WO2011129206A1 - 光酸発生剤及び光反応性組成物 - Google Patents

光酸発生剤及び光反応性組成物 Download PDF

Info

Publication number
WO2011129206A1
WO2011129206A1 PCT/JP2011/058442 JP2011058442W WO2011129206A1 WO 2011129206 A1 WO2011129206 A1 WO 2011129206A1 JP 2011058442 W JP2011058442 W JP 2011058442W WO 2011129206 A1 WO2011129206 A1 WO 2011129206A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
bis
acid
ion
sulfoxide
Prior art date
Application number
PCT/JP2011/058442
Other languages
English (en)
French (fr)
Inventor
勝政 山本
博史 山口
秀彦 明見
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to JP2012510617A priority Critical patent/JP5669825B2/ja
Publication of WO2011129206A1 publication Critical patent/WO2011129206A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/30Hetero atoms other than halogen
    • C07D333/34Sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/686Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/687Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used
    • C08G65/105Onium compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable

Definitions

  • the present invention relates to a novel compound, a phenylthiophenesulfonium salt compound, a photoacid generator containing the phenylthiophenesulfonium salt compound, and a photoreactive composition containing the photoacid generator.
  • the photoreactive composition is easy to handle, it is widely used for printing plate making materials, various resists, UV curable paints and the like.
  • the maximum absorption wavelength is 300 nm or less, so under the conditions using a light source in the near ultraviolet region of 300 to 400 nm. There was a problem that the reaction rate of the photoreactive composition was insufficient.
  • photoacid generators and photoreactive compositions are diversified today, and a wide variety of photoacid generators are required to cope with them.
  • a photoacid generator that has very high sensitivity in the near-ultraviolet region and can start and complete the reaction of the photoreactive composition by light irradiation for a short time is desired.
  • various light acid generators with different properties such as solubility in solvents and various light sources with different maximum absorption wavelengths in the near-ultraviolet region in order to be applied to various light sources in accordance with various uses. There is a need for proposals for acid generators.
  • An object of the present invention is a photoacid generator that can meet these requirements, and has a very high sensitivity in the vicinity of 300 to 400 nm in the near ultraviolet region, and can greatly increase the reaction rate. And providing a photoreactive composition having a very short reaction time by near-ultraviolet irradiation.
  • R 1 to R 3 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms
  • X -. is showing an anion
  • Item 2. Item 4. A photoacid generator containing the phenylthiophenesulfonium salt compound according to Item 1.
  • Item 4. A photoreactive composition comprising the phenylthiophenesulfonium salt compound according to Item 1 and an acid-reactive compound.
  • phenylthiophenesulfonium salt compound The phenylthiophene sulfonium salt compound of the present invention is represented by the following chemical formula (1).
  • R 1 to R 3 each independently represents a hydrogen atom, a halogen atom, a halogenated alkyl group having 1 to 4 carbon atoms, an alkyl group having 1 to 10 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms) , an acyl group having 1 to 8 carbon atoms, or a hydroxyl group
  • X - is a substituent represented by .R 1 showing the anion position, the 2-4-position of the phenyl group bonded directly to the thiophene Arbitrary in range.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom and a chlorine atom are preferable.
  • halogenated alkyl group having 1 to 4 carbon atoms examples include a bromomethyl group, a chloromethyl group, a trifluoromethyl group, a pentafluoroethyl group, and a perfluorobutyl group, and among them, a trifluoromethyl group is preferable.
  • alkyl group having 1 to 10 carbon atoms examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an octyl group, and a decyl group. And an alkyl group having 1 to 4 carbon atoms such as a butyl group.
  • alkoxy group having 1 to 4 carbon atoms examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group and a methoxyethoxy group, and among them, a methoxy group, an ethoxy group, a propoxy group and a butoxy group are preferable.
  • acyl group having 1 to 8 carbon atoms examples include acetyl group, formyl group, and benzoyl group, and among them, acetyl group is preferable.
  • substituents represented by R 1 in the chemical formula (1) particularly preferred substituents are a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and a tert-butyl group.
  • substituents represented by R 2 and R 3 in the chemical formula (1) particularly preferred substituents are a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group.
  • Tert-butyl group methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, fluorine atom, etc., among which methyl group, An ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, and an n-butoxy group are preferable.
  • R 1 to R 3 may be independently the same or different.
  • X of Formula (1) - As the anion represented by, but are not particularly limited, for example, hexafluoroantimonate ion, hexafluoroarsenate ion, hexafluorophosphate ion, pentafluoro hydroxo antimonate ion , Tetrafluoroborate ion, tetrakis (pentafluorophenyl) borate ion, tetrakis (trifluoromethylphenyl) borate ion, trifluoro (pentafluorophenyl) borate ion, tetrakis (difluorophenyl) borate ion, difluorobis (Pentafluorophenyl) borate ion, bis (pentafluoroethyl) tetrafluorophosphate ion, tris (pentafluoroethyl) trifluorophosphate ion, bis (h
  • hexafluorophosphate ions from the viewpoint of the acid strength of the acid generated when the phenylthiophenesulfonium salt compound is used as a photoacid generator and from the viewpoint of safety, hexafluorophosphate ions, fluorinated alkylfluorophosphate ions, tetrakis ( (Pentafluorophenyl) borate ion, trifluoromethanesulfonate ion, perfluorobutanesulfonate ion, camphorsulfonate ion, and p-toluenesulfonate ion are preferable, and hexafluorophosphate ion is more preferable.
  • the above anions represented by X ⁇ may be one kind or two or more kinds.
  • the phenyl thiophene sulfonium salt compound represented by the above formula (1), a sulfoxide shown below, a phenyl thiophene derivatives, and X - is manufactured of an acid represented by a raw material - anion represented by an alkali metal salt or H + X Of these raw materials, a phenylthiophenesulfonium salt compound produced using the raw materials listed in the preferred embodiment is more preferred.
  • bis (4-methylphenyl) (5-phenyl-thiophen-2-yl) sulfonium hexafluoroantimonate, bis (4-methylphenyl) (5-phenyl-thiophen-2-yl) sulfonium perfluorobutanesulfo are particularly preferred.
  • the phenylthiophenesulfonium salt compound represented by the above chemical formula (1) is, for example, the following chemical formula (2):
  • R 4 and R 5 each represent a group represented by R 2 and R 3 in the above chemical formula (1)
  • a sulfoxide compound and a phenylthiophene derivative represented by a condensing agent and a strong acid after condensation reaction in the presence subsequently, the X - alkali metal salts or H + X anion represented by - can be prepared by methods such as reaction with an acid represented by.
  • sulfoxide compound represented by the chemical formula (2) include Diphenyl sulfoxide, bis (4-methylphenyl) sulfoxide, bis (4-ethylphenyl) sulfoxide, bis (4-n-propylphenyl) sulfoxide, bis (4-isopropylphenyl) sulfoxide, bis (4-n-butylphenyl) Sulfoxide, bis (4-tert-butylphenyl) sulfoxide, bis (4-phenylphenyl) sulfoxide, Bis (4-methoxyphenyl) sulfoxide, bis (4-ethoxyphenyl) sulfoxide, bis (4-n-propoxyphenyl) sulfoxide, bis (4-isopropoxyphenyl) sulfoxide, bis (4-n-butoxyphenyl) sulfoxide, Bis (4-isobutoxyphenyl) sulfoxide, bis (4-sec-butoxypheny
  • diphenyl sulfoxide bis (4-methylphenyl) sulfoxide, bis (4-ethylphenyl) sulfoxide, bis (4-n-propylphenyl) sulfoxide, bis (4-isopropylphenyl) sulfoxide, bis (4-n -Butylphenyl) sulfoxide, bis (4-methoxyphenyl) sulfoxide, bis (4-ethoxyphenyl) sulfoxide, bis (4-n-propoxyphenyl) sulfoxide, bis (4-isopropoxyphenyl) sulfoxide, bis (4-n -Butoxyphenyl) sulfoxide and bis (4-fluorophenyl) sulfoxide are preferably used.
  • the sulfoxide compound a commercially available product may be used as it is, or an appropriately produced product may be used.
  • the method for producing the sulfoxide compound is not particularly limited.
  • the sulfoxide compound is bis (4-methylphenyl) sulfoxide in which R 4 and R 5 in the formula (2) are both methyl groups
  • a method of reacting thionyl in the presence of trifluoromethanesulfonic acid (Synlett., 1999, 1397), and 4-methylphenyl- (R 4 in formula (2) is a methyl group and R 5 is a methoxy group.
