JPWO2007037560A1 - Sgk2遺伝子の治療的又は診断的用途 - Google Patents

Sgk2遺伝子の治療的又は診断的用途 Download PDF

Info

Publication number
JPWO2007037560A1
JPWO2007037560A1 JP2007537787A JP2007537787A JPWO2007037560A1 JP WO2007037560 A1 JPWO2007037560 A1 JP WO2007037560A1 JP 2007537787 A JP2007537787 A JP 2007537787A JP 2007537787 A JP2007537787 A JP 2007537787A JP WO2007037560 A1 JPWO2007037560 A1 JP WO2007037560A1
Authority
JP
Japan
Prior art keywords
sgk2
cancer
gene
protein
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007537787A
Other languages
English (en)
Inventor
眞一郎 丹羽
眞一郎 丹羽
泰孝 牧野
泰孝 牧野
智樹 生田
智樹 生田
新井 一也
一也 新井
孝之 進藤
孝之 進藤
広道 小椋
広道 小椋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Link Genomics Inc
Original Assignee
Link Genomics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Link Genomics Inc filed Critical Link Genomics Inc
Publication of JPWO2007037560A1 publication Critical patent/JPWO2007037560A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/48Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase
    • C12Q1/485Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving transferase involving kinase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/136Screening for pharmacological compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biotechnology (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Hospice & Palliative Care (AREA)
  • Oncology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本発明は、SGK2タンパク質の発現阻害物質または活性阻害物質を含有するがん治療剤;そのような治療剤の有効成分として使用し得る化合物のスクリーニング方法;SGK2タンパク質に対する抗体;その抗体などを用いるがん診断剤・がん診断方法などを提供する。

