WO2011126092A1 - Cu-Ga合金粉末の製造方法及びCu-Ga合金粉末、並びにCu-Ga合金スパッタリングターゲットの製造方法及びCu-Ga合金スパッタリングターゲット - Google Patents

Cu-Ga合金粉末の製造方法及びCu-Ga合金粉末、並びにCu-Ga合金スパッタリングターゲットの製造方法及びCu-Ga合金スパッタリングターゲット Download PDF

Info

Publication number
WO2011126092A1
WO2011126092A1 PCT/JP2011/058846 JP2011058846W WO2011126092A1 WO 2011126092 A1 WO2011126092 A1 WO 2011126092A1 JP 2011058846 W JP2011058846 W JP 2011058846W WO 2011126092 A1 WO2011126092 A1 WO 2011126092A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
alloy
alloy powder
producing
sputtering target
Prior art date
Application number
PCT/JP2011/058846
Other languages
English (en)
French (fr)
Inventor
敏夫 森本
辰也 高橋
勲雄 安東
小向 哲史
高木 正徳
恵理子 佐藤
南 浩尚
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201180018036.7A priority Critical patent/CN102844134B/zh
Priority to KR1020127027478A priority patent/KR101509299B1/ko
Priority to US13/639,090 priority patent/US9435023B2/en
Publication of WO2011126092A1 publication Critical patent/WO2011126092A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a Cu—Ga alloy powder, a Cu—Ga alloy powder, and a Cu—Ga alloy used for forming a light absorption layer of a CIGS (Cu—In—Ga—Se quaternary alloy) solar cell.
  • the present invention relates to a sputtering target manufacturing method and a Cu—Ga alloy sputtering target.
  • This application includes Japanese Patent Application No. 2010-090475 filed on April 9, 2010 in Japan and Japanese Patent Application No. 2010- filed on August 24, 2010 in Japan. The priority is claimed on the basis of 187160, which is incorporated herein by reference with reference to these applications.
  • the CIGS solar cell has, as a basic structure, a Mo electrode layer serving as a back electrode formed on a soda lime glass substrate and a Cu—In—Ga—Se serving as a light absorption layer formed on the Mo electrode layer.
  • a vapor deposition method is known as a method for forming a light absorption layer made of a Cu—In—Ga—Se quaternary alloy film, but a method of forming by a sputtering method in order to obtain a uniform film over a wider area.
  • a sputtering method first, an In film is formed by sputtering using an In target, and a Cu—Ga alloy film is formed on the In film by sputtering using a Cu—Ga alloy sputtering target.
  • the melting method has a problem that a melt-cast Cu—Ga alloy having a composition for CIGS solar cells is brittle and easily cracked.
  • the powder sintering method is regarded as a promising method for producing a sputtering target because a uniform composition can be obtained.
  • Patent Document 1 As a powder sintering method, for example, in Patent Document 1, a high Ga content Cu—Ga alloy powder and a pure Cu or low Ga content Cu—Ga alloy powder are blended to produce a sputtering target by hot pressing. It is described.
  • Cu—Ga alloy powder is used as a raw material for the powder sintering method.
  • Cu—Ga alloy is a brittle material
  • Cu and Ga are once melted and alloyed, and then pulverized to obtain Cu—Ga alloy powder. That is, in order to obtain a Cu—Ga alloy powder, a process for dissolving Cu and Ga at a high temperature and a pulverization process such as pulverizing a Cu—Ga alloy ingot are necessary.
  • the present invention has been proposed in view of the above circumstances, and a Cu-Ga alloy powder production method, a Cu-Ga alloy powder, and a Cu-Ga alloy powder capable of easily producing a high-quality Cu-Ga alloy powder, and Cu-- A method for producing a Ga alloy sputtering target and a Cu—Ga alloy sputtering target are provided.
  • the present inventors can easily obtain high-quality Cu—Ga alloy powder by blending Cu powder and Ga at a predetermined ratio and alloying them in a predetermined temperature range. It was also found that a high-quality Cu—Ga alloy sputtering target can be obtained.
  • a mixed powder in which Cu powder and Ga are mixed at a mass ratio of 85:15 to 55:45 is mixed in an inert atmosphere for 30 to 700. It is characterized by being alloyed by stirring at a temperature of ° C.
  • the Cu—Ga alloy powder according to the present invention is manufactured by the above-described manufacturing method.
  • the method for producing a Cu—Ga alloy sputtering target according to the present invention comprises mixing a mixed powder containing Cu powder and Ga in a mass ratio of 85:15 to 55:45 in an inert atmosphere for 30 to 30 minutes. It is characterized by having a production process for producing Cu—Ga alloy powder by stirring and alloying at a temperature of 700 ° C., and a sintering process for molding and sintering the Cu—Ga alloy powder.
  • the Cu—Ga alloy sputtering target according to the present invention is manufactured by the above-described manufacturing method.
  • a high-quality Cu—Ga alloy powder can be easily obtained, and a Cu—Ga alloy sputtering target excellent in uniformity and workability can be obtained.
  • FIG. 1 is a cross-sectional view schematically showing a Cu—Ga alloy powder.
  • FIG. 2 is a diagram for explaining the outline of the method for manufacturing the Cu—Ga alloy sputtering target in one embodiment of the present invention.
  • FIG. 3 is a cross-sectional photograph of Cu—Ga alloy powder by EPMA mapping analysis.
  • FIG. 4 is a diagram schematically showing the cross-sectional photograph shown in FIG.
  • FIG. 5 is a cross-sectional photograph of a Cu—Ga alloy sintered body by EPMA mapping analysis.
  • FIG. 6 is a diagram schematically showing the cross-sectional photograph shown in FIG.
  • FIG. 7 is a cross-sectional photograph of Cu—Ga alloy powder by EPMA mapping analysis.
  • FIG. 8 is a diagram schematically showing the cross-sectional photograph shown in FIG.
  • Method for producing Cu-Ga alloy powder> material
  • Cu powder and Ga are used as raw materials for the Cu—Ga alloy powder.
  • the purity of the Cu powder and Ga is appropriately selected so as not to affect the characteristics of the CIGS light absorption layer formed from the Cu—Ga alloy sputtering target.
  • the Cu powder for example, electrolytic Cu powder or atomized Cu powder produced by an electrolytic method or an atomizing method can be used.
  • the electrolytic Cu powder is produced by depositing spongy or dendritic Cu on the cathode by electrolysis in an electrolytic solution such as a copper sulfate solution.
  • an electrolytic solution such as a copper sulfate solution.
  • atomized Cu powder spherical or irregular shaped Cu powder is produced by a gas atomization method, a water atomization method, a centrifugal atomization method, a melt extraction method, or the like. In addition, you may use what was manufactured by Cu methods other than these methods.
  • the average particle size of the Cu powder is preferably 1 to 300 ⁇ m.
  • the average particle size of the Cu powder is 1 ⁇ m or more, the Cu powder is prevented from being scattered and special handling becomes unnecessary, and the bulk of the Cu powder increases the size of the alloy powder production apparatus, resulting in an expensive apparatus. Can be prevented.
  • the average particle size of the Cu powder is 300 ⁇ m or less, the surface area (BET) of the Cu powder that must be coated with Ga is insufficient, and excess unreacted liquid phase Ga tends to remain. Can be prevented.
  • the average particle size of the Cu powder is determined by measuring the particle size distribution of the Cu powder by a laser diffraction method and integrating from the small diameter side, and the value becomes half the integrated value over the entire particle size (D50). It is.
  • Ga is a metal having a low melting point (melting point: 29.78 ° C.) and is easily melted by heating.
  • the molten Ga is coated with Cu powder to form a binary alloy.
  • limiting in the shape of Ga when it is a small piece, weighing is easy.
  • the small piece can be obtained by melting and casting Ga in the vicinity of room temperature and crushing the casting.
  • Ga content is 25 to 41% by mass.
  • Ga is 25% by mass or more, it can be uniformly coated in a short time, and when Ga is 41% by mass or less, Ga coated can be alloyed in a short time.
  • the mixed powder in which Cu powder and Ga are blended at the mass ratio described above is agitated and alloyed at a temperature of 30 to 700 ° C. in an inert atmosphere to produce a Cu—Ga alloy powder.
  • the Cu powder and Ga pieces weighed at the above-described mass ratio are controlled at a temperature higher than the melting point of Ga and lower than the melting point of Cu, that is, in the range of 30 to 700 ° C.
  • a Cu—Ga binary alloy is formed on the surface or inside.
  • the mixed powder by mixing the mixed powder in an inert atmosphere at a temperature of 30 ° C. or higher and lower than 400 ° C., a Cu—Ga binary alloy layer is formed on the surface of the Cu powder, and Cu having excellent strength and formability is obtained.
  • -Ga alloy powder can be obtained.
  • the mixed powder is stirred at a temperature of 400 ° C. or higher and 700 ° C. or lower in an inert atmosphere to form a Cu—Ga binary alloy inside the Cu powder, so that a Cu—Ga alloy having a uniform composition is formed.
  • a powder can be obtained.
  • the mixed powder is alloyed by stirring at a temperature of 30 ° C. or higher and lower than 400 ° C. in an inert atmosphere, and the alloyed powder is heat-treated at a temperature of 400 ° C. or higher and 700 ° C. or lower in an inert atmosphere. May be.
  • Cu-Ga alloy powder is considered to be formed through the following process.
  • Ga which has become liquid beyond the melting point, is uniformly dispersed between Cu powders while becoming small droplets by the shearing motion of mixing.
  • the dispersed Ga droplets adhere to the periphery of the Cu powder, and when the Cu powder and Ga droplets come into contact with each other, the diffusion of Ga begins in the Cu powder, and alloying is performed while increasing the Ga concentration and forming a Cu-Ga intermetallic compound.
  • the reaction proceeds.
  • the surface of the powder is a Cu—Ga intermetallic compound layer having a high Ga concentration, and the central part is a pure Cu or a Cu phase in which Ga is dissolved.
  • This mixing of Cu powder and Ga is effective for the progress of uniform alloying reaction. Moreover, it is considered that the shearing motion of mixing also suppresses the formation of a lump due to the adhesion between the powders. If a lump is generated, voids are generated in the sintered body in a sintering process such as hot pressing, and the density is not uniform.
  • a mixing device in which a stirring blade or a stirring blade moves in the container can be used.
  • you may use rotating container type mixing apparatuses, such as a cylinder, a double cone, and a twin shell. Also, mixing may be strengthened by throwing balls into the container.
  • the container material is selected from the viewpoints of heat resistance against heating and suppression of adhesion of Ga and Cu—Ga alloys.
  • glass containers such as borosilicate glass and quartz glass, ceramic containers such as alumina and zirconia, Teflon (registered trademark) resin containers, Teflon (registered trademark) coated containers, enamel containers, and the like can be used.
  • Heating and mixing are preferably performed in an inert gas atmosphere such as argon gas or nitrogen gas.
  • an inert gas atmosphere such as argon gas or nitrogen gas.