  • phenylthiophene derivative a commercially available product may be used as it is, or an appropriately produced product may be used.
  • a method for producing the phenylthiophene derivative is not particularly limited, and examples thereof include International Publication No. WO2006-022375 and Chem. Mater. It can be produced with reference to known methods such as those described in 2007, 19, 1355.
  • phenylthiophene derivatives examples include 2-phenylthiophene, 2- (4-methylphenyl) thiophene, 2- (4-ethylphenyl) thiophene, 2- (4-n-propylphenyl) thiophene, 2- ( 4-isopropylphenyl) thiophene, 2- (4-n-butylphenyl) thiophene, 2- (4-n-hexylphenyl) thiophene, 2- (4-n-octylphenyl) thiophene, 2- (4-methoxyphenyl) ) Thiophene, 2- (4-ethoxyphenyl) thiophene, 2- (4-n-propoxyphenyl) thiophene, 2- (4-isopropoxyphenyl) thiophene, 2- (4-n-butoxyphenyl) thiophene, 2- (4-fluorophenyl) thiophene, 2- (4-chlorophen
  • 2-phenylthiophene 2- (4-methylphenyl) thiophene, 2- (4-methoxyphenyl) thiophene, 2- (4-n-butoxyphenyl) thiophene, 2- (4-fluorophenyl) Thiophene and 2- (4-trifluoromethylphenyl) thiophene are preferred, and 2-phenylthiophene is more preferred.
  • the ratio of the sulfoxide used can be generally about 0.8 to 2 moles per mole of the phenylthiophene derivative, The amount is about 9 to 1.5 mol, more preferably about 1.0 to 1.2 mol.
  • the above condensing agent is not particularly limited, and examples thereof include acetic anhydride, trifluoroacetic anhydride, concentrated sulfuric acid, diphosphorus pentoxide, and polyphosphoric acid. Among these, acetic anhydride, concentrated sulfuric acid, diphosphorus pentoxide and the like are preferably used. These condensing agents may be used individually by 1 type, or may use 2 or more types together.
  • the use ratio of the condensing agent is not particularly limited, but can be usually about 0.5 to 20 moles, preferably about 1 to 15 moles per mole of the phenylthiophene derivative. .
  • the use ratio of the condensing agent is less than 0.5 mol, the yield may decrease.
  • the usage-amount of a condensing agent exceeds 20 mol, there is no effect corresponding to the usage-amount and it is not economical.
  • the strong acid is not particularly limited, and examples thereof include methanesulfonic acid, ethanesulfonic acid, and trifluoromethanesulfonic acid. Among these, methanesulfonic acid is preferably used. These strong acids may be used alone or in combination of two or more.
  • the use ratio of the strong acid is not particularly limited, but it can be usually about 1 to 25 moles, preferably about 2 to 15 moles per mole of the phenylthiophene derivative.
  • the use ratio of the strong acid is less than 1 mol, the yield may be reduced.
  • the usage-amount of strong acid exceeds 25 mol, there is no effect commensurate with usage-amount and volume efficiency deteriorates and it is not economical.
  • a reaction solvent is not always necessary, but for the purpose of improving stirring efficiency, a solvent such as sulfolane, dichloromethane, or chloroform. May be used as a reaction solvent.
  • the amount used can usually be about 30 to 3000 parts by weight, preferably about 50 to 2000 parts by weight, per 100 parts by weight of the phenylthiophene derivative.
  • the operation in the above condensation reaction is not particularly limited.
  • a predetermined amount of the sulfoxide, the phenylthiophene derivative, the condensing agent, and a reaction solvent as necessary are mixed and stirred.
  • examples thereof include a method of dropping a strong acid.
  • the reaction temperature can usually be about ⁇ 20 to 100 ° C., preferably about ⁇ 10 to 80 ° C.
  • the reaction rate becomes slow and the reaction may take a long time.
  • reaction temperature is higher than 100 degreeC, a side reaction tends to occur and there exists a possibility that a yield and purity may fall.
  • the reaction time varies depending on the reaction temperature and the like, it can usually be about 0.5 to 48 hours, preferably about 1 to 24 hours.
  • the condensation reaction product is converted to an alkali metal salt of an anion represented by the above X ⁇ or H + X - it can be prepared by reacting the acid represented by.
  • X as described above - can be exemplified acid represented by - the sodium salt of the anion represented by the potassium or lithium salts and H + X.
  • the operation in the reaction of the above condensation reaction product with an alkali metal salt or an acid represented by H + X — is not particularly limited.
  • a predetermined amount of the above-described reaction solution is added to the reaction solution after the above condensation reaction.
  • a method of adding an alkali metal salt or an acid represented by H + X ⁇ a method of adding a reaction solution after the condensation reaction to a predetermined amount of an alkali metal salt or an acid represented by H + X ⁇
  • an organic solvent such as monochlorobenzene, ethy
  • the reaction temperature can usually be about ⁇ 10 to 100 ° C., preferably about 0 to 80 ° C.
  • the reaction rate becomes slow and the reaction may take a long time.
  • reaction temperature is higher than 100 degreeC, a side reaction tends to occur and there exists a possibility that a yield and purity may fall.
  • the phenylthiophene sulfonium salt compound thus obtained can be obtained by a method of filtering the precipitated solid after completion of the reaction, or by extracting the reaction product with an organic solvent such as monochlorobenzene, ethyl acetate or dichloromethane, and then distilling off the organic solvent. It can be isolated by the method to do.
  • the phenylthiophenesulfonium salt is usually used for recrystallization with a solvent such as monochlorobenzene, toluene, ethyl acetate, acetone, methanol, ethanol, isopropanol, n-heptane and water, activated carbon treatment, or column purification, if necessary. It can be purified by the method.
  • the photoacid generator according to the present invention contains a phenylthiophenesulfonium salt compound represented by the above chemical formula (1).
  • the phenylthiophenesulfonium salt compound may be used alone or in combination of two or more.
  • the photoacid generator causes decomposition by absorbing light of a specific wavelength
  • the decomposition product is, for example, other components such as a solvent contained in the photoreactive composition described in detail below, or the above-mentioned
  • An acid is generated by extracting a hydrogen atom from the photoacid generator itself and working with the anion represented by X ⁇ above.
  • the light beam having the specific wavelength is usually a light beam having a wavelength of about 200 to 500 nm, and more preferably about 300 to 450 nm.
  • the photoreactive composition according to the present invention contains a phenylthiophenesulfonium salt compound represented by the above chemical formula (1) and an acid reactive compound.
  • the acid-reactive compound may be used alone or in combination of two or more.
  • the above-mentioned acid-reactive compound is a compound that causes a chemical reaction such as polymerization or decomposition by an acid generated from a photoacid generator irradiated with light having a specific wavelength as described above.
  • the acid-reactive compound include cation polymerizable compounds such as cation polymerizable monomers, cation polymerizable oligomers, and cation polymerizable polymers, and various resist materials in which ester bonds and ether bonds in the polymer are decomposed, and polymer side chains. And various resist materials that crosslink.
  • Monofunctional glycidyl ether compounds such as allyl glycidyl ether, butyl glycidyl ether, phenyl glycidyl ether, 2-ethylhexyl glycidyl ether, 2-methyloctyl glycidyl ether, Polyfunctional glycidyl ether compounds such as 1,6-hexanediol diglycidyl ether, trimethylolpropane triglycidyl ether, ethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, Glycidyl ester compounds such as glycidyl (meth) acrylate, diglycidyl diphthalate, diglycidyl tetrahydrophthalate, Compounds obtained by glycidyl etherification of bisphenol A, bisphenol F, brominated bisphenol A, biphenol
  • a monofunctional glycidyl ether compound a polyfunctional glycidyl ether compound, a glycidyl ester compound, an alicyclic epoxy compound, a vinyl ether compound from the viewpoint of effectively utilizing the high acid generation ability of the photoacid generator.
  • oxetane compounds are preferably used.
  • the amount of the photoacid generator contained in the photoreactive composition of the present invention is not particularly limited, but is usually about 0.01 to 20 parts by weight with respect to 100 parts by weight of the acid reactive compound.
  • the amount is preferably about 0.1 to 10 parts by weight.
  • the photoreactive composition of the present invention may contain an organic solvent as a solvent.
  • organic solvent examples include ethyl acetate, butyl acetate, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, ethylene
