WO2011129234A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2011129234A1
WO2011129234A1 PCT/JP2011/058676 JP2011058676W WO2011129234A1 WO 2011129234 A1 WO2011129234 A1 WO 2011129234A1 JP 2011058676 W JP2011058676 W JP 2011058676W WO 2011129234 A1 WO2011129234 A1 WO 2011129234A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
silicon
light shielding
substrate
Prior art date
Application number
PCT/JP2011/058676
Other languages
English (en)
French (fr)
Inventor
剛志 伊藤
広志 中辻
藤原 正弘
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/641,442 priority Critical patent/US8686480B2/en
Publication of WO2011129234A1 publication Critical patent/WO2011129234A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78636Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with supplementary region or layer for improving the flatness of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02162Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors
    • H01L31/02164Coatings for devices characterised by at least one potential jump barrier or surface barrier for filtering or shielding light, e.g. multicolour filters for photodetectors for shielding light, e.g. light blocking layers, cold shields for infrared detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1872Recrystallisation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • G02F1/13312Circuits comprising photodetectors for purposes other than feedback
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a semiconductor device in which a photodiode and a thin film transistor are formed on the same substrate, and a manufacturing method thereof.
  • a semiconductor device in which a photodiode and a thin film transistor are formed on the same substrate is known.
  • a thin film transistor is constituted by a part of the plurality of island-shaped semiconductor layers formed on the substrate, and the substrate A photodiode is constituted by another semiconductor layer provided with a light-shielding layer therebetween.
  • the sensitivity largely depends on the thickness of the semiconductor layer, and therefore it is preferable to increase the thickness of the semiconductor layer of the photodiode.
  • the thickness of the semiconductor layer of the thin film transistor is increased, the characteristics of the thin film transistor are significantly changed. Therefore, it is preferable that the thickness of the semiconductor layer is not significantly changed. That is, in order to improve the performance of the photodiode without degrading the performance of the thin film transistor, it is required to increase the thickness of only the semiconductor layer of the photodiode.
  • An object of the present invention is to improve the performance of a photodiode formed with a thin film transistor on the same substrate without significantly deteriorating the productivity of a semiconductor device.
  • a method of manufacturing a semiconductor device includes a base layer forming step of forming a base layer having a recess on a surface on a substrate, and an amorphous silicon layer is formed on the base layer.
  • a silicon layer forming step, a melting step of forming a crystalline silicon layer while moving the molten silicon into the recess by melting the amorphous silicon layer, and the crystalline silicon layer The first semiconductor layer constituting a part of the thin film transistor is formed from the silicon layer other than the concave part, and the second semiconductor constituting the part of the photodiode is formed from the silicon layer located in the concave part.
  • a semiconductor layer forming step of forming a layer is formed from the silicon layer other than the concave part.
  • the performance of a photodiode formed with a thin film transistor on the same substrate can be improved without significantly degrading the productivity of a semiconductor device.
  • FIG. 1 is a perspective view illustrating a schematic configuration of a display panel of a liquid crystal display device including the semiconductor device according to the first embodiment.
  • FIG. 2 is a cross-sectional view illustrating a schematic configuration of the semiconductor device according to the first embodiment.
  • FIG. 3 is a diagram illustrating the method of manufacturing the semiconductor device according to the first embodiment.
  • FIG. 4 is a diagram illustrating the method of manufacturing the semiconductor device according to the first embodiment.
  • FIG. 5 is a cross-sectional view illustrating a schematic configuration of the semiconductor device according to the second embodiment.
  • FIG. 6 is a diagram illustrating a method for manufacturing the semiconductor device according to the second embodiment.
  • FIG. 7 is a cross-sectional view illustrating a schematic configuration of the semiconductor device according to the third embodiment.
  • FIG. 8 is a diagram illustrating the method of manufacturing the semiconductor device according to the third embodiment.
  • a method of manufacturing a semiconductor device includes a base layer forming step of forming a base layer having a recess on a surface on a substrate, and an amorphous silicon layer is formed on the base layer.
  • the first semiconductor layer constituting a part of the thin film transistor is formed from the silicon layer other than the concave part, and the second semiconductor constituting the part of the photodiode is formed from the silicon layer located in the concave part.
  • the thickness of the second semiconductor layer that forms part of the photodiode is set to the thickness of the first semiconductor that forms part of the thin film transistor. It can be thicker than the layer. That is, by forming a base layer having a recess on the substrate and melting the silicon layer formed on the base layer, the molten silicon layer is moved into the recess, A semiconductor layer having a larger thickness than other portions can be formed.
  • the underlayer forming step an island-shaped light shielding layer is formed on the substrate, and then the concave portion is located above the light shielding layer on the substrate and the light shielding layer. It is preferable to form a formation (second method).
  • a recess corresponding to the light shielding layer can be formed on the surface of the underlayer.
  • a light shielding layer is necessary so that light from the backlight device does not enter the photodiode. Therefore, a recess can be formed in the underlayer on the photodiode side where the light shielding layer is provided by the above-described underlayer forming step. Therefore, the thickness of the semiconductor layer of the photodiode formed in the recess can be made larger than the thickness of the semiconductor layer of the thin film transistor.
  • the substrate is a light-transmitting substrate
  • the underlayer forming step includes forming an underlayer on the substrate and the light shielding layer, Using the light shielding layer as a mask, a pattern forming step of forming a resist pattern on the underlayer formed by the underlayer forming step by irradiating light from the opposite side of the substrate stacking direction; and masking the resist pattern
  • the resist pattern can be formed using the light shielding layer as a mask, it is possible to easily form a resist pattern that exposes the underlying film located above the light shielding layer. Therefore, the recess corresponding to the light shielding layer can be easily formed in the underlayer.
  • the substrate is a light-transmitting substrate
  • the foundation layer includes a plurality of foundation films
  • the foundation layer forming step is performed on the substrate and the light shielding layer.
  • a base layer film forming step for forming a first base film having a thickness larger than that of the light shielding layer; and the light shielding layer as a mask on the first base film from a side opposite to the stacking direction of the substrate.
  • the silicon layer can be continuously formed on the second base film, dust and the like can be prevented from adhering to the second base film. Therefore, occurrence of defects in the semiconductor device can be suppressed.
  • the base layer includes a plurality of base films, and the base layer forming step has a thickness smaller than the first base film and the first base film on the substrate.
  • a base film forming step (fifth method).
  • a semiconductor device includes a substrate, a base layer formed on the substrate so as to have a concave portion on the surface, and a first semiconductor layer formed other than the concave portion on the base layer And a second semiconductor layer formed in the recess so as to be thicker than the first semiconductor layer, and the first semiconductor layer constitutes a part of the thin film transistor,
  • the second semiconductor layer forms part of a photodiode (sixth configuration).
  • the thickness of the second semiconductor layer of the photodiode is larger than the thickness of the first semiconductor layer of the thin film transistor, the performance of the photodiode can be improved. Moreover, since the recess is formed in the base layer, the thickness of the second semiconductor layer is larger than that of the first semiconductor layer by melting the silicon layer formed on the base layer in the manufacturing process of the semiconductor device. The thick above-described configuration is easily obtained.
  • the first semiconductor layer and the second semiconductor layer are formed to have a thickness such that a surface opposite to the substrate is positioned at an equivalent height from the substrate. Is preferable (seventh configuration).
  • the thickness of the second semiconductor layer formed in the recess of the base layer can be made larger than the thickness of the first semiconductor layer. Therefore, the performance of the photodiode configured using the second semiconductor layer can be improved.
  • the semiconductor device further includes a light shielding layer formed on the substrate and between the substrate and the second semiconductor layer, and the base layer is formed on the substrate. It is preferable that a first base film formed so as to surround the layer is provided, and the light-shielding layer has a smaller thickness than the first base film (eighth configuration).
  • the dimension of the structural member in each figure does not represent the dimension of an actual structural member, the dimension ratio of each structural member, etc. faithfully.
  • FIG. 1 shows a schematic configuration of a display panel 2 of a liquid crystal display device including the semiconductor device 1 according to the first embodiment. That is, the semiconductor device 1 according to the present embodiment is used for, for example, an active matrix substrate 3 constituting a display panel 2 of a liquid crystal display device.
  • the display panel 2 includes an active matrix substrate 3, a counter substrate 4, and a liquid crystal layer (not shown) sandwiched between them.
  • the display panel 2 is a display panel with an optical sensor that includes a photodiode 20 that outputs a signal in response to external light. Since the basic configuration of this optical sensor is the same as the conventional configuration, a detailed description of the operation of the optical sensor is omitted.
  • the display panel 2 is irradiated with light from a backlight device (not shown) of the liquid crystal display device.
  • the active matrix substrate 3 includes a glass substrate 30 (substrate) in which many pixels are formed in a matrix.
  • the active matrix substrate 3 is provided with a pixel electrode and a thin film transistor 10 (TFT: Thin Film Transistor, hereinafter referred to as “TFT”) corresponding to each pixel.
  • TFT Thin Film Transistor
  • a photodiode 20 is also provided on the active matrix substrate.
  • the counter substrate 4 includes a counter electrode facing the pixel electrode and a color filter having a colored layer.
  • the liquid crystal display device controls the liquid crystal in the liquid crystal layer by driving the TFT 10 of the active matrix substrate 3 in accordance with a signal from the driver 5 provided on the active matrix substrate 3, so that the display panel 2 It is configured to display a predetermined image.
  • FIG. 2 shows a schematic configuration of the semiconductor device 1 according to the present embodiment.
  • the TFT 10 and the photodiode 20 are formed on the same substrate 30.
  • the substrate 30 is, for example, a glass substrate that serves as a base substrate for the active matrix substrate 3.
  • the substrate 30 is a substrate made of a translucent material.
  • the TFT 10 is formed on a base layer 31 provided on the substrate 30.
  • the underlayer 31 includes a silicon nitride film 32 formed on the substrate 30 and a silicon oxide film 33 formed on the silicon nitride film 32.
  • the TFT 10 has a silicon film 11 (first semiconductor layer) formed on the base film 31. As will be described later, the silicon film 11 is formed by the same process as the silicon film 21 of the photodiode. In the silicon film 11, a semiconductor region 12a, a channel region 12b, and a semiconductor region 12c are sequentially formed along the surface direction.
  • Wirings 13 and 14 are connected to the semiconductor regions 12a and 12c, respectively.
  • reference numeral 15 denotes a gate electrode
  • reference numeral 34 denotes a gate insulating film
  • reference numeral 35 denotes a silicon nitride film
  • reference numeral 36 denotes a silicon oxide film.
  • the photodiode 20 is formed on the base layer 31 provided on the substrate 30 as in the TFT 10.
  • a light shielding film 37 (light shielding layer) is provided between the substrate 30 and the silicon nitride film 32 in a portion 31 a where the photodiode 20 is formed in the base layer 31.
  • the light shielding film 37 blocks the illumination light from the backlight device so that the photodiode 20 reacts only to light input from one side of the substrate 30 (upper side in FIG. 2). It is.