  • FIG. 1 is a cross-sectional view schematically showing a Cu—Ga alloy powder obtained by the above-described manufacturing method.
  • This Cu—Ga alloy powder contains 15 to 45 mass% of Ga, with the balance being Cu and inevitable impurities.
  • the Cu—Ga alloy powder shown in FIG. 1A is obtained by alloying a mixed powder containing Cu powder and Ga at a temperature of 30 ° C. or more and less than 400 ° C. in an inert atmosphere.
  • This Cu—Ga alloy powder includes a Cu—Ga binary alloy layer 11 on the surface and Cu 12 in the center. According to the Cu—Ga alloy powder having such a configuration, the strength is increased and excellent formability can be obtained by Cu12 at the center. Further, a Cu—Ga alloy sputtering target having a uniform composition can be obtained by sintering the Cu—Ga alloy powder.
  • the Cu—Ga alloy powder shown in FIG. 1B was alloyed by stirring a mixed powder containing Cu powder and Ga at a temperature of 400 ° C. to 700 ° C. in an inert atmosphere.
  • the mixed powder is alloyed by stirring at a temperature of 30 ° C. or higher and lower than 400 ° C. in an inert atmosphere, and the alloyed powder is heat-treated at a temperature of 400 ° C. or higher and 700 ° C. or lower in an inert atmosphere.
  • this Cu—Ga alloy powder is composed of the Cu—Ga binary alloy 21 having a uniform composition, a Cu—Ga alloy sputtering target having a uniform composition can be easily obtained by sintering this Cu—Ga alloy powder. Can do.
  • FIG. 2 is a diagram for explaining an outline of a method for manufacturing a Cu—Ga alloy sputtering target according to one embodiment of the present invention. It has a production process (A) for producing a Cu—Ga alloy powder, a sintering process (B) for sintering the Cu—Ga alloy powder, and a finishing process (C).
  • A production process for producing a Cu—Ga alloy powder
  • B sintering process
  • C finishing process
  • the same method as the above-described method for producing a Cu—Ga alloy powder is used, and a mixed powder in which Cu powder and Ga are blended at a mass ratio of 85:15 to 55:45 is inerted.
  • Cu-Ga alloy powder is obtained by stirring and alloying in an atmosphere at a temperature of 30 to 700 ° C.
  • the Cu—Ga alloy powder can be obtained, for example, by a mixing device in which a stirring blade rotates and a heater is installed on the outer periphery of the container as shown in FIG.
  • the next sintering step (B) it is possible to use a powder sintering method in which the Cu—Ga alloy powder is formed by, for example, a press, and the formed body is sintered at 400 to 800 ° C. in a vacuum.
  • the sintering method may be sintering in an inert gas atmosphere, or a hot press method (HP method) in which raw material powder is put into a heat-resistant mold at high temperature and pressed, and a gas as a pressurizing medium is used.
  • HIP method hot isostatic pressing / sintering method
  • a Cu—Ga alloy sputtering target can be obtained by finishing the surface of the Cu—Ga alloy sintered body to a flat surface by grinding and bonding it to a Cu backing plate.
  • Cu powder and Ga are blended at a predetermined ratio and alloyed within a predetermined temperature range, so that Cu and Ga are once melt-cast at a high temperature as before, and then the Cu-Ga alloy ingot is pulverized. Since there is no such process, a high-quality Cu—Ga alloy powder can be easily obtained. In addition, a Cu—Ga alloy sputtering target having a uniform composition can be obtained easily and inexpensively.
  • Example 1 In a glove box having an argon gas atmosphere, a 300 mL porcelain beaker set in a mantle heater and a stirrer having a glass stirring blade attached to the porcelain beaker were installed.
  • FIG. 3 is a cross-sectional photograph of Cu—Ga alloy powder by EPMA mapping analysis.
  • (A) is a secondary electron image of Cu—Ga alloy powder
  • (B) is a Cu mapping image
  • (C) is a Ga mapping image.
  • the Cu concentration or Ga concentration is shown in blue to red, and the higher the concentration is, the more red it is shown.
  • FIG. 4 is a diagram schematically showing the cross-sectional photograph shown in FIG. 3, and FIGS. 4A to 4C correspond to FIGS. 3A to 3C, respectively.
  • the Cu concentration or the Ga concentration is shown by some dots (dots). Corresponds to the blue to red densities shown in B) and (C).
  • the inside of the powder is red and the surface of the powder is light blue.
  • the inside of the powder is black and the surface of the powder is orange. Therefore, the Cu—Ga alloy powder has Cu— It was found that a Ga binary alloy layer was formed.
  • Cu—Ga alloy powder was press-molded at a pressure of 196 MPa using a press machine and a 100 mm ⁇ 100 mm square press die.
  • This molded body was sintered in a vacuum sintering furnace (manufactured by Shimadzu Mectem Co., Ltd.) under the conditions of a vacuum degree of 2 ⁇ 10 ⁇ 2 Pa and a temperature of 700 ° C. for 1 hour, and was 100 mm long, 100 mm wide, and thick A Cu—Ga alloy sintered body having a thickness of 5 mm was produced.
  • FIG. 5 is a cross-sectional photograph of a Cu—Ga alloy sintered body by EPMA mapping analysis.
  • (A) is a secondary electron image of a Cu—Ga alloy sintered body
  • (B) is a Cu mapping image
  • (C) is a Ga mapping image.
  • the mapping image has a density of blue to red, and a higher density indicates a red color.
  • 6 is a diagram schematically showing the cross-sectional photograph shown in FIG. 5.
  • FIGS. 6A to 6C correspond to FIGS. 5A to 5C, respectively.
  • the Cu—Ga alloy sintered body was subjected to surface grinding, finished to a size of 100 mm in length, 100 mm in width and 4 mm in thickness by machining, and bonded to a Cu backing plate to obtain a Cu—Ga alloy sputtering target. .
  • Example 2 The raw material Cu powder was changed to atomized Cu powder (average particle size 37 ⁇ m, oxygen: 0.03 wt%), and the heating temperature was set to 400 ° C. and the heating time was set to 2 hours. Cu—Ga alloy powder was prepared. The obtained Cu—Ga alloy powder was an off-white powder.
  • FIG. 7 is a cross-sectional photograph of Cu—Ga alloy powder by EPMA mapping analysis.
  • (A) is a secondary electron image of a Cu—Ga alloy powder
  • (B) is a Cu mapping image
  • (C) is a Ga mapping image.
  • the mapping image has a density of blue to red, and a higher density indicates a red color.
  • FIG. 8 is a diagram schematically showing the cross-sectional photograph shown in FIG. 7.
  • FIGS. 8A to 8C correspond to FIGS. 7A to 7C, respectively.
  • FIG. 8A to 8C correspond to FIGS. 7A to 7C, respectively.
  • the Cu concentration or the Ga concentration is shown by some dots (dots). Corresponds to the blue to red densities shown in B) and (C). From the results shown in FIG. 7, it was found that the Cu—Ga alloy powder had a uniform composition in which a Cu—Ga binary alloy was also formed inside the Cu powder.
  • Example 3 to 11, Comparative Examples 1 to 3 Cu—Ga alloy powders were obtained in the same manner as in Example 1 except that the mixing ratio of the raw material Cu powder and Ga was changed to that shown in Table 1.
  • a Cu—Ga alloy powder was obtained in the same manner as in Example 1 except that the Cu powder was an electrolytic powder (average particle size: 37 ⁇ m).
  • Example 11 a Cu—Ga alloy powder was obtained in the same manner as in Example 1 except that atomized Cu powder having an average particle diameter of 45 ⁇ m was used.
  • a Cu—Ga alloy sputtering target was produced in the same manner as in Example 1 except that the sintering temperature of Example 8 was 500 ° C. and the sintering temperature of Example 9 and Comparative Example 3 was 400 ° C.
  • Table 1 shows the evaluation results of Examples 1 to 11 and Comparative Examples 1 to 3.
  • the yield was evaluated based on the ratio of the obtained powder weight to the total weight of the raw materials. A yield of 97% or higher was judged as good, 90 to 97% as good, and 90% or lower as poor.
  • the uniformity evaluation of the composition of the sintered body was performed by arbitrarily selecting 10 regions of 10 mm square in the cross section of the central portion in the thickness direction of the sintered body, and the variation in Ga concentration obtained by EPMA mapping analysis was If it was within ⁇ 5%, it was judged good, and if it exceeded ⁇ 5%, it was judged as bad.
  • the workability of the sintered body is evaluated by examining the number of chips per 10 cm of the edge length of the sintered body after surface grinding. Rated as bad.
  • Cu—Ga alloy sputtering targets were produced by changing conditions such as alloying temperature and heat treatment temperature.
  • Example 12 In a glove box in an argon gas atmosphere, 68.0 g of atomized Cu powder (average particle size 5 ⁇ m, oxygen: 0.12 wt%) in a 300 mL ball mill cylindrical container made of Teflon (registered trademark), Ga small piece 32.0 g and 40 balls made of zirconia having a diameter of 10 mm were charged, sealed with a Teflon (registered trademark) container lid, and filled with argon gas. A ball mill frame was placed in an oven heated to 70 ° C., a cylindrical container was set, and heating and mixing were performed in an argon gas atmosphere at a rotation speed of 30 rpm for 1 hour. After the cylindrical container was taken out and cooled to room temperature, the container lid was opened and the contents were taken out. As a result, grayish white powder was obtained.
  • Teflon registered trademark
  • This powder was heat-treated in an Ar gas atmosphere at 480 ° C. for 1 hour.
  • the central part of the powder is Cu—Ga alloy phase in which Cu or Ga is dissolved
  • the outer peripheral part is Cu—Ga alloy phase composed of a Cu—Ga alloy phase having a Ga concentration of 30 to 70 mass%.
  • the Ga concentration and oxygen content of this Cu—Ga alloy powder were analyzed, the Ga concentration was 32.1 mass% and the oxygen content was 0.10 mass%. That is, it was confirmed that the composition of the Cu—Ga alloy powder was the same as the raw material composition blended for the preparation of the Cu—Ga alloy powder.
  • the oxidation was prevented during the preparation of the Cu—Ga alloy powder by comparing the oxygen content of the raw material Cu powder and the obtained Cu—Ga alloy powder.
  • this Cu—Ga alloy powder was put into a graphite mold having an inner diameter of 60 mm, and the degree of vacuum was 5 ⁇ 10 ⁇ 3 Pa, the pressure was 25 MPa, the temperature was 700 ° C., and 1 hour using a hot press apparatus (manufactured by Daia Vacuum Co., Ltd.) A hot press was performed under the conditions described above to produce a sintered body having a diameter of 60 mm and a thickness of 3 mm. The density determined from the size and weight of the target body was 8.32 g / cm 3 . Moreover, as a result of cutting and sampling a part of the target body and observing the cross section with an SEM, no pores were observed and it was dense. Further, as a result of EPMA observation, it was found that there was no segregation of Ga concentration and variation was within ⁇ 5%, and a uniform Cu—Ga alloy structure.
  • this target body was bonded to a Cu backing plate to prepare a Cu—Ga alloy target. Then, this target was attached to a sputtering apparatus (SH-450, ULVAC), and DC power of DC 100 W was applied to the target at an argon gas pressure of 0.7 Pa. It has been found that it can be sputtered.
  • SH-450, ULVAC sputtering apparatus