  • examples include glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene carbonate, propylene glycol-1-monomethyl ether-2-acetate, ethyl lactate, ⁇ -butyrolactone, and isopropyl alcohol.
  • the amount of the organic solvent used is usually about 0.1 to 900 parts by weight, preferably about 1 to 500 parts by weight with respect to 100 parts by weight of the acid-reactive compound.
  • the photoreactive composition of the present invention includes 2,6-di-tert-butyl-p-cresol, polymerization inhibitors such as hydroquinone and p-methoxyphenol, dyes such as eosin, methylene blue and malachite green, Sensitizers such as 1,4-diethylthioxanthone, 2-ethylanthraquinone, 9,10-diethoxyanthracene, 9,10-dipropoxyanthracene, 9 and 10-dibutoxyanthracene, and light such as benzyldimethyl ketal and benzoin isopropyl ether It may contain a photoacid generator other than the photoacid generator of the present invention, such as a radical polymerization initiator, triphenylsulfonium hexafluorophosphate, diphenyliodonium hexafluorophosphate, imide sulfonate or oxime sulfonate.
  • the amount of the polymerization inhibitor used is usually about 0.001 to 5 parts by weight, preferably about 0.005 to 1 part by weight per 100 parts by weight of the acid-reactive compound.
  • the amount of the photoacid generator other than the above-mentioned dye, sensitizer and photoacid generator of the present invention is usually about 0.01 to 10 parts by weight with respect to 100 parts by weight of the acid-reactive compound.
  • the amount is preferably about 0.01 to 5 parts by weight.
  • the photoreactive composition of the present invention includes, for example, the above-mentioned predetermined amount of photoacid generator and acid-reactive compound, and, if necessary, an organic solvent, a polymerization inhibitor, a dye, a sensitizer, or the present invention.
  • a photoacid generator other than the photoacid generator can be produced by a method of stirring and mixing.
  • the temperature for stirring and mixing is not particularly limited, but can usually be about 0 to 100 ° C., preferably about 10 to 60 ° C.
  • the time for stirring and mixing can usually be about 0.1 to 24 hours, preferably about 0.1 to 6 hours.
  • the photoreactive composition thus obtained can be reacted by irradiating near ultraviolet rays or the like in the state as it is or in a state where the organic solvent used is evaporated or left as needed. it can.
  • the photoreactive composition containing the above-mentioned acid-reactive compound has a thickness of usually about 0.1 to 500 ⁇ m.
  • a polymerized and cured resin thin film can be obtained by irradiating the light beam having the specific wavelength described above.
  • the light having a specific wavelength is usually a light having a wavelength of about 200 to 500 nm, more preferably about 300 to 450 nm.
  • Examples of the above-mentioned light source such as near ultraviolet rays include a high-pressure mercury lamp, a low-pressure mercury lamp, a metal halide lamp, a xenon lamp, a germicidal lamp, an LED, and a laser beam.
  • the irradiation time varies depending on the light source to be used, the type and amount of the photoacid generator, and thus cannot be specified unconditionally. However, it can usually be about 0.1 second to 1 hour, preferably 0.5 seconds to It is about 0.5 hours.
  • Example 1 In a 100 mL four-necked flask equipped with a stirrer, a thermometer and a condenser, 4.6 g (0.020 mol) of bis (4-methylphenyl) sulfoxide and 3.2 g (0.020 mol) of 2-phenylthiophene were added. ) And 10.2 g (0.100 mol) of acetic anhydride, and 7.7 g (0.080 mol) of methanesulfonic acid was added dropwise over 1 hour while maintaining the internal temperature at 0 to 10 ° C. After completion of the dropwise addition, the mixture was stirred for 3 hours while maintaining the same temperature, and further stirred at room temperature for 4 hours to obtain a reaction solution of the condensation reaction product.
  • a 200 mL four-necked flask equipped with a stirrer, a thermometer and a condenser was charged with 3.7 g (0.020 mol) of potassium hexafluorophosphate, 60 g of water, and 20 g of monochlorobenzene, and the internal temperature was adjusted to 30 to While maintaining the temperature at 50 ° C., the entire amount of the reaction solution was added dropwise over 30 minutes. Further, after stirring at 40 to 50 ° C. for 30 minutes, the monochlorobenzene layer was separated, 50 g of 5% NaHCO 3 aqueous solution was added, and the mixture was stirred at 40 to 50 ° C. for 30 minutes. The monochlorobenzene layer was separated again, and the monochlorobenzene was distilled off to obtain 9.5 g of a tan concentrate.
  • Crystallization was performed by adding 40 g of ethyl acetate to the concentrate, whereby 8.2 g (0.016) of yellowish white crystals of bis (4-methylphenyl) (5-phenyl-thiophen-2-yl) sulfonium hexafluorophosphate were obtained. Mol). The purity of the obtained bis (4-methylphenyl) (5-phenyl-thiophen-2-yl) sulfonium hexafluorophosphate was 98.6% as measured by high performance liquid chromatography. The yield based on phenylthiophene was 79%.
  • the obtained yellowish white crystal is a bis (4-methylphenyl) (wherein R 1 in the formula (1) is a hydrogen atom, R 2 and R 3 are methyl groups, and X ⁇ is a hexafluorophosphate ion. It was confirmed by the following analytical results that it was 5-phenyl-thiophen-2-yl) sulfonium hexafluorophosphate.
  • Example 2 0.1 g of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (manufactured by Daicel Chemical Industries, Ltd., trade name: Celoxide 2021P) and 3-ethyl-3- ⁇ [(3-ethyloxetane-3- Yl) methoxy] methyl ⁇ oxetane (manufactured by Toa Gosei Co., Ltd., trade name: Aron Oxetane OXT-221) 0.9 g was weighed and bis (4-methylphenyl) (5-phenyl-) synthesized in Example 1 was measured. 40 mg of thiophen-2-yl) sulfonium hexafluorophosphate was added, and 360 mg of propylene carbonate was further added, followed by stirring at room temperature for 10 minutes to obtain a uniform sample solution.
  • Celoxide 2021P 3-ethyl-3- ⁇ [(3-ethylox
  • Comparative Example 1 0.1 g of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (manufactured by Daicel Chemical Industries, Ltd., trade name: Celoxide 2021P) and 3-ethyl-3- ⁇ [(3-ethyloxetane-3- Yl) methoxy] methyl ⁇ oxetane (trade name: Aron Oxetane OXT-221, manufactured by Toagosei Co., Ltd.) 0.9 g was weighed and used as a photoacid generator. -40 mg of p-tolylsulfonium hexafluorophosphate was added, and 360 mg of propylene carbonate was further added, followed by stirring at room temperature for 10 minutes to obtain a uniform sample solution.
  • Celoxide 2021P 3-ethyl-3- ⁇ [(3-ethyloxetane-3- Yl) methoxy] methyl ⁇ ox
  • the evaluation method is as follows. That is, using an exposure apparatus (PDC121 (photochemical reaction calorimeter) manufactured by SII Nano Technology Co., Ltd.), the polymerization heat was measured and the state of the photoreactive composition after exposure was confirmed.
  • PDC121 photochemical reaction calorimeter
  • Example 2 and Comparative Example 1 5 mg of the sample obtained in Example 2 and Comparative Example 1 was dropped onto an aluminum open sample pan, and a 365 nm (i-line) light beam was irradiated for 2.0 minutes at a light intensity of 10 mW / cm 2 .
  • a 365 nm (i-line) light beam was irradiated for 2.0 minutes at a light intensity of 10 mW / cm 2 .
  • 5 mg of the sample obtained in Example 2 and Comparative Example 1 was dropped on an aluminum open sample pan, and a light beam of 405 nm (h line) was irradiated for 2.0 minutes at a light intensity of 50 mW / cm 2 .
  • Each film thickness was 400 ⁇ m.
  • Table 1 shows the evaluation results.
  • the photoreactive composition obtained in Example 2 was found to be cured after being irradiated with light of a certain energy.
  • the photoreactive composition obtained in Comparative Example 1 was completely cured despite the use of the same photoacid generator and acid reactive compound as in Example 2 and irradiation with light of the same energy. It was clear that the progress of the reaction was not sufficient.
  • the photoreactive composition obtained in Example 2 is a photoreactive composition having a very short reaction time by irradiation with light of 365 nm and 405 nm in the near ultraviolet region, and the photoreactive composition includes It can be said that the used phenylthiophene sulfonium salt compound according to the present invention is a photoacid generator capable of greatly increasing the reaction rate.
  • diphenyl (5-phenyl-thiophen-2-yl) sulfonium tris (pentafluoroethyl) trifluorophosphate, bis (4-methoxyphenyl) (5-phenyl-thiophene).
  • a photoacid generator that has a very high sensitivity in the near-ultraviolet region of 300 to 400 nm and can greatly increase the reaction rate, and a photoreaction that has a very short reaction time by near-ultraviolet irradiation.
  • Sex compositions can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Epoxy Resins (AREA)