  • the photodiode 20 has a silicon film 21 (second semiconductor layer) formed on the base layer 31a, like the TFT 10.
  • the base layer 31a in the portion where the silicon film 21 is formed is formed to have a lower height than the base layer 31 in the portion where the TFT 10 is formed.
  • the silicon oxide film 33a constituting the base layer 31a in the part where the photodiode 20 is formed is formed to be smaller in thickness than the silicon oxide film 33 constituting the base layer 31 in the part where the TFT 10 is formed. .
  • a recess 33b is formed on the silicon oxide film 33a.
  • the silicon nitride film 32a of the foundation layer 31a has a thickness equivalent to that of the silicon nitride film 32 of the foundation layer 31.
  • the silicon film 21 of the photodiode 20 is formed so as to be thicker than the silicon film 11 of the TFT 10. That is, the silicon film 21 of the photodiode 20 has a surface on the opposite side to the substrate 30 (upper surface in FIG. 2) as high as the surface on the opposite side of the silicon film 11 in the TFT 10 from the substrate 30 (upper surface in FIG. 2). It is formed to be in the position. As described above, by increasing the thickness of the silicon film 21 of the photodiode 20, the photocurrent generated in the silicon film 21 with respect to external light is increased correspondingly, so that the sensitivity as a sensor can be improved. it can.
  • the silicon film 21 of the photodiode 20 is formed by the same process as the silicon film 11 of the TFT 10. The formation of the silicon films 11 and 21 will be described later.
  • the photodiode 20 is a diode having a lateral structure as shown in FIG. Accordingly, the n-type semiconductor region 22a, the intrinsic semiconductor region 22b, and the p-type semiconductor region 22c are formed in this order in the silicon film 21 along the plane direction.
  • reference numerals 23 and 24 denote wirings.
  • FIGS. 3 and 4 are cross-sectional views showing the manufacturing process of the semiconductor device 1 in this embodiment.
  • FIGS. 3A to 3E show main manufacturing steps until island-shaped silicon films 11 and 21 are formed.
  • FIGS. 4A to 4D shows a main manufacturing process performed after completion of the process shown in FIG.
  • the illumination light of the backlight device is prevented from entering the photodiode 20 from one surface side (the lower side of the drawing) of the backlight device 30 on the substrate 30.
  • a light shielding film 37 is formed.
  • a light shielding thin film is formed on one surface (upper surface in the figure) of the substrate 30 by a CVD (Chemical Vapor Deposition) method, a sputtering method, or the like.
  • This light-shielding thin film is an insulating film such as a silicon oxide film or a silicon nitride film, or a metal whose main component is tantalum (Ta), titanium (Ti), tungsten (W), molybdenum (Mo), aluminum (Al), or the like. It consists of a membrane.
  • a resist pattern that covers a region where the light shielding film 37 is to be formed (hereinafter referred to as a region to be formed) is formed by photolithography, and the light shielding thin film is etched using this resist pattern as a mask. Thereby, the light shielding film 37 is obtained.
  • a silicon nitride film 32 is formed so as to cover the substrate 30 and the light shielding film 37. Further, a silicon oxide film 41 is formed thereon. These silicon nitride film 32 and silicon oxide film 41 are formed by, for example, a CVD method. These silicon nitride film 32 and silicon oxide film 41 may be a single layer or a multilayer.
  • a resist pattern having an opening corresponding to the light shielding film 37 is formed by photolithography, and the silicon oxide film 41 is etched using this as a mask as shown in FIG. Specifically, by applying a photoresist on the silicon oxide film 41 and irradiating light from the surface opposite to the surface on which the light shielding film 37 of the substrate 30 is formed (hereinafter referred to as a main surface), A resist pattern is formed except for portions not exposed by the light shielding film 37. By performing etching using this resist pattern, only the portion corresponding to the light shielding film 37 in the silicon oxide film 41 is removed. Thereby, the silicon oxide film 33 in which the thickness of the portion 33a corresponding to the light shielding film 37 is smaller than the thickness of other portions is formed. Accordingly, a recess 33 b is formed on the surface of the silicon oxide film 33.
  • the portion of the silicon oxide film 41 corresponding to the light shielding film 37 is not completely removed, but the silicon oxide film 41 is etched so as to leave a part of the silicon oxide film 41. preferable.
  • the silicon oxide film 41 By leaving the silicon oxide film in this manner, when the silicon thin film 42 is heated by a laser beam 40 described later, the silicon oxide film 41 does not easily escape heat. Therefore, by leaving the silicon oxide film 41, silicon can be crystallized more efficiently.
  • a silicon thin film 42 (amorphous silicon layer) is formed on the silicon oxide film 33.
  • the silicon thin film 42 is a thin film made of amorphous silicon.
  • the silicon thin film 42 is irradiated with a laser beam 40 (outlined arrow) to melt the silicon thin film 42 and to form a crystalline silicon thin film 43 (crystalline crystalline). (Silicon layer).
  • a laser beam 40 (outlined arrow) to melt the silicon thin film 42 and to form a crystalline silicon thin film 43 (crystalline crystalline).
  • a silicon thin film 43 is formed in which the silicon thin film in the recess 33b is thicker than the other portions.
  • the entire silicon thin film 42 can be uniformly recrystallized by adjusting the intensity distribution of the laser beam 40 so as to be uniform in the plane.
  • the wavelength of the laser beam 40 is preferably in the visible wavelength range (400 nm to 700 nm) that is easily absorbed by amorphous silicon.
  • a wavelength conversion element and a solid crystal laser oscillation device in which a specific atom is doped in a crystal such as Nd: YAG laser and Nd: YVO 4 laser which are general solid lasers. It is obtained by extracting the second harmonic or the third harmonic of the fundamental wave.
  • a resist pattern is formed to cover the formation region of the TFT 10 and the formation region of the photodiode 20 in the silicon thin film 43, and the silicon thin film 43 is etched using this as a mask.
  • island-shaped silicon films 11 and 21 used for configuring the TFT and the photodiode are formed.
  • the silicon film 21 is formed from a silicon thin film 43 formed in the recess 33 b of the silicon oxide film 33. Therefore, the silicon film 21 is thicker than the silicon film 11.
  • a gate insulating film 34 is formed so as to cover the silicon films 11 and 21.
  • the gate insulating film 34 is a silicon oxide film or silicon nitride film formed by a CVD method or the like.
  • the gate insulating film 34 may be a single layer or a multilayer.
  • the gate electrode 15 of the TFT 10 is formed above the silicon film 11. Specifically, first, a metal film containing at least one kind of tantalum (Ta), titanium (Ti), tungsten (W), molybdenum (Mo), aluminum (Al), or the like as a main component on the gate insulating film 34. Is deposited. This metal film is formed by, for example, a sputtering method or a vacuum deposition method. Thereafter, a resist pattern is formed by photolithography to cover the region where the gate electrode 15 is to be formed, and this is used as a mask to etch the metal film. Thereby, the gate electrode 15 is formed.
  • semiconductor regions 12a and 12c and an n-type semiconductor region 22a are formed by ion-implanting n-type impurities into the silicon films 11 and 21, respectively.
  • a resist pattern 44 is formed by photolithography so as to cover a portion of the silicon film 21 so as to leave a portion where the n-type semiconductor region 22a is to be formed.
  • a part of the silicon film 11 is covered with the gate metal 15 so that the intrinsic semiconductor region 12b is formed at the center in the in-plane direction.
  • ion implantation is performed using an impurity such as phosphorus (P) (see arrows).
  • P phosphorus
  • a p-type semiconductor region 22c is formed by ion-implanting p-type impurities into the silicon film 21.
  • a resist pattern 45 that covers a region other than the region that becomes the p-type semiconductor region 22c is formed by photolithography.
  • ion implantation is performed using a p-type impurity such as boron (B) (see arrows).
  • B boron
  • a p-type semiconductor region 22c of the photodiode is formed, and an intrinsic semiconductor region 22b is formed between the p-type semiconductor region 21c and the n-type semiconductor region 22a.
  • the resist pattern 45 is removed after ion implantation.
  • a predetermined heat treatment is performed to activate the impurity regions of the TFT semiconductor regions 12a and 12c and the photodiode n-type semiconductor region 22a and p-type semiconductor region 22c.
  • an interlayer insulating film is formed. Specifically, after the silicon nitride film 35 is formed, the silicon oxide film 36 is formed. Then, contact holes extending to the semiconductor regions 12a and 12c of the TFT and the n-type semiconductor region 22a and the p-type semiconductor region 22c of the photodiode are formed in the interlayer insulating film by etching or the like. Then, electrodes 13, 14, 23, and 24 are formed in these contact holes, respectively. Thereby, the TFT 10 and the photodiode 20 are formed.
  • the process of forming the light shielding film 37 and the base layer 31 on the substrate 30 and forming the recess 33b in the silicon oxide film 33 is the process of forming the silicon thin film 42 on the silicon oxide film 33.
  • Each corresponds to the silicon layer forming step.
  • the process of melting the silicon thin film 42 with the laser beam 40 to move a part of the silicon into the recess 33b and changing it to the silicon thin film 43 is the melting process, and the process of forming the silicon films 11 and 21 is the semiconductor layer.
  • the step of forming the silicon nitride film 32 and the silicon oxide film 33 on the substrate 30 and the light shielding film 37 is the base layer forming step
  • the step of forming the resist pattern on the silicon oxide film 33 is the pattern forming step.
  • the step of forming the recess 33b in the silicon oxide film 33 by etching using the resist pattern corresponds to the recess forming step.
  • the concave portion 33b is formed in the silicon oxide film 33a serving as a base film of the photodiode 20. Then, the silicon thin film 42 formed thereon is irradiated with laser light 40 to melt the silicon thin film 42, thereby moving the molten silicon into the recess 33 b, and the thickness of the silicon thin film in the recess 33 b. Made larger than the other parts.
  • the thickness of the silicon film 21 of the photodiode 20 can be made larger than the thickness of the silicon film 11 of the TFT 10. Therefore, only the thickness of the silicon film 21 of the photodiode 20 can be increased without changing the film thickness and characteristics of the TFT, and the sensitivity of the photodiode 20 can be improved.
  • the performance of the photodiode 20 can be improved without greatly increasing the number of steps by the manufacturing method of the present embodiment.
  • the silicon oxide film 41 formed on the silicon nitride film 32 is etched, light is irradiated from the side opposite to the main surface of the substrate 30 and the light shielding film 37 is used as a mask. Thus, a resist pattern was formed on the silicon oxide film 41. Thereby, the region corresponding to the light shielding film 37 in the silicon oxide film 41 can be easily etched.
  • FIG. 5 shows a schematic configuration of a semiconductor device 50 according to the second embodiment. This embodiment is different from the first embodiment in the configuration of the light shielding film 51 and the manufacturing method of the semiconductor device 50.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and only different portions will be described.
  • the TFT 60 and the photodiode 70 are formed on the same substrate 30.
  • the light shielding film 51 (light shielding layer) on the substrate 30 is formed to have a smaller thickness than the resin film 52 surrounding the light shielding film 51 (light shielding layer). Thereby, the light shielding film 51 forms a recess 51 a in the surrounding resin film 52.
  • a silicon nitride film 53 and a silicon oxide film 54 are formed on the light shielding film 51 and the resin film 52, thereby forming a recess 54 a on the surface of the silicon oxide film 54.
  • the silicon film formed on the silicon oxide film 54 is once melted by laser light, so that the thickness of the silicon film 21 formed in the recess 54a is changed to the other portions. It can be made larger than the thickness of the silicon film 11 formed on the substrate.
  • the base layer 57 is constituted by the resin film 52, the silicon nitride film 53, and the silicon oxide film 54.
  • the underlayer 57 may include any one or two of the resin film 52, the silicon nitride film 53, and the silicon oxide film 54, or may include another thin film.
  • a film 51 is formed.
  • a resin film is formed on one surface (the upper surface in the figure) of the substrate 30.
  • This resin film is made of an acrylic resin.
  • a resist pattern in which the region where the light shielding film 51 is to be formed is opened is formed by photolithography, and the resin film in the region where the light shielding film 51 is to be formed is removed by etching using the resist pattern as a mask.
  • a resin film 52 (first base film) is formed on the substrate 30.
  • the method for forming the resin film 52 is not limited to this, and a mask may be provided so that the resin film is not formed in a region where the light shielding film 51 is to be formed when the resin film 52 is formed.