  • Example 13 In a glove box having an argon gas atmosphere, a 300 mL Pyrex (registered trademark) beaker set in a mantle heater and a stirring device equipped with a glass stirring blade were installed. 68 g of electrolytic Cu powder (average particle size 97 ⁇ m, oxygen: 0.04 wt%) and 32 g of Ga pieces were placed in a beaker and heated and mixed in an argon gas atmosphere at 250 ° C. for 1 hour while stirring. As a result, grayish white powder was obtained.
  • Pyrex registered trademark
  • this Cu—Ga alloy powder was heat-treated in an Ar gas atmosphere at 480 ° C. for 1 hour. As a result of EPMA observation of the cross section of the heat-treated powder, it was the same Cu—Ga alloy powder as in Example 12. Further, when the Ga concentration and oxygen content of the Cu—Ga alloy powder were analyzed, the Ga concentration was 31.9% by mass and the oxygen content was 0.04% by mass. That is, as in Example 12, the composition of the Cu—Ga alloy powder was the same as that of the raw material, and it was confirmed that oxidation was prevented during the preparation of the Cu—Ga alloy powder.
  • a target body was produced in the same manner as in Example 12 using this Cu—Ga alloy powder.
  • the density determined from the dimensions and weight of the target body was 8.41 g / cm 3 .
  • no vacancies were observed, and the target body was dense.
  • EPMA observation there was no segregation of Ga concentration and variation was within ⁇ 5%, and a uniform Cu—Ga alloy structure was obtained.
  • Example 14 A 300 mL porcelain beaker set in a mantle heater and a stirring device equipped with glass stirring blades were installed in a glove box in an argon gas atmosphere.
  • Atomized Cu powder (average particle size 38 ⁇ m, oxygen: 0.03 wt%) 68.0 g and Ga small piece 32.0 g were put into a beaker and heated and mixed in an argon gas atmosphere at 550 ° C. for 1 hour while stirring. . As a result, grayish white powder was obtained. This powder was not heat-treated.
  • a target body was produced in the same manner as in Example 12 using this Cu—Ga alloy powder.
  • the density determined from the dimensions and weight of the target body was 8.36 g / cm 3 .
  • no vacancies were observed, and the target body was dense.
  • EPMA observation there was no segregation of Ga concentration and variation was within ⁇ 5%, and a uniform Cu—Ga alloy structure was obtained.
  • Example 15 Heat mixing was carried out in the same manner as in Example 14 except that 80.0 g of atomized Cu powder (average particle size 38 ⁇ m, oxygen: 0.03 wt%) and 20.0 g of Ga pieces were used. As a result, grayish white powder was obtained. This powder was not heat-treated.
  • Example 12 As a result of EPMA observation of the cross section of this powder, it was the same Cu—Ga alloy powder as in Example 12. Further, when the Ga concentration and oxygen content of the Cu—Ga alloy powder were analyzed, the Ga concentration was 19.9 mass% and the oxygen content was 0.03 mass%. That is, as in Example 12, the composition of the Cu—Ga alloy powder was the same as that of the raw material, and it was confirmed that oxidation was prevented during the preparation of the Cu—Ga alloy powder.
  • a target body was produced in the same manner as in Example 12 using this Cu—Ga alloy powder.
  • the density determined from the dimensions and weight of the target body was 8.31 g / cm 3 .
  • no vacancies were observed, and the target body was dense.
  • EPMA observation there was no segregation of Ga concentration and variation was within ⁇ 5%, and a uniform Cu—Ga alloy structure was obtained.
  • Example 16 Heat mixing was carried out in the same manner as in Example 14 except that 60.0 g of atomized Cu powder (average particle size 38 ⁇ m, oxygen: 0.03 wt%) and 40.0 g of Ga pieces were used. As a result, grayish white powder was obtained. This powder was not heat-treated.
  • Example 12 As a result of EPMA observation of the cross section of this powder, it was the same Cu—Ga alloy powder as in Example 12. Further, when the Ga concentration and oxygen content of this Cu—Ga alloy powder were analyzed, the Ga concentration was 40.0 mass% and the oxygen content was 0.03% mass. That is, as in Example 12, the composition of the Cu—Ga alloy powder was the same as that of the raw material, and it was confirmed that oxidation was prevented during the preparation of the Cu—Ga alloy powder.
  • a target body was produced in the same manner as in Example 12 except that the temperature of hot pressing was 400 ° C.
  • the density determined from the dimensions and weight of the target body was 8.43 g / cm 3 .
  • SEM observation of the cross section of the target body in the same manner as in Example 12 no vacancies were observed, and the target body was dense.
  • EPMA observation there was no segregation of Ga concentration and variation was within ⁇ 5%, and a uniform Cu—Ga alloy structure was obtained.
  • Example 17 Heat mixing was performed in the same manner as in Example 14 except that atomized Cu powder (oxygen: 0.01 wt% or less) having an average particle diameter of 178 ⁇ m was used. As a result, grayish white powder was obtained. This powder was not heat-treated.
  • Example 12 As a result of observing the cross section of this powder with EPMA, it was the same Cu—Ga alloy powder as in Example 12. Further, when the Ga concentration and oxygen content of the Cu—Ga alloy powder were analyzed, the Ga concentration was 32.0 mass% and the oxygen content was 0.01 mass% or less. That is, as in Example 12, the composition of the Cu—Ga alloy powder was the same as that of the raw material, and it was confirmed that oxidation was prevented during the preparation of the Cu—Ga alloy powder.
  • a target body was produced in the same manner as in Example 12 using this Cu—Ga alloy powder.
  • the density obtained from the size and weight of the target body was 8.29 g / cm 3 .
  • no vacancies were observed, and the target body was dense.
  • EPMA observation there was no segregation of Ga concentration and variation was within ⁇ 5%, and a uniform Cu—Ga alloy structure was obtained.
  • Example 18 A 300 mL porcelain beaker set in a mantle heater and a stirring device equipped with glass stirring blades were installed in a glove box in an argon gas atmosphere. 68.0 g of electrolytic Cu powder (average particle size 300 ⁇ m, oxygen: 0.04 wt%) and 32.0 g of Ga pieces were placed in a beaker and heated and mixed in an argon gas atmosphere at 700 ° C. for 2 hours while stirring. . As a result, a gray powder was obtained. This powder was not heat-treated. As a result of observing the EPMA cross section of this powder, it was the same Cu—Ga alloy powder as in Example 12. Further, when the Ga concentration and oxygen content of the Cu—Ga alloy powder were analyzed, the Ga concentration was 32.0 mass% and the oxygen content was 0.05% or less.
  • this Cu—Ga alloy powder was put into a graphite mold having an inner diameter of 60 mm, and the degree of vacuum was 5 ⁇ 10 ⁇ 3 Pa, the pressure was 25 MPa, the temperature was 700 ° C., and the temperature was 2 hours.
  • a hot press was performed under the conditions described above to produce a sintered body having a diameter of 60 mm and a thickness of 3 mm.
  • the density determined from the size and weight of the target body was 8.30 g / cm 3 . Moreover, as a result of observing a cross section of a part of the target body, voids were not recognized and the structure was dense and uniform. Further, as a result of SEM observation of the cross section of the target body in the same manner as in Example 12, no vacancies were observed, and the target body was dense. Further, as a result of EPMA observation, there was no segregation of Ga concentration and variation was within ⁇ 5%, and a uniform Cu—Ga alloy structure was obtained.
  • Example 19 In a glove box in an argon gas atmosphere, 68.0 g of electrolytic Cu powder (average particle size 97 ⁇ m, oxygen: 0.013 wt%) in a Teflon (registered trademark) resin-made cylindrical container for a ball mill, Ga small piece 32.0 g and 40 balls made of zirconia having a diameter of 10 mm were charged, sealed with a Teflon (registered trademark) container lid, and filled with argon gas. A ball mill frame was placed in an oven heated to 30 ° C., a cylindrical container was set, and heating and mixing were performed in an argon gas atmosphere at a rotation speed of 30 rpm for 1 hour. After the cylindrical container was taken out and cooled to room temperature, the contents were taken out by opening the container lid. As a result, gray powder was obtained.
  • This powder was heat-treated in an Ar gas atmosphere at 480 ° C. for 1 hour.
  • the central part of the powder is Cu—Ga alloy phase in which Cu or Ga is dissolved
  • the outer peripheral part is Cu—Ga alloy phase composed of a Cu—Ga alloy phase having a Ga concentration of 30 to 70 mass%.
  • the cross section of the heat-treated powder it was the same Cu—Ga alloy powder as in Example 12. Further, when the Ga concentration and oxygen content of the Cu—Ga alloy powder were analyzed, the Ga concentration was 32.1 mass% and the oxygen content was 0.02 mass%. That is, as in Example 12, the composition of the Cu—Ga alloy powder was the same as that of the raw material, and it was confirmed that oxidation was prevented during the preparation of the Cu—Ga alloy powder.
  • a target body was produced in the same manner as in Example 12 using this Cu—Ga alloy powder.
  • the density determined from the dimensions and weight of the target body was 8.41 g / cm 3 .
  • no vacancies were observed, and the target body was dense.
  • EPMA observation there was no segregation of Ga concentration and variation was within ⁇ 5%, and a uniform Cu—Ga alloy structure was obtained.
  • Example 20 As a result of heating and mixing in the same manner as in Example 12 except that atomized Cu powder (average particle size 1 ⁇ m, oxygen: 0.18 wt%) was used, gray powder was obtained. This powder was heat-treated in the same manner as in Example 12 and observed by EPMA. As a result, it was the same Cu—Ga alloy powder as in Example 12. Further, when the Ga concentration and oxygen content of this Cu—Ga alloy powder were analyzed, the Ga concentration was 32.2 mass% and the oxygen content was 0.19%.
  • a target body was prepared using this Cu—Ga alloy powder in the same manner as in Example 12, and the density obtained from the dimensions and weight was 8.34 g / cm 3 . Further, as a result of SEM observation of the cross section of the target body in the same manner as in Example 12, no vacancies were observed, and the target body was dense. Further, as a result of EPMA observation, there was no segregation of Ga concentration and variation was within ⁇ 5%, and a uniform Cu—Ga alloy structure was obtained.
  • Tables 2 and 3 show the evaluation results of Examples 12 to 20.
  • Cu—Ga alloy powder can be obtained by stirring while heating Cu powder and Ga, respectively, and a Cu—Ga alloy sputtering target having a uniform composition can be easily obtained by sintering using this. It turns out that it is obtained. Therefore, according to the present invention, Cu-Ga alloy powder is obtained at low cost because it does not require a step of once melting and casting Cu and Ga at a high temperature as in the prior art and then pulverizing the Cu-Ga alloy ingot. be able to.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