Description

本発明は、がんにおいて特異的に増幅している遺伝子であるSGK2遺伝子、その治療的又は診断的用途などに関する。
悪性腫瘍(がん)の特徴として、増殖・浸潤・転移を経て全身化することによる致死があげられる。外科的な切除または放射線治療のような局所療法では、転移性再発がんに対して十分な対処はできず、全身療法である薬物療法の発展が、今後のがん治療成績の向上に期待されている。
がん薬物療法の現在の中心である化学療法は、直接がん細胞のDNAおよび/またはRNAに作用し、細胞を死に至らせる殺細胞薬剤を用いる場合が多いが、がん細胞以外の、例えば、骨髄細胞、生殖細胞、毛母細胞、消化管上皮細胞など分裂がさかんな正常細胞に対しても作用し、強い副作用をもたらしていた。一方、近年の分子細胞生物学の進歩により、がん細胞の浸潤・増殖・転移などにかかわるメカニズムが解明され、そのがん細胞の特定メカニズムに特異的に作用する分子標的薬の開発が注目されている。代表例として、非小細胞肺がんの治療に効果のあるEGFR(上皮成長因子受容体)、チロシンキナーゼ阻害剤であるイレッサ(一般名:ゲフィチニブ)(WO96/33980)、乳がんの治療に効果のあるHER−2(ヒト上皮成長因子受容体2)のヒト化モノクローナル抗体のハーセプチン(一般名:トラスツズマブ)(WO94/00136)などがあげられる。しかしながら、現状では未だ有効な分子標的薬は少なく、今後更なる各がん種に対する有効な分子標的薬の開発が望まれている。
日本人の大腸がんは年々増加の傾向にあり、死亡数は、肺がん、胃がんに次いで3位になっている。年齢別では60歳代が一番多く、次いで50歳代、70歳代の順である。大腸がんの増加の原因には、遺伝的要因、環境的要因などが考えられるが、食生活の西欧化、特に動物性脂肪の取りすぎが原因ではないかと指摘されている。大腸がんの有効な分子標的薬の開発が待たれている。また、診断に用いられている腫瘍マーカー(CEA,CA19−9)は、進行大腸がんであっても約半数が陽性を示すのみで、臓器特異性も無く、より高性能な診断薬の開発が望まれている。
上記のような状況下で、がんを治療および/または診断するための新たな薬剤または方法が求められている。
特に、がんに対して特異性の高い治療薬および/または診断薬が求められている。
上記のような状況に鑑み、本発明者らは、鋭意研究を重ねた結果、がん(特に、大腸がん)において高頻度に増幅が起きている遺伝子が、SGK2遺伝子であることを見出した。本発明者らはさらに、大腸がん細胞株ならびに子宮頸がん細胞株においてSGK2タンパク質の発現を阻害することによって、癌細胞の増殖を抑制し得ることを見出し、本発明を完成するに至った。すなわち、本発明は、以下に記載するがん治療剤、がん抑制作用を有する候補物質のスクリーニング方法、がん診断剤、がん診断用キット、がんの診断方法などを提供する。
(1)SGK2遺伝子の発現阻害物質を有効成分として含有するがん治療剤。
(2)上記SGK2遺伝子の発現阻害物質が、
(a)SGK2遺伝子の発現をRNAi効果により阻害する作用を有する核酸、
(b)SGK2遺伝子もしくはその一部、またはその転写産物に対するアンチセンス核酸、
(c)SGK2遺伝子またはその一部に対するデコイ核酸、
(d)SGK2遺伝子またはその一部に対してドミナントネガティブに作用するSGK2遺伝子変異体
(e)SGK2遺伝子の転写産物を特異的に切断するリボザイム活性を有する核酸、
および
(f)SGK2遺伝子の転写またはSGK2 mRNAの翻訳を阻害する化合物(上記核酸を除く)
からなる群から選択される物質を含む、上記(1)に記載のがん治療剤。
(3)SGK2タンパク質の活性阻害物質を有効成分として含有するがん治療剤。
(4)上記SGK2タンパク質の活性阻害物質が、
(a)該SGK2タンパク質に対する抗体、
(b)該SGK2タンパク質に対してドミナントネガティブの性質を有するSGK2タンパク質変異体、および、
(c)該SGK2タンパク質に結合する化合物(上記抗体および変異体を除く)
からなる群から選択される物質を含む、上記(3)に記載のがん治療剤。
(5)上記がんが、大腸がんまたは子宮頸がんである、上記(1)〜(4)のいずれかに記載のがん治療剤。
(6)SGK2遺伝子の発現阻害物質をスクリーニングする方法であって、
(a)SGK2遺伝子を発現する細胞に、被検化合物を接触させる工程、
(b)該SGK2遺伝子の発現レベルを測定する工程、および
(c)被検化合物を接触させない場合と比較して、該発現レベルを低下させる化合物を選択する工程を包含する、スクリーニング方法。
(7)SGK2タンパク質の活性阻害物質をスクリーニングする方法であって、
(a)SGK2タンパク質と被検化合物とを接触させる工程、
(b)該SGK2タンパク質と被検化合物との結合活性を測定する工程、および
(c)該SGK2タンパク質と結合する化合物を選択する工程を包含する、スクリーニング方法。
(8)上記がんが、大腸がんまたは子宮頸がんである、上記(6)または(7)に記載の方法。
(9)SGK2タンパク質に対する抗体。
(10)上記(9)に記載の抗体を含有するがん治療剤。
(11)放射性同位元素、治療タンパク質、低分子の薬剤、または治療遺伝子を担持したベクターをさらに含有する、上記(10)に記載のがん治療剤。
(12)上記がんが、大腸がんまたは子宮頸がんである、上記(10)または(11)に記載のがん治療剤。
(13)上記(9)に記載の抗体を含有するがん診断剤。
(14)SGK2遺伝子またはその一部の塩基配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な塩基配列を含有するがん診断剤。
(15)上記がんが大腸がんである、上記(13)または(14)に記載のがん診断剤。
(16)上記(9)に記載の抗体を含有するがん診断用キット。
(17)SGK2遺伝子またはその一部の塩基配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な塩基配列からなるポリヌクレオチドを含有するがん診断用キット。
(18)上記がんが大腸がんである、上記(16)または(17)に記載のがん診断用キット。
(19)被験者由来の生体試料中のSGK2タンパク質またはSGK2遺伝子をがんマーカーとして検出および/または定量する方法。
(20)前記生体試料が、全血、血清、または血漿である、上記(19)に記載の方法。
(21)質量分析装置を用いて、SGK2タンパク質を検出および/または定量する、上記(19)または(20)に記載の方法。
(22)抗SGK2抗体を用いて、SGK2タンパク質を検出および/または定量する、上記(19)〜(21)のいずれかに記載の方法。
(23)(a)被験者由来の生体試料と、SGK2タンパク質に対する抗体とを接触させる工程、および
(b)上記試料中での上記抗体と、SGK2タンパク質との結合を検出および/または定量する工程、
を包含する、上記(22)に記載の方法。
(24)(a)被験者由来の生体試料と、SGK2遺伝子またはその断片の塩基配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な塩基配列からなるポリヌクレオチドとを接触させる工程、および
(b)上記試料中での上記ポリヌクレオチドと、SGK2遺伝子またはその断片とのハイブリダイゼーションを検出および/または定量する工程、
を包含する、上記(19)または(20)に記載の方法。
(25)がんの診断に用いるための上記(19)〜(24)のいずれかに記載の方法。
(26)前記がんが、大腸がんである、上記(25)に記載の方法。
(27)SGK2遺伝子の発現阻害物質を患者に投与する工程を包含する、がん治療方法。
(28)SGK2タンパク質の活性阻害物質を患者に投与する工程を包含する、がん治療方法。
(29)がんを治療するための医薬の製造のための、SGK2遺伝子の発現阻害物質の使用。
(30)がんを治療するための医薬の製造のための、SGK2タンパク質の活性阻害物質の使用。
(31)配列番号5、配列番号6、配列番号7、または配列番号8の塩基配列を有する、ポリヌクレオチド。
(32)SGK2遺伝子の発現阻害物質を有効成分として含有するがん治療剤であって、配列番号5、配列番号6、配列番号7、または配列番号8の塩基配列を有するポリヌクレオチドを含有する、がん治療剤。
本発明により、がん(例えば、大腸がん)の治療および/または診断に有用な新規な薬剤、キットおよび方法、ならびにがん抑制作用を有する候補化合物のスクリーニング方法が提供される。
図1は、SGK2遺伝子の大腸がん患者由来の200検体における遺伝子増幅度に対する頻度を示すヒストグラムである。
図2は、大腸がん細胞株RKOE6に、SGK2遺伝子のsiRNAをトランスフェクトした場合の、RNAi解析の結果を示す光学顕微鏡写真(位相差像)である。
図3は、大腸がん細胞株Caco2およびRKOE6にSGK2遺伝子のsiRNAをトランスフェクトした場合の、生細胞数測定によるRNAi効果を評価した結果を示すグラフである。
図4は、FISH法で解析した大腸癌患者由来の検体組織のがん細胞の一部(6細胞分)の光学顕微鏡写真(蛍光像)である。
図5AおよびBは、質量分析により解析した(A)大腸がん患者由来の血清および(B)健常者由来の血清についての結果をそれぞれ示すグラフである。
図6A〜Cは、MS/MS解析によって決定された、図5に示すピークとアミノ酸(またはアミノ酸配列)との対応関係を示す。
図7は、子宮頸癌細胞株HeLa細胞株にSGK2遺伝子のsiRNAをトランスフェクトした場合の、RNAi効果を生細胞数測定により検証した結果を示すグラフである。
図8は、図7の実験を時系列に従い、顕微鏡下で撮影し、その動態を詳細に観察した結果を示す光学顕微鏡写真(微分干渉像)である。
本発明者らは、大腸がん患者由来の検体を用いてアレイCGH法による増幅遺伝子の検証を行い、大腸がん特異的な遺伝子増幅領域を特定した。検体において高頻度に増幅が起きている領域のうち、ヒトSGK2(serum/glucocorticoid regulated kinase 2)遺伝子が大腸がん患者由来の検体において高頻度であることを見出した。
SGK2は、血清やGlucocorticoidで発現が誘導されるのKinaseとして見出されたSGK1(Webster,M.K.,et al.(1993)Mol.Cell Biol.13,2013−2040)と相同性のある遺伝子として同定された(Kobayashi,T.,et al.(1999)Biochem.J.344,189−197.)。
SGK1(Serum/glucocorticoid−regulated kinase 1)は、肝細胞の等張時と非等張時のDifferential RNA finger printing assayにより得られた遺伝子で、細胞容積の制御や非等張時の応答、基質の取り込み、酸化ストレス、ホルモンシグナルに対する応答といった肝細胞の代謝・調節に関与する(Waldegger,S.,et al.(1997)Proc.Natl.Acad.Sci.94,4440−4445)。SGK1はRat2 fibroblastで血清やGlucocorticoidによりmRNAの発現量が5〜10倍に増加する(Webster,M.K.,et al.(1993)J.Biol.Chem.268,11482−11485)。さらに、卵胞刺激ホルモン(Richards,J.S.,et al.(1995)Hormone Res.50,223−255)、高い細胞外浸透圧(Wedegger,S.,et al.(1997)Proc.Natl.Acad.Sci.U.S.A.94,4440−4445)、脳の損傷時(Hollister,R.D.,et al.(1997)Neurosci.Lett.79,1111−1119;Imaizumi,K.,et al.(1994)Mol.Brain Res.26,189−196)、Aldosterone(Naray−Fejes−Toth,C.C.,et al.(1999)J.Biol.Chem.274,16973−16978)、p53の強制発現時(Maiyar,A.C.,et al.(1996)J.Bioi.Chem.271,12414−14222)にも発現が誘導される。
さらに、SGK1は、Protein kinase B(PKB,c−Akt)と相同性が高く(54%)、PKBの活性化に必要なリン酸化部位が保存されている。
PKBはPhosphatidylinositol(PI)3−kinaseの活性に伴い活性化され、インシュリンに誘導されるグリコーゲンやタンパク質の合成、アポトーシスによる細胞死機構への誘導防止といった、細胞内の様々なシグナル伝達を調節している(Alessi,D.R.& Cohen,P.(1998)Curr.Opin.Genet.Dev.8,55−62;Cohen,P.(1999)Philos.Trans.R.Soc.London B 354,485−495)。その活性化においては3−Phosphoinositide−dependent protein kinase−1(PDK1)によりリン酸化されることが知られている(Alessi,D.R.,et al.(1997)Curr.Biol.7,261−269;Alessi,D.R.,(1997)Curr.Biol.7,776−789)。
SGK1はPKB同様に、インシュリン、Insulin−like growth factor−1(IGF1)、血清、酸化ストレスにより細胞が刺激を受けたときに活性化する(Kobayashi,T.,et al.(1999)Biochem.J.344,189−197;Park,J.,el al.(1999)EMBO J.18,3024−3033.)。そこで、SGK1がPKB同様に、PDK1によりリン酸化を受けることが検証された結果、リン酸化されることが示された(Kobayashi,T.,et al.(1999)Biochem.J.344,189−197)。よって、SGK1へのシグナル伝達系にはPKBと同じ経路も存在していると考えられている。
SGK2はSGK1と相同性が高く(80%)、同様にPKBの活性化に必要なリン酸化部位が保存され、PDK1によりリン酸化を受ける。また、酸化ストレス(H)による刺激により、SGK2はSGK1同様に活性化されるが、SGK1がPI3−kinaseの阻害薬でその活性を失うのに対し、SGK2は活性が残る。また、IGF1による活性化はSGK1よりも小さいことが示された(Kobayashi,T.,et al.(1999)Biochem.J.344,189−197.)。これらにより、SGK2はSGK1と同様のシグナル伝達系でも活性化されるが、異なる調節も受けていると考えられている。
SGK1は様々な組織で発現するのに対し、SGK2は肝・腎・膵・脳で特異的に発現が認められた(Kobayashi,T.,et al.(1999)Biochem.J.344,189−197.)。
SGK1の機能としてイオンチャンネルの制御が知られている。SGK1の活性化により、腎臓の上皮細胞のNaチャンネルに対する活性化(Alvares,R.D.,et al.(1999)J.Biol.Chem.274,37834−37839;Bohmer,C.,et al.(2000)Cell Physiol.Biochem.10,187−194;Chen,S.Y.,et al.(1999)Proc.Natl.Acad.Sci.USA 96,2514−2519;Wagner,C.A.,et al.(2001)Cell Physiol.BioChem.11,209−218)、Kチャンネルに対する活性化(Gamper,N.,et al.(2002)Pflugers Arch 443,625−634;Warntges,S.,et al.(2002)Pflugers Arch 443,617−624)の報告があり、SGK2においても、Kチャンネルに対する活性化があると報告されている(Gamper,N.,et al.(2002)Pflugers Arch 445,60−66)。
SGK2については、PKB同様のGSK3のリン酸化(不活性化)、細胞増殖の促進とPDK1による活性化、AP1,TCF4,NF−kBの転写活性化、BAD,FKHRのリン酸化、CREBリン酸化の調節、Calyculin A,Okadaic acidによる活性化について報告がある(WO02/24947)。
SGK1と相同性のある遺伝子として、SGK2以外にSGK3が同定されている(Kobayashi,T.,et al.(1999)Biochem.J.344,189−197.)。SGK2とがんとの関連については、肝がん・大腸がん患者での発現の上昇について報告がある(WO02/24947)。
SGK1については、HeLa細胞においてTaoxlとSGK1のノックダウンの相乗効果により、アポトーシスが増加する報告があり、IP3−Kinase関連の遺伝子に対する抗がん効果が期待されている(MacKeigan,J.P.(2005)Nature Cell Biol.7(6),591−600)。
本発明者らは、SGK2遺伝子の発現をRNAi(RNA干渉)によって抑制することによってがん細胞の増殖を抑制できることも確認した。したがって、SGK2遺伝子の発現を抑制することによって、がんを治療することが可能となる。また、SGK2遺伝子の発現量を測定することによってがんの診断を行うことも可能となる。
以下、本発明のがん治療剤、スクリーニング方法、診断剤などについて詳細に説明する。
1.がん抑制作用を有する薬剤
まず、本発明は、(1)SGK2遺伝子の発現阻害物質を有効成分として含有するがん治療剤、及び(2)SGK2タンパク質の活性阻害物質を有効成分として含有するがん治療剤を提供する。
本明細書中、「SGK2遺伝子」という場合、NCBIヌクレオチドデータベースにおいて、Accession No.:NM_170693で登録されている1862塩基からなるヒトSGK2遺伝子(配列番号1)を意味する(Kobayashi,T.,et al.(1999)Biochem.J.344,189−197.)が、これに限定されず、例えば、当該遺伝子の塩基配列において1つ以上の塩基の置換、欠失、付加、または挿入などを有することによって変化している変異体のような、当該遺伝子の塩基配列またはその相補配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な塩基配列からなるポリヌクレオチドからなる遺伝子も本明細書中で使用する「SGK2遺伝子」に含まれるものとする。