  • a light shielding thin film is formed on the substrate 30 and the resin film 52 by a CVD (Chemical Vapor Deposition) method, a sputtering method, or the like.
  • This light-shielding thin film is an insulating film such as a silicon oxide film or a silicon nitride film, or a metal whose main component is tantalum (Ta), titanium (Ti), tungsten (W), molybdenum (Mo), aluminum (Al), or the like. It consists of a membrane.
  • the light shielding thin film is formed to be smaller than the thickness of the resin film 52.
  • a chemical mechanical polishing method called a CMP (Chemical Mechanical Polishing (or Planarization)) method can be used as a method for forming the light shielding film 51 only on the portion where the resin film 52 is not formed. is there.
  • CMP Chemical Mechanical Polishing (or Planarization)
  • the light shielding film 51 can be formed with almost no increase in the number of steps.
  • the above-described method of etching together with another resin film is preferable.
  • a silicon nitride film 53 is formed so as to cover the resin film 52 and the light shielding film 51. Further, a silicon oxide film 54 is formed thereon. These silicon nitride film 53 and silicon oxide film 54 are formed by, for example, a CVD method. Thus, by forming the silicon nitride film 53 and the silicon oxide film 54 on the resin film 52 and the light shielding film 51, a recess 54 a is formed in the silicon oxide film 54 corresponding to the light shielding film 51.
  • the silicon nitride film 53 and the silicon oxide film 54 may be a single layer or a multilayer. Further, the silicon nitride film 53 and the silicon oxide film 54 correspond to another base film.
  • a silicon thin film 55 (amorphous silicon layer) is formed on the silicon oxide film 54.
  • the silicon thin film 55 is a thin film made of amorphous silicon.
  • the silicon thin film 55 is irradiated with a laser beam 40 (open arrow) to melt the silicon thin film 55, so that a crystalline silicon thin film 56 (crystalline (Silicon layer).
  • a silicon thin film 56 is formed in which the silicon thin film in the recess 54a is thicker than the other portions.
  • a resist pattern is formed to cover the region where the TFT 60 is to be formed and the region where the photodiode 70 is to be formed in the silicon thin film 56, and the silicon thin film 56 is etched using this resist pattern as a mask.
  • island-shaped silicon films 11 and 21 used for configuring the TFT and the photodiode are formed.
  • the silicon film 21 is formed from a silicon thin film 56 formed in the recess 54 a of the silicon oxide film 54. Therefore, the silicon film 21 is thicker than the silicon film 11.
  • the step of forming the light shielding film 51, the resin film 52, the silicon nitride film 53, and the silicon oxide film 54 on the substrate 30 is a base layer forming step
  • the step of forming the silicon thin film 55 on the silicon oxide film 54 is silicon.
  • Each corresponds to the layer forming step.
  • the process of melting the silicon thin film 55 with the laser beam 40 to move a part of the silicon into the recess 54a and changing it to the silicon thin film 56 corresponds to the melting process.
  • the step of forming the light shielding film 51 is the first base film forming step, on the resin film 52 and the light shielding film 51.
  • the steps of forming the silicon nitride film 53 and the silicon oxide film 54 correspond to the second base film forming step, respectively.
  • the light shielding film 51 is formed after the resin film 52 is formed in FIG. 6A.
  • the resin film 52 may be formed after the light shielding film 51 is formed.
  • the resin film 51 can be formed on a portion other than the light shielding film 51 using the light shielding film 51 as a mask, so that a resist pattern for molding the resin film 51 is not necessary. become. Therefore, the manufacturing process of the semiconductor device 50 can be simplified.
  • the thickness of the light shielding film 51 is made smaller than the thickness of the resin film 52, and a step is provided between the light shielding film 51 and the resin film 52.
  • the thickness of the silicon film 21 of the photodiode 70 can be made larger than the thickness of the silicon film 11 of the TFT 60 without significantly increasing the number of steps. Therefore, the performance of the photodiode 70 can be improved.
  • the silicon nitride film 53 and the silicon oxide film 54 have the same thickness on the TFT 60 side and the photodiode 70 side, when the laser light 40 is irradiated onto the silicon thin film 55, the thickness on the TFT 60 side and the photodiode 70 side is increased. Heat diffusion can be made comparable. Therefore, when the silicon thin film 55 is irradiated with the laser beam 40, the entire silicon thin film 55 can be heated uniformly. Therefore, with the above-described configuration, silicon crystallization can be efficiently promoted on the entire substrate 30.
  • the recess 51a is formed at the stage of forming the light shielding film 51, the subsequent silicon nitride film 53, silicon oxide film 54, and silicon thin film 55 can be continuously formed. Therefore, it is possible to continuously form films in the same chamber, so that the possibility of dust adhering to the surface of the semiconductor device 50 being manufactured can be reduced.
  • the silicon nitride film 53 and the silicon oxide film 54 are not processed, dust during processing does not adhere to the surface of the silicon oxide film 54 before the silicon thin film 55 is formed. Therefore, the configuration of this embodiment can suppress the occurrence of defects in the semiconductor device 50 due to dust.
  • FIG. 7 shows a schematic configuration of a semiconductor device 100 according to the third embodiment.
  • the configuration of the underlayer is different from the configurations in the first and second embodiments.
  • the same components as those in the first and second embodiments are denoted by the same reference numerals, and only different portions will be described.
  • the TFT 110 and the photodiode 120 are formed on the same substrate 30.
  • the light shielding film 101 (light shielding layer) on the substrate 30 is formed to have a smaller thickness than the silicon nitride film 102 surrounding it.
  • the light shielding film 101 forms a recess 101 a in the surrounding silicon nitride film 102.
  • a recess 103a is formed on the surface of the silicon oxide film 103.
  • the silicon film formed on the silicon oxide film 103 is once melted by laser light, so that the thickness of the silicon film 21 formed in the recess 103a is reduced to that. It can be made larger than the thickness of the silicon film 11 formed in the other part.
  • the underlying layer 104 is constituted by the silicon nitride film 102 and the silicon oxide film 103.
  • the underlayer 104 may include only one of the silicon nitride film 102 and the silicon oxide film 103, or may include another thin film.
  • a film 101 is formed.
  • a light-shielding thin film is formed on one surface (upper surface in the figure) of the substrate 30 by a CVD method, a sputtering method, or the like.
  • This light-shielding thin film is an insulating film such as a silicon oxide film or a silicon nitride film, or a metal whose main component is tantalum (Ta), titanium (Ti), tungsten (W), molybdenum (Mo), aluminum (Al), or the like. It consists of a membrane.
  • a resist pattern is formed in a region where the light shielding film 101 is to be formed by photolithography, and the light shielding thin film is etched using the resist pattern as a mask. Thereby, the island-shaped light shielding film 101 is formed.
  • a silicon nitride film 105 (first base film) is formed so as to cover the substrate 30 and the light shielding film 101.
  • This silicon nitride film 105 is formed by, for example, a CVD method. Further, the silicon nitride film 105 is formed so as to be thicker than the light shielding film 101.
  • a resist pattern is formed in a region other than the region where the light shielding film 101 is to be formed by photolithography.
  • a photoresist on the silicon nitride film 105 After applying a photoresist on the silicon nitride film 105, light is irradiated from a surface opposite to the surface (hereinafter referred to as a main surface) of the substrate 30 where the light shielding film 101 is formed.
  • a resist pattern is formed using 101 as a mask.
  • the silicon nitride film 105 on the light shielding film 101 is etched using the formed resist pattern as a mask.
  • the silicon nitride film 102 is formed so as to surround the light shielding film 101. Since the thickness of the light shielding film 101 is smaller than the thickness of the silicon nitride film 102, a recess 101 a is formed in the portion of the light shielding film 101.
  • a silicon oxide film 103 (second base film) is formed on the light shielding film 101 and the silicon nitride film 102.
  • This silicon oxide film 103 is formed by, for example, a CVD method.
  • a recess 103 a is formed in the silicon oxide film 103 corresponding to the light shielding film 101.
  • the silicon oxide film 103 may be a single layer or a multilayer.
  • a silicon thin film 106 (amorphous silicon layer) is formed on the silicon oxide film 103.
  • This silicon thin film 106 is a thin film made of amorphous silicon.
  • the silicon thin film 106 is irradiated with a laser beam 40 (open arrow) to melt the silicon thin film 106 and to form a crystalline silicon thin film 107 (crystalline crystalline). (Silicon layer).
  • a laser beam 40 open arrow
  • a resist pattern is formed to cover the region where the TFT 110 is to be formed and the region where the photodiode 120 is to be formed in the silicon thin film 107, and the silicon thin film 107 is etched using this resist pattern as a mask.
  • island-shaped silicon films 11 and 21 used to configure the TFT 110 and the photodiode 120 are formed.
  • the silicon film 21 is formed from a silicon thin film 107 formed in the recess 103 a of the silicon oxide film 103. Therefore, the silicon film 21 is thicker than the silicon film 11.
  • the step of forming the light shielding film 101, the silicon nitride film 102, and the silicon oxide film 103 on the substrate 30 is the base layer forming step
  • the step of forming the silicon thin film 106 on the silicon oxide film 103 is the silicon layer forming step.
  • the process of melting the silicon thin film 106 with the laser beam 40 to move a part of silicon into the recess 103a and changing it to the silicon thin film 107 is the melting process
  • the process of forming the silicon films 11 and 21 is the semiconductor layer. Each corresponds to the forming process.
  • the step of forming the silicon nitride film 105 on the substrate 30 and the light shielding film 101 corresponds to the underlayer film forming step
  • the step of forming a resist pattern on the silicon nitride film 105 corresponds to the pattern forming step.
  • the process of removing the silicon nitride film 105 on the light shielding film 101 by etching using the resist pattern and forming the silicon oxide film 103 having the recess 103a thereon corresponds to the recess forming process.
  • the thickness of the light shielding film 101 is made smaller than the thickness of the silicon nitride film 102, and a step is provided between the light shielding film 101 and the silicon nitride film 102.
  • the thickness of the silicon film 21 of the photodiode 120 can be made larger than the thickness of the silicon film 11 of the TFT 110 without significantly increasing the number of steps. Therefore, the performance of the photodiode 120 can be improved.
  • the silicon nitride film 105 when the silicon nitride film 105 is etched, light is irradiated from the opposite side of the main surface of the substrate 30 and the light shielding film 101 is used as a mask so that a resist is formed on the silicon nitride film 105. A pattern was formed. Thereby, the region corresponding to the light shielding film 101 in the silicon nitride film 105 can be easily etched.
  • the thickness of the silicon oxide film 103 is the same on both the TFT 110 side and the photodiode 120 side, when the laser light 40 is irradiated on the silicon thin film 106, the heat diffusion on the TFT 110 side and the photodiode 120 side is the same. Can be about. Therefore, when the silicon thin film 106 is irradiated with the laser light 40, the entire silicon thin film 106 can be heated uniformly. Therefore, with the above-described configuration, silicon crystallization can be efficiently promoted on the entire substrate 30.
  • the display panel 2 of the liquid crystal display device is given as an application example of the semiconductor devices 1, 50, 100.
  • the present invention is not limited to this, and a TFT and a photodiode are formed on the same substrate. As long as it has a configuration, it may be applied to any device.
  • the uppermost surface of the semiconductor devices 1, 50, 100 is the silicon oxide film 36.
  • a protective film may be provided on the silicon oxide film 36 so as to cover the TFT 10 and the photodiode 20.
  • the resist pattern used for etching is formed when the recess is formed using the light shielding film as a mask.
  • the present invention is not limited to this, and a mask member different from the light shielding film is used. It may be used to form a resist pattern.
  • etching is performed so as to leave a part of the silicon oxide film above the light shielding film 37 (reference numeral 33a).
  • the present invention is not limited to this, and all the silicon oxide film above the light shielding film 37 is removed. Etching may also be performed.
  • the silicon nitride film 102 on the light shielding film 101 is completely removed.
  • the silicon nitride film 102 may remain on the light shielding film 101.
  • the semiconductor device according to the present invention can be used for a semiconductor device in which a TFT and a photodiode are formed on the same substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Light Receiving Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