 高品質なCu-Ga合金粉末を容易に製造することができるCu-Ga合金粉末の製造方法及びCu-Ga合金粉末、並びにCu-Ga合金スパッタリングターゲットの製造方法及びCu-Ga合金スパッタリングターゲットを提供する。本発明は、Cu粉末とGaとが質量比で85:15~55:45の割合で配合された混合粉末を、不活性雰囲気中で30~700℃の温度で攪拌して合金化することにより、Cu-Ga合金粉末を得る。また、このCu-Ga合金粉末を成型し、焼結することにより、Cu-Ga合金スパッタリングターゲットを得る。

Description

Cu-Ga合金粉末の製造方法及びCu-Ga合金粉末、並びにCu-Ga合金スパッタリングターゲットの製造方法及びCu-Ga合金スパッタリングターゲット
 本発明は、CIGS(Cu-In-Ga-Se四元系合金)太陽電池の光吸収層の形成に使用されるCu-Ga合金粉末の製造方法及びCu-Ga合金粉末、並びにCu-Ga合金スパッタリングターゲットの製造方法及びCu-Ga合金スパッタリングターゲットに関する。
 本出願は、日本国において2010年4月9日に出願された日本特許出願番号特願2010-090475、及び、日本国において2010年8月24日に出願された日本特許出願番号特願2010-187160を基礎として優先権を主張するものであり、これらの出願を参照することにより、本出願に援用される。
 近年、クリーンエネルギーの一つとして、太陽光発電が注目され、結晶系Siの太陽電池が主に使用されているが、供給面やコストの問題から、変換効率の高いCIGS(Cu-In-Ga-Se四元系合金)系の太陽電池が注目されている。
 CIGS太陽電池は、基本構造として、ソーダライムガラス基板の上に形成された裏面電極となるMo電極層と、このMo電極層の上に形成された光吸収層となるCu-In-Ga-Se四元系合金膜と、このCu-In-Ga-Se四元系合金膜からなる光吸収層の上に形成されたZnS、CdSなどからなるバッファ層と、このバッファ層の上に形成された透明電極とを備える。
 Cu-In-Ga-Se四元系合金膜からなる光吸収層の形成方法としては、蒸着法が知られているが、より広い面積での均一な膜を得るためにスパッタ法によって形成する方法が提案されている。スパッタ法は、先ず、Inターゲットを使用してスパッタによりIn膜を成膜し、このIn膜の上にCu-Ga合金スパッタリングターゲットを使用してスパッタすることによりCu-Ga合金膜を成膜し、得られたIn膜及びCu-Ga合金膜からなる積層膜をSe雰囲気中で熱処理してCu-In-Ga-Se四元系合金膜を形成する方法である。このスパッタ法により形成されたCu-In-Ga-Se四元系合金膜の品質は、Cu-Ga合金スパッタリングターゲットの品質に大きく依存するため、高品質なCu-Ga合金スパッタリングターゲットが望まれている。
 Cu-Ga合金スパッタリングターゲットの製造方法としては、溶解法と粉末焼結法が知られている。溶解法は、溶解鋳造したCIGS系太陽電池用途の組成のCu-Ga合金が脆くて割れやすいという問題がある。一方、粉末焼結法は、均一な組成が得られることからスパッタリングターゲットの製造方法として有望視されている。
 粉末焼結法としては、例えば、特許文献1には、高Ga含有Cu-Ga合金粉末と、純Cu又は低Ga含有Cu-Ga合金粉末とを配合してホットプレスにてスパッタリングターゲットを製造することが記載されている。
特開2008-138232号公報
 Gaは融点が29.78℃と極めて低融点であるため、Cu粉とGaから直接焼結体を得ることはできないので、粉末焼結法の原料にはCu-Ga合金粉末が用いられる。一般には、Cu-Ga合金が脆性材であることを利用して、一旦CuとGaを溶解して合金化し、これを粉砕してCu-Ga合金粉末を得ている。すなわち、Cu-Ga合金粉末を得るために、CuとGaを高温にて溶解させるプロセス及びCu-Ga合金インゴットを粉砕させる等の粉末化のプロセスが必要である。
 本発明は、前記実情に鑑みて提案されたものであり、高品質なCu-Ga合金粉末を容易に製造することができるCu-Ga合金粉末の製造方法及びCu-Ga合金粉末、並びにCu-Ga合金スパッタリングターゲットの製造方法及びCu-Ga合金スパッタリングターゲットを提供する。
 本発明者らは、鋭意研究を重ねた結果、Cu粉末とGaとを所定の割合で配合し、所定の温度範囲で合金化することにより、高品質なCu-Ga合金粉末が容易に得られ、また、高品質なCu-Ga合金スパッタリングターゲットが得られることが分かった。
 すなわち、本発明に係るCu-Ga合金粉末の製造方法は、Cu粉末とGaとが質量比で85:15~55:45の割合で配合された混合粉末を、不活性雰囲気中で30~700℃の温度で攪拌して合金化することを特徴とする。
 また、本発明に係るCu-Ga合金粉末は、上述した製造方法により製造されることを特徴とする。
 また、本発明に係るCu-Ga合金スパッタリングターゲットの製造方法は、Cu粉末とGaとが質量比で85:15~55:45の割合で配合された混合粉末を、不活性雰囲気中で30~700℃の温度で攪拌して合金化し、Cu-Ga合金粉末を作製する作製工程と、Cu-Ga合金粉末を成型し、焼結する焼結工程とを有することを特徴とする。
 また、本発明に係るCu-Ga合金スパッタリングターゲットは、上述した製造方法により製造されることを特徴とする。
 本発明によれば、高品質なCu-Ga合金粉末が容易に得られ、均一性、加工性に優れたCu-Ga合金スパッタリングターゲットを得ることができる。
図1は、Cu-Ga合金粉末を模式的に示す断面図である。 図2は、本実施の一実施の形態におけるCu-Ga合金スパッタリングターゲットの製造方法の概要を説明するための図である。 図3は、EPMAマッピング分析によるCu-Ga合金粉末の断面写真である。 図4は、図3に示した断面写真を模式的に示した図である。 図5は、EPMAマッピング分析によるCu-Ga合金焼結体の断面写真である。 図6は、図5に示した断面写真を模式的に示した図である。 図7は、EPMAマッピング分析によるCu-Ga合金粉末の断面写真である。 図8は、図7に示した断面写真を模式的に示した図である。
 以下、本発明を適用した具体的な実施の形態について、図面を参照しながら詳細に説明する。
<1.Cu-Ga合金粉末の製造方法>
(原料)
 Cu-Ga合金粉末の原料として、Cu粉末及びGaが用いられる。Cu粉末及びGaの純度は、Cu-Ga合金スパッタリングターゲットから形成されるCIGS光吸収層の特性に影響を与えないように適宜選択される。
 Cu粉末は、例えば、電解法又はアトマイズ法により製造される電解Cu粉又はアトマイズCu粉を使用することができる。電解Cu粉は、硫酸銅溶液などの電解液中で電気分解により陰極に海綿状又は樹枝状の形状のCuを析出させて製造される。アトマイズCu粉は、ガスアトマイズ法、水アトマイズ法、遠心アトマイズ法、メルトエクストラクション法などにより球状又は不定形の形状のCu粉末が製造される。なお、Cu粉末は、これらの方法以外で製造されたものを使用してもよい。
 Cu粉末の平均粒径は、1~300μmであることが好ましい。Cu粉末の平均粒径が1μm以上であることにより、Cu粉末の飛散を防止して特別な取り扱いが不要となるとともに、Cu粉末のかさ容量の増加により合金粉末製造装置が大型化し、高額な装置が必要となるのを防ぐことができる。また、Cu粉末の平均粒径が300μm以下であることにより、Gaが被覆しなければならないCu粉末の表面積(BET)が不足して、余剰となった未反応の液相Gaが残り易くなるのを防止することができる。
 なお、Cu粉末の平均粒径は、Cu粉末の粒度分布をレーザー回折法で測定し、小径側から積算して、その値が全粒径に渡った積算値の半分になる粒径(D50)である。
 Gaは、融点が低い金属(融点:29.78℃)であり、加熱により容易に融解する。融解したGaは、Cu粉末を被覆して二元系合金化する。Gaの形状には、制限はないが、小片であると秤量が容易である。小片は、Gaを室温近傍で溶解して鋳造し、鋳造物を砕いて得ることができる。
(配合)
 Cu粉末とGaとは、質量比で85:15~55:45の割合で配合する。Gaは、融点が低い金属(融点:29.78℃)であるため、加熱することにより容易に融解し、融解したGaがCu粉末を被覆する。Ga量が15質量%以上であることにより、Gaによる均一被覆が可能となると共に、得られた粉末を焼結した際に均一な合金組織にすることが可能となる。また、Ga量が45質量%以下であることにより、Cu粉末の間に存在する多量のGaによって粉末同士が結合して塊状になるのを防ぎ、合金粉末の収率を向上させることができる。
 また、Ga量のさらに望ましい範囲は25~41質量%である。Gaが25質量%以上であることにより、短時間で均一に被覆することができ、また、Gaが41質量%以下であることにより、短時間で被覆したGaを合金化することができる。
(合金化)