ハイブリダイゼーションは、公知の方法あるいはそれに準じる方法、例えば、モレキュラー・クローニング(Molecular Cloning Third Edition,J.Sambrook et al.,Cold Spring Harbor Lab.Press.2001)に記載の方法などに従って行うことができる。また、市販のライブラリーを使用する場合、添付の使用説明書に記載の方法に従って行うことができる。ここで、「ストリンジェントな条件」は、低ストリンジェントな条件、中ストリンジェントな条件及び高ストリンジェントな条件のいずれでもよい。「低ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、32℃の条件である。また、「中ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、42℃の条件である。「高ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、50℃の条件である。これらの条件において、温度を上げるほど高い相同性を有するDNAが効率的に得られることが期待できる。ただし、ハイブリダイゼーションのストリンジェンシーに影響する要素としては温度、プローブ濃度、プローブの長さ、イオン強度、時間、塩濃度など複数の要素が考えられ、当業者であればこれら要素を適宜選択することで同様のストリンジェンシーを実現することが可能である。
ハイブリダイズ可能なポリヌクレオチドとしては、FASTA、BLASTなどの相同性検索ソフトウェアにより、デフォルトのパラメーターを用いて計算したときに、配列番号1の塩基配列と、例えば、70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上の同一性を有するポリヌクレオチドをあげることができる。
本明細書中、「遺伝子の発現阻害」とは、遺伝子からタンパク質生成までの一連の事象(例えば、転写(mRNAの生成)、翻訳(タンパク質の生成)を含む)のうちのいずれかの事象を阻害することによってその遺伝子によってコードされるタンパク質の生成を阻害することを意味するものとする。
本明細書中、「SGK2タンパク質」という場合、NCBIタンパク質データベースにおいて、Accession No.:NP_733794で登録されている367アミノ酸残基からなるヒトSGK2タンパク質(配列番号2)およびこのタンパク質と実質的に同質の活性(例えば、標的タンパク質のリン酸化、自己リン酸化から選択される一種以上の活性)を保持し、このタンパク質のアミノ酸配列に対して1〜複数個のアミノ酸残基の欠失、置換、挿入、及び/または付加が生じたアミノ酸配列からなる変異タンパク質をいう。
上記変異タンパク質における、アミノ酸の変異部位および個数は、変異タンパク質が元のタンパク質と実質的に同質の活性を保持している限り特に制限はないが、変異個数は、例えば、1〜50個、1〜40個、1〜30個、1〜25個、1〜20個、1〜15個、1〜10個、1〜9個、1〜8個、1〜7個、1〜6個(1〜数個)、1〜5個、1〜4個、1〜3個、1〜2個、1個である。変異個数は一般的に少ない程好ましい。また、このような変異タンパク質は、配列番号2のアミノ酸配列と約70%以上、75%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、99%以上の同一性を有するアミノ酸配列を有し、かつ元のタンパク質と実質的に同質の活性を有するタンパク質を含む。上記相同性の数値は一般的に大きい程好ましい。
上記SGK2タンパク質には、SGK2タンパク質の「部分ペプチド」も含まれる。SGK2タンパク質の部分ペプチドとしては、SGK2タンパク質のアミノ酸配列(配列番号2)の一部の連続するアミノ酸の配列からなる部分ペプチドであって、好ましくは、前述のSGK2タンパク質の活性と同様の活性を有するものであればいずれのものでも良い。例えば、配列番号2で表されるアミノ酸配列において、少なくとも20個、好ましくは少なくとも50個、さらに好ましくは少なくとも70個、より好ましくは少なくとも100個、最も好ましくは少なくとも200個のアミノ酸残基からなるアミノ酸配列を有するポリペプチドなどが挙げられる。好ましくは、これらのポリペプチドは、SGK2タンパク質の活性に関与する部分に対応するアミノ酸配列を含有する。また、本発明で使用される部分ペプチドは、上記のポリペプチドにおいて、そのアミノ酸配列中の1または複数個(例えば、1〜20個程度、より好ましくは1〜10個程度、さらにより好ましくは1〜5個程度)のアミノ酸残基が欠失、付加、置換、または挿入により変更されているものでもよい。
本発明で用いるSGK2タンパク質は、そのタンパク質を発現している細胞や組織から調製することができる。また、これらのタンパク質は、公知のペプチド合成機によっても合成できるし、原核生物あるいは真核生物から選択される適当な宿主細胞を用いた組換え方法によっても調製することができる。本発明で用いるSGK2タンパク質は、いずれの種由来のものでもよいが、好ましくはヒト由来である。
「実質的に同質の活性」とは、それらの活性が性質的に同等であることを示す。したがって、活性(標的タンパク質のリン酸化、自己リン酸化など)が同等(例えば、約0.01〜100倍、好ましくは約0.5〜20倍、より好ましくは約0.5〜2倍)であることが好ましいが、これらの活性の程度やタンパク質の分子量などの量的要素は異なっていてもよい。これらの活性の測定は、放射性同位体[32P]の基質への付加を検出する(Alessi,D.R.,et al.(1996)EMBO.J.15,6541−6551.)などの文献に記載の公知の方法に準じて行うことができるが、例えば、後に記載するスクリーニング方法に従って測定することができる。
なお、アミノ酸配列や塩基配列の同一性は、カーリンおよびアルチュールによるアルゴリズムBLAST(proc.Natl.Acad.Sci.USA 872264−2268,1990;proc.Natl.Acad.Sci USA 90:5873,1993)を用いて決定できる。BLASTのアルゴリズムに基づいたBLASTNやBLASTXと呼ばれるプログラムが開発されている(Altschul SF,et al:J Mol Biol 215:403,1990)。BLASTNを用いて塩基配列を解析する場合は、パラメーターは、例えばscore=100、wordlength=12とする。また、BLASTXを用いてアミノ酸配列を解析する場合は、パラメーターは、例えばscore=50、wordlength=3とする。BLASTとGapped BLASTプログラムを用いる場合は、各プログラムのデフォルトパラメーターを用いる。
本明細書中、「がん治療剤」という用語は、抗癌剤、癌転移阻害剤、癌細胞のアポトーシス誘導剤、癌細胞の増殖抑制剤、癌細胞の浸潤抑制剤、がん予防剤等を含む意味で使用される。なお、本願明細書中、用語「癌(または、がん)」と「腫瘍」とは同じ意味を有する用語として使用される。
1.1 SGK2遺伝子の発現阻害物質を含有するがん治療剤
本発明は、1つの実施形態において、SGK2遺伝子の発現阻害物質を有効成分として含有するがん治療剤を提供する。
本明細書中、「SGK2遺伝子の発現阻害物質」には、SGK2遺伝子の発現を阻害するものであれば制限はないが、例えば、(i)SGK2遺伝子からSGK2 mRNAへの転写を阻害する物質、および(ii)SGK2 mRNAからSGK2タンパク質への翻訳を阻害する物質が含まれる。
SGK2遺伝子からSGK2 mRNAへの転写を阻害する物質の例としては、
(a)SGK2遺伝子またはその一部に対するアンチセンス核酸、
(b)SGK2遺伝子またはその一部に対するデコイ核酸、
(c)SGK2遺伝子またはその一部に対してドミナントネガティブに作用するSGK2遺伝子変異体、あるいは
(d)その他の転写阻害化合物
などが含まれる。
また、SGK2 mRNAからSGK2タンパク質への翻訳を阻害する物質の例としては、
(e)SGK2 mRNAまたはその一部に対してRNAi作用を有するポリヌクレオチド(例えば、siRNA)、
(f)SGK2 mRNAまたはその一部に対するアンチセンスポリヌクレオチド、
(g)SGK2 mRNAまたはその一部に対してリボザイム活性を有するポリヌクレオチド、あるいは
(h)その他の翻訳阻害化合物
などが含まれる。
本明細書中、「核酸」とはRNAまたはDNAを意味する。ここでいう「核酸」は、プリンおよびピリミジン塩基を含有するのみでなく、修飾されたその他の複素環型塩基をもつようなものを含んでいてもよい。こうした修飾物は、メチル化されたプリンおよびピリミジン、アシル化されたプリンおよびピリミジン、アシル化されたプリンおよびピリミジン、あるいはその他の複素環を含むものであって良い。修飾されたヌクレオシドおよび修飾されたヌクレオチドはまた、糖部分が修飾されていて良く、例えば、1個以上の水酸基がハロゲンとか、脂肪族基などで置換されているか、あるいはエーテル、アミンなどの官能基に変換されていてよい。
本発明のがん治療剤においては、SGK2遺伝子の発現をRNAi効果により阻害する作用を有する核酸を有効成分として用いることができる。RNAiとは、標的遺伝子配列と同一もしくは類似した配列を有する二重鎖RNAを細胞内に導入すると、導入した外来遺伝子および標的内在性遺伝子の発現がいずれも阻害される現象のことをいう。ここで用いられるRNAとしては、例えば、19〜30塩基長のRNA干渉を生ずる二重鎖RNA、例えば、dsRNA(double strand RNA)、siRNA(small interfering RNA)又はshRNA(short hairpin RNA)が挙げられる。このようなRNAは、リポソームなどの送達システムにより所望の部位に局所送達させることも可能であり、また上記二重鎖RNAが生成されるようなベクターを用いてこれを局所発現させることができる。このような二重鎖RNA(dsRNA、siRNAまたはshRNA)の調製方法、使用方法などは、多くの文献から公知である(特表2002−516062号;米国公開許第2002/086356A号;Nature Genetics,24(2),Feb.,180−183;Genesis,26(4),April,240−244;Nature,Spe.21,407:6802,319−20;Genes & Dev.,Vol.16,(8),Apr.16,948−958;Proc.Natl.Acad.Sci.USA.,99(8),16 Apr.,5515−5520;Science,296(5567),19 Apr.,550−553;Proc Natl.Acad.Sci.USA,Apr.30,99:9,6047−6052;Nature Biotechnology, Vol.20 (5),May,497−500;Nature Biotechnology,Vol.20(5),May,500−508;Nucleic Acids Res.,May 15など)。
本発明で用いられるRNAi効果を奏する二重鎖RNAの長さは、通常、19〜30塩基、好ましくは20〜27塩基、より好ましくは21〜25塩基、最も好ましくは21〜23塩基である。本発明においては、具体的には、下記siRNA(実施例3で使用)を用いることができる。
Figure 2007037560
本明細書中、「アンチセンス核酸」、または「アンチセンスポリヌクレオチド」とは、ある対象となるDNA領域の少なくとも一部に相補的なポリヌクレオチドを有し、そのポリヌクレオチドが当該領域の少なくとも一部とハイブリダイズすることができる核酸のことをいう。本発明のアンチセンス核酸は、RNA、DNA、あるいは修飾された核酸(RNA、DNA)である。本発明のアンチセンス核酸は、RNA、DNA、あるいは修飾された核酸(RNA、DNA)である。それらは二本鎖DNA、一本鎖DNA、二本鎖RNA、一本鎖RNA、さらにDNA:RNAハイブリッドであってもよい。修飾された核酸の具体例としては、核酸の硫黄誘導体やチオホスフェート誘導体、さらにはポリヌクレオチドアミドやオリゴヌクレオチドアミドの分解に抵抗性を有するものなどが挙げられるが、それらに限定されるものではない。
使用されるアンチセンス核酸は、適当なプロモーターの下流に連結され、好ましくは3’側に転写終結シグナルを含む配列が連結される。このようにして調製された核酸は、公知の方法を用いることで、所望の動物へ形質転換できる。アンチセンス核酸の配列は、形質転換される動物が持つ内在性遺伝子またはその一部と相補的な配列であることが好ましいが、遺伝子の発現を有効に抑制できる限りにおいて、完全に相補的でなくてもよい。
例えば、SGK2遺伝子のmRNAの5’端近傍の非翻訳領域に相補的なアンチセンス配列を設計すれば、遺伝子の翻訳阻害に効果的である。コード領域もしくは3’側の非翻訳領域に相補的な配列も使用することができる。遺伝子の翻訳阻害に効果的なアンチセンス核酸は、標的遺伝子の転写産物に対して約70%以上、好ましくは約80%以上、より好ましくは約90%以上、最も好ましくは約95%以上の相補性を有する。
アンチセンス核酸を用いて標的遺伝子の発現を効果的に抑制するには、アンチセンス核酸の長さは少なくとも約10塩基以上(例えば、10〜40個程度)、好ましくは約15塩基以上であり、より好ましくは約100塩基以上であり、さらに好ましくは約500塩基以上である。アンチセンス核酸は公知の文献を参照して設計することができる(例えば、平島および井上、新生化学実験講座2 核酸IV遺伝子の複製と発現、日本生化学会編、東京化学同人、1993、p.319−347)、J.Kawakami et al.,Pharm Tech Japan.Vol.8,p.247,1992;Vol.8,p.395,1992;S.T.Crooke et al.,ed.,Antisense Rescarch and Applications,CRC Press,1993など参照)。
また、本発明のがん治療剤においては、SGK2遺伝子の転写産物を特異的に切断するリボザイム活性を有する核酸を有効成分として用いることができる。ここでいう「リボザイム活性」とは、ターゲットとする遺伝子の転写産物であるmRNAを部位特異的に切断する核酸のことをいう。リボザイムには、グループIイントロン型やRNasePに含まれるM1 RNAのように400ヌクレオチド以上の大きさのものもあるが、ハンマーヘッド型やヘアピン型と呼ばれる40ヌクレオチド程度の活性ドメインを有するものもある(タンパク質核酸酵素、1990、35、p.2191)。ハンマーヘッド型リボザイムについては、例えば、FEBS Lett,1988,228,p.228;FEBS Lett,1988,239,p.285;タンパク質核酸酵素,1990,35,p.2191;Nucl Acids Res,1989,17,p.7059などを参照することができる。また、ヘアピン型リボザイムについては、例えば、Nature,1986,323,p.349;Nucl Acids Res,1991,19,p.6751;菊池洋,化学と生物,1992,30,p.112などを参照することができる。このようなリボザイムを用いて本発明におけるSGK2遺伝子の転写産物を特異的に切断することで、該遺伝子の発現を阻害することができる。
さらに、本発明は、SGK2遺伝子の転写活性を阻害する核酸以外の化合物を有効成分として用いることができる。そのような化合物は、例えば、SGK2遺伝子の発現・転写に関与する因子に結合する化合物である。このような化合物は、天然物でも合成化合物でもよい。このような化合物は、後述のスクリーニング方法によって、取得することが可能である。
1.2 SGK2タンパク質の活性阻害物質を含有するがん治療剤
本発明はまた、別の実施形態において、SGK2タンパク質の活性阻害物質を含有するがん治療剤を提供する。
本明細書中、「SGK2タンパク質の活性阻害物質」には、例えば、
(a)SGK2タンパク質に結合する抗体、
(b)SGK2タンパク質に対してドミナントネガティブの性質を有するSGK2タンパク質変異体、あるいは
(c)SGK2タンパク質に結合する化合物(上記抗体および変異体を除く)
などが含まれる。
本明細書における「抗体」とはタンパク質の全長又は断片に反応する抗体を意味する。本発明の抗体の形態には、特に制限はなく、本発明のSGK2タンパク質に結合する限り、上記ポリクローナル抗体、モノクローナル抗体のほかに、ヒト抗体、遺伝子組み換えによるヒト型化抗体、さらにその抗体断片や抗体修飾物も含まれる。SGK2タンパク質に結合する抗体(抗SGK2抗体)は、当業者に公知の方法により調製することが可能である。なお、抗SGK2抗体の詳細については後述する。
本明細書における「SGK2タンパク質に対してドミナントネガティブの性質を有するSGK2タンパク質変異体」とは、それをコードする遺伝子を発現させることによって、内在性の野生型SGK2タンパク質の活性を消失もしくは低下させる機能を有するタンパク質を指す(土田邦博著、遺伝子の活性阻害実験法 多比良和誠編、羊土社(2001)26−32など参照)。
さらに、本発明においては、SGK2タンパク質の活性を阻害し得る物質として、SGK2タンパク質に結合する、上記抗体または変異体以外の化合物を有効成分として用いることができる。そのような化合物は、例えば、SGK2タンパク質に結合し、その活性を阻害する化合物である。このような化合物は、天然物でも合成化合物でもよい。このような化合物は、後述のスクリーニング方法によって、取得することが可能である。
上記した本発明のSGK2タンパク質の活性を阻害し得る物質は、がん治療剤として使用することができる。
2.SGK2タンパク質の活性もしくは発現を阻害する物質のスクリーニング方法
本発明は、がん抑制作用を有する候補化合物のスクリーニング方法をも提供する。
一つの好ましい態様は、SGK2タンパク質と被検化合物との結合を指標とする方法である。通常、SGK2タンパク質と結合する化合物は、SGK2タンパク質の活性を阻害する効果を有することが期待される。ここで、該化合物は、SGK2タンパク質の活性部位に結合することが好ましい。本方法においては、まず、SGK2タンパク質と被検化合物とを接触させる。SGK2タンパク質は、被検化合物との結合を検出するための指標に応じて、例えば、SGK2タンパク質の精製された形態、細胞内または細胞外に発現した形態、あるいはアフィニティーカラムに結合した形態であり得る。この方法に用いる被検化合物は必要に応じて適宜標識して用いることができる。標識としては、例えば、放射標識、蛍光標識等を挙げることができる。
本方法においては、次いで、SGK2タンパク質と被検化合物との結合を検出する。
本方法に用いる被検化合物としては、特に制限はない。例えば、天然化合物、有機化合物、無機化合物、タンパク質、ペプチドなどの単一化合物、並びに、化合物ライブラリー、遺伝子ライブラリーの発現産物、細胞抽出物、細胞培養上清、発酵微生物産生物、海洋生物抽出物、植物抽出物等が挙げられるが、これらに限定されない。
SGK2タンパク質と被検化合物との結合は、例えば、SGK2タンパク質に結合した被検化合物に付された標識によって検出することができる。また、細胞内または細胞外に発現しているSGK2タンパク質への被検化合物の結合により生じるSGK2タンパク質の活性の変化を指標として検出することもできる。タンパク質と被検化合物との結合活性は、公知の手法によって測定することができる(例えば、リン酸化活性測定のための方法としては、抗リン酸化抗体やリン酸の放射性同位元素(P32PやP33など)を利用した、ELISA法、免疫沈降法、ウエスタンブロット法やそれらの組み合わせなどが挙げられるが、これらに限定されない。)。