Abstract

 本発明は、近紫外線領域である300~400nm付近での感度が非常に高く、反応速度を非常に高めることができる光酸発生剤、及び近紫外線照射による反応時間が非常に短い光反応性組成物を提供する。より詳しくは、下記の化学式(1)に示すフェニルチオフェンスルホニウム塩化合物及び該化合物を含有する光反応性組成物を提供する。(式中、R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~4のハロゲン化アルキル基、炭素数1~10のアルキル基、炭素数1~4のアルコキシ基、炭素数1~8のアシル基、又は水酸基を示し、Xは、アニオンを示す。)

Description

光酸発生剤及び光反応性組成物
 本発明は、新規な化合物であるフェニルチオフェンスルホニウム塩化合物、該フェニルチオフェンスルホニウム塩化合物を含有する光酸発生剤、及び該光酸発生剤を含有する光反応性組成物に関する。
 光反応性組成物は、取扱いが簡単であることから、印刷製版材料、各種レジスト、紫外線硬化塗料等に幅広く使用されている。
 従来、光反応性組成物として、光重合性モノマー及び/又は光重合性ポリマーとアリールジアゾニウム塩の組成物(特許文献1参照)、トリアリールスルホニウム錯体塩等の光酸発生剤を添加した光反応性組成物(特許文献2参照)等が知られている。
 しかしながら、これらアリールジアゾニウム塩、トリアリールスルホニウム錯体塩等の光酸発生剤を用いた場合、その極大吸収波長が300nm以下であるため、近紫外線領域である300~400nm付近の光源を用いる条件下では当該光反応性組成物の反応速度が不充分であるという問題があった。
米国特許第3205157号明細書 米国特許第4231951号明細書
 光酸発生剤及び光反応性組成物の用途は、今日、多様化しており、それに対応するための多種多様な光酸発生剤が求められている。特に、近紫外線領域での感度が非常に高く、短時間の光照射により光反応性組成物の反応を開始、完遂させることができる光酸発生剤が望まれている。また、多種多様な用途に合わせて、溶剤に対する溶解度等の特性が異なる多種の光酸発生剤や、種々の光源への適用を果たすために、近紫外線領域内の極大吸収波長が異なる多種の光酸発生剤の提案が求められている。
 本発明の目的は、これらの要求に応えられる光酸発生剤であって、近紫外線領域である300~400nm付近での感度が非常に高く、反応速度を非常に高めることができる光酸発生剤、及び近紫外線照射による反応時間が非常に短い光反応性組成物を提供することにある。
 本願発明者らは、上記の課題に鑑みて鋭意研究を重ねた結果、下記の化学式(1)に示すフェニルチオフェンスルホニウム塩化合物を新たに発見し、係る化合物が光酸発生剤、及び光反応性組成物として有用であることを見出し、以下に示す発明に至った。
項1.式(1):
Figure JPOXMLDOC01-appb-C000002
(式中、R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~4のハロゲン化アルキル基、炭素数1~10のアルキル基、炭素数1~4のアルコキシ基、炭素数1~8のアシル基、又は水酸基を示し、Xは、アニオンを示す。)で表されるフェニルチオフェンスルホニウム塩化合物。
項2.項1に記載のフェニルチオフェンスルホニウム塩化合物を含有する光酸発生剤。
項3.項1に記載のフェニルチオフェンスルホニウム塩化合物、及び酸反応性化合物を含有する光反応性組成物。
[フェニルチオフェンスルホニウム塩化合物]
 本発明のフェニルチオフェンスルホニウム塩化合物は、下記化学式(1)にて示される。
Figure JPOXMLDOC01-appb-C000003
(式中、R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~4のハロゲン化アルキル基、炭素数1~10のアルキル基、炭素数1~4のアルコキシ基、炭素数1~8のアシル基、又は水酸基を示し、Xは、アニオンを示す。Rで表される置換基の位置は、チオフェンに直接結合しているフェニル基の2~4位の範囲で任意である。)
 上記化学式(1)のR~Rにおいて、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子及びヨウ素原子等が挙げられ、フッ素原子、塩素原子が好ましい。
 炭素数1~4のハロゲン化アルキル基としては、例えば、ブロモメチル基、クロロメチル基、トリフルオロメチル基、ペンタフルオロエチル基及びパーフルオロブチル基等が挙げられ、中でもトリフルオロメチル基が好ましい。
 炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基、オクチル基及びデシル基等が挙げられ、中でもメチル基、エチル基、プロピル基、ブチル基等の炭素数1~4のアルキル基が好ましい。
 炭素数1~4のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基及びメトキシエトキシ基等が挙げられ、中でもメトキシ基、エトキシ基、プロポキシ基、ブトキシ基が好ましい。
 炭素数1~8のアシル基としては、例えば、アセチル基、ホルミル基及びベンゾイル基等が挙げられ、中でもアセチル基が好ましい。
 上記化学式(1)中のRで示される置換基のうち、特に好ましい置換基としては、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基及びフッ素原子等が挙げられ、中でも水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基が好ましい。
 また、上記化学式(1)中のR、Rで示される置換基のうち、特に好ましい置換基としては、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基及びフッ素原子等が挙げられ、中でもメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基が好ましい。
 これらのR~Rは、それぞれ独立して、同一又は異なっていてもよい。
 上記化学式(1)のXで示されるアニオンとしては、特に限定されるものではないが、例えば、ヘキサフルオロアンチモン酸イオン、ヘキサフルオロヒ酸イオン、ヘキサフルオロリン酸イオン、ペンタフルオロヒドロキソアンチモン酸イオン、テトラフルオロホウ酸イオン、テトラキス(ペンタフルオロフェニル)ホウ酸イオン、テトラキス(トリフルオロメチルフェニル)ホウ酸イオン、トリフルオロ(ペンタフルオロフェニル)ホウ酸イオン、テトラキス(ジフルオロフェニル)ホウ酸イオン、ジフルオロビス(ペンタフルオロフェニル)ホウ酸イオン、ビス(ペンタフルオロエチル)テトラフルオロリン酸イオン、トリス(ペンタフルオロエチル)トリフルオロリン酸イオン、ビス(ヘプタフルオロイソプロピル)テトラフルオロリン酸イオン、トリス(ヘプタフルオロイソプロピル)トリフルオロリン酸イオン、ビス(ヘプタフルオロプロピル)テトラフルオロリン酸イオン、トリス(ヘプタフルオロプロピル)トリフルオロリン酸イオン、ビス(パーフルオロイソブチル)テトラフルオロリン酸イオン、トリス(パーフルオロイソブチル)トリフルオロリン酸イオン、ビス(パーフルオロブチル)テトラフルオロリン酸イオン及びトリス(パーフルオロブチル)トリフルオロリン酸イオン等のフッ素化アルキルフルオロリン酸イオン、メタンスルホン酸イオン、エタンスルホン酸イオン、プロパンスルホン酸イオン、ブタンスルホン酸イオン、オクタンスルホン酸イオン、トリフルオロメタンスルホン酸イオン、パーフルオロブタンスルホン酸イオン、パーフルオロヘキサンスルホン酸イオン、ベンゼンスルホン酸イオン、ベンゼン-1,3-ジスルホン酸イオン、カンファースルホン酸イオン、p-トルエンスルホン酸イオン、アントラキノン-1-スルホン酸イオン、アントラキノン-2-スルホン酸イオン、アントラキノン-1,5-ジスルホン酸イオン、メタンカルボン酸イオン、エタンカルボン酸イオン、プロパンカルボン酸イオン、ブタンカルボン酸イオン、オクタンカルボン酸イオン、トリフルオロメタンカルボン酸イオン、ベンゼンカルボン酸イオン、p-トルエンカルボン酸イオン、ビス(トリフルオロメタンスルホニル)イミドイオン並びにトリス(トリフルオロメタンスルホニル)メチドイオン等が挙げられる。
 これらの中でも、フェニルチオフェンスルホニウム塩化合物を光酸発生剤として用いた際に発生する酸の酸強度の観点、安全性の観点から、ヘキサフルオロリン酸イオン、フッ素化アルキルフルオロリン酸イオン、テトラキス(ペンタフルオロフェニル)ホウ酸イオン、トリフルオロメタンスルホン酸イオン、パーフルオロブタンスルホン酸イオン、カンファースルホン酸イオン、p-トルエンスルホン酸イオンが好ましく、ヘキサフルオロリン酸イオンがより好ましい。
 上述のXで示されるアニオンは、1種単独であっても、2種以上であってもよい。
 上記化学式(1)に示されるフェニルチオフェンスルホニウム塩化合物としては、下記に示すスルホキシド、フェニルチオフェン誘導体、及びXで示されるアニオンのアルカリ金属塩又はHで示される酸を原料として製造される化合物であり、それぞれの原料のうち、好ましい態様に挙げた原料を用いて製造されるフェニルチオフェンスルホニウム塩化合物がより好ましい。その中でも特にビス(4-メチルフェニル)(5-フェニル-チオフェン-2-イル)スルホニウムヘキサフルオロアンチモネート、ビス(4-メチルフェニル)(5-フェニル-チオフェン-2-イル)スルホニウムパーフルオロブタンスルホナート、ビス(4-メチルフェニル)(5-フェニル-チオフェン-2-イル)スルホニウムトリフルオロメタンスルホナート、ビス(4-メチルフェニル)(5-フェニル-チオフェン-2-イル)スルホニウムヘキサフルオロホスファート、ビス(4-メチルフェニル)(5-フェニル-チオフェン-2-イル)スルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(4-メチルフェニル)(5-フェニル-チオフェン-2-イル)スルホニウムカンファースルホナート、ビス(4-メチルフェニル)(5-フェニル-チオフェン-2-イル)スルホニウム-p-トルエンスルホナート、及びビス(4-メチルフェニル)(5-フェニル-チオフェン-2-イル)スルホニウムトリス(ペンタフルオロエチル)トリフルオロホスファートがさらに好ましい。