 上述した質量比でCu粉末とGaとが配合された混合粉末を、不活性雰囲気中で30~700℃の温度で攪拌して合金化し、Cu-Ga合金粉を作製する。具体的には、上述した質量比で秤量したCu粉末とGa小片を、Gaの融点よりも高くCuの融点よりも低い温度、すなわち、30~700℃の範囲で温度を制御し、Cu粉末の表面又は内部にCu-Ga二元系合金を形成する。
 例えば、混合粉末を、不活性雰囲気中で30℃以上400℃未満の温度で攪拌することにより、Cu粉末の表面にCu-Ga二元系合金層を形成し、強度、成形性に優れたCu-Ga合金粉末を得ることができる。また、例えば、混合粉末を、不活性雰囲気中で400℃以上700℃以下の温度で攪拌することにより、Cu粉末の内部にCu-Ga二元系合金を形成し、均一組成のCu-Ga合金粉末を得ることができる。また、混合粉末を、不活性雰囲気中で30℃以上400℃未満の温度で攪拌して合金化し、さらに、この合金化粉末を、不活性雰囲気中で400℃以上700℃以下の温度で熱処理してもよい。
 このように合金化の際、混合粉末を30℃以上の温度で加熱することにより、Gaを融解させ、合金化反応を進行させることができる。また、混合粉末を700℃以下の温度で加熱することにより、高温に対応する高価な設備を不要とし、また、加熱に要する電力を削減することができる。
 Cu-Ga合金粉末は、次のような過程を経て形成されるものと考えられる。融点を超えて液体となったGaは、混合のせん断運動によって小さな液滴になりながらCu粉末間に均一に分散する。分散したGa液滴は、Cu粉末の周囲に付着し、Cu粉末とGa液滴が接触するとCu粉末にGaの拡散が始まり、Ga濃度が高まるともにCu-Ga金属間化合物を生成しながら合金化反応が進行する。このとき、粉末の表面はGa濃度の高いCu-Ga金属間化合物層であって、中心部は純Cu又はGaを固溶したCu相となる。
 このCu粉末とGaとの混合は、均一な合金化反応の進行に有効である。また、混合のせん断運動は、粉同士の固着による塊状物の生成も抑制していると思われる。塊状物が生成してしまうと、ホットプレスなどの焼結工程において、焼結体中に空孔が生成したりし、密度が不均一なってしまう。
 加熱・混合には、容器内を攪拌羽根や攪拌ブレードが運動する混合装置を使用することができる。また、円筒、ダブルコーン、ツインシェルなどの回転容器型の混合装置を使用してもよい。また、容器の内部にボールを投入して混合を強化してもよい。
 容器材質は、加熱に対する耐熱性と、Ga及びCu-Ga合金の付着抑制の観点から選ばれる。例えば、ホウケイ酸ガラス、石英ガラスなどのガラス容器、アルミナやジルコニアなどのセラミックス容器、テフロン(登録商標)樹脂容器、テフロン(登録商標)被覆容器、ホーロー容器などが使用できる。
 加熱・混合は、アルゴンガスや窒素ガスといった不活性ガス雰囲気中で行うのが好ましい。不活性ガス雰囲気中で加熱・混合することにより、合金粉の酸素含有量の増加を抑制することができる。
(Cu-Ga合金粉末)
 図1は、上述した製法によって得られるCu-Ga合金粉末を模式的に示す断面図である。このCu-Ga合金粉末は、Gaを15~45質量%含み、残部がCuと不可避不純物からなる。
 図1の(A)に示すCu-Ga合金粉末は、Cu粉末とGaとが配合された混合粉末を、不活性雰囲気中で30℃以上400℃未満の温度で合金化したものである。このCu-Ga合金粉末は、表面のCu-Ga二元系合金層11と、中心部のCu12とを備えている。このような構成のCu-Ga合金粉末によれば、中心部のCu12により、強度が増し、優れた成形性を得ることができる。また、このCu-Ga合金粉末を焼結することにより、均一組成のCu-Ga合金スパッタリングターゲットを得ることができる。
 また、図1の(B)に示すCu-Ga合金粉末は、Cu粉末とGaとが配合された混合粉末を、不活性雰囲気中で400℃以上700℃以下の温度で攪拌して合金化したものである。又は、混合粉末を、不活性雰囲気中で30℃以上400℃未満の温度で攪拌して合金化し、さらに、この合金化粉末を、不活性雰囲気中で400℃以上700℃以下の温度で熱処理したものである。このCu-Ga合金粉末は、均一組成のCu-Ga二元系合金21からなるため、このCu-Ga合金粉末を焼結することにより、均一組成のCu-Ga合金スパッタリングターゲットを容易に得ることができる。
<2.Cu-Ga合金スパッタリングターゲットの製造方法>
 次に、上述したCu-Ga合金粉末を用いたCu-Ga合金スパッタリングターゲットの製造方法について説明する。
 図2は、本実施の一実施の形態におけるCu-Ga合金スパッタリングターゲットの製造方法の概要を説明するための図である。Cu-Ga合金粉末を作製する作製工程(A)と、Cu-Ga合金粉末を焼結する焼結工程(B)と、仕上げ工程(C)とを有する。
 作製工程(A)では、上述したCu-Ga合金粉末の製造方法と同様であり、Cu粉末とGaとが質量比で85:15~55:45の割合で配合された混合粉末を、不活性雰囲気中で30~700℃の温度で攪拌して合金化し、Cu-Ga合金粉末を得る。このCu-Ga合金粉末は、例えば、図2の(A)に示すように攪拌羽根が回転し、容器の外周にヒータが設置された混合装置により得ることができる。
 次の焼結工程(B)では、Cu-Ga合金粉末を、例えばプレスにて成形し、この成形体を真空中で、400~800℃で焼結する粉末焼結法を用いることができる。400~800℃で焼結することにより、CuやGaが拡散するため、均一に合金化したCu-Ga合金焼結体が得られる。焼結方法は、不活性ガス雰囲気中での焼結でもよく、また、原料粉末を高温で耐熱性の型に入れて加圧するホットプレス法(HP法)、加圧媒体であるガスを用いて、高温高圧下で被処理物を等方的に加圧する熱間静水圧加圧焼結法(HIP法)などで作製してもよい。この中でもホットプレス法によれば、高密度の焼結体を安価に得ることができる。
 仕上げ工程(C)では、Cu-Ga合金焼結体の表面を研削により平面に仕上げ、Cu製のバッキングプレートにボンディングすることにより、Cu-Ga合金スパッタリングターゲットを得ることができる。
 このようにCu粉末とGaとを所定の割合で配合し、所定の温度範囲で合金化することにより、従来のようにCuとGaを一旦高温で溶解鋳造した後、Cu-Ga合金インゴットを粉砕するような工程が無いため、高品質なCu-Ga合金粉末を容易に得ることができる。また、組成が均一なCu-Ga合金スパッタリングターゲットを容易且つ安価に得ることができる。
 実施例
 以下に本発明の実施例を説明するが、本発明は下記の実施例に限定されるものではない。
(実施例1)
 アルゴンガス雰囲気にしたグローブボックス内に、マントルヒーターにセットした容量300mLの磁器製ビーカーと、この磁器製ビーカーにガラス製攪拌羽根を取り付けた攪拌装置とを設置した。
 アトマイズCu粉末(平均粒径106μm、酸素:0.04wt%)を68.0g、Gaの小片を32.0g秤量し、ビーカーに投入して攪拌しながら300℃、45分間、アルゴンガス雰囲気中で加熱混合を実施した。その結果、得られた粉末は、Cu粉の色ではなく灰白色の粉であった。
 また、電子プローブマイクロアナライザー(EPMA)(JXA-8100:日本電子株式会社製)により、得られた粉末の断面を、加速電圧15kVでマッピング分析を行った。図3は、EPMAマッピング分析によるCu-Ga合金粉末の断面写真である。この図3において、(A)はCu-Ga合金粉末の二次電子像、(B)はCuマッピング像、(C)はGaマッピング像である。このマッピング像は、Cu濃度又はGa濃度が青~赤で示され、濃度が高いほど赤色で示される。また、図4は、図3に示した断面写真を模式的に示した図であり、図4の(A)~(C)はそれぞれ図3の(A)~(C)に対応する。この図4において、(B)のCuマッピング像の模式図及び(C)のGaマッピング像の模式図では、Cu濃度又はGa濃度の高低を点(ドット)の多少で示しており、図3(B)及び(C)で示した濃度の青~赤に対応する。Cuマッピング像では、粉末内部が赤色、粉末表面が水色であり、Gaマッピング像では、粉末内部が黒色、粉末表面が橙色であることから、Cu-Ga合金粉末は、Cu粉末の表面にCu-Ga二元系合金層が形成されていることが分かった。
 次に、プレス機、及び100mm×100mm角のプレス型を用い、Cu-Ga合金粉末を196MPaの圧力にてプレス成形した。この成形体を真空焼結炉(島津メクテム株式会社製)で真空度が2×10-2Pa、温度が700℃の条件で、1時間、焼結を行い、長さ100mm、幅100mm、厚さ5mmのCu-Ga合金焼結体を作製した。
 このようにして得られたCu-Ga合金焼結体の組成の均一性を評価するために、焼結体の一部を切断し、断面のEPMAマッピング分析を行った。図5は、EPMAマッピング分析によるCu-Ga合金焼結体の断面写真である。この図5において、(A)はCu-Ga合金焼結体の二次電子像、(B)はCuマッピング像、(C)はGaマッピング像である。マッピング像は、図3と同様に、濃度が青~赤で示され、濃度が高いほど赤色で示される。また、図6は、図5に示した断面写真を模式的に示した図であり、図6の(A)~(C)はそれぞれ図5の(A)~(C)に対応する。この図6において、(B)のCuマッピング像の模式図及び(C)のGaマッピング像の模式図では、Cu濃度又はGa濃度の高低を点(ドット)の多少で示しており、図5(B)及び(C)で示した濃度の青~赤に対応する。この図5に示す結果より、Cu-Ga合金焼結体のCuとGaとが均一に合金化されていることが分かった。