本方法においては、次いで、SGK2タンパク質と結合し、その活性を阻害する被検化合物を選択する。
本方法により単離される化合物は、がん抑制作用を有することが期待され、がん治療剤として有用である。
本発明のスクリーニング方法の他の態様は、SGK2遺伝子の発現を指標とする方法である。
本方法においては、まず、SGK2遺伝子を発現する細胞に、被検化合物を接触させる。用いられる「細胞」の由来としては、ヒト、マウス、ネコ、イヌ、ウシ、ヒツジ、トリなど、ペット、家畜等に由来する細胞が挙げられるが、これら由来に制限されない。「SGK2遺伝子を発現する細胞」としては、内因性のSGK2遺伝子を発現している細胞、または外因性のSGK2遺伝子が導入され、該遺伝子が発現している細胞を利用することができる。外因性のSGK2遺伝子が発現した細胞は、通常、それぞれSGK2遺伝子が挿入された発現ベクターを宿主細胞へ導入することにより作製することができる。該発現ベクターは、一般的な遺伝子工学技術によって作製することができる。
本方法に用いる被検化合物としては、特に制限はないが、例えば、天然化合物、有機化合物、無機化合物、タンパク質、ペプチドなどの単一化合物、並びに、化合物ライブラリー、遺伝子ライブラリーの発現産物、細胞抽出物、細胞培養上清、発酵微生物産生物、海洋生物抽出物、植物抽出物等が用いられる。
SGK2遺伝子を発現する細胞への被検化合物の「接触」は、通常、それぞれSGK2遺伝子を発現する細胞の培養液に被検化合物を添加することによって行うが、この方法に限定されない。被検化合物がタンパク質等の場合には、該タンパク質を発現するDNAベクターを、該細胞へ導入することにより、「接触」を行うことができる。
本方法においては、次いで、該SGK2遺伝子の発現レベルを測定する。ここで「遺伝子の発現」には、転写および翻訳の双方が含まれる。遺伝子の発現レベルの測定は、当業者に公知の方法によって行うことができる。例えば、SGK2遺伝子を発現する細胞からmRNAを常法に従って抽出し、このmRNAを鋳型としたノーザンハイブリダイゼーション法またはRT−PCR法を実施することによって該遺伝子の転写レベルの測定を行うことができる。あるいは、SGK2遺伝子のプロモーター領域を常法に従って単離し、その下流に標識遺伝子(例えば、ルシフェラーゼ、GFP、ガラクトシダーゼ等の発光、蛍光、発色などを指標に検出可能な遺伝子が挙げられるが、これらに限定されない)をつなげ、その標識遺伝子の活性を見ることによっても該遺伝子の転写レベルの測定を行うことができる。また、SGK2遺伝子を発現する細胞からタンパク質画分を回収し、それぞれSGK2タンパク質の発現をSDS−PAGE等の電気泳動法で検出することにより、遺伝子の翻訳レベルの測定を行うこともできる。さらに、SGK2タンパク質に対する抗体を用いて、ウエスタンブロッティング法を実施することにより該タンパク質の発現を検出することにより、遺伝子の翻訳レベルの測定を行うことも可能である。SGK2タンパク質の検出に用いる抗体としては、検出可能な抗体であれば、特に制限はないが、例えばモノクローナル抗体、またはポリクローナル抗体の両方を利用することができる。
本方法においては、次いで、被検化合物を接触させない場合(コントロール)と比較して、該発現レベルを低下させる化合物を選択する。このようにして選択された化合物は、がん治療剤のための候補化合物となる。
3.抗SGK2抗体及びこの抗体を含有する治療剤、複合体および組成物
本発明はまた、抗SGK2抗体、この抗体を含有するがん治療剤などを提供する。本発明の1つの好ましい態様では、上記がん治療剤は、がんの標的化療法または標的化薬物送達のために使用される。
3.1 抗SGK2抗体
本明細書中、「抗SGK2抗体」には、SGK2タンパク質(その断片(部分ペプチド)もしくはその塩を含む)に特異的に結合する抗体が含まれる。本発明において使用する抗SGK2抗体は、ポリクローナル抗体であってもよいし、モノクローナル抗体であってもよい。抗体のクラスは、特に限定されず、IgG、IgM、IgA、IgD、またはIgE等のいずれのアイソタイプを有する抗体をも包含する。好ましくは、IgGまたはIgMであり、精製の容易性等を考慮すると、より好ましくはIgGである。また、ここでいう「抗体」という用語は、任意の抗体断片または誘導体を含む意味で用いられ、例えば、Fab、Fab’、CDR、ヒト化抗体、多機能抗体、単鎖抗体(ScFv)などを含む。本発明の抗体は、公知の方法で製造することができる。このような抗体の製造法は当該分野で周知である(例えばHarlow E.& Lane D.,Antibody,Cold Spring Harbor Laboratory Press(1988)を参照)。
(1)抗原の調製
本発明において、感作抗原として使用されるタンパク質は、通常、SGK2タンパク質またはその塩である。上記SGK2タンパク質には、その部分ペプチドも含まれ、これは、限定されることはないが、例えば、配列番号2のアミノ酸配列の断片であって、例えば、20個以上、40個以上、60個以上、80個以上、100個以上の、連続するアミノ酸配列部分を有する部分ペプチドである。これらの断片として、例えば、アミノ(N)末端断片やカルボキシ(C)末端断片が用いられる。本発明で用いられる部分ペプチドは、上記アミノ酸配列中の1または2個以上(好ましくは、1〜10個程度、さらに好ましくは数個(1〜6個))のアミノ酸残基が欠失、置換、挿入及び/又は付加されたものであってもよい。ここで用いられるSGK2タンパク質またはその部分ペプチドの塩としては、例えば、無機酸(例えば、塩酸、硫酸)との塩、あるいは有機酸(例えば、酢酸、ギ酸、プロピオン酸)との塩などが用いられる。抗体取得の感作抗原として使用される本発明のSGK2タンパク質は、その由来となる動物種に制限されないが哺乳動物、例えばマウス、ヒト由来のタンパク質が好ましく、特にヒト由来のタンパク質が好ましい。
(2)SGK2タンパク質に対するモノクローナル抗体の作製
(i) 抗体産生細胞の採取
上記のようなSGK2タンパク質、その部分ペプチド又はその塩(本明細書中、抗体に関する説明では、これらをまとめて、「SGK2タンパク質」という。)を抗原として、哺乳動物、例えばラット、マウス、ウサギなどに投与する。抗原の動物1匹当たりの投与量は、アジュバントを用いないときは0.1〜100mgであり、アジュバントを用いるときは1〜100μgである。アジュバントとしては、フロイント完全アジュバント(FCA)、フロイント不完全アジュバント(FIA)、水酸化アルミニウムアジュバント等が挙げられる。免疫は、主として静脈内、皮下又は腹腔内等に注入することにより行われる。また、免疫の間隔は特に限定されず、数日から数週間間隔、好ましくは2〜5週間間隔で、1〜10回、好ましくは2〜5回免疫を行う。そして、最終の免疫日から1〜60日後、好ましくは1〜14日後に抗体産生細胞を採集する。抗体産生細胞としては、脾臓細胞、リンパ節細胞、末梢血細胞等が挙げられるが、脾臓細胞又は局所リンパ節細胞が好ましい。
(ii)細胞融合
ハイブリドーマを得るため、抗体産生細胞とミエローマ細胞との細胞融合を行う。抗体産生細胞と融合させるミエローマ細胞として、マウスなどの動物の一般に入手可能な株化細胞を使用することができる。使用する細胞株としては、薬剤選択性を有し、未融合の状態ではHAT選択培地(ヒポキサンチン、アミノプテリン、チミジンを含む)で生存できず、抗体産生細胞と融合した状態でのみ生存できる性質を有するものが好ましい。ミエローマ細胞としては、例えば X63Ag.8.653、NSI/1−Ag4−1、NS0/1などのマウスミエローマ細胞株、YB 2/0などのラットミエローマ細胞株が挙げられる。
次に、上記ミエローマ細胞と抗体産生細胞とを細胞融合させる。細胞融合は、血清を含まないDMEM、RPMI−1640培地などの動物細胞培養用培地中で、1×10〜1×10個/mlの抗体産生細胞と2×10〜2×10個/mlのミエローマ細胞とを混合し(抗体産生細胞とミエローマ細胞との細胞比2:1〜3:1が好ましい)、細胞融合促進剤存在のもとで融合反応を行う。細胞融合促進剤として、平均分子量1000〜6000ダルトンのポリエチレングリコール等を使用することができる。また、電気刺激(例えばエレクトロポレーション)を利用した市販の細胞融合装置を用いて抗体産生細胞とミエローマ細胞とを融合させることもできる。
(iii) ハイブリドーマの選別及びクローニング
細胞融合処理後の細胞から目的とするハイブリドーマを選別する。その方法として、細胞懸濁液を例えばウシ胎児血清含有RPMI−1640培地などで適当に希釈後、マイクロタイタープレート上に3×10個/well程度まき、各ウエルに選択培地を加え、以後適当に選択培地を交換して培養を行う。その結果、選択培地で培養開始後、14日前後から生育してくる細胞をハイブリドーマとして得ることができる。
次に、増殖してきたハイブリドーマの培養上清中に、SGK2タンパク質に反応する抗体が存在するか否かをスクリーニングする。ハイブリドーマのスクリーニングは、通常の方法に従えばよく、特に限定されるものではない。例えば、ハイブリドーマとして生育したウエルに含まれる培養上清の一部を採集し、酵素免疫測定法、放射性免疫測定法等によってスクリーニングすることができる。融合細胞のクローニングは、限界希釈法等により行う。そして、最終的に、SGK2タンパク質と反応するモノクローナル抗体を産生する細胞であるハイブリドーマを樹立する。
(iv)モノクローナル抗体の採取
上記のようにして得たハイブリドーマからモノクローナル抗体を採取する方法として、通常の細胞培養法又は腹水形成法等を採用することができる。細胞培養法においては、ハイブリドーマを10%ウシ胎児血清含有RPMI−1640培地、MEM培地又は無血清培地等の動物細胞培養培地中で、通常の培養条件(例えば37℃、5% CO濃度)で7〜14日間培養し、その培養上清から抗体を取得する。腹水形成法の場合は、ミエローマ細胞由来の哺乳動物と同種系動物の腹腔内にハイブリドーマを約1×10個投与し、ハイブリドーマを大量に増殖させる。そして、1〜2週間後に腹水を採取する。上記抗体の採取方法において抗体の精製が必要とされる場合は、硫安塩析法、イオン交換クロマトグラフィー、ゲル濾過、アフィニティークロマトグラフィーなどの公知の方法を適宜選択して、又はこれらを組み合わせることにより精製することができる。
(3)SGK2タンパク質に対するポリクローナル抗体の作製
まず、上記した抗原を哺乳動物、例えばラット、マウス、ウサギなどに投与する。抗原の動物1匹当たりの投与量は、アジュバントを用いないときは0.1〜100mgであり、アジュバントを用いるときは10〜1000μgである。アジュバントとしては、フロイント完全アジュバント(FCA)、フロイント不完全アジュバント(FIA)、水酸化アルミニウムアジュバント等が挙げられる。免疫は、主として静脈内、皮下又は腹腔内等に注入することにより行われる。また、免疫の間隔は特に限定されず、数日から数週間間隔、好ましくは2〜5週間間隔で、1〜10回、好ましくは2〜5回免疫を行う。そして、最終の免疫日から6〜60日後に、酵素免疫測定法(ELISA(enzume−linked immunosorbent assy)又は EIA(enzyme immunoassay))、放射性免疫測定法(RIA;radioimmuno assay)等で抗体価を測定し、最大の抗体価を示した日に採血し、抗血清を得る。
次いで、例えば、抗血清中のポリクローナル抗体を、SGK2タンパク質で固定されたアフィニティーカラムにかけてSGK2タンパク質と反応する抗体(カラム吸着画分)を採取する。SGK2タンパク質に対する抗血清中のポリクローナル抗体の反応性は、ELISA法などで測定することができる。
(4)抗体の断片など
FabまたはFab’断片は、従来の方法によるプロテアーゼ(例えば、ペプシンまたはパパイン)を用いた消化により作製することができる。ヒト化抗体は、例えばRiechmannら(Riechmann J Mol Biol.Oct 5;203(3):825−8,1988)、およびJonesら(Jonesら Nature 321:522−525,1986)に記載のような方法の1つにより調製することができる。
また、キメラ抗体は、例えば、「実験医学(臨時増刊号)、Vol.1.6,No.10,1988」、特公平3−73280号公報等を、ヒト化抗体は、例えば、「Nature Genetics,Vol.15,p.146−156,1997」、「Nature Genetics,Vol.7,p.13−21,1994」、特表平4−504365号公報、国際出願公開WO94・25585号公報等、「日経サイエンス、6月号、第40〜第50頁、1995年」、「Nature,Vol.368,p.856−859,1994」、特表平6−500233号公報等を参考にそれぞれ製造することができる。本発明のSGK2タンパク質に結合する抗体は、例えば、癌細胞の増殖もしくは転移の抑制等を目的とした使用が考えられる。得られた抗体を人体に投与する目的(抗体治療)で使用する場合には、免疫原性を低下させるため、ヒト抗体やヒト型抗体が好ましい。
抗体は、診断剤として用いる場合は、モニタリング等のための標識物質(例えば、放射性同位元素、蛍光物質など)で標識されていてもよい。必要に応じて、放射性物質、蛍光化合物などにより標識することができる。最も慣用の蛍光標識化合物の中には、フルオレセインイソチオシアネート、ローダミン、フィコエリトリンおよびフルオレスカミンがある。同様に、生体発光性化合物を用いて、抗体SGK2抗体を標識することもできる。生体発光性タンパク質の存在は、蛍光の存在を検出することによって測定される。この標識目的に重要な生体発光性化合物は、ルシフェリン、ルシフェラーゼおよびイエクオリンである。
なお、本発明の抗体は、体液や組織などの被検体中に存在するSGK2タンパク質等を特異的に検出するために使用することができる。また、SGK2タンパク質等を精製するために使用する抗体カラムの作製、精製時の各分画中のSGK2タンパク質等の検出、被検細胞内におけるSGK2タンパク質の挙動の分析などのために使用することができる。
3.2 抗SGK2抗体を含有する複合体など
また、本発明において使用する抗SGK2抗体は、本発明の治療剤または診断剤において、それ自体が、抗原の活性を減弱させるような中和活性を有する薬剤(agent)であり得るが、必要に応じて、治療効果を奏するための他の薬剤と組み合わせて用いることができる。したがって、本発明は、もう一つの態様において、がん(例えば、大腸がん)の標的化療法または標的化イメージング等に使用するための、抗SGK2抗体と他の薬剤との複合体、そのような複合体を含有する組成物などをも提供する。このような態様によれば、本発明において使用する抗SGK2抗体を用いて、治療効果を奏する他の薬剤または診断のための標識剤などを、SGK2タンパク質を高発現する標的部位へ送達することができる。
本発明において用いられる「その他の薬剤」としては、例えば、放射性同位元素、治療タンパク質、または低分子の薬剤など、標的への遺伝子導入のためのウイルスベクターもしくは非ウイルスベクターなどが例示される。
本発明において、「放射性同位元素」の例としては、フッ素−18、ヨウ素−125(125I)、およびヨウ素−131などの放射性ハロゲン元素が挙げられる。これらの放射性ハロゲン元素も上述の放射性金属元素と同様に抗体やペプチドに標識して、放射性治治療剤あるいは放射性診断剤として広く利用し得る。例えば、125Iまたは131Iでのヨード化は、クロラミンT法等の公知の方法により、抗体または抗体断片に結合させることができる。さらに、診断用としてはテクネチウム−99m、インジウム−111およびガリウム−67(67Ga)など、また治療用としてはイットリウム−90(90Y)、レニウム−186(186Re)またはレニウム−188(188Re)などが使用され得る。放射性同位元素を用いて抗体に標識する場合には、通常、金属キレート剤が用いられる。金属キレート剤としては、EDTA、DTPA、ジアミノジチオ化合物、サイクラム、およびDOTAなどが知られている。これらのキレート剤は抗体に予め結合しておき、その後放射性金属で標識する場合と、放射性金属キレートを形成後、抗体に結合して標識する方法がある。
本発明において、「治療タンパク質」の例としては、免疫を担う細胞を活性化するサイトカインが好適であり、例えば、ヒトインターロイキン2、ヒト顆粒球−マクロファージ−コロニー刺激因子、ヒトマクロファージコロニー刺激因子、ヒトインターロイキン12等が挙げられる。また、大腸がん細胞を直接殺傷するため、リシンやジフテリア毒素などの毒素を用いることができる。例えば、治療タンパク質との融合抗体については、抗体または抗体断片をコードするcDNAに治療タンパク質をコードするcDNAを連結させ、融合抗体をコードするDNAを構築し、このDNAを原核生物または真核生物用の発現ベクターに挿入し、この発現ベクターを原核生物または真核生物へ導入することにより発現させ、融合抗体を製造することができる。
「低分子の薬剤」は、本明細書中で「放射性同位元素」や「治療タンパク質」等以外の診断または治療用化合物を意味するものとして用いられる。「低分子の薬剤」の例としては、ナイトロジェン・マスタード、サイクロファスファミドなどのアルキル化剤、5−フルオロウラシル、メソトレキセートなどの代謝拮抗剤、ダウノマイシン、ブレオマイシン、マイトマイシンC,ダウノルビシン、ドキソルビシンなどの抗生物質、ビンクリスチン、ビンブラスチン、ビンデシンのような植物アルカロイド、タモキシフェン、デキサメタソンなどのホルモン剤等の抗癌剤(臨床腫瘍学(日本臨床腫瘍研究会編 1996年 癌と化学療法社))、またはハイドロコーチゾン、プレドニゾンなどのステロイド剤、アスピリン、インドメタシンなどの非ステロイド剤、金チオマレート、ペニシラミンなどの免疫調節剤、サイクロフォスファミド、アザチオプリンなどの免疫抑制剤、マレイン酸クロルフェニラミン、クレマシチンのような抗ヒスタミン剤等の抗炎症剤(炎症と抗炎症療法 昭和57年 医歯薬出版株式会社)などがあげられる。例えば、ダウノマイシンと抗体を結合させる方法としては、グルタールアルデヒドを介してダウノマイシンと抗体のアミノ基間を結合させる方法、水溶性カルボジイミドを介してダウノマイシンのアミノ基と抗体のカルボキシル基を結合させる方法等があげられる。