[フェニルチオフェンスルホニウム塩化合物の製造方法]
 上記の化学式(1)で表されるフェニルチオフェンスルホニウム塩化合物は、例えば、下記の化学式(2):
(式中、R及びRは、それぞれ、上記の化学式(1)におけるR及びRで示される基を示す。)で表されるスルホキシド化合物とフェニルチオフェン誘導体とを縮合剤及び強酸の存在下で縮合反応させた後、引き続き、前記Xで示されるアニオンのアルカリ金属塩又はHで示される酸と反応させる方法等により製造することができる。
 上記化学式(2)で表されるスルホキシド化合物の具体例としては、
 ジフェニルスルホキシド、ビス(4-メチルフェニル)スルホキシド、ビス(4-エチルフェニル)スルホキシド、ビス(4-n-プロピルフェニル)スルホキシド、ビス(4-イソプロピルフェニル)スルホキシド、ビス(4-n-ブチルフェニル)スルホキシド、ビス(4-tert-ブチルフェニル)スルホキシド、ビス(4-フェニルフェニル)スルホキシド、
 ビス(4-メトキシフェニル)スルホキシド、ビス(4-エトキシフェニル)スルホキシド、ビス(4-n-プロポキシフェニル)スルホキシド、ビス(4-イソプロポキシフェニル)スルホキシド、ビス(4-n-ブトキシフェニル)スルホキシド、ビス(4-イソブトキシフェニル)スルホキシド、ビス(4-sec-ブトキシフェニル)スルホキシド、ビス(4-tert-ブトキシフェニル)スルホキシド、
 ビス(4-ヒドロキシフェニル)スルホキシド、ビス(4-アセトキシフェニル)スルホキシド、
 ビス(4-フルオロフェニル)スルホキシド、ビス(4-クロロフェニル)スルホキシド、ビス(4-ブロモフェニル)スルホキシド及びビス(4-ヨードフェニル)スルホキシド等が挙げられる。
 これらの中でも、ジフェニルスルホキシド、ビス(4-メチルフェニル)スルホキシド、ビス(4-エチルフェニル)スルホキシド、ビス(4-n-プロピルフェニル)スルホキシド、ビス(4-イソプロピルフェニル)スルホキシド、ビス(4-n-ブチルフェニル)スルホキシド、ビス(4-メトキシフェニル)スルホキシド、ビス(4-エトキシフェニル)スルホキシド、ビス(4-n-プロポキシフェニル)スルホキシド、ビス(4-イソプロポキシフェニル)スルホキシド、ビス(4-n-ブトキシフェニル)スルホキシド、ビス(4-フルオロフェニル)スルホキシドが好適に用いられる。
 スルホキシド化合物は、市販されているものをそのまま使用してもよいし、適宜製造したものを使用してもよい。スルホキシド化合物の製造方法としては特に限定されず、例えば、スルホキシド化合物が、式(2)におけるRとRが共にメチル基であるビス(4-メチルフェニル)スルホキシドである場合は、トルエンと塩化チオニルとをトリフルオロメタンスルホン酸の存在下で反応させる方法(Synlett.,1999,1397)、また、式(2)におけるRがメチル基でありRがメトキシ基である4-メチルフェニル-(4-メトキシフェニル)スルホキシドである場合は、トルエンとp-メトキシフェニルスルフィニルクロリドとを塩化アルミニウムの存在下で反応させる方法(J.Org.Chem.,1974,39,1203)等の公知の方法により製造することができる。
 上記のフェニルチオフェン誘導体は、市販されているものをそのまま使用してもよいし、適宜製造したものを使用してもよい。フェニルチオフェン誘導体の製造方法としては特に限定されず、例えば、国際公報WO2006-022375号やChem.Mater.2007,19,1355に記載されている方法等の公知の方法を参考にして製造することができる。
 上記のフェニルチオフェン誘導体の例としては、2-フェニルチオフェン、2-(4-メチルフェニル)チオフェン、2-(4-エチルフェニル)チオフェン、2-(4-n-プロピルフェニル)チオフェン、2-(4-イソプロピルフェニル)チオフェン、2-(4-n-ブチルフェニル)チオフェン、2-(4-n-ヘキシルフェニル)チオフェン、2-(4-n-オクチルフェニル)チオフェン、2-(4-メトキシフェニル)チオフェン、2-(4-エトキシフェニル)チオフェン、2-(4-n-プロポキシフェニル)チオフェン、2-(4-イソプロポキシフェニル)チオフェン、2-(4-n-ブトキシフェニル)チオフェン、2-(4-フルオロフェニル)チオフェン、2-(4-クロロフェニル)チオフェン、2-(4-トリフルオロメチルフェニル)チオフェン、2-(4-アセチルフェニル)チオフェン及び2-(4-ベンゾイルフェニル)チオフェン等が挙げられる。
 これらの中でも、特に2-フェニルチオフェン、2-(4-メチルフェニル)チオフェン、2-(4-メトキシフェニル)チオフェン、2-(4-n-ブトキシフェニル)チオフェン、2-(4-フルオロフェニル)チオフェン、2-(4-トリフルオロメチルフェニル)チオフェンが好ましく、2-フェニルチオフェンがより好ましい。
 上記のスルホキシドの使用割合は、収率を向上させる観点及び経済性の観点から、フェニルチオフェン誘導体1モルに対して通常0.8~2モル程度の割合とすることができ、好ましくは、0.9~1.5モル程度、より好ましくは1.0~1.2モル程度である。
 上記の縮合剤としては、特に限定されるものではないが、例えば、無水酢酸、無水トリフルオロ酢酸、濃硫酸、五酸化二リン及びポリリン酸等が挙げられる。これらの中でも、無水酢酸、濃硫酸、五酸化二リン等が好適に用いられる。これら縮合剤は、1種単独で使用してもよいし、あるいは2種以上を併用してもよい。
 縮合剤の使用割合は、特に限定されるものではないが、フェニルチオフェン誘導体1モルに対して通常0.5~20モル程度の割合とすることができ、好ましくは、1~15モル程度である。縮合剤の使用割合が0.5モル未満である場合は、収率が低下するおそれがある。また、縮合剤の使用割合が20モルを超える場合は、使用量に見合う効果がなく経済的でない。
 上記の強酸としては、特に限定されるものではないが、例えば、メタンスルホン酸、エタンスルホン酸及びトリフルオロメタンスルホン酸等が挙げられる。これらの中でも、メタンスルホン酸が好適に用いられる。これら強酸は、1種単独で使用してもよいし、あるいは2種以上を併用してもよい。
 強酸の使用割合は、特に限定されるものではないが、フェニルチオフェン誘導体1モルに対して通常1~25モル程度の割合とすることができ、好ましくは2~15モル程度である。強酸の使用割合が1モル未満である場合は、収率が低下するおそれがある。また、強酸の使用割合が25モルを超える場合は、使用量に見合う効果がなく容積効率が悪化し経済的でない。
 上記のスルホキシドとフェニルチオフェン誘導体とを縮合剤及び強酸の存在下で縮合させる前記反応において、反応溶媒は必ずしも必要ではないが、撹拌効率を向上させる等の目的で、スルホラン、ジクロロメタン、クロロホルム等の溶媒を反応溶媒として用いてもよい。反応溶媒を用いる場合の使用量は、フェニルチオフェン誘導体100重量部に対して通常30~3000重量部程度とすることができ、好ましくは50~2000重量部程度である。
 上述の縮合反応における操作としては、特に限定されるものではないが、例えば、所定量の前記スルホキシド、フェニルチオフェン誘導体、縮合剤、必要に応じて反応溶媒等を混合、撹拌しながら、所定量の強酸を滴下する方法等を挙げることができる。
 反応温度は、通常は-20~100℃程度とすることができ、好ましくは-10~80℃程度である。反応温度が-20℃より低い場合は、反応速度が遅くなり、反応に長時間を要するおそれがある。また、反応温度が100℃より高い場合は、副反応が起こりやすく、収率及び純度が低下するおそれがある。反応時間は、反応温度等により異なるが、通常、0.5~48時間程度とすることができ、好ましくは1~24時間程度である。
 上記の式(1)で表されるフェニルチオフェンスルホニウム塩化合物は、スルホキシドとフェニルチオフェン誘導体との前記縮合反応に引き続いて、当該縮合反応物を上述のXで示されるアニオンのアルカリ金属塩又はHで示される酸と反応させることにより製造することができる。
 具体例としては、上述したXで示されるアニオンのナトリウム塩、カリウム塩又はリチウム塩およびHで示される酸を挙げることができる。これらの中でも、得られるフェニルチオフェンスルホニウム塩化合物を光酸発生剤として用いた際に発生する酸の酸強度の観点及び安全性の観点から、ヘキサフルオロリン酸、ヘキサフルオロリン酸ナトリウム、ヘキサフルオロリン酸カリウム、テトラキス(ペンタフルオロフェニル)ホウ酸、テトラキス(ペンタフルオロフェニル)ホウ酸リチウム、テトラキス(ペンタフルオロフェニル)ホウ酸ナトリウム、テトラキス(ペンタフルオロフェニル)ホウ酸カリウム、トリフルオロメタンスルホン酸、トリフルオロメタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸カリウム、パーフルオロブタンスルホン酸、パーフルオロブタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸カリウム、トリス(ペンタフルオロエチル)トリフルオロリン酸及びトリス(ペンタフルオロエチル)トリフルオロリン酸カリウムがより好適に用いられる。
