をコードする核酸配列の全部もしくは一部に特異的にハイブリダイズする核酸分子を用いて検出する工程、
    または
    (ii)被験者由来の試料におけるPUF60タンパク質を、該タンパク質もしくはその断片に特異的に結合する抗体を用いて検出する工程
    を含み、
     前記PUF60遺伝子、その転写産物、前記PUF60タンパク質、または前記断片の前記試料中での存在が、前記被験者ががんに罹患している可能性を示す、方法。
  11.  前記がんが、大腸がんまたは乳がんである、請求項9または10に記載の方法。
  12. (i) PUF60遺伝子もしくはその転写産物の核酸配列もしくはPUF60タンパク質をコードする核酸配列の全部もしくは一部に特異的にハイブリダイズする核酸分子、または
    (ii) PUF60タンパク質もしくはその断片に特異的に結合する抗体、および
    (iii) 使用説明書
    を含む、がんの診断用キット。
  13.  前記がんが、大腸がんまたは乳がんである、請求項12に記載の診断用キット。
  14.  PUF60遺伝子の発現阻害剤のスクリーニング方法であって、
     試験化合物の存在下および非存在下で、PUF60遺伝子を発現する細胞を培養する工程、
     前記培養細胞のPUF60発現量を、PUF60遺伝子の転写産物の量またはPUF60タンパク質の量を指標に測定する工程、および
     前記試験化合物の存在下および非存在下での前記PUF60発現量を比較する工程
    を含む、スクリーニング方法。
  15.  PUF60タンパク質の活性阻害剤のスクリーニング方法であって、
     試験化合物を、PUF60遺伝子によってコードされるポリペプチドもしくはPUF60タンパク質と接触させる工程、
     前記ポリペプチドもしくはタンパク質の生物学的活性を測定する工程、および
     前記試験化合物非存在下での前記ポリペプチドもしくはタンパク質の生物学的活性と比較して、前記ポリペプチドもしくはタンパク質の生物学的活性を抑制する化合物を選択する工程
    を含む、スクリーニング方法。
  16.  がん予防剤または治療剤のスクリーニングのために使用される、請求項14または15に記載のスクリーニング方法。
  17.  前記がんが、大腸がんまたは乳がんである、請求項16に記載のスクリーニング方法。
PCT/JP2011/059356 2010-04-16 2011-04-15 癌の診断剤および治療剤 WO2011129427A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-095078 2010-04-16
JP2010095078 2010-04-16

Publications (2)

Publication Number Publication Date
WO2011129427A1 WO2011129427A1 (ja) 2011-10-20
WO2011129427A9 true WO2011129427A9 (ja) 2012-01-12

Family

ID=44798795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/059356 WO2011129427A1 (ja) 2010-04-16 2011-04-15 癌の診断剤および治療剤

Country Status (2)

Country Link
TW (1) TW201204393A (ja)
WO (1) WO2011129427A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6057408B2 (ja) * 2012-03-05 2017-01-11 国立大学法人 千葉大学 癌の予防剤および/または治療剤
TW201710503A (zh) * 2015-06-12 2017-03-16 長庚醫療財團法人林口長庚紀念醫院 新穎多核苷酸、載體、醫藥組成物以及其用途
WO2017040526A2 (en) * 2015-09-01 2017-03-09 Eisai R&D Management Co., Ltd. Splice variants associated with neomorphic sf3b1 mutants
CN113149980A (zh) * 2020-01-07 2021-07-23 上海市奉贤区中心医院 一类靶向puf60的叔丁氧羰基类小分子有机化合物及其衍生物及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200413725A (en) * 2002-09-30 2004-08-01 Oncotherapy Science Inc Method for diagnosing non-small cell lung cancers
JP4677566B2 (ja) * 2005-01-06 2011-04-27 国立大学法人 千葉大学 癌遺伝子及びそれを利用した診断キット
WO2007086342A1 (ja) * 2006-01-27 2007-08-02 National University Corporation Chiba University c-myc遺伝子転写抑制因子FIRのスプライシングバリアント又はイントロン2内の4塩基繰り返し配列による癌検出方法

Also Published As

Publication number Publication date
TW201204393A (en) 2012-02-01
WO2011129427A1 (ja) 2011-10-20

Similar Documents

Publication Publication Date Title
JP2020022469A (ja) 血中循環腫瘍細胞に関する方法およびアッセイ
JP2011501741A (ja) がんの診断および治療のためのtaz/wwtr1
JP2013520958A (ja) 上皮間葉転換のバイオマーカーとしてaxlを使用する方法
Wilhelm et al. Troy is expressed in human stomach mucosa and a novel putative prognostic marker of intestinal type gastric cancer
WO2016152352A1 (ja) メラノーマ特異的バイオマーカー及びその利用
WO2011129427A9 (ja) 癌の診断剤および治療剤
JP6271636B2 (ja) 肺癌および結腸直腸癌におけるbard1アイソフォームおよびその使用
Wang et al. Targeting MEX3A attenuates metastasis of breast cancer via β-catenin signaling pathway inhibition
US11719696B2 (en) Methods and compounds for diagnosing threonyl-tRNA synthetase-associated diseases and conditions
WO2015093557A1 (ja) 胃がんの責任因子としての新規融合遺伝子
CN110191897A (zh) 用于预防暴露于诱导p38活化的癌症治疗的受试者的转移的治疗
JP6341859B2 (ja) がんマーカーおよびその用途
CN114058700A (zh) Rbm10基因的用途
KR101926841B1 (ko) Srf-yap 및 yap 시그니쳐를 이용한 줄기세포특성을 보이는 기저양 유방암 및 삼중 음성 유방암 진단 및 치료방법
WO2009113495A1 (ja) 肝癌特異的発現遺伝子による肝癌の検査方法並びに肝癌の治療及び予防剤
WO2014018620A1 (en) Methods and compounds for reducing threonyl-trna synthetase activity
WO2022071242A1 (ja) 腎がん患者の抗がん剤抵抗性および予後予測方法、抗腎がん物質のスクリーニング方法、ならびに、腎がん治療用医薬組成物
KR101793174B1 (ko) Golgb1 또는 sf3b3을 이용한 재발암의 진단방법 및 golgb1 또는 sf3b3의 억제제를 함유하는 재발암 치료용 조성물
JPWO2007037538A1 (ja) Spo11遺伝子の治療的又は診断的用途
JPWO2007026960A1 (ja) Mocs3遺伝子の治療的又は診断的用途
KR101796091B1 (ko) 카복실 말단 조절 단백질을 포함하는 두경부암 진단용 바이오 마커 조성물
Dong et al. PAFAH1B3 is a KLF9 target gene and promotes proliferation and metastasis in pancreatic cancer
WO2017186103A1 (zh) Pde3a在判断阿那格雷治疗肿瘤效果中的应用
JPWO2007037560A1 (ja) Sgk2遺伝子の治療的又は診断的用途
JP2015232441A (ja) 癌の検出方法、診断薬および診断キット並びに癌治療用医薬組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768948

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: JP