「ウイルスベクター」の例としては、本発明の抗SGK2抗体に結合し得るように改変されたウイルスベクターが使用し得る(例えば、アデノウイルスベクター(Wang,P.,et al.(1995)Somatic Cell and Molec.Genet.21,429−441)、レトロウイルスベクター(Naviaux R.K.,et al.(1996)J.Virol 70,5701−5705)、レンチウイルスベクター(Naldini,L.(1998)Curr.Opin.Biotechnol.9,457−463)などが挙げられる)。このようなウイルスベクターには、細胞増殖関連遺伝子、アポトーシス関連遺伝子、免疫制御遺伝子等の、標的部位(例えば、大腸がん)において、例えば、癌細胞のアポトーシスを誘導するなどの治療効果を奏する遺伝子(治療遺伝子)が組み込まれる。抗SGK2抗体に結合するウイルスベクターは、抗SGK2抗体と共に遺伝子治療を必要とする患者に投与された場合、抗SGK2抗体が認識する抗原(すなわち、SGK2)が存在する部位に標的化することができる。
抗SGK2抗体と上記他の薬剤とは、化学的または遺伝子工学的に結合され得る。ここで、「化学的な結合」には、イオン結合、水素結合、共有結合、分子間力による結合、疎水性相互作用による結合などが含まれるものとし、「遺伝子工学的な結合」には、例えば、抗体と治療タンパク質とからなる融合タンパク質を遺伝子組換えなどの技術を用いて作製した場合の、抗体と治療タンパク質との間の結合様式などが含まれるものとする。
4.製剤化および製剤の投与方法
本発明のSGK2遺伝子の発現阻害物質を含有するがん治療剤、SGK2タンパク質の活性阻害物質を含有するがん治療剤、本発明の抗SGK2抗体を含有する治療剤、または本発明において使用する抗SGK2抗体が、放射性同位元素、治療タンパク質、低分子の薬剤、および治療遺伝子を担持したウイルスベクターもしくは非ウイルスベクターのうちのいずれか、またはこれらの任意の組み合わせと化学的または遺伝子工学的に結合されている治療剤は、公知の手法に基づいて製剤化することができる。
本発明の治療剤の製剤化にあたっては、常法に従い、必要に応じて薬学的に許容される担体を添加することができる。例えば、界面活性剤、賦形剤、着色料、着香料、保存料、安定剤、緩衝剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等が挙げられるが、これらに制限されず、その他常用の担体を適宜使用することができる。具体的には、軽質無水ケイ酸、乳糖、結晶セルロース、マンニトール、デンプン、カルメロースカルシウム、カルメロースナトリウム、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアセタールジエチルアミノアセテート、ポリビニルピロリドン、ゼラチン、中鎖脂肪酸トリグリセライド、ポリオキシエチレン硬化ヒマシ油60、白糖、カルボキシメチルセルロース、コーンスターチ、無機塩類等を挙げることができる。
本発明の治療剤の剤型の種類としては、例えば、経口剤として錠剤、粉末剤、丸剤、散剤、顆粒剤、細粒剤、軟・硬カプセル剤、フィルムコーティング剤、ペレット剤、舌下剤、ペースト剤等、非経口剤として注射剤、坐剤、経皮剤、軟膏剤、硬膏剤、外用液剤等が挙げられ、当業者においては投与経路や投与対象等に応じた最適の剤型を選ぶことができる。有効成分としてのSGK2タンパク質の活性(またはSGK2遺伝子の発現)阻害物質は、製剤中0.1から99.9重量%含有することができる。
本発明の薬剤の有効成分の投与量は、投与対象、対象臓器、症状、投与方法などにより差はあるが、経口投与の場合、一般的に例えば、患者(60kgとして)に対して一日につき約0.1mg〜1,000mg、好ましくは約1.0〜100mg、より好ましくは約1.0〜50mgである。非経口的に投与する場合は、その一回投与量は投与対象、対象臓器、症状、投与方法などによっても異なるが、例えば、注射剤の形では通常例えば、患者(60kgに対して)、一日につき約0.01から30mg程度、好ましくは約0.1から20mg程度、より好ましくは約0.1〜10mg程度を静脈注射により投与するのが好都合である。しかしながら、最終的には、剤型の種類、投与方法、患者の年齢や体重、患者の症状等を考慮して、医師または獣医師の判断により適宜決定することができる。
このようにして得られる製剤は、例えば、ヒトやその他の哺乳動物(例えば、ラット、ウサギ、ヒツジ、ブタ、ウシ、ネコ、イヌ、サルなど)に対して投与することができる。ヒト以外の動物の場合も、上記の60kg当たりに換算した量を投与することができる。
本発明の治療剤は、がん(例えば、大腸がん、胃がん、肺がん、乳がん、前立腺がん、食道がん、肝臓がん、胆道がん、脾臓がん、腎がん、膀胱がん、子宮がん(例:子宮頸がん、子宮体がん)、精巣がん、甲状腺がん、膵臓がん、卵巣がん、脳腫瘍、血液腫瘍など)の予防・治療、好ましくは、大腸がんの予防・治療に用いられる。
本発明の薬剤は、SGK2タンパク質の活性阻害物質またはSGK2遺伝子の発現阻害物質を有効成分として含有しているため、抗癌剤、癌転移阻害剤、癌細胞のアポトーシス誘導剤等として使用し得る。対象となる細胞、組織、臓器、または癌の種類は特定のものに限定されない。また、本発明の薬剤は、SGK2タンパク質の活性阻害物質およびSGK2遺伝子の発現阻害物質の両方を含んでいても良い。
本発明の治療剤において、アンチセンス核酸を用いる場合、該アンチセンス核酸を単独あるいはレトロウイルスベクター、アデノウイルスベクター、アデノウイルスアソシエーテッドウイルスベクターなどの適当なベクターに挿入した後、公知の手段に従って投与することができる。アンチセンス核酸は、単独で、あるいは生理学的に認められる担体とともに製剤化し、遺伝子銃やハイドロゲルカテーテルのようなカテーテルによって投与することができる。
また、本発明において組換えアデノウイルス粒子のようなウイルスベクターと抗SGK2抗体との組み合わせを癌治療のために使用する場合は、これら単独で使用してもよいが、一般には製薬的に許容できる担体と共に使用される。そのような担体としては、既に上記したような担体、ならびに水、生理食塩水、グルコース、ヒトアルブミン等の水性等張溶液が好ましい。更に、製薬的に通常使用される添加剤、保存剤、防腐剤、衡量等を添加することもできる。そのように調製した医薬組成物は、治療すべき疾病に依存して適切な投与形態、投与経路によって投与することができる。投与形態としては、例えば、乳剤、シロップ剤、カプセル、錠剤、顆粒剤、注射剤、軟膏等が挙げられる。本発明の抗SGK2抗体−ウイルスベクター粒子またはこれを含む医薬組成物を治療のために投与する場合は、通常成人一人当たり1回に10〜1015個のウイルス粒子を投与するのが好ましいが、疾病の状態や標的細胞・組織の性質によって変更してよい。投与回数は、1日1回〜数回でよく、投与期間は1日〜数ヶ月以上にわたってもよく、1〜数回の投入を1セットとして、長期にわたって断続的に多数セットを投与してもよい。また、本発明において使用されるウイルスベクター粒子またはウイルスベクター核酸分子は、特定の細胞および/または組織の検出、または疾病状態の診断に使用することができる。例えば、ウイルスベクターの核酸分子に検出可能なマーカー遺伝子を組込み、これを適切な宿主細胞にトランスフェクションして得られたウイルスベクター粒子は、抗SGK2抗体と組み合わせて腫瘍細胞を検出診断するために使用することができる。あるいは、抗SGK2抗体に検出可能な標識を結合させて腫瘍細胞を検出診断するために使用することができる。
5.がんの診断剤及び診断方法
本発明はまた、がんの診断剤を提供する。1つの好ましい態様において、本発明のがんの診断剤は、(a)SGK2タンパク質に対する抗体、又は(b)SGK2遺伝子またはその一部の塩基配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な塩基配列からなるポリヌクレオチドを含有する。
5.1 抗SGK2抗体を用いる診断剤及び診断方法
SGK2タンパク質に対する抗体は、SGK2タンパク質等を特異的に認識することができるので、被検液中のSGK2タンパク質を定量することができる。具体的には、本発明の抗SGK2抗体を用いる診断方法は、例えば、(a)被験者由来の生体試料と、SGK2タンパク質に対する抗体とを接触させる工程、および(b)前記試料中での前記抗体と、SGK2タンパク質もしくはその部分ペプチドまたはその塩との結合を検出および/または定量する工程を包含する。好ましくは、上記検出および/または定量する工程において、標識された抗SGK2抗体を用いて、SGK2タンパク質またはその断片と抗SGK2抗体との結合が検出および/または定量される。
本明細書中、「被験者由来の生体試料」は、被験者由来の組織、細胞、または体液(例えば、血液(全血、血漿、血清等を含む)、尿、リンパ液、唾液、汗、精液等)を含む。また、「被験者」は、通常、がん検診を受ける、または受けることが望まれるヒト被験体であり、がんに罹患しているか、または罹患していると疑われるヒト被験体等が含まれる。このようながんの例としては、大腸がん、胃がん、肺がん、乳がん、前立腺がん、食道がん、肝臓がん、胆道がん、脾臓がん、腎がん、膀胱がん、子宮がん(例:子宮頸がん、子宮体がん)、精巣がん、甲状腺がん、膵臓がん、卵巣がん、脳腫瘍、血液腫瘍などが含まれるが、とりわけ、大腸がんが好ましい。
上記のような被験者由来の生体試料におけるSGK2の発現を検出するための免疫測定は、がん(例えば、大腸がん)を有すると疑われるか、がんの危険性を有する被験体から採取した生体試料を、特異的抗原−抗体結合を生じさせる条件下で抗SGK2抗体と接触させ、次いで、抗体による免疫特異的結合量を測定することを包含する。このような抗体の結合を使用して、SGK2タンパク質の存在および/または増大した発現が検出される。この場合、増大したSGK2タンパク質発現の検出が疾病状態の指標となる。必要に応じて、生体試料中のSGK2タンパク質のレベルを、がんを有しない健常者のレベルと比較してもよい。
上記免疫測定法の1つの態様では、例えば、血清試料などの生体試料を、試料中に存在する全部のタンパク質を固定する目的で、ニトロセルロースなどの固相支持体または担体と接触させる。次いで、この支持体を緩衝液で洗浄し、続いて検出可能に標識した抗SGK2抗体により処理する。次いで、この固相支持体を緩衝液で2回洗浄し、未結合抗体を除去する。固相支持体上の結合した抗体の量を、周知の方法に従って測定する。各測定に適する検出条件は、慣用的な試験方法を使用して当業者により適宜決定され得る。
抗SGK2抗体を検出可能に標識する方法の1つにおいて、当該抗体を、酵素、例えば、酵素イムノアッセイ(EIA)に使用されるもののような酵素に結合させる[Voiler,A.による「酵素標識した免疫吸着アッセイ」(“The Enzyme Linked Immunosorbent Assay)(ELISA),1978,Diagnostic Horizons,2:1〜7,Microbiological Associates Quarterly Publication,Walkersville.MD;Voiler,A.によるJ.Clin.Pathol.,31:507〜520,1978:Butier,J.E.によるMeth.Enzymol.,73:482〜523,1981]。抗体に結合する酵素を、例えば分光光度測定により、可視手段による蛍光測定により検出することができる化学分子が生成されるような方法で、適当な基質、好ましくは色素原性基質と反応させる。抗体に検出可能な標識を付けるために使用することができる酵素は、ペルオキシダーゼおよびアルカリ性ホスファターゼを包含するが、これらに限定されない。この検出はまた、酵素に対する色素原性基質を用いる比色法により達成することができる。
その他の本発明において使用し得る方法としては、ラジオイムノアッセイ(RIA)、サンドイッチ免疫測定法、イムノメトリック法、ネフロメトリー、蛍光免疫測定法(FIA)、時間分解蛍光免疫測定法(TRFIA)、酵素免疫測定法(EIA)、発光免疫測定法(LIA)、電気化学発光免疫測定法(ECLIA)、ラテックス凝集法、免疫沈降アッセイ、沈降素反応法、ゲル拡散沈降素反応法、免疫拡散検定法、凝集素検定法、補体結合検定法、免疫放射分析検定法、蛍光免疫検定法、およびプロテインA免疫検定法からなる群から選択される免疫測定法などが挙げられる(WO00/14227号公報第39頁第25行〜第42頁第8行、EP1111047A2号公報段落[0115]第19頁第35行〜第20頁第47行など参照)。
以上のように、本発明の抗体を用いる、生体内でのSGK2タンパク質の定量法を利用することにより、SGK2タンパク質の機能不全に関連する各種疾患の診断をすることができる。例えば、SGK2タンパク質の濃度増加が検出された場合は、例えば、SGK2タンパク質の過剰発現に起因する疾患(例えば、がん(例:大腸がん))である可能性が高いまたは将来罹患する可能性が高いと診断することができる。
なお、本発明の抗SGK2抗体は、in vivoでの診断に用いることもできる。ここで使用し得る抗体調製物の調製および使用方法は当該分野でよく知られている。例えば、抗体−キレート剤について、Nucl.Med.Biol.1990 17:247−254に記載されている。また、磁気共鳴イメージングで用いる標識としての常磁性イオンを有する抗体については、例えば、Magnetic Resonance in Medicine 1991 22:339−342に記載されている。
5.2 ポリヌクレオチド(例えば、DNA)プローブを用いる診断剤及び診断方法
本発明の診断方法においては、SGK2遺伝子の塩基配列に基づいて設計されるプローブ又はプライマーを用いることができる。具体的には、そのような診断方法は、例えば、(a)被験者由来の生体試料と、SGK2遺伝子またはその断片の塩基配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な塩基配列からなるポリヌクレオチド(プローブ)とを接触させる工程、および(b)前記試料中での前記ポリヌクレオチドと、SGK2遺伝子またはその断片とのハイブリダイゼーションを検出および/または定量する工程を包含する。
上記本発明の方法では、被験者由来の生体試料中のSGK2遺伝子のDNA(またはその遺伝子断片)を、上記プローブを使用して検出および/または定量する。プローブとして用いる塩基配列の長さは、例えば、12塩基以上、15塩基以上、18塩基以上、21塩基以上、24塩基以上、27塩基以上、30塩基以上、またはさらに長い長さのポリヌクレオチド断片であり得る。ハイブリダイゼーションには、上記した低、中又は高ストリンジェントな条件を使用し得る。なお、本明細書中、「SGK2遺伝子またはその断片の塩基配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な塩基配列」には、SGK2遺伝子またはその断片の塩基配列に相補的な塩基配列(アンチセンスポリヌクレオチド)も含まれるものとする。プローブおよび核酸のハイブリダイゼーションの方法は当業者に知られており、例えば国際公開公報第89/06698号、EP−A0200362、米国特許第2,915,082号、EP−A0063879、EP−A0173251、EP−A0128018に記載されている。
本発明の診断方法においては、SGK2遺伝子に対する特異的ポリヌクレオチドプローブまたはプライマーを用いて、公知の手法を用いて標的配列を検出または定量することができる。そのような公知の手法として、例えば、サザンハイブリダイゼーション、ノーザンハイブリダイゼーション、RT−PCR法、PCR−SSCP法(Genomics,第5巻,874〜879頁(1989年))、Proceedings of the National Academy of Sciences of the United States of America,第86巻,2766〜2770頁(1989年))、FISH法、DNAチップあるいはアレイCGH(Comparative Genomic Hybridization)法などを用いることができる。定量的な検出は、定量RT−PCRによって実施可能である。
アレイCGH法は、染色体CGH法(Kallioniemi,A.et al.(1992)Science 258,818−821)を応用した方法で、スライド上に染色体領域をカバーするゲノムDNA断片(BAC,PAC,YACなど)を高密度にスポットしたDNAチップを用いて、別々の色素で標識したがん由来DNAと正常DNAを、スライド上のゲノムDNA断片に対して同時にハイブリダイゼーションを行い、その結合状態を検出することにより、がんにおけるDNAコピー数異常を高解像度に検出する方法である(Pinkel,D.et al.(1998)Nat.Genet.20,207−211)。
なお、本発明においては、SGK2遺伝子の発現が上方制御されるか否かを検出するために、細胞のSGK2のmRNAレベルを標準遺伝子(ハウスキーピング遺伝子(例えば、Shaper,N.L.ら、J.Mammary Gland Biol.Neoplasia 3(1998)315−324;Wu,Y.Y.およびRees,J.L.、Acta Derm.Venereol.80(2000)2−3)のmRNAレベルと、好ましくはRT−PCRによって比較することもできる。
上記のような手法によって標的配列(DNA、mRNAなど)を検出・定量し、SGK2遺伝子の発現過多が確認された場合は、例えば、SGK2の過剰発現に起因する疾患(例えば、がん(例:大腸がん))である可能性が高い、あるいは将来罹患する可能性が高いと診断することができる。
5.3 質量分析装置を用いる診断方法
本発明の診断方法の別の実施形態では、被検試料中の標的タンパク質またはその断片の存在を、質量分析装置(MS)を用いて同定することができる。すなわち、質量分析装置を用いることによって、標的タンパク質またはその断片のアミノ酸配列の決定を行うことができ、被験者由来の生体試料中にSGK2タンパク質が存在するか否かを判定することができる。質量分析法は、MSを用いてタンパク質やペプチドのような試料をイオン化し、得られた質量/電荷(m/z)に従って分離し、その強度を測定することにより、試料の質量を決定する方法である。その質量分析の結果から、タンパク質やペプチドのアミノ酸配列を構成する個々のアミノ酸を同定することができる。
イオン化には、マトリクスアシステッドレーザーデソープションイオン化法(MALDI)、エレクトロスプレーイオン化法(ESI)、気相法(EI,CI)、電界脱離(FD)法など種々の方法が使用され得る。イオン分離には、イオン化法と相性のよいイオン分離法が用いられ、例えば、MALDIの場合には、飛行時間型(time of flight:TOF)質量分析計、ESIの場合には、四重極型(QMS)、イオントラップ型、磁場型などの質量分析計がそれぞれ用いられる。質量分析装置は、タンデムで用いられることもある。例えば、LC−ESI MS/MS、Q−TOF MS、MALDI−TOF MS等が挙げられる。なお、その他のアミノ酸配列決定法、例えば、シークエンサー(例:気相シークエンサー)によるアミノ酸配列決定法が利用されてもよい。
5.4 診断用キット