 上記のアルカリ金属塩、又はHで示される酸の使用割合は、特に限定されるものではないが、フェニルチオフェン誘導体1モルに対して通常0.8~2モル程度の割合とすることができ、好ましくは0.9~1.5モル程度である。アルカリ金属塩又はHで示される酸の使用割合が0.8モル未満である場合は、収率が低下するおそれがある。また、アルカリ金属塩又はHで示される酸の使用割合が2モルを超える場合は、使用量に見合う効果がなく経済的でない。なお、アルカリ金属塩又はHで示される酸は共に水溶液として用いることができる。水溶液として用いる場合の濃度としては、通常1~80重量%とすることができ、好ましくは3~50重量%程度である。
 上述の縮合反応物とアルカリ金属塩又はHで示される酸との反応における操作としては、特に限定されるものではないが、例えば、上述の縮合反応後の反応溶液に所定量の上記のアルカリ金属塩、又はHで示される酸を添加する方法、縮合反応後の反応溶液を所定量のアルカリ金属塩又はHで示される酸に添加する方法、縮合反応後の反応溶液を所定量の水に添加して縮合反応物の水溶液を形成させた後にアルカリ金属塩又はHで示される酸を添加する方法、及び縮合反応後の反応溶液を所定量の水に添加して縮合反応物の水溶液を形成させた後に当該水溶液をアルカリ金属塩又はHで示される酸に添加する方法等が挙げられる。また、反応の際にモノクロロベンゼン、酢酸エチル及びジクロロメタン等の有機溶媒を存在させてもよい。
 反応温度は、通常-10~100℃程度とすることができ、好ましくは0~80℃程度であることがより好ましい。反応温度が-10℃より低い場合は、反応速度が遅くなり、反応に長時間を要するおそれがある。また、反応温度が100℃より高い場合は、副反応が起こりやすく、収率及び純度が低下するおそれがある。
 かくして得られるフェニルチオフェンスルホニウム塩化合物は、反応終了後、析出した固体を濾別する方法、あるいは、反応物をモノクロロベンゼン、酢酸エチル、ジクロロメタン等の有機溶媒により抽出した後、当該有機溶媒を留去する方法等により単離することができる。また、フェニルチオフェンスルホニウム塩は、必要に応じて、モノクロロベンゼン、トルエン、酢酸エチル、アセトン、メタノール、エタノール、イソプロパノール、n-ヘプタン及び水等の溶媒による再結晶、活性炭処理、あるいはカラム精製等の常法により精製することができる。
[光酸発生剤]
 本発明に係る光酸発生剤は、上述の化学式(1)で表されるフェニルチオフェンスルホニウム塩化合物を含有するものである。光酸発生剤において、前記フェニルチオフェンスルホニウム塩化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
 光酸発生剤は、特定波長の光線を吸収することによって分解を生じ、その分解物が、例えば、下記に詳述する光反応性組成物中に含まれる溶媒等の他の成分、又は上記の光酸発生剤自身から水素原子を引き抜き、上記のXにて示されるアニオンと共に働くことによって酸を生じるものである。
 上記の特定波長の光線としては、通常200~500nm程度の波長を有する光線であり、より好ましくは300~450nm程度である。
[光反応性組成物]
 本発明に係る光反応性組成物は、上述した化学式(1)で表されるフェニルチオフェンスルホニウム塩化合物、及び酸反応性化合物を含有するものである。ここで酸反応性化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
 上記の酸反応性化合物は、例えば、上述のような特定波長の光線を照射された光酸発生剤から発生する酸により重合や分解等の化学反応を生じる化合物である。酸反応性化合物としては、例えば、カチオン重合性モノマー、カチオン重合性オリゴマー、カチオン重合性ポリマー等のカチオン重合性化合物、並びにポリマー中のエステル結合やエーテル結合等が分解する各種レジスト材料、ポリマー側鎖が架橋する各種レジスト材料等が挙げられる。
 前記カチオン重合性化合物の具体例としては、
 アリルグリシジルエーテル、ブチルグリシジルエーテル、フェニルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、2-メチルオクチルグリシジルエーテル等の単官能グリシジルエーテル化合物、
 1,6-ヘキサンジオールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等の多官能グリシジルエーテル化合物、
 グリシジル(メタ)アクリレート、ジグリシジルジフタレート、ジグリシジルテトラヒドロフタレート等のグリシジルエステル化合物、
 ビスフェノールA、ビスフェノールF、ブロモ化ビスフェノールA、ビフェノール、レゾルシン、ビスフェノールノボラック樹脂、フェノールノボラック樹脂、クレゾールノボラック樹脂等をグリシジルエーテル化した化合物、
 3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルエチル-3,4-エポキシシクロヘキサンカルボキシレート、ビニルシクロヘキセンジオキシド、アリルシクロヘキセンジオキシド、3,4-エポキシ-4-メチルシクロヘキシル-2-プロピレンオキシド、ビス(3,4-エポキシシクロヘキシル)エーテル等の脂環式エポキシ化合物、
 2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、
 酢酸ビニル、アクリロニトリル、メタクリロニトリル、塩化ビニリデン、塩化ビニル、スチレン、ナトリウムスチレンスルホネート、2-メチルスチレン、ビニルトルエン、tert-ブチルスチレン、クロルスチレン、ビニルアニソール、ビニルナフタレン、エチレン、プロピレン、イソプロピレン、ブタジエン、クロロプレン、ビニルケトン、N-ビニルピロリドン等のビニル化合物、
 エチレングリコールビニルエーテル、エチレングリコールジビニルエーテル、ジエチレングリコールビニルエーテル、ジエチレングリコールジビニルエーテル、1,4-シクロヘキサンジメタノールジビニルエーテル等のビニルエーテル化合物、
 トリレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、ナフチレンジイソシアネート、リジンジイソシアネートメチルエステル、トリメチルヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート、ヘキサメチレンジイソシアネート、4,4-ビス(イソシアナトシクロヘキシル)メタン、イソホロンジイソシアネート等のイソシアネート化合物、
 トリメチレンオキシド、3-エチル-3-ヒドロキシメチルオキセタン、3,3-ジメチルオキセタン、3,3-ジクロルメチルオキセタン、3-エチル-3-フェノキシメチルオキセタン、ビス(3-エチル-3-オキセタニルメチル)エーテル、1,4-ビス{ [(3-エチル-3-オキセタニル)メトキシ]メチル}ベンゼン、トリ〔(3-エチル-3-オキセタニルメトキシ)メチル〕ベンゼン、ビス〔(3-エチル-3-オキセタニルメトキシ)メチルフェニル〕エーテル、(3-エチル-3-オキセタニルメトキシ)オリゴジメチルシロキサン、スピロ[ビシクロ[2.2.2]オクタン-2,3’-オキセタン]、スピロ[7-オキサビシクロ[2.2.1]ヘプタン-2,3’-オキセタン]、5-メチル-2-オキサスピロ[3.5]ノナン、スピロ[3-メチルビシクロ[2.2.1]ヘプタン-2,3’-オキセタン]等のオキセタン化合物、
 2,3-エピチオプロピルチオベンゼン、2,3-エピチオプロピルチオブタン、2,3-エピチオプロピルチオヘキサン、2,3-エピチオプロピルチオベンゼン、2,3-エピチオプロピルオキシベンゼン、2,3-エピチオプロピルオキシブタン、2,3-エピチオプロピルオキシヘキサン、2,3-エピチオプロピル(メタ)アクリレート、ビス[4-(2,3-エピチオプロピルチオ)フェニル]スルフィド、ビス[4-(2,3-エピチオプロピルチオ)フェニル]エーテル、ビス[4-(2,3-エピチオプロピルチオ)フェニル]メタン等のエピスルフィド化合物等を挙げることができる。なお、前記「(メタ)アクリレート」とは、アクリレート及びメタクリレートを意味する。
 これらカチオン重合性化合物の中でも、前記光酸発生剤の高い酸発生能力を有効に活用する観点から、単官能グリシジルエーテル化合物、多官能グリシジルエーテル化合物、グリシジルエステル化合物、脂環式エポキシ化合物、ビニルエーテル化合物及びオキセタン化合物が好ましく用いられる。
 本発明の光反応性組成物に含まれる光酸発生剤の量は、特に限定されるものではないが、酸反応性化合物100重量部に対して通常0.01~20重量部程度とすることができ、好ましくは、0.1~10重量部程度である。光酸発生剤の使用量が0.01重量部未満である場合は、当該酸反応が不充分となるおそれがある。また、光酸発生剤の使用量が10重量部を超える場合は、使用量に見合う効果がなく経済的でない。
 本発明の光反応性組成物には、溶媒としての有機溶媒を含有していてもよく、具体例としては、酢酸エチル、酢酸ブチル、メチルセロソルブ、エチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレンカーボネート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、乳酸エチル、γ-ブチロラクトン及びイソプロピルアルコール等が挙げられる。
 上記の有機溶媒の使用量は、酸反応性化合物100重量部に対して通常0.1~900重量部程度とすることができ、好ましくは、1~500重量部程度である。