半導体装置の生産性を大幅に悪化させることなく、同一基板上に薄膜トランジスタとともに形成されるフォトダイオードの性能向上を図る。ガラス基板(30)上に、表面に凹部(33b)を有する下地層(31)を形成し、該下地層(31)上に、非晶質のシリコン薄膜(42)を形成する。該シリコン薄膜(42)を溶融させることにより、前記凹部(33b)内へ溶融したシリコンを移動させつつ、結晶性のシリコン薄膜(43)を形成する。該シリコン薄膜(43)のうち、前記凹部(33b)以外の部分のシリコン薄膜(43)から、薄膜トランジスタ(10)の一部を構成するシリコン膜(11)を形成する一方、前記凹部(33b)内に位置するシリコン薄膜(43)から、フォトダイオード(20)の一部を構成するシリコン膜(21)を形成する。

Description

半導体装置及びその製造方法
 本発明は、フォトダイオード及び薄膜トランジスタが同一の基板上に形成された半導体装置、及び、その製造方法に関する。
 従来より、フォトダイオード及び薄膜トランジスタが同一の基板上に形成された半導体装置が知られている。このような半導体装置では、例えば特開2008-300630号公報に開示されるように、基板上に形成された複数の島状の半導体層のうち、一部の半導体層によって薄膜トランジスタを構成し、基板との間に遮光層が設けられた他の半導体層によってフォトダイオードを構成する。
 ところで、前記特開2008-300630号公報に開示されている構成のように同一の基板上にフォトダイオード及び薄膜トランジスタを設ける場合、フォトダイオード及び薄膜トランジスタの半導体層を同時に形成すると、各半導体層の厚みは同等になる。
 ここで、フォトダイオードをセンサとして用いる場合、その感度は、半導体層の厚みに大きく依存するため、該フォトダイオードの半導体層の厚みを大きくするのが好ましい。一方、薄膜トランジスタの半導体層の厚みを大きくすると、薄膜トランジスタの特性が大きく変わるため、半導体層の厚みを大きく変えないのが好ましい。すなわち、薄膜トランジスタの性能を低下させることなくフォトダイオードの性能向上を図るためには、フォトダイオードの半導体層のみを厚くすることが要求される。
 この要求を満たすためには、フォトダイオードの半導体層の厚みを大きくするように、該半導体層を形成する際に複数回の成膜やエッチングを行うことが考えられる。しかしながら、その場合には工程数が大幅に増加するため、半導体装置の生産性を大幅に低下させてしまう。
 本発明の目的は、半導体装置の生産性を大幅に悪化させることなく、同一基板上に薄膜トランジスタとともに形成されるフォトダイオードの性能向上を図ることにある。
 本発明の一実施形態にかかる半導体装置の製造方法は、基板上に、表面に凹部を有する下地層を形成する下地層形成工程と、該下地層上に、非晶質のシリコン層を形成するシリコン層形成工程と、該非晶質のシリコン層を溶融させることにより、前記凹部内へ溶融したシリコンを移動させつつ、結晶性のシリコン層を形成する溶融工程と、該結晶性のシリコン層のうち、前記凹部以外の部分のシリコン層から、薄膜トランジスタの一部を構成する第1の半導体層を形成する一方、前記凹部内に位置するシリコン層から、フォトダイオードの一部を構成する第2の半導体層を形成する半導体層形成工程と、を有する。
 本発明により、半導体装置の生産性を大幅に悪化させることなく、同一基板上に薄膜トランジスタとともに形成されるフォトダイオードの性能向上を図れる。
図1は、第1の実施形態にかかる半導体装置を備えた液晶表示装置の表示パネルの概略構成を示す斜視図である。 図2は、第1の実施形態にかかる半導体装置の概略構成を示す断面図である。 図3は、第1の実施形態にかかる半導体装置の製造方法を示す図である。 図4は、第1の実施形態にかかる半導体装置の製造方法を示す図である。 図5は、第2の実施形態にかかる半導体装置の概略構成を示す断面図である。 図6は、第2の実施形態にかかる半導体装置の製造方法を示す図である。 図7は、第3の実施形態にかかる半導体装置の概略構成を示す断面図である。 図8は、第3の実施形態にかかる半導体装置の製造方法を示す図である。
 本発明の一実施形態にかかる半導体装置の製造方法は、基板上に、表面に凹部を有する下地層を形成する下地層形成工程と、該下地層上に、非晶質のシリコン層を形成するシリコン層形成工程と、該非晶質のシリコン層を溶融させることにより、前記凹部内へ溶融したシリコンを移動させつつ、結晶性のシリコン層を形成する溶融工程と、該結晶性のシリコン層のうち、前記凹部以外の部分のシリコン層から、薄膜トランジスタの一部を構成する第1の半導体層を形成する一方、前記凹部内に位置するシリコン層から、フォトダイオードの一部を構成する第2の半導体層を形成する半導体層形成工程と、を有する(第1の方法)。
 上記の方法によって、同一の基板上に薄膜トランジスタ及びフォトダイオードが形成される構成において、該フォトダイオードの一部を構成する第2の半導体層の厚みを、薄膜トランジスタの一部を構成する第1の半導体層よりも厚くすることができる。すなわち、基板上に、凹部を有する下地層を形成して、該下地層上に形成されたシリコン層を溶融させることにより、溶融したシリコン層を前記凹部内に移動させて、該凹部内に、それ以外の部分よりも厚みの大きい半導体層を形成することができる。
 したがって、上述の方法により、複数回の成膜やエッチングを行うことなく、薄膜トランジスタとフォトダイオードとで異なる厚みの半導体層を得ることが可能になる。これにより、同一基板上に薄膜トランジスタとともに形成されるフォトダイオードの性能向上を容易に図れる。
 前記第1の方法において、前記下地層形成工程では、前記基板上に島状の遮光層を形成した後、該基板上及び遮光層上に、前記凹部が該遮光層の上方に位置する前記下地層を形成するのが好ましい(第2の方法)。
 これにより、下地層の表面に、遮光層に対応する凹部を形成することができる。ここで、フォトダイオードを表示装置の光センサとして用いる場合、バックライト装置からの光がフォトダイオードに入らないように遮光層が必要になる。よって、上述の下地層形成工程によって、遮光層が設けられるフォトダイオード側の下地層に凹部を形成することができる。したがって、該凹部内に形成されるフォトダイオードの半導体層の厚みを、薄膜トランジスタの半導体層の厚みよりも大きくすることが可能となる。
 前記第2の方法において、前記基板は、透光性の基板であり、前記下地層形成工程は、前記基板上及び前記遮光層上に、前記下地層を形成する下地層成膜工程と、前記遮光層をマスクとして、該下地層成膜工程によって形成された下地層上に、基板の積層方向とは反対側からの光の照射によってレジストパターンを形成するパターン形成工程と、前記レジストパターンをマスクとして前記遮光層上の下地層の少なくとも一部を除去することにより、前記凹部を形成する凹部形成工程と、を有するのが好ましい(第3の方法)。
 こうすることで、遮光層をマスクとしてレジストパターンを形成できるため、該遮光層の上方に位置する下地膜を露出させるようなレジストパターンを容易に形成することができる。したがって、遮光層に対応した凹部を下地層に容易に形成することができる。
 前記第2の方法において、前記基板は、透光性の基板であり、前記下地層は、複数の下地膜を備えていて、前記下地層形成工程は、前記基板上及び前記遮光層上に、該遮光層よりも厚みの大きい第1の下地膜を形成する下地層成膜工程と、前記遮光層をマスクとして、前記第1の下地膜上に、前記基板の積層方向とは反対側からの光の照射によってレジストパターンを形成するパターン形成工程と、前記レジストパターンをマスクとして前記遮光層上の前記第1の下地膜を除去した後、該遮光層上及び第1の下地膜上に第2の下地膜を形成することにより、該第2の下地膜上に前記凹部を形成する凹部形成工程と、を有するのが好ましい(第4の方法)。
 これにより、第2の下地膜上にシリコン層を連続して形成することができるため、ダスト等が第2の下地膜上に付着するのを防止できる。したがって、半導体装置の不良の発生を抑制することができる。
 前記第1の方法において、前記下地層は、複数の下地膜を備えていて、前記下地層形成工程は、前記基板上に、第1の下地膜と該第1の下地膜よりも厚みの小さい遮光層とを形成する第1下地膜形成工程と、前記第1の下地膜上及び前記遮光層上に別の下地膜を形成することにより、前記遮光層に対応した前記凹部を形成する第2下地膜形成工程と、を有するのが好ましい(第5の方法)。
 このような方法によっても、前記第4の方法と同様の作用効果が得られる。
 本発明の一実施形態にかかる半導体装置は、基板と、該基板上に、表面に凹部を有するように形成される下地層と、該下地層上の凹部以外に形成される第1の半導体層と、前記凹部内に、前記第1の半導体層よりも厚みが大きくなるように形成される第2の半導体層と、を備え、前記第1の半導体層は、薄膜トランジスタの一部を構成し、前記第2の半導体層は、フォトダイオードの一部を構成する(第6の構成)。
 この構成により、フォトダイオードの第2の半導体層の厚みが、薄膜トランジスタの第1の半導体層の厚みよりも大きくなるため、該フォトダイオードの性能向上を図れる。しかも、下地層に凹部が形成されているため、半導体装置の製造過程において、下地層上に形成されるシリコン層を溶融させることで、第2の半導体層の厚みが第1の半導体層よりも厚い上述の構成が容易に得られる。
 前記第6の構成において、前記第1の半導体層及び前記第2の半導体層は、前記基板とは反対側の面が該基板から同等の高さに位置するような厚みに形成されているのが好ましい(第7の構成)。
 これにより、下地層の凹部内に形成される第2の半導体層の厚みを、第1の半導体層の厚みよりも大きくすることができる。よって、第2の半導体層を用いて構成されるフォトダイオードの性能向上を図れる。
 前記第6または第7の構成において、前記基板上で且つ該基板と前記第2の半導体層との間に形成される遮光層をさらに備えていて、前記下地層は、前記基板上に前記遮光層を囲むように形成される第1の下地膜を備えていて、前記遮光層は、前記第1の下地膜に比べて厚みが小さいのが好ましい(第8の構成)。
 こうすることで、遮光膜と第1の下地膜との厚みの違いを利用して、下地層に凹部が形成される。これにより、凹部を設けるために下地層を直接、加工する必要がないので、加工時のダスト等が半導体装置に付着するのを防止できる。よって、半導体装置の不良発生が抑制される。
 以下、本発明の半導体装置の好ましい実施形態について、図面を参照しながら説明する。なお、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。
 [第1の実施形態]
 図1に、第1の実施形態にかかる半導体装置1を備えた液晶表示装置の表示パネル2の概略構成を示す。すなわち、本実施形態にかかる半導体装置1は、例えば、液晶表示装置の表示パネル2を構成するアクティブマトリクス基板3などに用いられる。