 また、Cu-Ga合金焼結体を、平面研削を行い、機械加工により長さ100mm、幅100mm、厚さ4mmのサイズに仕上げ、Cu製バッキングプレートにボンディングしてCu-Ga合金スパッタリングターゲットとした。
(実施例2)
 原料のCu粉末を、アトマイズCu粉末(平均粒径37μm、酸素:0.03wt%)としたこと、及び加熱温度を400℃、加熱時間を2時間としたこと以外は実施例1と同様にして、Cu-Ga合金粉末を作製した。得られたCu-Ga合金粉末は、灰白色の粉であった。
 また、電子プローブマイクロアナライザー(EPMA)(JXA-8100:日本電子株式会社製)により、得られた粉末の断面を、加速電圧15kVでマッピング分析を行った。図7は、EPMAマッピング分析によるCu-Ga合金粉末の断面写真である。この図7において、(A)はCu-Ga合金粉末の二次電子像、(B)はCuマッピング像、(C)はGaマッピング像である。マッピング像は、図3と同様に、濃度が青~赤で示され、濃度が高いほど赤色で示される。また、図8は、図7に示した断面写真を模式的に示した図であり、図8の(A)~(C)はそれぞれ図7の(A)~(C)に対応する。この図8において、(B)のCuマッピング像の模式図及び(C)のGaマッピング像の模式図では、Cu濃度又はGa濃度の高低を点(ドット)の多少で示しており、図7(B)及び(C)で示した濃度の青~赤に対応する。図7に示す結果よりCu-Ga合金粉末は、Cu粉末の内部にもCu-Ga二元系合金が形成された均一組成であることが分かった。
 また、このCu-Ga合金粉末を用い、実施例1と同様にしてCu-Ga合金スパッタリングターゲットを作製した。
(実施例3~11、比較例1~3)
 実施例3~9、比較例1~3では、原料のCu粉末とGaの混合割合を表1に示すものにした以外は、実施例1と同様にしてCu-Ga合金粉末を得た。また、実施例10では、Cu粉末を電解粉(平均粒径37μm)とした以外は、実施例1と同様にしてCu-Ga合金粉末を得た。また、実施例11では、平均粒径45μmのアトマイズCu粉末を用いた以外は、実施例1と同様にしてCu-Ga合金粉末を得た。また、実施例8の焼結温度を500℃、実施例9及び比較例3の焼結温度を400℃とした以外は、実施例1と同様にしてCu-Ga合金スパッタリングターゲットを作製した。
 表1に、実施例1~11、及び比較例1~3の評価結果を示す。ここで、収率は、原料の投入総重量に対する得られる粉末重量の割合で評価を行った。収率が97%以上であれば優良、90~97%であれば良、90%以下であれば不良と判断した。また、焼結体の組成の均一性評価は、焼結体の厚み方向における中心部の断面における10mm角の領域を、任意に10箇所選択し、EPMAマッピング分析により求めたGa濃度のバラツキが、±5%以内なら良、±5%を超えたら不良と判断した。また、焼結体の加工性評価は、平面研削後の焼結体のエッジ長さ10cm当たりの欠けの個数を調べ、1個未満なら優良、1個以上3個未満なら良、3個以上は不良と評価した。
Figure JPOXMLDOC01-appb-T000001
 また、実施例12~実施例17では、合金化温度、熱処理温度等の条件を変えて、Cu-Ga合金スパッタリングターゲットを作製した。
(実施例12)
 アルゴンガス雰囲気にしたグローブボックス内で、テフロン(登録商標)樹脂製の300mLボールミル用円筒容器内に、アトマイズCu粉末(平均粒径5μm、酸素:0.12wt%)を68.0g、Ga小片を32.0g、及び直径10mmのジルコニア製ボール40個を投入し、テフロン(登録商標)容器蓋で密閉してアルゴンガスを封入した。70℃に加熱したオーブン内にボールミル架台を設置し、円筒容器をセットして回転数30rpm、1時間のアルゴンガス雰囲気中の加熱混合を行った。円筒容器を取り出して室温まで冷却した後に、容器蓋を開けて内容物を取り出したところ、灰白色の粉が得られた。
 この粉をArガス雰囲気中、480℃、1時間の条件で熱処理した。熱処理粉の断面をEPMA観察した結果、粉の中心部はCu又はGaが固溶したCu-Ga合金相、外周部はGa濃度30~70質量%のCu-Ga合金相から構成されたCu-Ga合金粉末であった。また、このCu-Ga合金粉末のGa濃度及び酸素含有量を分析したところ、Ga濃度が32.1質量%、酸素含有量が0.10質量%であった。すなわち、Cu-Ga合金粉末の組成は、Cu-Ga合金粉末作製のために配合した原料組成と同じであることが確認された。また、原料のCu粉と得られたCu-Ga合金粉末の酸素量の比較により、Cu-Ga合金粉末作製中に酸化が防止されていることが確認された。
 また、このCu-Ga合金粉末を内径60mmの黒鉛型に投入し、ホットプレス装置(大亜真空株式会社製)にて、真空度5×10-3Pa、圧力25MPa、温度700℃、1時間の条件でホットプレスを実施して、直径60mm、厚み3mmの焼結体を作製した。ターゲット体の寸法と重量から求めた密度は、8.32g/cmであった。また、ターゲット体の一部を切断サンプリングして断面をSEM観察した結果、空孔は認められず、緻密であった。また、EPMA観察した結果、Ga濃度の偏析はなく、ばらつきは±5%以内であり、均一なCu-Ga合金組織であることが分かった。
 また、このターゲット体をCu製バッキングプレートにボンディングしてCu-Ga合金ターゲットを作製した。そして、このターゲットをスパッタ装置(SH-450、アルバック社製)に取り付けて、アルゴンガス圧0.7Pa中でDC100Wの直流電力をターゲットに投入した結果、異常な放電やスプラッシュなどがなく、良好にスパッタすることができることが分かった。
(実施例13)
 アルゴンガス雰囲気にしたグローブボックス内に、マントルヒーターにセットした300mLのパイレックス(登録商標)ビーカーと、ガラス製攪拌羽根を取り付けた攪拌装置とを設置した。電解Cu粉末(平均粒径97μm、酸素:0.04wt%)68g、Ga小片32gをビーカーに投入して攪拌しながら250℃、1時間のアルゴンガス雰囲気中の加熱混合を実施した。その結果、灰白色の粉が得られた。
 実施例12と同様に、このCu-Ga合金粉末をArガス雰囲気中、480℃、1時間の条件で熱処理した。熱処理粉の断面をEPMA観察した結果、実施例12と同様のCu-Ga合金粉であった。また、このCu-Ga合金粉末のGa濃度及び酸素含有量を分析したところ、Ga濃度が31.9質量%、酸素含有量が0.04質量%であった。すなわち、実施例12同様、Cu-Ga合金粉末の組成は、原料の配合組成と同じであり、Cu-Ga合金粉末作製中に酸化が防止されていることが確認された。
 また、このCu-Ga合金粉末を用いて、実施例12と同様にしてターゲット体を作製した。ターゲット体の寸法と重量から求めた密度は、8.41g/cmであった。また、実施例12と同様にしてターゲット体の断面をSEM観察した結果、空孔は認められず、緻密であった。また、EPMA観察した結果、Ga濃度の偏析はなく、ばらつきは±5%以内であり、均一なCu-Ga合金組織であった。
 また、実施例12と同様にしてCu-Ga合金ターゲットを作製した結果、異常な放電やスプラッシュなどがなく、良好にスパッタすることができることが分かった。
(実施例14)
 アルゴンガス雰囲気にしたグローブボックス内に、マントルヒーターにセットした300mLの磁器製ビーカーと、ガラス製攪拌羽根を取り付けた攪拌装置とを設置した。アトマイズCu粉末(平均粒径38μm、酸素:0.03wt%)68.0g、Ga小片32.0gをビーカーに投入して攪拌しながら550℃、1時間のアルゴンガス雰囲気中の加熱混合を実施した。その結果、灰白色の粉が得られた。この粉の熱処理は行わなかった。
 この粉の断面をEPMA観察した結果、実施例12と同様のCu-Ga合金粉であった。また、このCu-Ga合金粉末のGa濃度及び酸素含有量を分析したところ、Ga濃度が32.1質量%、酸素含有量が0.03質量%であった。すなわち、実施例12同様、Cu-Ga合金粉末の組成は、原料の配合組成と同じであり、Cu-Ga合金粉末作製中に酸化が防止されていることが確認された。
 また、このCu-Ga合金粉末を用いて、実施例12と同様にしてターゲット体を作製した。ターゲット体の寸法と重量から求めた密度は、8.36g/cmであった。また、実施例12と同様にしてターゲット体の断面をSEM観察した結果、空孔は認められず、緻密であった。また、EPMA観察した結果、Ga濃度の偏析はなく、ばらつきは±5%以内であり、均一なCu-Ga合金組織であった。
 また、実施例12と同様にしてCu-Ga合金ターゲットを作製した結果、異常な放電やスプラッシュなどがなく、良好にスパッタすることができることが分かった。