本発明はまた、抗SGK2抗体を含有する、被験者の体液試料中のSGK2タンパク質またはその断片をがんマーカーとして検出および/または定量するためのキットを提供する。さらに、SGK2遺伝子またはその一部の塩基配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な塩基配列を含有する、被験者由来の生体試料中のSGK2遺伝子またはその断片をがんマーカーとして検出および/または定量するためのキットをも提供する。これらのキットは、上述の免疫学的手法またはハイブリダイゼーション法等により、がんマーカーを検出するために用いられる。このようながんとしては、例えば、大腸がん、胃がん、肺がん、乳がん、前立腺がん、食道がん、肝臓がん、胆道がん、脾臓がん、腎がん、膀胱がん、子宮がん(例:子宮頸がん、子宮体がん)、精巣がん、甲状腺がん、膵臓がん、卵巣がん、脳腫瘍、血液腫瘍などが含まれるが、とりわけ、大腸がんが好ましい。
本明細書中、「がんマーカー」とは、被験者の体液(例えば、血液、尿、リンパ液、唾液、汗、精液等)または細胞もしくは組織中における、正常組織に由来していないか、あるいはがん細胞または組織において選択的に発現の亢進している分子のことをいい、被験者の体液または細胞もしくは組織中における当該分子の存在ががんの存在を示すかまたは示唆するものをいう。
上記第一の態様のキットは、被験者からの体液試料中のSGK2抗原(SGK2タンパク質およびその部分ペプチドを含む)を検出および/または定量する成分を含有する。例えば、SGK2タンパク質がELISAで検出および/または定量される場合、このような成分は、例えば、組織切片、または血液や尿のような体液試料中のSGK2のレベルを検出および/または定量するために使用され得る。このような抗体は放射能、蛍光、比色、または酵素標識で標識されていてもよい。本発明のキットは、標識された二次抗体を含有していてもよい。
上記第二の態様のキットは、SGK2遺伝子またはその一部の塩基配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な塩基配列からなるポリヌクレオチドを含有する。例えば、本発明のキットは、DNAチップ上に固定された上記ポリヌクレオチドを含有し得る。
本発明のキットは、抗SGK2抗体、SGK2遺伝子またはその一部の塩基配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な塩基配列等の他に、容器およびラベルを含んでいてもよい。容器上のまたは容器に伴うラベルには、薬剤が大腸がんマーカーの検出に使用されることが示されていてもよい。また、他のアイテム、例えば、使用説明書等がさらに含まれていてもよい。
以下、本発明を実施例を用いてより具体的に説明するが、本発明の範囲は、これらの実施例によって限定されない。
実施例1:アレイCGH法による大腸がん特異的増幅遺伝子の同定
本実施例では、大腸がん特異的な遺伝子増幅領域を特定するために、大腸がん検体200症例のサンプル調製およびアレイCGH法に基づく検証を実施した。
その結果、大腸がん検体において高頻度に増幅が起きている領域の内、公共DBでの遺伝子情報(NCBI:http://www.ncbi.nlm.nih.gov/)を利用し、精査した結果、使用したBAC Clone RP11−69I10に位置している、SGK2(serum/glucocorticold regulated kinase 2)(NCBI Accession No.:NM_170693)遺伝子が大腸がん患者において高頻度で高値であることを見出した(図1,表2)。図1は、SGK2遺伝子の大腸がん患者200検体での増幅度に対する頻度を示すヒストグラムである。また、下記の表2は、SGK2遺伝子の大腸がん患者200検体での増幅度(G/R値)および頻度を示す。平均値は、G/R値が1.2以上の検体での平均値を示している。
表2に示されるように、SGK2遺伝子は、200検体の大腸がん患者の57.5%において増幅が認められ、その増幅度の平均値は、1.6であった。最大値は2.7であり、非常に高頻度で顕著な増幅が起こっていた。
Figure 2007037560
実施例2:大腸由来培養細胞株での遺伝子増幅度の検証
本実施例では、大腸がん患者において高頻度で高値な遺伝子領域について、大腸がん由来培養細胞株での増幅度を検証した。
<サンプル調製>
培養細胞株は、大腸がん由来の細胞株であるCaco2およびRKOE6を使用した。培養細胞よりBlood & Cell Culture DNA Kit(QIAGEN)を使用して、キット添付のプロトコールに従い、ゲノムDNAを抽出した。
<アレイCGH>
遺伝子領域の増幅を確認するために、アレイCGHを実施した。方法の詳細は実施例1と同様に実施した。
結果
表3に、SGK2遺伝子の大腸がん由来の細胞株での増幅度(G/R値)を示した。示されるように、大腸がん由来細胞株においても、BAC Clone RP11−69I10に位置している、SGK2遺伝子で増幅が起きていることを見出した。
Figure 2007037560
<定量的PCR>
SGK2遺伝子領域の増幅を確認するために、定量的PCRを実施した。定量的PCRは、SYBR Green RT−PCR Reagents(Applied Biosystems)を使用して、添付のプロトコールに従い、7500 Real−Time PCR System(Applied Biosystems)を用いて実施した。プライマーは、以下の配列を合成し(OPERONに合成委託)使用した。
プライマー配列:
5’−GGAGTTTGCGGAGTCTGAAGAG−3’(配列番号3)
5’−GCCCTCAGTTCCTAAGGCTTTC−3’(配列番号4)
結果
表4に、SGK2遺伝子の大腸がん由来の細胞株での増幅度を示した。値は対照DNA(正常)との相対値を示している。示されるように、大腸がん由来細胞株においても、SGK2遺伝子領域に増幅が起きていることを見出した。
Figure 2007037560
これらの結果により、大腸がん由来の細胞株(Caco2、RKOE6)においても、SGK2遺伝子が増幅していることが確認された。よって、がんにおけるSGK2遺伝子の機能解析に使用可能な培養細胞が選択された。
実施例3:大腸がん細胞株を用いたRNAi解析による機能解析
本実施例では、大腸がん患者200検体において高頻度に増幅が認められたSGK2遺伝子について、大腸がん由来の細胞株であり、且つ、ゲノムレベルで遺伝子の増幅が認められた細胞株(Caco2、RKOE6)を用いて、RNAi解析を行い、その表現型を観察した。
<RNAi解析>
細胞株はATCCより購入し、添付のプロトコールに従い培養を行った。siRNAは遺伝子内の特異的な21merを選択しその配列を標的とするsiRNAを合成した(QIAGENに合成委託)。
Figure 2007037560
さらに2つのsiRNA(siRNA lおよびsiRNA m)については、市販(Invitrogen)のsiRNAを使用した。
siRNAのCaco2細胞内への導入は、Oligofectamine(Invitrogen)を使用し、100nMのsiRNAを添付のプロトコールに従い細胞に導入した。RKOE6細胞内への導入は、Lipofectamine2000(Invitrogen)を使用し、100nMのsiRNAを添付のプロトコールに従い細胞に導入した。対照にはNegative Control siRNA(Dharmacon)を使用した。細胞に導入後4日間、時系列に従い顕微鏡下で同視野の微分干渉像を撮影し、その動態を詳細に観察した。
<定量的RT−PCR解析>
定量的RT−PCR法を用いて、siRNAの効果をmRNAレベルで検証する。siRNA導入後24時間の細胞から、Micro−to−Midi Total RNA Purification System(Invitrogen)を使用して、添付のプロトコールに従い、全RNAを抽出する。その後、SuperScript III First−Strand Synthesis System for RT−PCR(Invitrogen)を使用して、添付のプロトコールに従い、cDNAを合成する。
このcDNAを鋳型にして、定量的RT−PCRを実施する。定量的PCRは、SYBR Green RT−PCR Reagents(Applied Biosystems)を使用して、添付のプロトコールに従い、7500 Real−Time PCR System(Applied Biosystems)を用いて実施する。プライマーは、以下の配列を合成し(OPERONに合成委託)使用する。
プライマー配列:
5’−GAGCGCAGTGTGCTTCTGAAG−3’(配列番号9)
5’−TTGACATAGTCGAGCACGAAGTAGAG−3’(配列番号10)
相対比を算出するための標準遺伝子にはGlyceraldehyde−3−phosphate dehydrogenase(GAPDH)Control Reagents(Applied Biosystems)を用いてGAPDHの発現量を求め、相対比を算出する。
<生細胞数の測定>
siRNA導入後の生細胞数をAlamar Blue(Biosource)を用いて、添付のプロトコールに従い、Wallac 1420 Multilabel/Luminescence Counter ARVO(PerkinElmer)により測定した。
結果
大腸がん由来の細胞株であるCaco2およびRKOE6を用いて、SGK2遺伝子のRNAi解析を実施した。
図2に、RKOE6細胞にSGK2遺伝子のsiRNAをTransfection後、1、2、3、4日後の同視野の微分干渉像を示す。b、c、lおよびmは、それぞれSGK2遺伝子のsiRNA4種であり、NCはネガティブコントロールを示す。示されるように、b、c、l、およびmについては細胞死の誘導が認められ、Negative Control(NC)と比較して細胞の増殖が抑制されている(図2)。
図3Aおよび図3Bには、それぞれCaco2およびRKOE6細胞にSGK2遺伝子のsiRNAをTransfection後、4日目の細胞を用いて測定試薬により生細胞数を測定した結果を示す。グラフはNCに対する相対量を示した。示されるように、生細胞数の測定を行った結果、Caco2におけるSGK2遺伝子のsiRNA4種(b、c、l、m)について、それぞれ35%、22%、38%、43%の増殖抑制効果が認められた。RKOE6におけるSGK2遺伝子のsiRNA4種(b、c、l、m)について、表現型同様、Negative Control(NC)と比較して顕著に細胞数が減少しており、いずれもt検定において有意(p<0.01)であった。
よって、RNAi効果によりSGK2遺伝子の発現が抑制された結果、Caco2およびRKOE6において、顕著にがん細胞の増殖が抑制されることが見出された。
実施例4:大腸由来正常細胞株を用いたRNAi解析による機能解析
本実施例では、大腸の正常組織由来の細胞株を用いてRNAi解析を実施することにより、標的遺伝子の抑制効果ががん特異的であることを検証した。
<RNAi解析>
細胞株はATCCより購入したCCD18Coを使用した。培養条件は、添付のプロトコールに従った。使用したsiRNAは、実施例3のa配列を使用した。siRNAの細胞内への導入は、Lipofectamine 2000(Invitrogen)を使用し、25nMのsiRNAを添付のプロトコールに従い細胞に導入した。対照にはNegative Control siRNA(QIAGEN)を使用した。導入後5日間、倒立顕微鏡下で観察した。
<定量的RT−PCR解析>
実施例3の記載方法と同様に実施した。
<生細胞数の測定>
実施例3の記載方法と同様に実施した。
実施例5:遺伝子増幅の評価
検体組織のがん細胞においてSGK2遺伝子領域で遺伝子増幅がおきていることを、当該技術分野で公知のFISH法により評価した。
アレイCGH法により、遺伝子増幅度(G/R)が1.2以上であった検体組織(大腸癌患者由来)を用いて、SGK2遺伝子が位置するBAC Clone RP11−69I10のDNA Probeでハイブリダイゼーションを実施した。
結果
図4は、各検体組織(A〜J)で観察したがん細胞の一部(6細胞分)の光学顕微鏡写真(蛍光像)を示す。示されるように、がん細胞においてシグナルが3スポット以上見出された。アレイCGH法により遺伝子増幅度(G/R)が1.2以上であった10検体において、SGK2遺伝子領域が増幅していることが確認された。また、病態ステージの初期から後期に渡り遺伝子増幅が起きていることが示された。このことは、SGK2遺伝子領域が、がん治療薬の分子標的としてだけでなく、FISH法によるがん診断に応用できることを示している。
実施例6:質量分析による血中SGK2タンパク質の検出
1)血液検体の前処理
大腸癌患者の血清検体10μL及び健常者血清検体10μLを、希釈バッファ溶液(10mM Tris HCl ph7.4+150mM NaCl)500μLで希釈後、ProteomeLab IgY−12 SC プロテオームパーティショニングキット(BECKMAN COULTER:A24618)を用いてアルブミン、グロブリン等の血清中多量蛋白質を除去した。得られた画分に終濃度10mMとなるようにジチオスレイトール(Wako:049−08972)を加え、還元反応を60℃で30分間行った。反応終了後、終濃度10mMとなるようにヨードアセトアミド(SIGMA:144−48−9)を加え、アルキル化反応を室温で30分間、遮光状態で行った。反応終了後、反応液の4倍量の冷アセトン(Wako:014−08681,−20℃)を加え、−80℃に1時間静置した後に15,000 x gで30分間遠心してタンパク質を沈殿として回収した。回収したタンパク質は80μLの2M尿素+100mM重炭酸アンモニウム溶液に溶解した。溶解後に一部をBCA法によるタンパク質濃度測定に供した。試料タンパク質と1/50(w/w)となるようにトリプシン(Promega:V511C)を加え、37℃で16時間消化反応を行った。
2)Nano−HPLC直結質量分析装置による解析
ペプチド断片0.7μg量をμ−Precolumn cartridge(C18 PepMap300,5μm,300Å,300μm i.d.x 5mm LC PACKINGS:163589)と直結させたナノカラム(C18 PepMap 3μm,100Å,75μm i.d.x 150mm LC PACKINGS:160321)により分離した。HPLC装置はUltimate Plus(LC PACKINGS)を用いた。流速は200nL/min、0.1%ギ酸(Wako:062−02901)含有2%アセトニトリル(MERCK:1287229)と0.1%ギ酸含有90%アセトニトリルの濃度勾配が0.57%/minの直線グラジエントを設定して解析を行った。Nano−HPLCで分離した試料はPicoTip(New Objective:FS360−20−10−D−20)を通して直結したイオントラップ型質量分析装置に連続的に導入した。質量分析装置はHCT Plus(Bruker Daltonics)を用いた。試料のイオン化はキャピラリー電圧1500V、エンドプレートオフセット値500V、ドライガス流量12L/min、ドライガス温度250℃の条件で行った。イオントラップの設定は標的m/zの前後2Daの取り込みとし、MRMモードでのMS/MS解析を行った。
3)データ解析
質量分析装置から得た全分析データはData Analysisソフトウエア(Bruker Daltonics)を介して出力した。出力した全データ中から標的分子の分析データのみを抽出した。抽出したデータの中から各分析時間におけるMS/MSデータを精査し、標的分子のフラグメントイオンに相当する質量を持つイオンピークの有無を解析した。
結果
図5Aおよび図5Bは、(A)大腸がん患者由来の血清、および(B)健常者由来の血清について、上記の方法で解析した結果をそれぞれ示す。
図6A〜Cは、MS/MS解析によって決定された、図5に示すピークとアミノ酸(またはアミノ酸配列)との対応関係を示す。
図5および図6に示されるように、標的分子のフラグメントイオンに相当するイオンピークが、大腸がん患者由来の血清中に明確に認められた。すなわち、図6Bに示すように、少なくともC末端側からLFDAという部分配列が決定され、これは、SGK2タンパク質のアミノ酸配列(配列番号2)中の281位〜284位のアミノ酸配列に相当する。よって、図6Aに示すように、アミノ酸配列281位〜287位の標的ペプチドフラグメント(配列番号11)が同定された。このような部分配列に対応する有意なイオンピークは健常者血清を用いた解析では認められなかった(図6Cを参照)。よって、この標的分子(すなわち、SGK2タンパク質)は癌特異的に血中存在量が増加している可能性が強く示唆された。
実施例7:子宮頸がん由来株HeLa細胞株でのRNAi効果の評価
大腸がん細胞株では、SGK2遺伝子のノックダウンにより、増殖抑制効果が認められたが、子宮頸がん細胞株においてどのような効果が認められるのか、前述のRNAi解析法により、評価した。
子宮頸がん由来細胞のHeLa細胞株を用いて、前出の4種のsiRNAを用いてRNAi解析を実施した。siRNAの細胞内への導入は、Oligofectamine(Invitrogen)を使用し、100nMのsiRNAを添付のプロトコールに従い細胞に導入した。対照にはNegative Control siRNA(QIAGEN)を使用した。
結果
図7は、HeLa細胞にSGK2遺伝子のsiRNAをTransfection後、4日目の細胞を用いて測定試薬により生細胞数を測定(MTT assay)した結果を示す。グラフはNC(Negative control siRNA(Qiagen社製))に対する相対量を示した。図に示されるように、SGK2遺伝子のsiRNA4種(b、c、l、m)の内、siRNA cにおいて11%、siRNA lにおいて32%、siRNA mにおいて65%の増殖抑制効果が認められた(p<0.01のt検定において有意)。
さらに、時系列に従い、顕微鏡下で微分干渉像を撮影し、その動態を詳細に観察した。具体的には、HeLa細胞にsiRNA(b、c、l、m)をトランスフェクション後、1,2,3,4日後の同視野の微分干渉像を観察した。その結果を図8に示す。NCはNegative control siRNA(Qiagen社製)を使用した。図8中b、c、lおよびmはそれぞれ、図7のsiRNAb、siRNAc、siRNAlおよびsiRNAmに対応する。増殖抑制が認められたc、l、mにおいて細胞死の誘導が認められた。
この結果より、SGK2遺伝子機能の阻害が大腸がんだけでなく、子宮頸がんにおいても抗腫瘍性効果を示すことが示唆された。
本発明は、がんの治療剤、診断剤、診断方法、治療方法、ならびにそれに使用するキットなどを提供する。したがって、本発明は、がんの診断、または標的治療等の分野において有用である。
[配列表]
Figure 2007037560
Figure 2007037560
Figure 2007037560
Figure 2007037560
Figure 2007037560
Figure 2007037560
Figure 2007037560