 表示パネル2は、アクティブマトリクス基板3と、対向基板4と、それらの間に挟みこまれる液晶層(図示省略)とを備えている。また、表示パネル2は、外光に反応して信号を出力するフォトダイオード20を備えた光センサ付きの表示パネルである。この光センサの基本的な構成については、従来の構成と同一なので、該光センサの動作に関する詳しい説明を省略する。なお、表示パネル2には、液晶表示装置の図示しないバックライト装置から光が照射される。
 アクティブマトリクス基板3は、多くの画素がマトリクス状に形成されたガラス基板30(基板)を備えている。また、アクティブマトリクス基板3には、各画素に対応して画素電極や薄膜トランジスタ10(TFT:Thin Film Transistor、以下、“TFT”と呼ぶ)が設けられている。さらに、アクティブマトリクス基板には、フォトダイオード20も設けられている。一方、対向基板4は、画素電極に対向する対向電極と、着色層を有するカラーフィルタと、を備えている。
 前記液晶表示装置は、アクティブマトリクス基板3のTFT10を、該アクティブマトリクス基板3に設けられたドライバ5からの信号に応じて駆動させることにより、液晶層内の液晶を制御して、表示パネル2に所定の画像を表示するように構成されている。
 図2に、本実施形態にかかる半導体装置1の概略構成を示す。この半導体装置1では、TFT10とフォトダイオード20とが同一の基板30上に形成されている。この図2において、導体及び半導体にのみハッチングが施されている。基板30は、例えばアクティブマトリクス基板3のベース基板となるガラス基板である。この基板30は、透光性の材料からなる基板である。
 TFT10は、基板30上に設けられた下地層31上に形成されている。この下地層31は、基板30上に形成されるシリコン窒化膜32と、該シリコン窒化膜32上に形成されるシリコン酸化膜33とを備えている。TFT10は、下地膜31上に形成されたシリコン膜11(第1の半導体層)を有している。このシリコン膜11は、後述するように、フォトダイオードのシリコン膜21と同一プロセスで形成されている。また、シリコン膜11には、その面方向に沿って、半導体領域12a、チャネル領域12b及び半導体領域12cが順に形成されている。
 半導体領域12a,12cには、それぞれ、配線13,14が接続されている。図2において、符号15はゲート電極を、符号34はゲート絶縁膜を、符号35はシリコン窒化膜を、符号36はシリコン酸化膜を、それぞれ示す。
 フォトダイオード20は、TFT10と同様、基板30上に設けられた下地層31上に形成されている。下地層31のうち、フォトダイオード20が形成される部分31aには、基板30とシリコン窒化膜32との間に、遮光膜37(遮光層)が設けられている。この遮光膜37は、バックライト装置からの照明光を遮って、フォトダイオード20を、基板30の一側(図2において上側)から入力される光に対してのみ反応させるようにするためのものである。
 フォトダイオード20は、TFT10と同様、下地層31a上に形成されたシリコン膜21(第2の半導体層)を有している。このシリコン膜21が形成されている部分の下地層31aは、TFT10が形成されている部分の下地層31に比べて高さが低くなるように形成されている。詳しくは、フォトダイオード20が形成される部分の下地層31aを構成するシリコン酸化膜33aは、TFT10が形成される部分の下地層31を構成するシリコン酸化膜33よりも厚みが小さく形成されている。これにより、シリコン酸化膜33a上には、凹部33bが形成されている。なお、下地層31aのシリコン窒化膜32aは、下地層31のシリコン窒化膜32と同等の厚みを有している。
 また、フォトダイオード20のシリコン膜21は、TFT10のシリコン膜11に比べて厚みが大きくなるように形成されている。すなわち、フォトダイオード20のシリコン膜21は、基板30とは反対側の面(図2における上面)がTFT10のシリコン膜11における基板30とは反対側の面(図2における上面)と同等の高さ位置になるように形成されている。このように、フォトダイオード20のシリコン膜21の厚みを大きくすることで、その分、外光に対してシリコン膜21の内部で生じる光電流が大きくなるため、センサとしての感度を向上することができる。
 フォトダイオード20のシリコン膜21は、TFT10のシリコン膜11と同一のプロセスによって形成されている。このシリコン膜11,21の形成については後述する。
 フォトダイオード20は、図2に示すように、ラテラル構造を有するダイオードである。したがって、シリコン膜21には、面方向に沿って、n型の半導体領域22a、真性半導体領域22b及びp型の半導体領域22cが順に形成されている。なお、図2において、符号23,24は配線を示す。
 (半導体装置の製造方法)
 次に、上述の構成を有する半導体装置1の製造方法を、図3及び図4を用いて説明する。これらの図3及び図4は、この実施形態における半導体装置1の製造工程を示す断面図である。図3(a)~(e)のそれぞれは、島状のシリコン膜11,21が形成されるまでの主な製造工程を示している。図4(a)~(d)のそれぞれは、図3(e)に示した工程の終了後に行われる主な製造工程を示している。
 最初に、図3(a)に示すように、基板30上に、バックライト装置の照明光が該基板30の一面側(図の下側)からフォトダイオード20に入射するのを防止するための遮光膜37を形成する。
 具体的には、まず、基板30の一方の面(図の上面)に、CVD(Chemical Vapor Deposition)法やスパッタ法等によって、遮光薄膜を形成する。この遮光薄膜は、シリコン酸化膜やシリコン窒化膜などの絶縁膜、または、タンタル(Ta)、チタン(Ti)、タングステン(W)、モリブデン(Mo)、アルミニウム(Al)等を主成分とする金属膜からなる。その後、フォトリソグラフィ法によって、遮光膜37を形成する予定の領域(以下、形成予定領域という)を覆うレジストパターンを形成し、これをマスクとして、前記遮光薄膜をエッチングする。これにより、遮光膜37が得られる。
 続いて、基板30及び遮光膜37を覆うようにシリコン窒化膜32を形成する。さらに、その上に、シリコン酸化膜41を形成する。これらのシリコン窒化膜32及びシリコン酸化膜41は、例えばCVD法によって形成される。これらのシリコン窒化膜32及びシリコン酸化膜41は、単層であってもよいし、多層であってもよい。
 次に、フォトリソグラフィ法によって、遮光膜37に対応する領域が開口したレジストパターンを形成し、これをマスクとして、図3(b)に示すように、シリコン酸化膜41をエッチングする。具体的には、シリコン酸化膜41上にフォトレジストを塗布して、基板30の遮光膜37が形成された面(以下、主面という)とは反対側の面から光を照射することにより、遮光膜37によって露光されなかった部分を除いて、レジストパターンが形成される。このレジストパターンを用いてエッチングを行うことで、シリコン酸化膜41のうち遮光膜37に対応する部分のみが除去される。これにより、遮光膜37に対応する部分33aの厚みが、他の部分の厚みに比べて小さいシリコン酸化膜33が形成される。したがって、シリコン酸化膜33の表面に、凹部33bが形成される。
 ここで、上述のように、シリコン酸化膜41の遮光膜37に対応する部分を完全に除去するのではなく、シリコン酸化膜41の一部を残すように該シリコン酸化膜41をエッチングするのが好ましい。このようにシリコン酸化膜を残すことによって、後述するレーザー光40によってシリコン薄膜42を加熱した場合に、シリコン酸化膜41が熱を逃げにくくする。したがって、シリコン酸化膜41を残すことによって、シリコンの結晶化をより効率良く行うことができる。
 その後、図3(c)に示すように、シリコン酸化膜33上にシリコン薄膜42(非晶質のシリコン層)を形成する。このシリコン薄膜42は、非晶質のアモルファスシリコンからなる薄膜である。このシリコン薄膜42に対して、図3(d)に示すように、レーザー光40(白抜き矢印)を照射することにより、シリコン薄膜42を溶融させて、結晶性のシリコン薄膜43(結晶性のシリコン層)に変化させる。このとき、シリコン薄膜42は、一旦、溶融するため、溶融したシリコンの一部がシリコン酸化膜33の表面に形成された凹部33b内へ移動する。これにより、図3(d)に示すように、凹部33b内のシリコン薄膜がそれ以外の部分に比べて厚くなるシリコン薄膜43が形成される。
 レーザー光40をシリコン薄膜42に照射する際には、線状のレーザー光40を形成して、シリコン薄膜42上に集光した状態で走査する。このとき、レーザー光40の強度分布が面内で均一になるように調整することにより、シリコン薄膜42全体を均一に再結晶化することができる。
 レーザー光40を発射する光源としては、固体レーザー発振装置を用いるのが好ましい。また、レーザー光40の波長は、非晶質のアモルファスシリコンが吸収しやすい可視領域の波長の範囲(400nm~700nm)が好ましい。このような波長は、波長変換素子と、一般的な固体レーザーであるNd:YAGレーザー及びNd:YVOレーザーなどのように結晶中に特定の原子をドープした固体結晶レーザー発振装置とを用いて、基本波の第2高調波または第3高調波を抽出することにより得られる。
 次に、シリコン薄膜43におけるTFT10の形成予定領域及びフォトダイオード20の形成予定領域を覆うレジストパターンを形成し、これをマスクとして用いてシリコン薄膜43をエッチングする。これにより、図3(e)に示すように、TFT及びフォトダイオードをそれぞれ構成するために用いられる島状のシリコン膜11,21が形成される。シリコン膜21は、シリコン酸化膜33の凹部33b内に形成されたシリコン薄膜43から形成される。そのため、シリコン膜21は、シリコン膜11よりも厚みが大きい。
 その後、図4(a)に示すように、シリコン膜11,21を被覆するように、ゲート絶縁膜34を形成する。このゲート絶縁膜34は、CVD法等によって形成されるシリコン酸化膜やシリコン窒化膜である。このゲート絶縁膜34も、単層であってもよいし、複層であってもよい。
 ゲート絶縁膜34を形成した後、シリコン膜11の上方に、TFT10のゲート電極15を形成する。具体的には、まず、ゲート絶縁膜34上に、タンタル(Ta)、チタン(Ti)、タングステン(W)、モリブデン(Mo)、アルミニウム(Al)等の少なくとも一種類を主成分とする金属膜が成膜される。この金属膜は、例えば、スパッタ法や真空蒸着法等によって形成される。その後、フォトリソグラフィ法によって、ゲート電極15の形成予定領域を覆うレジストパターンを形成し、これをマスクとして用いて、金属膜に対してエッチングを行う。これにより、ゲート電極15が形成される。