(実施例15)
 アトマイズCu粉末(平均粒径38μm、酸素:0.03wt%)80.0g、Ga小片20.0gとした以外は実施例14と同様にして加熱混合を実施した。その結果、灰白色の粉が得られた。この粉の熱処理は行わなかった。
 この粉の断面をEPMA観察した結果、実施例12と同様のCu-Ga合金粉であった。また、このCu-Ga合金粉末のGa濃度及び酸素含有量を分析したところ、Ga濃度が19.9質量%、酸素含有量が0.03質量%であった。すなわち、実施例12同様、Cu-Ga合金粉末の組成は、原料の配合組成と同じであり、Cu-Ga合金粉末作製中に酸化が防止されていることが確認された。
 また、このCu-Ga合金粉末を用いて、実施例12と同様にしてターゲット体を作製した。ターゲット体の寸法と重量から求めた密度は、8.31g/cmであった。また、実施例12と同様にしてターゲット体の断面をSEM観察した結果、空孔は認められず、緻密であった。また、EPMA観察した結果、Ga濃度の偏析はなく、ばらつきは±5%以内であり、均一なCu-Ga合金組織であった。
 また、実施例12と同様にしてCu-Ga合金ターゲットを作製した結果、異常な放電やスプラッシュなどがなく、良好にスパッタすることができることが分かった。
(実施例16)
 アトマイズCu粉末(平均粒径38μm、酸素:0.03wt%)60.0g、Ga小片40.0gとした以外は実施例14と同様にして加熱混合を実施した。その結果、灰白色の粉が得られた。この粉の熱処理は行わなかった。
 この粉の断面をEPMA観察した結果、実施例12と同様のCu-Ga合金粉であった。また、このCu-Ga合金粉末のGa濃度及び酸素含有量を分析したところ、Ga濃度が40.0質量%、酸素含有量が0.03質量%であった。すなわち、実施例12同様、Cu-Ga合金粉末の組成は、原料の配合組成と同じであり、Cu-Ga合金粉末作製中に酸化が防止されていることが確認された。
 また、このCu-Ga合金粉末を用いて、ホットプレスの温度を400℃とした以外は実施例12と同様にしてターゲット体を作製した。ターゲット体の寸法と重量から求めた密度は、8.43g/cmであった。また、実施例12と同様にしてターゲット体の断面をSEM観察した結果、空孔は認められず、緻密であった。また、EPMA観察した結果、Ga濃度の偏析はなく、ばらつきは±5%以内であり、均一なCu-Ga合金組織であった。
 また、実施例12と同様にしてCu-Ga合金ターゲットを作製した結果、異常な放電やスプラッシュなどがなく、良好にスパッタすることができることが分かった。
(実施例17)
 平均粒径178μmのアトマイズCu粉末(酸素:0.01wt%以下)を用いた以外は、実施例14と同様にして加熱混合を実施した。その結果、灰白色の粉が得られた。この粉の熱処理は行わなかった。
 この粉の断面をEPMA観察した結果、実施例12と同様のCu-Ga合金粉であった。また、このCu-Ga合金粉末のGa濃度及び酸素含有量を分析したところ、Ga濃度が32.0質量%、酸素含有量が0.01質量%以下であった。すなわち、実施例12同様、Cu-Ga合金粉末の組成は、原料の配合組成と同じであり、Cu-Ga合金粉末作製中に酸化が防止されていることが確認された。
 また、このCu-Ga合金粉末を用いて、実施例12と同様にしてターゲット体を作製した。ターゲット体の寸法と重量から求めた密度は、8.29g/cmであった。また、実施例12と同様にしてターゲット体の断面をSEM観察した結果、空孔は認められず、緻密であった。また、EPMA観察した結果、Ga濃度の偏析はなく、ばらつきは±5%以内であり、均一なCu-Ga合金組織であった。
 また、実施例12と同様にしてCu-Ga合金ターゲットを作製した結果、異常な放電やスプラッシュなどがなく、良好にスパッタすることができることが分かった。
(実施例18)
 アルゴンガス雰囲気にしたグローブボックス内に、マントルヒーターにセットした300mLの磁器製ビーカーと、ガラス製攪拌羽根を取り付けた攪拌装置とを設置した。電解Cu粉末(平均粒径300μm、酸素:0.04wt%)68.0g、Ga小片32.0gをビーカーに投入して攪拌しながら700℃、2時間のアルゴンガス雰囲気中の加熱混合を実施した。その結果、灰色の粉が得られた。この粉の熱処理は行わなかった。この粉のEPMA断面観察した結果、実施例12と同様のCu-Ga合金粉であった。また、このCu-Ga合金粉末のGa濃度及び酸素含有量を分析したところ、Ga濃度が32.0質量%、酸素含有量が0.05%以下であった。
 また、実施例12と同様にして、このCu-Ga合金粉末を内径60mmの黒鉛型に投入し、ホットプレス装置にて、真空度5×10-3Pa、圧力25MPa、温度700℃、2時間の条件でホットプレスを実施して、直径60mm、厚み3mmの焼結体を作製した。
 ターゲット体の寸法と重量から求めた密度は、8.30g/cmであった。また、ターゲット体の一部の断面観察をした結果、空孔は認められず、緻密で均一な組織であった。また、実施例12と同様にしてターゲット体の断面をSEM観察した結果、空孔は認められず、緻密であった。また、EPMA観察した結果、Ga濃度の偏析はなく、ばらつきは±5%以内であり、均一なCu-Ga合金組織であった。
 また、実施例12と同様にしてCu-Ga合金ターゲットを作製した結果、異常な放電やスプラッシュなどがなく、良好にスパッタすることができることが分かった。
(実施例19)
 アルゴンガス雰囲気にしたグローブボックス内で、テフロン(登録商標)樹脂製の300mLボールミル用円筒容器内に、電解Cu粉末(平均粒径97μm、酸素:0.013wt%)を68.0g、Ga小片を32.0g、及び直径10mmのジルコニア製ボール40個を投入し、テフロン(登録商標)容器蓋で密閉してアルゴンガスを封入した。30℃に加熱したオーブン内にボールミル架台を設置し、円筒容器をセットして回転数30rpm、1時間のアルゴンガス雰囲気中の加熱混合を行った。円筒容器を取り出して室温まで冷却した後に、容器蓋を開けて内容物を取り出したところ、灰色の粉が得られた。
 この粉をArガス雰囲気中、480℃、1時間の条件で熱処理した。熱処理粉の断面をEPMA観察した結果、粉の中心部はCu又はGaが固溶したCu-Ga合金相、外周部はGa濃度30~70質量%のCu-Ga合金相から構成されたCu-Ga合金粉末であった。熱処理粉の断面をEPMA観察した結果、実施例12と同様のCu-Ga合金粉であった。また、このCu-Ga合金粉末のGa濃度及び酸素含有量を分析したところ、Ga濃度が32.1質量%、酸素含有量が0.02質量%であった。すなわち、実施例12同様、Cu-Ga合金粉末の組成は、原料の配合組成と同じであり、Cu-Ga合金粉末作製中に酸化が防止されていることが確認された。
 また、このCu-Ga合金粉末を用いて、実施例12と同様にしてターゲット体を作製した。ターゲット体の寸法と重量から求めた密度は、8.41g/cmであった。また、実施例12と同様にしてターゲット体の断面をSEM観察した結果、空孔は認められず、緻密であった。また、EPMA観察した結果、Ga濃度の偏析はなく、ばらつきは±5%以内であり、均一なCu-Ga合金組織であった。
 また、実施例12と同様にしてCu-Ga合金ターゲットを作製した結果、異常な放電やスプラッシュなどがなく、良好にスパッタすることができることが分かった。
(実施例20)
 アトマイズCu粉末(平均粒径1μm、酸素:0.18wt%)を用いた以外は実施例12と同様にして加熱混合を行った結果、灰色の粉が得られた。この粉を実施例12と同様に熱処理してEPMA観察した結果、実施例12と同様のCu-Ga合金粉であった。また、このCu-Ga合金粉末のGa濃度及び酸素含有量を分析したところ、Ga濃度が32.2質量%、酸素含有量が0.19%であった。
 また、実施例12と同様にこのCu-Ga合金粉末を用いてターゲット体を作製し、寸法と重量から求めた密度は、8.34g/cmであった。また、実施例12と同様にしてターゲット体の断面をSEM観察した結果、空孔は認められず、緻密であった。また、EPMA観察した結果、Ga濃度の偏析はなく、ばらつきは±5%以内であり、均一なCu-Ga合金組織であった。
 また、実施例12と同様にしてCu-Ga合金ターゲットを作製した結果、異常な放電やスプラッシュなどがなく、良好にスパッタすることができることが分かった。
 表2、3に、実施例12~20の評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 以上の結果より、Cu粉末、Gaをそれぞれ加熱しながら攪拌することにより、Cu-Ga合金粉末が得られ、これを用いて焼結することにより組成が均一なCu-Ga合金スパッタリングターゲットが容易に得られることが分かった。したがって、本発明によれば、従来のようにCuとGaを一旦高温で溶解鋳造した後、Cu-Ga合金インゴットを粉砕するような工程を必要としないため、安価にCu-Ga合金粉末を得ることができる。

Claims (9)

  1. Cu粉末とGaとが質量比で85:15~55:45の割合で配合された混合粉末を、不活性雰囲気中で30~700℃の温度で攪拌して合金化することを特徴とするCu-Ga合金粉末の製造方法。
  2. 前記混合粉末を、不活性雰囲気中で30℃以上400℃未満の温度で攪拌し、
     前記Cu粉末の表面にCu-Ga二元系合金層を形成することを特徴とする請求項1記載のCu-Ga合金粉末の製造方法。
  3. 前記混合粉末を、不活性雰囲気中で400℃以上700℃以下の温度で攪拌し、
     前記Cu粉末の内部にCu-Ga二元系合金を形成することを特徴とする請求項1記載のCu-Ga合金粉末の製造方法。
  4. 前記混合粉末を、不活性雰囲気中で30℃以上400℃未満の温度で攪拌して合金化し、該合金化粉末を、不活性雰囲気中で400℃以上700℃以下の温度で熱処理することを特徴とする請求項1記載のCu-Ga合金粉末の製造方法。
  5. 前記Cu粉末の平均粒径が1~300μmであることを特徴とする請求項1乃至4のいずれかに記載のCu-Ga合金粉末の製造方法。
  6. 請求項1~5のいずれかに記載の製造方法により製造されることを特徴とするCu-Ga合金粉末。
  7. Cu粉末とGaとが質量比で85:15~55:45の割合で配合された混合粉末を、不活性雰囲気中で30~700℃の温度で攪拌して合金化し、Cu-Ga合金粉末を作製する作製工程と、
     前記Cu-Ga合金粉末を成型し、焼結する焼結工程と
     を有することを特徴とするCu-Ga合金スパッタリングターゲットの製造方法。
  8. 前記焼結工程では、ホットプレス法を用いることを特徴とする請求項7記載のCu-Ga合金スパッタリングターゲットの製造方法。
  9. 請求項7又は8のいずれかに記載の製造方法により製造されることを特徴とするCu-Ga合金スパッタリングターゲット。
PCT/JP2011/058846 2010-04-09 2011-04-07 Cu-Ga合金粉末の製造方法及びCu-Ga合金粉末、並びにCu-Ga合金スパッタリングターゲットの製造方法及びCu-Ga合金スパッタリングターゲット WO2011126092A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180018036.7A CN102844134B (zh) 2010-04-09 2011-04-07 Cu-Ga合金粉末、Cu-Ga合金溅射靶以及它们的制造方法
KR1020127027478A KR101509299B1 (ko) 2010-04-09 2011-04-07 Cu-Ga 합금 분말의 제조 방법 및 Cu-Ga 합금 분말, 그리고 Cu-Ga 합금 스퍼터링 타겟의 제조 방법 및 Cu-Ga 합금 스퍼터링 타겟
US13/639,090 US9435023B2 (en) 2010-04-09 2011-04-07 Method for producing Cu-Ga alloy powder, Cu-Ga alloy powder, method for producing Cu-Ga alloy sputtering target, and Cu-Ga alloy sputtering target

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010090475 2010-04-09
JP2010-090475 2010-04-09
JP2010-187160 2010-08-24
JP2010187160A JP4720949B1 (ja) 2010-04-09 2010-08-24 Cu−Ga合金粉末の製造方法及びCu−Ga合金粉末、並びにCu−Ga合金スパッタリングターゲットの製造方法及びCu−Ga合金スパッタリングターゲット

Publications (1)

Publication Number Publication Date
WO2011126092A1 true WO2011126092A1 (ja) 2011-10-13

Family

ID=44350503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058846 WO2011126092A1 (ja) 2010-04-09 2011-04-07 Cu-Ga合金粉末の製造方法及びCu-Ga合金粉末、並びにCu-Ga合金スパッタリングターゲットの製造方法及びCu-Ga合金スパッタリングターゲット

Country Status (6)

Country Link
US (1) US9435023B2 (ja)
JP (2) JP4720949B1 (ja)
KR (1) KR101509299B1 (ja)
CN (1) CN102844134B (ja)
TW (1) TWI471442B (ja)
WO (1) WO2011126092A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031508A (ja) * 2010-06-28 2012-02-16 Hitachi Metals Ltd Cu−Ga合金ターゲット材およびその製造方法
AT13564U1 (de) * 2013-01-31 2014-03-15 Plansee Se CU-GA-IN-NA Target

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5630416B2 (ja) * 2011-03-23 2014-11-26 住友金属鉱山株式会社 Cu−Ga合金スパッタリングターゲットの製造方法及びCu−Ga合金粉末の製造方法
JP2013142175A (ja) * 2012-01-11 2013-07-22 Sumitomo Metal Mining Co Ltd Cu−Ga合金スパッタリングターゲット及びその製造方法
US8871143B2 (en) * 2012-01-20 2014-10-28 Leonard Nanis Amalgam method for forming a sputter target useful in the manufacture of thin-film solar photovoltaic cells
JP2013194313A (ja) * 2012-03-22 2013-09-30 Sumitomo Metal Mining Co Ltd Cu−Ga合金スパッタリングターゲット及びCu−Ga合金粉末
JP6028714B2 (ja) * 2013-10-30 2016-11-16 住友金属鉱山株式会社 Cu−Ga合金スパッタリングターゲットの製造方法
JP2015086434A (ja) * 2013-10-30 2015-05-07 住友金属鉱山株式会社 Cu−Ga合金スパッタリングターゲットの製造方法
CN111826618B (zh) 2015-03-30 2022-11-01 东曹株式会社 氮化镓系烧结体和其制造方法
CN107321998B (zh) * 2017-07-24 2020-01-07 先导薄膜材料(广东)有限公司 铜镓合金粉的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107501A (en) * 1980-12-25 1982-07-05 Sony Corp Conduction material
JPS61261456A (ja) * 1985-05-14 1986-11-19 Tokuriki Honten Co Ltd 歯科用金属練成材
JP2008138232A (ja) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp 高Ga含有Cu−Ga二元系合金スパッタリングターゲットおよびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842882B2 (en) * 2004-03-01 2010-11-30 Basol Bulent M Low cost and high throughput deposition methods and apparatus for high density semiconductor film growth
ATE319868T1 (de) * 2003-12-22 2006-03-15 Scheuten Glasgroep Bv Verfahren zur herstellung von cu(in,ga)se2 einkristallinem pulver und monokornmembran- solarzelle enthaltend dieses pulver
US20070178620A1 (en) * 2006-02-02 2007-08-02 Basol Bulent M Method of Forming Copper Indium Gallium Containing Precursors And Semiconductor Compound Layers
CN101383384A (zh) * 2008-10-24 2009-03-11 昆明理工大学 光电半导体银铜复合氧化物薄膜材料
CN101613091B (zh) * 2009-07-27 2011-04-06 中南大学 一种cigs粉末、靶材、薄膜及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57107501A (en) * 1980-12-25 1982-07-05 Sony Corp Conduction material
JPS61261456A (ja) * 1985-05-14 1986-11-19 Tokuriki Honten Co Ltd 歯科用金属練成材
JP2008138232A (ja) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp 高Ga含有Cu−Ga二元系合金スパッタリングターゲットおよびその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012031508A (ja) * 2010-06-28 2012-02-16 Hitachi Metals Ltd Cu−Ga合金ターゲット材およびその製造方法
AT13564U1 (de) * 2013-01-31 2014-03-15 Plansee Se CU-GA-IN-NA Target
US10329661B2 (en) 2013-01-31 2019-06-25 Plansee Se Cu—Ga—In—Na target

Also Published As

Publication number Publication date
TW201144467A (en) 2011-12-16
TWI471442B (zh) 2015-02-01
JP2011231399A (ja) 2011-11-17
JP4720949B1 (ja) 2011-07-13
JP5740988B2 (ja) 2015-07-01
CN102844134A (zh) 2012-12-26
KR20130034022A (ko) 2013-04-04
CN102844134B (zh) 2016-06-01
KR101509299B1 (ko) 2015-04-07
US9435023B2 (en) 2016-09-06
US20130192986A1 (en) 2013-08-01
JP2011231396A (ja) 2011-11-17

Similar Documents

Publication Publication Date Title
JP5740988B2 (ja) Cu−Ga合金粉末及びCu−Ga合金スパッタリングターゲット
CN102395702B (zh) 溅射靶及其制造方法
US9334559B2 (en) Powder, sintered body and sputtering target, each containing elements of Cu, In, Ga and Se, and method for producing the powder
TWI424080B (zh) Sputtering target and its manufacturing method
CN108374113A (zh) 一种TaTiZrAlSi高熵合金及其粉末的制备方法
JP5928237B2 (ja) Cu−Ga合金スパッタリングターゲット及びその製造方法
WO2013069710A1 (ja) スパッタリングターゲットおよびその製造方法
TWI438296B (zh) Sputtering target and its manufacturing method
JP2013142175A (ja) Cu−Ga合金スパッタリングターゲット及びその製造方法
JP2012102358A (ja) Cu−Ga合金粉末の製造方法及びCu−Ga合金粉末、並びにCu−Ga合金スパッタリングターゲットの製造方法及びCu−Ga合金スパッタリングターゲット
JP5630416B2 (ja) Cu−Ga合金スパッタリングターゲットの製造方法及びCu−Ga合金粉末の製造方法
JP5740891B2 (ja) Cu−Ga合金スパッタリングターゲット及びCu−Ga合金スパッタリングターゲットの製造方法
JP6028714B2 (ja) Cu−Ga合金スパッタリングターゲットの製造方法
JP5488377B2 (ja) Cu−Ga合金スパッタリングターゲットの製造方法及びCu−Ga合金スパッタリングターゲット
JP5617493B2 (ja) Cu−Ga合金スパッタリングターゲット及びCu−Ga合金スパッタリングターゲットの製造方法
JP2014210943A (ja) Cu−Ga合金ターゲット材およびその製造方法
WO2015064157A1 (ja) Cu-Ga合金スパッタリングターゲットの製造方法
JP2012097302A (ja) Cu−Ga合金スパッタリングターゲットの製造方法及びCu−Ga合金スパッタリングターゲット

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180018036.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127027478

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13639090

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11765992

Country of ref document: EP

Kind code of ref document: A1