 また、本発明の光反応性組成物には、2,6-ジ-tert-ブチル-p-クレゾール、ハイドロキノンやp-メトキシフェノール等の重合禁止剤、エオシン、メチレンブルーやマラカイトグリーン等の染料、2,4-ジエチルチオキサントン、2-エチルアントラキノン、9,10-ジエトキシアントラセン、9,10-ジプロポキシアントラセン、9や10-ジブトキシアントラセン等の増感剤、ベンジルジメチルケタールやベンゾインイソプロピルエーテル等の光ラジカル重合開始剤、トリフェニルスルホニウムヘキサフルオロホスファート、ジフェニルヨードニウムヘキサフルオロホスファート、イミドスルホネートやオキシムスルホネート等の本発明の光酸発生剤以外の光酸発生剤等を含有していてもよい。
 上述の重合禁止剤の使用量は、酸反応性化合物100重量部に対して通常0.001~5重量部程度とすることができ、好ましくは0.005~1重量部程度である。また、上述の染料、増感剤及び本発明の光酸発生剤以外の光酸発生剤の使用量は、酸反応性化合物100重量部に対してそれぞれ、通常0.01~10重量部程度とすることができ、好ましくは、0.01~5重量部程度である。
 本発明の光反応性組成物は、例えば、上述した所定量の光酸発生剤及び酸反応性化合物、並びに、必要に応じて、有機溶媒、重合禁止剤、染料、増感剤又は、本発明の光酸発生剤以外の光酸発生剤等を、撹拌混合する方法により製造することができる。
 撹拌混合する温度は、特に限定されないが、通常は0~100℃程度とすることができ、好ましくは10~60℃程度である。撹拌混合する時間は、通常は0.1~24時間程度とすることができ、好ましくは0.1~6時間程度である。
 かくして得られた光反応性組成物は、そのままの状態で、あるいは必要に応じて使用された有機溶媒を蒸発させた状態又は残存させた状態で、近紫外線等を照射することにより反応させることができる。
 具体的には、例えば、酸反応性化合物としてカチオン重合性モノマーを用いた場合、上述の酸反応性化合物を含有する光反応性組成物を、膜厚が通常0.1~500μm程度になるように平滑なアルミ板あるいはガラス板上に塗布した後、上述した特定波長の光線を照射することにより重合し硬化した樹脂の薄膜を得ることができる。特定波長の光線とは、具体的には、通常200~500nm程度の波長を有する光線であり、より好ましくは300~450nm程度である。
 上述の近紫外線等の光源としては、例えば、高圧水銀ランプ、低圧水銀ランプ、メタルハライドランプ、キセノンランプ、殺菌灯、LED及びレーザー光等が挙げられる。照射時間は、使用する光源、光酸発生剤の種類及び使用量により異なるので一概には規定できないが、通常0.1秒~1時間程度とすることができ、好ましくは、0.5秒~0.5時間程度である。
 以下、本発明を実施例及び比較例によりさらに詳しく説明するが、本発明はこれらの実施例になんら限定されるものではない。
 実施例1
 撹拌機、温度計及び冷却器を備え付けた100mL容の四つ口フラスコに、ビス(4-メチルフェニル)スルホキシド4.6g(0.020モル)、2-フェニルチオフェン3.2g(0.020モル)及び無水酢酸10.2g(0.100モル)を仕込み、内温を0~10℃に保ちながら、メタンスルホン酸7.7g(0.080モル)を1時間かけて滴下した。滴下終了後も同温度に維持しながら3時間撹拌し、さらに室温で4時間撹拌することにより、縮合反応物の反応溶液を得た。
 撹拌機、温度計及び冷却器を備え付けた200mL容の四つ口フラスコに、ヘキサフルオロリン酸カリウム3.7g(0.020モル)、水60g、及びモノクロロベンゼン20gを仕込み、内温を30~50℃に保ちながら30分かけて前記反応溶液の全量を滴下した。さらに、40~50℃で30分撹拌した後、モノクロロベンゼン層を分取し、5%NaHCO3水溶液50gを加えて40~50℃で30分撹拌した。再びモノクロロベンゼン層を分取し、モノクロロベンゼンを留去して黄褐色の濃縮物9.5gを得た。
 この濃縮物に酢酸エチル40gを加えて晶析することにより、ビス(4-メチルフェニル)(5-フェニル-チオフェン-2-イル)スルホニウムヘキサフルオロホスファートの黄白色結晶8.2g(0.016モル)を得た。得られたビス(4-メチルフェニル)(5-フェニル-チオフェン-2-イル)スルホニウムヘキサフルオロホスファートの純度は、高速液体クロマトグラフにより測定した結果、98.6%であった。また、フェニルチオフェンに対する収率は79%であった。
 得られた黄白色結晶が、前記式(1)におけるRが水素原子、R、Rがメチル基であり、Xがヘキサフルオロリン酸イオンである、ビス(4-メチルフェニル)(5-フェニル-チオフェン-2-イル)スルホニウムヘキサフルオロホスファートであることを、下記の分析結果により確認した。
 元素分析:C;55.5%、H;4.1%、F;22.0%、P;6.0%、S;12.4%(理論値:C;55.59%、H;4.08%、F;21.98%、P;5.97%、S;12.37%)
 H-核磁気共鳴スペクトル(400MHz、CDCN)δ(ppm):2.46(s、6H)、7.44-7.50(m、3H)、7.51-7.57(m、4H)、7.60-7.65(m、5H)、7.65-7.70(m、2H)、7.91(d、J=4.0、1H)
 実施例2
 3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(ダイセル化学工業株式会社製、商品名:セロキサイド2021P)0.1gと3-エチル-3-{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(東亜合成株式会社製、商品名:アロンオキセタンOXT-221)0.9gを量りとり、これに実施例1で合成したビス(4-メチルフェニル)(5-フェニル-チオフェン-2-イル)スルホニウムヘキサフルオロホスファート 40mgを添加し、さらにプロピレンカーボネートを360mg加えて室温で10分間攪拌して均一な試料溶液とした。
 比較例1
 3,4-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート(ダイセル化学工業株式会社製、商品名:セロキサイド2021P)0.1gと3-エチル-3-{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン(東亞合成株式会社製、商品名:アロンオキセタンOXT-221)0.9gを量りとり、これに従来より光酸発生剤として多用されている東京化成工業株式会社製トリ-p-トリルスルホニウムヘキサフルオロホスファート 40mgを添加し、さらにプロピレンカーボネートを360mg加えて室温で10分間攪拌して均一な試料溶液とした。
 光反応性の評価
 実施例2及び比較例1で得られた光反応性組成物について、それぞれの光反応性について評価した。
 評価方法は次の通りである。すなわち、露光装置(エスアイアイ・ナノテクノロジー株式会社製PDC121(光化学反応熱熱量計))を用いて、重合熱の測定及び露光後の光反応性組成物の状態を確認した。
 アルミ製オープンサンプルパンに実施例2及び比較例1で得た試料5mgを滴下し、365nm(i線)の光線を、光強度10mW/cmで2.0分間照射した。同様に、アルミ製オープンサンプルパンに実施例2及び比較例1で得た試料5mgを滴下し、405nm(h線)の光線を、光強度50mW/cmで2.0分間照射した。尚、それぞれの膜厚は400μmであった。
 評価の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 表1から、実施例2で得られた光反応性組成物は、一定のエネルギーの光を照射後、硬化が認められた。一方、実施例2と同様の光酸発生剤、酸反応性化合物を用い、同様のエネルギーの光を照射したにも関わらず、比較例1で得られた光反応性組成物は、全く硬化せず、反応の進行が十分でないことが明らかであった。
 表1から、実施例2で得られた光反応性組成物は、光照射後、非常に短時間で発熱が認められ、発熱量も大きいことがわかる。また、実施例2で得られた光反応性組成物は、測定後すべて硬化していたことが観察された。
 したがって、実施例2で得られた光反応性組成物は、近紫外線領域である365nm及び405nmの光照射による反応時間が非常に短い光反応性組成物であって、当該光反応性組成物に用いられた本発明に係るフェニルチオフェンスルホニウム塩化合物は、反応速度を非常に高めることができる光酸発生剤であるといえる。
 また、式(1)の化合物の範囲にある、ジフェニル(5-フェニル-チオフェン-2-イル)スルホニウムトリス(ペンタフルオロエチル)トリフルオロホスファート、ビス(4-メトキシフェニル)(5-フェニル-チオフェン-2-イル)スルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(4-イソプロポキシフェニル)(5-フェニル-チオフェン-2-イル)スルホニウムヘキサフルオロホスファート、ビス(4-n-ブトキシフェニル)(5-フェニル-チオフェン-2-イル)スルホニウムヘキサフルオロホスファート、ビス(4-フルオロフェニル)(5-フェニル-チオフェン-2-イル)スルホニウムヘキサフルオロホスファート、ビス(4-メトキシフェニル)[5-(4-メチルフェニル)-チオフェン-2-イル]スルホニウムテトラキス(ペンタフルオロフェニル)ボレート、ビス(4-メチルフェニル)[5-(4-メトキシフェニル)-チオフェン-2-イル]スルホニウムヘキサフルオロホスファートを合成し、それらから得られた光反応性組成物においても実施例2と同様の結果を得た。
 本発明によれば、近紫外線領域である300~400nm付近での感度が非常に高く、反応速度を非常に高めることができる光酸発生剤、及び近紫外線照射による反応時間が非常に短い光反応性組成物を提供することができる。