 次に、図4(b)に示すように、シリコン膜11,21にn型の不純物をイオン注入することにより、それぞれ、半導体領域12a,12c及びn型半導体領域22aを形成する。具体的には、まず、フォトリソグラフィ法によって、n型半導体領域22aが形成される部分を残すようにシリコン膜21の一部の上方を覆うレジストパターン44を形成する。一方、シリコン膜11の一部は、その上方を、面内方向の中央部分に真性半導体領域12bが形成されるように、ゲート金属15によって覆われている。この状態で、リン(P)等の不純物を用いて、イオン注入を行う(矢印参照)。これにより、TFTの半導体領域12a,12c及びフォトダイオードのn型半導体領域22aが形成される。なお、レジストパターン44は、イオン注入後に除去される。
 その後、図4(c)に示すように、シリコン膜21にp型の不純物をイオン注入することにより、p型半導体領域22cを形成する。具体的には、まず、フォトリソグラフィ法によってp型半導体領域22cとなる領域以外を覆うレジストパターン45を形成する。この状態で、ボロン(B)等のp型の不純物を用いて、イオン注入を行う(矢印参照)。これにより、フォトダイオードのp型半導体領域22cが形成され、該p型半導体領域21cとn型半導体領域22aとの間に真性半導体領域22bが形成される。なお、レジストパターン45は、イオン注入後に除去される。その後、TFTの半導体領域12a,12c及びフォトダイオードのn型半導体領域22a、p型半導体領域22cの不純物領域を活性化するための所定の熱処理を行う。
 次に、図4(d)に示すように、層間絶縁膜を形成する。具体的には、シリコン窒化膜35を形成した後、シリコン酸化膜36を形成する。そして、層間絶縁膜に、エッチング等によって、TFTの半導体領域12a,12c及びフォトダイオードのn型半導体領域22a、p型半導体領域22cまでそれぞれ延びるコンタクトホールを形成する。そして、これらのコンタクトホール内に、それぞれ、電極13,14,23,24を形成する。これにより、TFT10及びフォトダイオード20が形成される。
 ここで、基板30上に遮光膜37及び下地層31を形成し、シリコン酸化膜33に凹部33bを形成する工程が下地層形成工程に、シリコン酸化膜33上にシリコン薄膜42を形成する工程がシリコン層形成工程に、それぞれ対応する。また、シリコン薄膜42をレーザー光40によって溶融させてシリコンの一部を凹部33b内へ移動させるとともに、シリコン薄膜43に変化させる工程が溶融工程に、シリコン膜11,21を形成する工程が半導体層形成工程に、それぞれ対応している。
 さらに、基板30及び遮光膜37上に、シリコン窒化膜32及びシリコン酸化膜33を形成する工程が下地層成膜工程に、シリコン酸化膜33上にレジストパターンを形成する工程がパターン形成工程に、それぞれ対応している。また、前記レジストパターンを用いてエッチングによってシリコン酸化膜33に凹部33bを形成する工程が、凹部形成工程に対応している。
 (第1の実施形態の効果)
 本実施形態では、TFT10及びフォトダイオード20を同一の基板30上に設ける構成において、フォトダイオード20の下地膜となるシリコン酸化膜33aに凹部33bを形成した。そして、その上に形成されたシリコン薄膜42にレーザー光40を照射して該シリコン薄膜42を溶融させることで、凹部33b内へ溶融したシリコンを移動させて、該凹部33b内のシリコン薄膜の厚みを他の部分よりも大きくした。
 上述の構成により、フォトダイオード20のシリコン膜21の厚みを、TFT10のシリコン膜11の厚みよりも大きくすることができる。よって、TFTの膜厚及び特性を変えることなく、フォトダイオード20のシリコン膜21の厚みのみを増大させることができ、フォトダイオード20の感度の向上を図れる。
 したがって、本実施形態の製造方法によって、工程を大幅に増加させることなく、フォトダイオード20の性能向上を図れる。
 また、本実施形態では、シリコン窒化膜32上に形成されたシリコン酸化膜41をエッチングする際に、基板30の主面とは反対側から光を照射して遮光膜37をマスクとして利用することにより、シリコン酸化膜41上にレジストパターンを形成した。これにより、シリコン酸化膜41において遮光膜37に対応する領域を容易にエッチングすることができる。
 [第2の実施形態]
 図5に、第2の実施形態にかかる半導体装置50の概略構成を示す。この実施形態は、遮光膜51の構成及び半導体装置50の製造方法が第1の実施形態とは異なる。以下の説明において、実施形態1と同一の構成には同一の符号を付し、異なる部分についてのみ説明する。
 具体的には、この実施形態でも、同一の基板30上に、TFT60及びフォトダイオード70が形成されている。そして、基板30上の遮光膜51(遮光層)は、その周りを囲む樹脂膜52よりも厚みが小さくなるように形成されている。これにより、遮光膜51は、周囲の樹脂膜52に対して凹部51aを形成する。そして、これらの遮光膜51及び樹脂膜52上に、シリコン窒化膜53及びシリコン酸化膜54が形成されることにより、該シリコン酸化膜54の表面に凹部54aを形成する。
 そして、第1の実施形態と同様、シリコン酸化膜54上に形成されたシリコン膜をレーザー光によって一旦、溶融させることにより、凹部54a内に形成されるシリコン膜21の厚みを、それ以外の部分に形成されるシリコン膜11の厚みよりも大きくすることができる。
 なお、樹脂膜52、シリコン窒化膜53及びシリコン酸化膜54によって、下地層57が構成される。この下地層57は、樹脂膜52、シリコン窒化膜53またはシリコン酸化膜54のいずれか一つもしくは二つを含んでいてもよいし、他の薄膜を含んでいてもよい。
 (半導体装置の製造方法)
 次に、この第2の実施形態における半導体装置50の製造方法を、第1の実施形態と異なる部分についてのみ、図6を用いて説明する。なお、図6(a)~(d)は、島状のシリコン膜11,21が形成されるまでの主な製造工程を示している。図6(d)の後は、第1の実施形態における図4の工程と同じなので、説明を省略する。
 最初に、図6(a)に示すように、基板30上に、バックライト装置の照明光が該基板30の一面側(図の下側)からフォトダイオードに入射するのを防止するための遮光膜51を形成する。
 具体的には、まず、基板30の一方の面(図の上面)に、樹脂膜を形成する。この樹脂膜は、アクリル系の樹脂によって構成される。その後、フォトリソグラフィ法によって、遮光膜51の形成予定領域が開口したレジストパターンを形成し、これをマスクとして、エッチングによって遮光膜51の形成予定領域の樹脂膜を除去する。これにより、基板30上に、樹脂膜52(第1の下地膜)が形成される。なお、樹脂膜52を形成する方法はこれに限らず、樹脂膜52を形成する際に、遮光膜51の形成予定領域に樹脂膜が形成されないようにマスクを設けてもよい。
 その後、基板30及び樹脂膜52上に、CVD(Chemical Vapor Deposition)法やスパッタ法等によって、遮光薄膜を形成する。この遮光薄膜は、シリコン酸化膜やシリコン窒化膜などの絶縁膜、または、タンタル(Ta)、チタン(Ti)、タングステン(W)、モリブデン(Mo)、アルミニウム(Al)等を主成分とする金属膜からなる。遮光薄膜は、樹脂膜52の厚みよりも小さくなるように成膜される。
 そして、遮光薄膜上及び樹脂膜52上に、別の樹脂膜をスピンコート等によって塗布して最上面を一旦、平坦にする。その状態で樹脂膜52上の遮光薄膜が除去されるような高さまでエッチングを行い、その後、残った別の樹脂膜を除去する。これにより、樹脂膜52上の遮光薄膜のみが除去され、該樹脂膜52の形成されていない部分(遮光膜51の形成予定領域)に遮光膜51が残る。この遮光膜51の厚みは、樹脂膜52の厚みよりも小さいため、該遮光膜51上には、凹部51aが形成される。
 なお、上述のように樹脂膜52の形成されていない部分のみに遮光膜51を形成する方法として、CMP(Chemical Mechanical Polishing(またはPlanarization))法と呼ばれる化学的機械研磨法を用いることも可能である。この方法を用いることにより、工程数をほとんど増加させることなく遮光膜51を形成することができる。ただし、この方法では、遮光薄膜上に研磨剤を塗布する必要があるため、遮光膜51に電圧を印加する構成の場合には、別の樹脂膜とともにエッチングする上述のような方法が好ましい。
 続いて、樹脂膜52及び遮光膜51を覆うようにシリコン窒化膜53を形成する。さらに、その上に、シリコン酸化膜54を形成する。これらのシリコン窒化膜53及びシリコン酸化膜54は、例えばCVD法によって形成される。このように、樹脂膜52及び遮光膜51上にシリコン窒化膜53及びシリコン酸化膜54を形成することで、該遮光膜51に対応してシリコン酸化膜54には凹部54aが形成される。なお、これらのシリコン窒化膜53及びシリコン酸化膜54は、単層であってもよいし、多層であってもよい。また、これらのシリコン窒化膜53及びシリコン酸化膜54が別の下地膜に対応する。
 次に、図6(b)に示すように、シリコン酸化膜54上にシリコン薄膜55(非晶質のシリコン層)を形成する。このシリコン薄膜55は、非晶質のアモルファスシリコンからなる薄膜である。このシリコン薄膜55に対して、図6(c)に示すように、レーザー光40(白抜き矢印)を照射することにより、シリコン薄膜55を溶融させて、結晶性のシリコン薄膜56(結晶性のシリコン層)に変化させる。この際、シリコン薄膜55は、一旦、溶融するため、溶融したシリコンの一部がシリコン酸化膜54の表面に形成された凹部54a内へ移動する。これにより、図6(c)に示すように、凹部54a内のシリコン薄膜がそれ以外の部分に比べて厚くなるシリコン薄膜56が形成される。
 次に、シリコン薄膜56におけるTFT60の形成予定領域及びフォトダイオード70の形成予定領域を覆うレジストパターンを形成し、これをマスクとしてシリコン薄膜56をエッチングする。これにより、図6(d)に示すように、TFT及びフォトダイオードをそれぞれ構成するために用いられる島状のシリコン膜11,21が形成される。シリコン膜21は、シリコン酸化膜54の凹部54a内に形成されたシリコン薄膜56から形成される。そのため、シリコン膜21は、シリコン膜11よりも厚みが大きい。
 ここで、基板30上に遮光膜51、樹脂膜52、シリコン窒化膜53及びシリコン酸化膜54を形成する工程が下地層形成工程に、シリコン酸化膜54上にシリコン薄膜55を形成する工程がシリコン層形成工程に、それぞれ対応する。また、シリコン薄膜55をレーザー光40によって溶融させてシリコンの一部を凹部54a内へ移動させるとともに、シリコン薄膜56に変化させる工程が溶融工程に対応している。
 さらに、基板30上に、樹脂膜52を形成し、その一部をエッチングによって除去した後、遮光膜51を形成する工程が第1下地膜形成工程に、該樹脂膜52及び遮光膜51上に、シリコン窒化膜53及びシリコン酸化膜54を形成する工程が第2下地膜形成工程に、それぞれ対応している。
 なお、本実施形態では、図6(a)において、樹脂膜52を形成した後、遮光膜51を形成したが、遮光膜51を形成した後、樹脂膜52を形成してもよい。これにより、樹脂膜52を光硬化樹脂等によって形成した場合、遮光膜51をマスクとして該遮光膜51以外の部分に樹脂膜51を形成できるため、樹脂膜51を成形するためのレジストパターンが不要になる。よって、半導体装置50の製造工程の簡略化を図れる。