Claims (28)

  1. SGK2遺伝子の発現阻害物質を有効成分として含有するがん治療剤。
  2. 前記SGK2遺伝子の発現阻害物質が、
    (a)SGK2遺伝子の発現をRNAi効果により阻害する作用を有する核酸、
    (b)SGK2遺伝子の転写産物またはその一部に対するアンチセンス核酸、
    および
    (c)SGK2遺伝子の転写産物を特異的に切断するリボザイム活性を有する核酸、
    からなる群から選択される物質を含む、請求項1に記載のがん治療剤。
  3. SGK2タンパク質の活性阻害物質を有効成分として含有するがん治療剤。
  4. 前記SGK2タンパク質の活性阻害物質が、
    該SGK2タンパク質に対する抗体、
    を含む、請求項3に記載のがん治療剤。
  5. 前記がんが、大腸がんまたは子宮頸がんである、請求項1〜4のいずれかに記載のがん治療剤。
  6. SGK2遺伝子の発現阻害物質をスクリーニングする方法であって、
    (a)SGK2遺伝子を発現する細胞に、被検化合物を接触させる工程、
    (b)該SGK2遺伝子の発現レベルを測定する工程、および
    (c)被検化合物を接触させない場合と比較して、該発現レベルを低下させる化合物を選択する工程を包含する、スクリーニング方法。
  7. SGK2タンパク質の活性阻害物質をスクリーニングする方法であって、
    (a)SGK2タンパク質と被検化合物とを接触させる工程、
    (b)該SGK2タンパク質と被検化合物との結合活性を測定する工程、および
    (c)該SGK2タンパク質と結合する化合物を選択する工程を包含する、スクリーニング方法。
  8. 前記がんが、大腸がんまたは子宮頸がんである、請求項6または7に記載の方法。
  9. SGK2タンパク質に対する抗体。
  10. 請求項9に記載の抗体を含有するがん治療剤。
  11. 放射性同位元素、治療タンパク質、低分子の薬剤、または治療遺伝子を担持したベクターをさらに含有する、請求項10に記載のがん治療剤。
  12. 前記がんが、大腸がんまたは子宮頸がんである、請求項10または11に記載のがん治療剤。
  13. 請求項9に記載の抗体を含有するがん診断剤。
  14. SGK2遺伝子またはその一部の塩基配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な塩基配列を含有するがん診断剤。
  15. 前記がんが大腸がんである、請求項13または14に記載のがん診断剤。
  16. 請求項9に記載の抗体を含有するがん診断用キット。
  17. SGK2遺伝子またはその一部の塩基配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な塩基配列からなるポリヌクレオチドを含有するがん診断用キット。
  18. 前記がんが大腸がんである、請求項16または17に記載のがん診断用キット。
  19. 被験者由来の生体試料中のSGK2タンパク質またはSGK2遺伝子をがんマーカーとして検出および/または定量する方法。
  20. 前記生体試料が、全血、血清、または血漿である、請求項19に記載の方法。
  21. 質量分析装置を用いて、SGK2タンパク質を検出および/または定量する、請求項19または20に記載の方法。
  22. 抗SGK2抗体を用いて、SGK2タンパク質を検出および/または定量する、請求項19〜21のいずれかに記載の方法。
  23. (a)被験者由来の生体試料と、SGK2タンパク質に対する抗体とを接触させる工程、および
    (b)前記試料中での前記抗体と、SGK2タンパク質との結合を検出および/または定量する工程、
    を包含する、請求項22に記載の方法。
  24. (a)被験者由来の生体試料と、SGK2遺伝子またはその断片の塩基配列にストリンジェントなハイブリダイゼーション条件下でハイブリダイズ可能な塩基配列からなるポリヌクレオチドとを接触させる工程、および
    (b)前記試料中での前記ポリヌクレオチドと、SGK2遺伝子またはその断片とのハイブリダイゼーションを検出および/または定量する工程、
    を包含する、請求項19または20に記載の方法。
  25. がんの診断に用いるための請求項19〜24のいずれかに記載の方法。
  26. 前記がんが、大腸がんである、請求項25に記載の方法。
  27. 配列番号5、配列番号6、配列番号7、または配列番号8の塩基配列を有する、ポリヌクレオチド。
  28. SGK2遺伝子の発現阻害物質を有効成分として含有するがん治療剤であって、配列番号5、配列番号6、配列番号7、または配列番号8の塩基配列を有するポリヌクレオチドを含有する、がん治療剤。
JP2007537787A 2005-09-30 2006-10-02 Sgk2遺伝子の治療的又は診断的用途 Pending JPWO2007037560A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005286187 2005-09-30
JP2005286187 2005-09-30
PCT/JP2006/320146 WO2007037560A1 (ja) 2005-09-30 2006-10-02 Sgk2遺伝子の治療的又は診断的用途