Claims (3)

  1. 式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R~Rは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~4のハロゲン化アルキル基、炭素数1~10のアルキル基、炭素数1~4のアルコキシ基、炭素数1~8のアシル基、又は水酸基を示し、Xは、アニオンを示す。)で表されるフェニルチオフェンスルホニウム塩化合物。
  2. 請求項1に記載のフェニルチオフェンスルホニウム塩化合物を含有する光酸発生剤。
  3. 請求項1に記載のフェニルチオフェンスルホニウム塩化合物、及び酸反応性化合物を含有する光反応性組成物。
PCT/JP2011/058442 2010-04-12 2011-04-01 光酸発生剤及び光反応性組成物 WO2011129206A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012510617A JP5669825B2 (ja) 2010-04-12 2011-04-01 光酸発生剤及び光反応性組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010091125 2010-04-12
JP2010-091125 2010-04-12

Publications (1)

Publication Number Publication Date
WO2011129206A1 true WO2011129206A1 (ja) 2011-10-20

Family

ID=44798584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058442 WO2011129206A1 (ja) 2010-04-12 2011-04-01 光酸発生剤及び光反応性組成物

Country Status (2)

Country Link
JP (1) JP5669825B2 (ja)
WO (1) WO2011129206A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087081A (ja) * 2011-10-18 2013-05-13 Hitachi Chemical Co Ltd 電子受容性化合物及びその製造方法、該化合物を含む重合開始剤、有機エレクトロニクス材料及びこれらを用いた有機薄膜、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、並びに表示装置
WO2022196326A1 (ja) * 2021-03-15 2022-09-22 株式会社トクヤマデンタル 光カチオン硬化性組成物

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3205157A (en) * 1962-03-13 1965-09-07 North American Aviation Inc Electromagnetic radiation polymerization
JPS54151936A (en) * 1978-02-08 1979-11-29 Minnesota Mining & Mfg Triarylsulfonium complex and photopolymerizing composition containing it
JP2004189720A (ja) * 2002-11-26 2004-07-08 Sumitomo Seika Chem Co Ltd 光重合開始剤および光硬化性組成物
JP2008239519A (ja) * 2007-03-26 2008-10-09 Sumitomo Seika Chem Co Ltd 光酸発生剤および光反応性組成物
JP2008273878A (ja) * 2007-04-27 2008-11-13 Sumitomo Seika Chem Co Ltd 光酸発生剤および光反応性組成物
JP2008273879A (ja) * 2007-04-27 2008-11-13 Sumitomo Seika Chem Co Ltd 光酸発生剤および光反応性組成物
WO2009069428A1 (ja) * 2007-11-28 2009-06-04 Sumitomo Seika Chemicals Co., Ltd. 光酸発生剤および光反応性組成物

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3205157A (en) * 1962-03-13 1965-09-07 North American Aviation Inc Electromagnetic radiation polymerization
JPS54151936A (en) * 1978-02-08 1979-11-29 Minnesota Mining & Mfg Triarylsulfonium complex and photopolymerizing composition containing it
JP2004189720A (ja) * 2002-11-26 2004-07-08 Sumitomo Seika Chem Co Ltd 光重合開始剤および光硬化性組成物
JP2008239519A (ja) * 2007-03-26 2008-10-09 Sumitomo Seika Chem Co Ltd 光酸発生剤および光反応性組成物
JP2008273878A (ja) * 2007-04-27 2008-11-13 Sumitomo Seika Chem Co Ltd 光酸発生剤および光反応性組成物
JP2008273879A (ja) * 2007-04-27 2008-11-13 Sumitomo Seika Chem Co Ltd 光酸発生剤および光反応性組成物
WO2009069428A1 (ja) * 2007-11-28 2009-06-04 Sumitomo Seika Chemicals Co., Ltd. 光酸発生剤および光反応性組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013087081A (ja) * 2011-10-18 2013-05-13 Hitachi Chemical Co Ltd 電子受容性化合物及びその製造方法、該化合物を含む重合開始剤、有機エレクトロニクス材料及びこれらを用いた有機薄膜、有機エレクトロニクス素子、有機エレクトロルミネセンス素子、表示素子、照明装置、並びに表示装置
WO2022196326A1 (ja) * 2021-03-15 2022-09-22 株式会社トクヤマデンタル 光カチオン硬化性組成物

Also Published As

Publication number Publication date
JPWO2011129206A1 (ja) 2013-07-18
JP5669825B2 (ja) 2015-02-18

Similar Documents

Publication Publication Date Title
US8216768B2 (en) Photoacid generator and photoreactive composition
US8680268B2 (en) Sulfonic acid derivative compound and novel naphthalic acid derivative compound
US8383862B2 (en) Salt compound, cationic polymerization initiator and cationically polymerizable composition
US8227624B2 (en) Aromatic sulfonium salt compound
EP2495234B1 (en) Aromatic sulfonium salt compound
EP2502915B1 (en) Aromatic sulfonium salt compound
TW201444790A (zh) 鋶鹽及光酸產生劑
JP5006690B2 (ja) 光酸発生剤および光反応性組成物
JP7444791B2 (ja) スルホニウム塩、光酸発生剤、硬化性組成物およびレジスト組成物
JP5016338B2 (ja) 光酸発生剤および光反応性組成物
JP2011195548A (ja) 光酸発生剤及び光反応性組成物
JP5006689B2 (ja) 光酸発生剤および光反応性組成物
JP5669825B2 (ja) 光酸発生剤及び光反応性組成物
JP4382433B2 (ja) 光重合開始剤および光硬化性組成物
JP6215229B2 (ja) 新規なスルホニウム塩化合物、その製造方法及び光酸発生剤
US20060247401A1 (en) Process for production of monosulfonium salts, cationic polymerization initiators, curable compositions, and products of curing
WO2022130796A1 (ja) 光酸発生剤及びこれを用いた感光性組成物
JP2011153212A (ja) 光反応性組成物
JP7177281B2 (ja) 酸発生剤、およびこれを含む硬化性組成物
JP5415177B2 (ja) 光酸発生剤および光反応性組成物
JP2005035953A (ja) 光重合開始剤およびこれを含む光硬化性組成物
WO2021186846A1 (ja) スルホニウム塩、光酸発生剤、硬化性組成物およびレジスト組成物
WO2002060973A1 (fr) Composition photodurcissable contenant un compose sel iodonium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11768727

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012510617

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11768727

Country of ref document: EP

Kind code of ref document: A1