 (第2の実施形態の効果)
 この実施形態では、遮光膜51の厚みを樹脂膜52の厚みよりも小さくして、該遮光膜51と樹脂膜52との間に段差を設けた。これにより、第1の実施形態と同様、大幅に工程数を増やすことなく、フォトダイオード70のシリコン膜21の厚みをTFT60のシリコン膜11の厚みよりも大きくすることができる。したがって、フォトダイオード70の性能向上を図れる。
 また、シリコン窒化膜53及びシリコン酸化膜54の厚みは、TFT60側でもフォトダイオード70側でも同じであるため、レーザー光40をシリコン薄膜55に照射した場合に、TFT60側及びフォトダイオード70側での熱の拡散を同程度にすることができる。よって、シリコン薄膜55をレーザー光40によって照射した場合に、該シリコン薄膜55全体を均一に加熱することができる。したがって、上述の構成により、シリコンの結晶化を基板30上の全体で効率良く促進することができる。
 さらに、遮光膜51を形成する段階で、凹部51aが形成されるため、その後のシリコン窒化膜53、シリコン酸化膜54及びシリコン薄膜55の成膜を連続して行うことが可能になる。よって、同じチャンバーで連続して成膜することも可能になるため、製造中の半導体装置50の表面にダストが付着する可能性を低減することができる。しかも、シリコン窒化膜53及びシリコン酸化膜54を加工しないので、加工時のダストがシリコン薄膜55を成膜する前のシリコン酸化膜54の表面に付着することがない。したがって、本実施形態の構成によって、ダストによる半導体装置50の不良発生を抑制することができる。
 [第3の実施形態]
 図7に、第3の実施形態にかかる半導体装置100の概略構成を示す。この実施形態は、下地層の構成が第1及び第2の実施形態における構成とは異なる。以下の説明において、第1及び第2の実施形態と同一の構成には同一の符号を付し、異なる部分についてのみ説明する。
 具体的には、この実施形態でも、同一の基板30上に、TFT110及びフォトダイオード120が形成されている。そして、基板30上の遮光膜101(遮光層)は、その周りを囲むシリコン窒化膜102よりも厚みが小さくなるように形成されている。これにより、遮光膜101は、周囲のシリコン窒化膜102に対して凹部101aを形成する。そして、これらの遮光膜101及び樹脂膜102上に、シリコン酸化膜103を形成することにより、該シリコン酸化膜103の表面に凹部103aが形成される。
 そして、第1及び第2の実施形態と同様、シリコン酸化膜103上に形成されたシリコン膜をレーザー光によって一旦、溶融させることにより、凹部103a内に形成されるシリコン膜21の厚みを、それ以外の部分に形成されるシリコン膜11の厚みよりも大きくすることができる。
 なお、シリコン窒化膜102及びシリコン酸化膜103によって、下地層104が構成される。この下地層104は、シリコン窒化膜102またはシリコン酸化膜103のいずれか一方のみを含んでいてもよいし、他の薄膜を含んでいてもよい。
 (半導体装置の製造方法)
 次に、この第3の実施形態における半導体装置100の製造方法を、第1の実施形態と異なる部分についてのみ、図8を用いて説明する。なお、図8(a)~(e)は、島状のシリコン膜11,21が形成されるまでの主な製造工程を示している。図8(e)の後は、第1の実施形態における図4の工程と同じなので、説明を省略する。
 最初に、図8(a)に示すように、基板30上に、バックライト装置の照明光が該基板30の一面側(図の下側)からフォトダイオードに入射するのを防止するための遮光膜101を形成する。
 具体的には、基板30の一方の面(図の上面)に、CVD法やスパッタ法等によって、遮光薄膜を形成する。この遮光薄膜は、シリコン酸化膜やシリコン窒化膜などの絶縁膜、または、タンタル(Ta)、チタン(Ti)、タングステン(W)、モリブデン(Mo)、アルミニウム(Al)等を主成分とする金属膜からなる。そして、フォトリソグラフィ法によって、遮光膜101の形成予定領域にレジストパターンを形成し、これをマスクとして、前記遮光薄膜をエッチングする。これにより、島状の遮光膜101が形成される。
 続いて、基板30及び遮光膜101を覆うようにシリコン窒化膜105(第1の下地膜)を形成する。このシリコン窒化膜105は、例えばCVD法によって形成される。また、シリコン窒化膜105は、遮光膜101よりも厚みが大きくなるように形成される。
 その後、フォトリソグラフィ法によって、遮光膜101の形成予定領域以外にレジストパターンを形成する。この際、シリコン窒化膜105上にフォトレジストを塗布した後、基板30の遮光膜101が形成されている面(以下、主面という)とは反対側の面から光を照射して、遮光膜101をマスクとしてレジストパターンを形成する。そして、形成されたレジストパターンをマスクとして、遮光膜101上のシリコン窒化膜105をエッチングする。これにより、図8(b)に示すように、遮光膜101を囲むようにシリコン窒化膜102が形成される。遮光膜101の厚みは、シリコン窒化膜102の厚みよりも小さいため、該遮光膜101の部分に凹部101aが形成される。
 さらに、図8(b)に示すように、遮光膜101及びシリコン窒化膜102上に、シリコン酸化膜103(第2の下地膜)を形成する。このシリコン酸化膜103は、例えばCVD法によって形成される。このように、遮光膜101及びシリコン窒化膜102上にシリコン酸化膜103を形成することで、該遮光膜101に対応してシリコン酸化膜103に凹部103aが形成される。なお、シリコン酸化膜103は、単層であってもよいし、多層であってもよい。
 次に、図8(c)に示すように、シリコン酸化膜103上にシリコン薄膜106(非晶質のシリコン層)を形成する。このシリコン薄膜106は、非晶質のアモルファスシリコンからなる薄膜である。このシリコン薄膜106に対して、図8(d)に示すように、レーザー光40(白抜き矢印)を照射することにより、シリコン薄膜106を溶融させて、結晶性のシリコン薄膜107(結晶性のシリコン層)に変化させる。この際、シリコン薄膜106は、一旦、溶融するため、溶融したシリコンの一部がシリコン酸化膜103の表面に形成された凹部103a内へ移動する。これにより、図8(d)に示すように、凹部103a内のシリコン薄膜がそれ以外の部分に比べて厚くなるシリコン薄膜107が形成される。
 次に、シリコン薄膜107におけるTFT110の形成予定領域及びフォトダイオード120の形成予定領域を覆うレジストパターンを形成し、これをマスクとしてシリコン薄膜107に対してエッチングを行う。これにより、図8(e)に示すように、TFT110及びフォトダイオード120をそれぞれ構成するために用いられる島状のシリコン膜11,21が形成される。シリコン膜21は、シリコン酸化膜103の凹部103a内に形成されたシリコン薄膜107から形成される。そのため、シリコン膜21は、シリコン膜11よりも厚みが大きい。
 ここで、基板30上に遮光膜101、シリコン窒化膜102及びシリコン酸化膜103を形成する工程が下地層形成工程に、シリコン酸化膜103上にシリコン薄膜106を形成する工程がシリコン層形成工程に、それぞれ対応する。また、シリコン薄膜106をレーザー光40によって溶融させてシリコンの一部を凹部103a内へ移動させるとともに、シリコン薄膜107に変化させる工程が溶融工程に、シリコン膜11,21を形成する工程が半導体層形成工程に、それぞれ対応している。
 さらに、基板30及び遮光膜101上に、シリコン窒化膜105を形成する工程が下地層成膜工程に、シリコン窒化膜105上にレジストパターンを形成する工程がパターン形成工程に、それぞれ対応している。また、前記レジストパターンを用いてエッチングによって遮光膜101上のシリコン窒化膜105を除去し、その上に凹部103aを有するシリコン酸化膜103を形成する工程が、凹部形成工程に対応している。
 (第3の実施形態の効果)
 この実施形態では、遮光膜101の厚みをシリコン窒化膜102の厚みよりも小さくして、該遮光膜101とシリコン窒化膜102との間に段差を設けた。これにより、第1及び第2の実施形態と同様、大幅に工程数を増やすことなく、フォトダイオード120のシリコン膜21の厚みをTFT110のシリコン膜11の厚みよりも大きくすることができる。したがって、フォトダイオード120の性能向上を図れる。
 また、本実施形態では、シリコン窒化膜105をエッチングする際に、基板30の主面とは反対側から光を照射して遮光膜101をマスクとして利用することにより、シリコン窒化膜105上にレジストパターンを形成した。これにより、シリコン窒化膜105において遮光膜101に対応する領域を容易にエッチングすることができる。
 さらに、シリコン酸化膜103の厚みは、TFT110側でもフォトダイオード120側でも同じであるため、レーザー光40をシリコン薄膜106に照射した場合に、TFT110側及びフォトダイオード120側での熱の拡散を同程度にすることができる。よって、シリコン薄膜106をレーザー光40によって照射した場合に、該シリコン薄膜106全体を均一に加熱することができる。したがって、上述の構成により、シリコンの結晶化を基板30上の全体で効率良く促進することができる。
 [その他の実施形態]
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 前記各実施形態では、半導体装置1,50,100の適用例として、液晶表示装置の表示パネル2を挙げているが、この限りではなく、同一の基板上にTFTとフォトダイオードとが形成される構成であれば、どのような装置に適用してもよい。
 前記各実施形態では、半導体装置1,50,100の最上面は、シリコン酸化膜36である。しかしながら、図4(d)の後、TFT10及びフォトダイオード20を覆うように、シリコン酸化膜36上に保護膜を設けてもよい。
 前記各実施形態では、シリコン窒化膜やシリコン酸化膜、樹脂膜のうち数種類の膜を組み合わせて下地膜として用いている。しかしながら、下地膜として機能すれば、前記各実施形態の膜の組み合わせに限らず、他の組み合わせであってもよいし、別の種類の膜を組み合わせて下地膜として用いてもよい。
 前記第1及び第3の実施形態では、遮光膜をマスクとして、凹部を形成する際にエッチングに用いられるレジストパターンを形成しているが、この限りではなく、遮光膜とは別のマスク部材を用いてレジストパターンを形成してもよい。
 前記第1の実施形態では、遮光膜37の上方のシリコン酸化膜を一部(符号33a)残すようにエッチングしているが、この限りではなく、遮光膜37の上方のシリコン酸化膜を全て除去するようにエッチングしてもよい。
 前記第3の実施形態では、遮光膜101上のシリコン窒化膜102を完全に除去している。しかしながら、遮光膜101上にシリコン窒化膜102が残っていてもよい。
 本発明による半導体装置は、同一の基板上にTFTとフォトダイオードとが形成された半導体装置に利用可能である。