Publications (1)

Publication Number Publication Date
JPWO2007037560A1 true JPWO2007037560A1 (ja) 2009-04-16

Family

ID=37899953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007537787A Pending JPWO2007037560A1 (ja) 2005-09-30 2006-10-02 Sgk2遺伝子の治療的又は診断的用途

Country Status (2)

Country Link
JP (1) JPWO2007037560A1 (ja)
WO (1) WO2007037560A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017026642A (ja) * 2016-11-09 2017-02-02 ニプロ株式会社 生体試料のためのリチウムイオン濃度測定キットおよびそれを用いた生体試料中のリチウムイオン濃度の測定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000035946A1 (en) * 1998-12-14 2000-06-22 The University Of Dundee Methods
EP1385992A2 (en) * 2000-09-20 2004-02-04 Kinetek Pharmaceuticals, Inc. Cancer associated protein kinases and their uses
DE10305212A1 (de) * 2003-02-07 2004-08-19 Florian Prof. Dr.med. Lang Verwendung der sgk-Genfamilie zur Diagnose und zur Therapie von Katarakt und Glaukom

Also Published As

Publication number Publication date
WO2007037560A9 (ja) 2007-05-31
WO2007037560A1 (ja) 2007-04-05

Similar Documents

Publication Publication Date Title
JP2011501741A (ja) がんの診断および治療のためのtaz/wwtr1
EP2452948B1 (en) New tumor marker
TWI595879B (zh) Prediction of therapeutic effect in patients with colorectal cancer with TK1 protein hyperactivity
JP4532273B2 (ja) 癌に関係するタンパク質
WO2011129427A1 (ja) 癌の診断剤および治療剤
JP5354634B2 (ja) ヒトabh8タンパク質、それをコードする遺伝子、およびこれらの治療的又は診断的用途
US8389684B2 (en) Tumor biomarker
JPWO2007037538A1 (ja) Spo11遺伝子の治療的又は診断的用途
JPWO2007037560A1 (ja) Sgk2遺伝子の治療的又は診断的用途
JPWO2007026960A1 (ja) Mocs3遺伝子の治療的又は診断的用途
JPWO2007037533A1 (ja) Ppp1r3d遺伝子の治療的又は診断的用途
JPWO2007037532A1 (ja) Srms遺伝子の治療的又は診断的用途
JPWO2007037555A1 (ja) Dusp15遺伝子の治療的又は診断的用途
JPWO2014042148A1 (ja) がんマーカーおよびその用途
US11137400B2 (en) Methods for predicting and determining responsiveness to activators of JNK kinase
KR101373103B1 (ko) Pauf 및 그의 결합 파트너의 상호작용을 이용한 암 치료제의 스크리닝 방법
JP2010166873A (ja) Pomp遺伝子およびpsma7遺伝子の治療的又は診断的用途
WO2007037550A9 (ja) Tsta3遺伝子の治療的又は診断的用途
AU2014203702B2 (en) New tumor marker
WO2017186103A1 (zh) Pde3a在判断阿那格雷治疗肿瘤效果中的应用
CA2473788A1 (en) New tumour markers and biological applications thereof