Claims (8)

  1.  基板上に、表面に凹部を有する下地層を形成する下地層形成工程と、
     前記下地層上に、非晶質のシリコン層を形成するシリコン層形成工程と、
     前記非晶質のシリコン層を溶融させることにより、前記凹部内へ溶融したシリコンを移動させつつ、結晶性のシリコン層を形成する溶融工程と、
     前記結晶性のシリコン層のうち、前記凹部以外の部分のシリコン層から、薄膜トランジスタの一部を構成する第1の半導体層を形成する一方、前記凹部内に位置するシリコン層から、フォトダイオードの一部を構成する第2の半導体層を形成する半導体層形成工程と、
     を有する、半導体装置の製造方法。
  2.  前記下地層形成工程では、前記基板上に島状の遮光層を形成した後、該基板上及び遮光層上に、前記凹部が該遮光層の上方に位置する前記下地層を形成する、請求項1に記載の半導体装置の製造方法。
  3.  前記基板は、透光性の基板であり、
     前記下地層形成工程は、
      前記基板上及び前記遮光層上に、前記下地層を形成する下地層成膜工程と、
      前記遮光層をマスクとして、前記下地層成膜工程によって形成された下地層上に、基板の積層方向とは反対側からの光の照射によってレジストパターンを形成するパターン形成工程と、
      前記レジストパターンをマスクとして前記遮光層上の下地層の少なくとも一部を除去することにより、前記凹部を形成する凹部形成工程と、
    を有する、請求項2に記載の半導体装置の製造方法。
  4.  前記基板は、透光性の基板であり、
     前記下地層は、複数の下地膜を備えていて、
     前記下地層形成工程は、
      前記基板上及び前記遮光層上に、該遮光層よりも厚みの大きい第1の下地膜を形成する下地層成膜工程と、
      前記遮光層をマスクとして、前記第1の下地膜上に、前記基板の積層方向とは反対側からの光の照射によってレジストパターンを形成するパターン形成工程と、
      前記レジストパターンをマスクとして前記遮光層上の前記第1の下地膜を除去した後、該遮光層上及び第1の下地膜上に第2の下地膜を形成することにより、該第2の下地膜上に前記凹部を形成する凹部形成工程と、
    を有する、請求項2に記載の半導体装置の製造方法。
  5.  前記下地層は、複数の下地膜を備えていて、
     前記下地層形成工程は、
      前記基板上に、第1の下地膜と該第1の下地膜よりも厚みの小さい遮光層とを形成する第1下地膜形成工程と、
      前記第1の下地膜上及び前記遮光層上に別の下地膜を形成することにより、前記遮光層に対応した前記凹部を形成する第2下地膜形成工程と、
     を有する、請求項1に記載の半導体製造方法。
  6.  基板と、
     前記基板上に、表面に凹部を有するように形成される下地層と、
     前記下地層上の凹部以外に形成される第1の半導体層と、
     前記凹部内に、前記第1の半導体層よりも厚みが大きくなるように形成される第2の半導体層と、を備え、
     前記第1の半導体層は、薄膜トランジスタの一部を構成し、
     前記第2の半導体層は、フォトダイオードの一部を構成する、半導体装置。
  7.  前記第1の半導体層及び前記第2の半導体層は、前記基板とは反対側の面が該基板から同等の高さに位置するような厚みに形成されている、請求項6に記載の半導体装置。
  8.  前記基板上で且つ該基板と前記第2の半導体層との間に形成される遮光層をさらに備えていて、
     前記下地層は、前記基板上に前記遮光層を囲むように形成される第1の下地膜を備えていて、
     前記遮光層は、前記第1の下地膜に比べて厚みが小さい、請求項6または7に記載の半導体装置。
PCT/JP2011/058676 2010-04-16 2011-04-06 半導体装置及びその製造方法 WO2011129234A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/641,442 US8686480B2 (en) 2010-04-16 2011-04-06 Semiconductor device and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-095314 2010-04-16
JP2010095314 2010-04-16

Publications (1)

Publication Number Publication Date
WO2011129234A1 true WO2011129234A1 (ja) 2011-10-20

Family

ID=44798610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058676 WO2011129234A1 (ja) 2010-04-16 2011-04-06 半導体装置及びその製造方法

Country Status (2)

Country Link
US (1) US8686480B2 (ja)
WO (1) WO2011129234A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103996655B (zh) * 2014-03-07 2017-02-08 京东方科技集团股份有限公司 一种阵列基板及其制备方法,显示面板、显示装置
KR102205856B1 (ko) 2014-06-11 2021-01-21 삼성디스플레이 주식회사 센서를 포함하는 유기 발광 표시 장치
US9368653B1 (en) * 2014-12-23 2016-06-14 International Business Machines Corporation Silicon photonics integration method and structure
KR20160117817A (ko) * 2015-03-31 2016-10-11 삼성디스플레이 주식회사 화소 및 이를 이용한 표시 장치
US9905607B2 (en) * 2015-07-28 2018-02-27 General Electric Company Radiation detector fabrication
JPWO2019130934A1 (ja) * 2017-12-28 2021-01-21 コネクテックジャパン株式会社 指紋センサおよび表示装置
CN109148482B (zh) * 2018-08-21 2020-11-03 京东方科技集团股份有限公司 显示背板及其制备方法、显示装置
CN111370524B (zh) * 2020-03-18 2021-07-23 武汉华星光电技术有限公司 感光传感器及其制备方法、阵列基板、显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134557U (ja) * 1987-02-24 1988-09-02
JPH08330559A (ja) * 1995-06-05 1996-12-13 Hitachi Ltd 撮像装置
JP2008171871A (ja) * 2007-01-09 2008-07-24 Hitachi Displays Ltd 高感度光センサ素子及びそれを用いた光センサ装置
JP2008287061A (ja) * 2007-05-18 2008-11-27 Seiko Epson Corp 液晶装置及び電子機器
JP2009135188A (ja) * 2007-11-29 2009-06-18 Sony Corp 光センサーおよび表示装置
JP2011071491A (ja) * 2009-08-25 2011-04-07 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300630A (ja) 2007-05-31 2008-12-11 Sharp Corp 半導体装置およびその製造方法
JP5253799B2 (ja) * 2007-12-17 2013-07-31 三菱電機株式会社 フォトセンサー、及びフォトセンサーの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134557U (ja) * 1987-02-24 1988-09-02
JPH08330559A (ja) * 1995-06-05 1996-12-13 Hitachi Ltd 撮像装置
JP2008171871A (ja) * 2007-01-09 2008-07-24 Hitachi Displays Ltd 高感度光センサ素子及びそれを用いた光センサ装置
JP2008287061A (ja) * 2007-05-18 2008-11-27 Seiko Epson Corp 液晶装置及び電子機器
JP2009135188A (ja) * 2007-11-29 2009-06-18 Sony Corp 光センサーおよび表示装置
JP2011071491A (ja) * 2009-08-25 2011-04-07 Semiconductor Energy Lab Co Ltd 半導体装置およびその作製方法

Also Published As

Publication number Publication date
US20130099290A1 (en) 2013-04-25
US8686480B2 (en) 2014-04-01

Similar Documents

Publication Publication Date Title
WO2011129234A1 (ja) 半導体装置及びその製造方法
JP6503458B2 (ja) 薄膜トランジスタの製造方法及び表示パネル
JP5129228B2 (ja) アレイ基板及びこれの製造方法
KR101263726B1 (ko) 폴리실리콘을 이용한 박막트랜지스터를 포함하는 어레이 기판 및 이의 제조방법
JP5588740B2 (ja) Tft−lcdアレイ基板およびその製造方法
WO2018233405A1 (zh) 一种薄膜晶体管及其制作方法、阵列基板、显示面板
WO2013104228A1 (zh) Tft阵列基板的制造方法
WO2016072024A1 (ja) 薄膜トランジスタの製造方法、薄膜トランジスタ及び表示パネル
WO2010035544A1 (ja) フォトダイオードおよびその製造方法ならびにフォトダイオードを備えた表示装置
JPH03244136A (ja) 薄膜トランジスタの製造方法
WO2011039907A1 (ja) 半導体装置及びその製造方法
US8420458B2 (en) Semiconductor device and method of producing same
WO2011136071A1 (ja) 半導体装置及びその製造方法
US7811867B2 (en) Method for manufacturing pixel structure
WO2010131502A1 (ja) 薄膜トランジスタおよびその製造方法
KR101577234B1 (ko) 패턴 형성 방법 및 박막 트랜지스터 어레이 기판의 제조 방법
US8848126B2 (en) Optical sensor comprising a photodiode having a p-type semiconductor region, an intrinsic semiconductor region, and an n-type semiconductor region
KR101522240B1 (ko) 액정표시장치 및 그 제조방법
KR101588448B1 (ko) 폴리실리콘을 이용한 박막트랜지스터를 포함하는 어레이 기판 및 이의 제조방법
KR20050045879A (ko) 마이크로 렌즈의 제조 방법, 고체 촬상 소자의 제조 방법및 고체 촬상 소자
TWI466298B (zh) 畫素結構的製作方法
JP5691285B2 (ja) 表示装置の製造方法
WO2012077606A1 (ja) 液晶パネル
JP2000292810A (ja) マトリクスアレイ基板の製造方法
TWI450006B (zh) 畫素結構的製作方法及修補方法與修補後的畫素結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13641442

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11768755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP