WO2011125888A1 - ポリアミド硬化剤組成物 - Google Patents

ポリアミド硬化剤組成物 Download PDF

Info

Publication number
WO2011125888A1
WO2011125888A1 PCT/JP2011/058306 JP2011058306W WO2011125888A1 WO 2011125888 A1 WO2011125888 A1 WO 2011125888A1 JP 2011058306 W JP2011058306 W JP 2011058306W WO 2011125888 A1 WO2011125888 A1 WO 2011125888A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
curing agent
epoxy resin
agent composition
polyamide curing
Prior art date
Application number
PCT/JP2011/058306
Other languages
English (en)
French (fr)
Inventor
晴康 北口
木曾 浩之
光 坂根
Original Assignee
東ソー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社 filed Critical 東ソー株式会社
Priority to CN201180017046.9A priority Critical patent/CN102822236B/zh
Publication of WO2011125888A1 publication Critical patent/WO2011125888A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/028Polyamidoamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/5006Amines aliphatic
    • C08G59/502Polyalkylene polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/34Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids using polymerised unsaturated fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • C08L77/08Polyamides derived from polyamines and polycarboxylic acids from polyamines and polymerised unsaturated fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines

Definitions

  • the present invention relates to a polyamide curing agent composition.
  • curing agent composition of this invention is used as a curable composition of the epoxy resin used for a coating material, an adhesive agent, a flooring use, etc.
  • Polyamide resin compositions are generally synthesized by using polybasic acid and polyamine compound as raw materials, dehydrating and condensing between amino groups and carboxyl groups under heating, forming amide bonds and stretching polymer chains.
  • a resin in which both structural units are linked by an amide bond using a dibasic acid or polybasic acid such as adipic acid or dimer acid and a polyamine such as ethylenediamine or diethylenetriamine as a starting material has been conventionally known.
  • dimer acid is rich in reactivity and is the most high molecular weight dibasic acid obtained industrially.
  • polyamides derived from dimer acid are tough, flexible, and have good adhesion performance. Therefore, epoxy resins can be used as adhesives, inks, surface coating agents, and epoxy resin curing agents. And is used for surface coating of metals, plastics, ceramics, etc., or for two-component reactive adhesives.
  • Polyethylene amines such as diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), and pentaethylenehexamine (PEHA) are used for the production of the polyamide resin composition.
  • DETA diethylenetriamine
  • TETA triethylenetetramine
  • TEPA tetraethylenepentamine
  • PEHA pentaethylenehexamine
  • the conventional triethylenetetramine-derived polyamide curing agent has a problem in its low-temperature curability.
  • the polyamide curing agent described in the publication has a tendency that the tensile strength of the coating film tends to be lower than when triethylenetetramine is used alone, and in fields where performance equivalent to that of triethylenetetramine is required. It is not necessarily preferable. Further, since the active hydrogen equivalent is increased and the polyamide / epoxy resin ratio is increased, it is difficult to say that it is suitable for applications requiring high water resistance.
  • TETA triethylenetetramine
  • N-3-aminopropylethylenediamine, N, N′-bis (3-aminopropyl) ethylenediamine, N, N, N′-tris (3-aminopropyl) are used as polyamine components to replace triethylenetetramine (TETA).
  • TETA triethylenetetramine
  • a polyamide curing agent using a mixture containing ethylenediamine, N, N, N ′, N′-tetrakis (3-aminopropyl) ethylenediamine has been proposed (see, for example, Patent Document 3). According to the publication, it is said that a coating film curing time shorter than that of TETA can be obtained.
  • the epoxy resin cured product by the polyamide curing agent described in the publication is inferior to the conventional polyamide curing agent in flexibility, so that TETA is easily applied particularly in coating applications that require flexibility. It cannot be said that it is a substitute.
  • the present invention has been made in view of the above-mentioned background art, and its purpose is to replace a triethylenetetramine-derived polyamide curing agent that is most commonly used, and a triethylenetetramine-free polyamide curing agent. It is to provide a composition.
  • this invention relates to the polyamide hardening
  • n represents a number of 3 or more.
  • a reaction product of the amine compound (B) 3 and the component (C) containing dimer acid [The total number of moles of the compound (A) and the compound (B)] / [number of moles of the component (C) in terms of dimer acid] is in the range of 2/1 to 4/3, and the compound (A) A polyamide curing agent composition comprising a reaction product having a molar ratio (A / B) with the compound (B) in the range of 90/10 to 15/85.
  • the polyamide curing agent composition of the present invention exhibits better performance than the commonly used polyamide curing agent derived from triethylenetetramine.
  • the polyamide curing agent composition of the present invention containing diethylenetriamine (a1) as the compound (A) exhibits better flexibility and storage stability than a conventional triethylenetetramine-derived polyamide curing agent. Therefore, it can be suitably used in the paint field where high flexibility is required.
  • the polyamide curing agent composition of the present invention containing as the compound (A) the amine compound (a2) having 5 or more nitrogen atoms per molecule represented by the above formula (1) is derived from conventional triethylenetetramine. It exhibits the same flexibility and water resistance as the polyamide curing agent, and exhibits better curing performance and storage stability. Furthermore, the low temperature curability which was a defect of the conventional triethylenetetramine-derived polyamide curing agent can also be improved.
  • the polyamide curing agent composition of the present invention comprises: Diethylenetriamine (a1) and the following formula (1)
  • n represents a number of 3 or more.
  • a reaction product of the amine compound (B) 3 and the component (C) containing dimer acid [The total number of moles of the compound (A) and the compound (B)] / [number of moles of the component (C) in terms of dimer acid] is in the range of 2/1 to 4/3, and the compound (A) It is characterized by containing a reaction product having a molar ratio (A / B) with the compound (B) in the range of 90/10 to 15/85.
  • diethylenetriamine (a1) used for compound (A) can be synthesized, for example, by reacting 1,2-dichloroethane and ammonia, and can be obtained as a single compound by purification by distillation. it can. Moreover, a commercial item can also be used.
  • the amine compound (a2) having 5 or more nitrogen atoms per molecule represented by the above formula (1) used in the compound (A) is synthesized, for example, by reacting 1,2-dichloroethane with ammonia. be able to.
  • Specific examples of such amine compounds include tetraethylenepentamine, pentaethylenehexamine, hexaethyleneheptamine, and polyethylene polyamine.
  • these compounds may be used alone or in combination.
  • diethylenetriamine, pentaethylenehexamine, hexaethyleneheptamine, or a mixture thereof is preferable.
  • the compound (B) is not particularly limited, but N-aminoethylpiperazine, piperazine, a partial N-methylated product of diethylenetriamine, N-methylethylenediamine, N-ethylethylenediamine, N-isopropylethylenediamine.
  • EDA ethylenediamine
  • beef tallow amine for example, 1,3-diaminopropane And the like, and a tertiary amino group in which two C 16 or C 18 alkyl groups are bonded to the amino group at the 1-position.
  • these compounds may be used alone or in combination.
  • a partial N-methylated product of diethylenetriamine, N-aminoethylpiperazine, piperazine, N, N-dimethylaminopropylamine or a mixture thereof is preferable.
  • the method for partially N-methylating diethylenetriamine is not particularly limited, and for example, a method using formaldehyde as the N-methylating agent is preferable.
  • an active hydrogen atom bonded to a nitrogen atom in the precursor diethylenetriamine, an active hydrogen atom bonded to a nitrogen atom (hereinafter, an active hydrogen atom bonded to a nitrogen atom in the molecule is referred to as “amino hydrogen atom”).
  • the ratio of methylation is preferably in the range of 40% to 60%.
  • the mixing ratio (A / B) of the compound (A) and the compound (B) is in the range of 90/10 to 15/85 (molar ratio), but is 90/10 to 40/60 (molar). Ratio) is preferable, and a range of 85/15 to 50/50 (molar ratio) is more preferable.
  • dimer acid used for component (C) means an acid obtained by polymerizing an unsaturated fatty acid to dimerize it, and includes its ester.
  • unsaturated fatty acids used in dimer acid synthesis include monofunctional unsaturated fatty acids. Specifically, stearic acid, palmitic acid, oleic acid, linoleic acid, linacic acid, or a mixture thereof, tall oil fatty acid, soybean fatty acid, rapeseed oil fatty acid, cottonseed fatty acid and the like are exemplified as suitable ones. The most preferred unsaturated fatty acid is tall oil fatty acid (based on oleic acid and linoleic acid).
  • an ester thereof may be used as a raw material for dimer acid.
  • Preferred examples of the unsaturated fatty acid ester include the lower alkyl esters of the monofunctional unsaturated fatty acids described above. Specific examples include the above-mentioned monofunctional unsaturated fatty acid methyl ester, ethyl ester, n-propyl ester, and tertiary butyl ester. These may be used alone or in combination of two or more. When an unsaturated fatty acid ester is used in combination as a dimer acid raw material, an ester of dimer acid is obtained.
  • Dimer acid is generally prepared by polymerizing the above raw materials under pressure.
  • the polymerization reaction is preferably performed in the presence of a high acid strength Lewis acid type or Bronsted acid type catalyst.
  • dimer acid can be obtained through a hydrolysis step.
  • the reaction liquid mainly composed of the dimer acid thus obtained usually contains trimer acid or an acid having a higher degree of polymerization, and further monomer components such as unreacted unsaturated fatty acid and by-product branched fatty acid. Contains. For this reason, most of these monomer components are removed by distillation. Although it does not specifically limit as distillation, It is preferable to carry out pressure reduction and normal pressure. This reaction may be further hydrogenated, which reduces the degree of unsaturation and coloration of the product. Further, the distillation residue may be further purified by molecular distillation. The ratio of dimer acid in the reaction solution to trimer acid and an acid having a higher degree of polymerization varies depending on polymerization conditions, purification conditions, unsaturated fatty acid as a raw material, and the like.
  • the reaction product thus obtained can be used as the component (C).
  • the component (C) usually contains a polyfunctional fatty acid such as dimer acid, trimer acid, an acid having a higher degree of polymerization, or an ester thereof.
  • the composition of component (C) is not particularly limited, but it is preferable to contain 70% to 95% by weight of dimer acid based on the total amount of component (C). Further, it is preferable to contain 3% by weight to 30% by weight of trimer acid and acids having higher degree of polymerization (including esters thereof). Furthermore, as a remainder, you may contain the raw material unsaturated fatty acid and other monofunctional carboxylic acid or polyfunctional carboxylic acid as needed.
  • the component (C) those obtained by using a monofunctional unsaturated fatty acid containing 70% by weight or more of oleic acid or its lower alkyl ester as a raw material are particularly preferably used.
  • the compound (A), the compound (B), and the component (C) are represented by [compound (A), compound (B),
  • the total number of moles] / [number of moles of component (C) in terms of dimer acid] is usually reacted in a ratio of 2/1 to 4/3.
  • the molecular weight of the reaction product can be appropriately adjusted, and the intended polyamide curing agent composition can be obtained as a liquid.
  • it can prevent that the amine compound of a raw material remains unreacted by setting a ratio to 2/1 or less.
  • the total number of moles of the amine compound is obtained by partially N-methylating diethylenetriamine. Calculated based on the average molecular weight of the composition.
  • the number of moles of the component (C) in terms of dimer acid is calculated from the acid value of the component (C) and is calculated as an average bifunctional acid.
  • the reaction of the compound (A), the compound (B) and the component (C) is usually carried out by heating in a temperature range of 120 to 280 ° C., preferably 180 to 250 ° C. under normal pressure. Also to prevent product coloring. It is advantageous to carry out in an inert gas atmosphere such as nitrogen gas.
  • the reaction time depends on the reaction temperature and the type of raw material to be used, and cannot be determined in general, but usually about 2 to 5 hours is sufficient. In addition, it is desirable to age for a suitable time in a reduced pressure state before the end of the reaction. As the reaction proceeds, the viscosity of the reaction solution increases, but the reaction product does not solidify even after the reaction is completed, and transfer from the reaction vessel to the storage vessel is easy even at room temperature. If desired, a solvent such as toluene, xylene, alcohol or the like may be added at the end of the reaction.
  • the polyamide curing agent composition of the present invention contains the reaction product thus obtained.
  • the polyamide curing agent composition of the present invention may contain a solvent such as an aromatic hydrocarbon compound, an aliphatic hydrocarbon compound, an ester, a ketone, an ether, or an alcohol.
  • a solvent such as an aromatic hydrocarbon compound, an aliphatic hydrocarbon compound, an ester, a ketone, an ether, or an alcohol.
  • the solvent toluene, xylene and the like are preferable.
  • the content of the solvent in the polyamide curing agent composition is preferably in the range of 0 to 60% by weight, more preferably in the range of 0 to 40% by weight.
  • the polyamide curing agent composition of the present invention may further contain other polyfunctional amine.
  • polyfunctional amines include, but are not limited to, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, higher molecular weight polyethyleneamine, piperazine, meta-xylylenediamine, isophoronediamine.
  • the cured epoxy resin of the present invention is formed by reacting the polyamide curing agent composition of the present invention with an epoxy resin.
  • the reaction between the polyamide curing agent composition of the present invention and the epoxy resin is not particularly limited.
  • a cured product is formed by mixing and contacting these. If necessary, heat treatment can be performed to forcibly cure.
  • the epoxy resin used in the cured epoxy resin of the present invention is not particularly limited, and examples thereof include an uncured polyepoxy compound containing 2 or more 1,2-epoxy groups per molecule, Specifically, bisphenol A type epoxy resin, bisphenol F type epoxy resin, epoxy novolac resin, alicyclic epoxy resin, polyfunctional epoxy resin, brominated epoxy resin and the like are exemplified. These epoxy resins can be used either without solvent or diluted with a solvent.
  • the polyamide curing agent composition and the epoxy resin of the present invention have a ratio of [amine hydrogen atom in the polyamide curing agent composition of the present invention] / [epoxy group in the epoxy resin] usually 1.5 / 1.
  • the reaction is carried out in the range of ⁇ 1 / 1.5 (molar ratio), preferably in the range of 1.2 / 1 to 1 / 1.2 (molar ratio). By doing in this way, the cured
  • a conventionally known curing accelerator when forming an epoxy resin cured product, can be used in combination with the polyamide curing agent composition of the present invention.
  • a curing accelerator is not particularly limited, and examples thereof include organic acid compounds, alcohol compounds, phenols, tertiary amines, hydroxylamines, and similar compounds.
  • particularly useful curing accelerators include phenol, nonylphenol, cresol, bisphenol A, salicylic acid, dimethylaminomethylphenol, bis (dimethylaminomethyl) phenol, tris (dimethylaminomethyl) phenol, and the like.
  • a conventionally known plasticizer can be used when forming a cured epoxy resin.
  • a plasticizer is not particularly limited, and examples thereof include benzyl alcohol, nonylphenol, various phthalates, and the like.
  • a solvent when the epoxy resin cured product is formed, a solvent, a filler, a pigment, a pigment dispersant, a rheology modifier, a thixotropic agent, a fluidization and smoothing aid, an antifoaming agent, and the like are used. Also good. Suitable solvents include, for example, aromatic hydrocarbon compounds, aliphatic hydrocarbon compounds, esters, ketones, ethers, alcohols and the like.
  • the epoxy resin composition is uniformly applied onto a polypropylene film (20 cm ⁇ 40 cm ⁇ 0.2 mm) using a doctor blade whose gap is adjusted to 200 micrometers, and a low temperature and temperature and humidity chamber (manufactured by Espec Corp., trade name: PL) -3K) was dried and cured for 48 hours under constant conditions of 25 ° C. and 50% relative humidity. Then, the test piece was created using the dumbbell type punch for tensile tests (JIS K 6259 No. 2 type dumbbell shape).
  • a test piece is attached to a Tensilon universal testing machine (product name: RTM500, manufactured by Orientec Co., Ltd.) using a parallel fastening lock, pulled at a speed of 30 mm / min, and the maximum tensile strength (kgf / mm 2 ) of the sample piece is measured. did.
  • the distance between the marked lines when the test piece was broken was measured with a ruler, and the tensile elongation (%) at break was measured. It is judged that the greater the tensile elongation (%), the higher the flexibility of the coating film.
  • the synthesized dimer acid polyamidoamine condensate was put into a thermostat (trade name: HIFLEX FL4050, manufactured by Enomoto Kasei Co., Ltd.), cooled to ⁇ 20 ° C. and held for 1 hour. Thereafter, the temperature of the thermostat was raised to 0 ° C. and maintained for 1 hour, and then the state of the dimer acid polyamidoamine condensate was visually examined. Similarly, the temperature was raised to 20, 25, 30, 35, 40, 50, 60, 70, 80, and 100 ° C., and after maintaining for 1 hour, the state of the polyamide was visually examined.
  • a thermostat trade name: HIFLEX FL4050, manufactured by Enomoto Kasei Co., Ltd.
  • the temperature at which the dimer acid polyamidoamine condensate became liquid was defined as “liquefaction temperature”. It is judged that the lower the liquefaction temperature, the lower the crystallinity of the dimer acid polyamidoamine condensate and the better the storage stability of the polyamide curing agent composition.
  • DETA-2M composition obtained by partially N-methylating the diethylenetriamine obtained in this Production Example
  • a 500 liter product from the previous step was added to a 1 liter batch reactor and further packed with 100 g isopropanol and 7.5 g RaneyCo catalyst.
  • the reaction vessel was purged with nitrogen and purged of air, then filled with 5.5 MPa hydrogen and heated to 120 ° C.
  • the reaction was carried out for 1 hour while maintaining the reactor pressure at 5.5 MPa and the temperature at 120 ° C.
  • the reactor was cooled to room temperature, and the reaction liquid which removed solid content by filtration was obtained. Isopropanol and a low boiling point component were distilled off from the reaction solution under reduced pressure to obtain 682 g of a product.
  • 50% of the hydrogen groups bonded to the nitrogen atom of ethylenediamine were substituted with aminopropyl groups.
  • APIEDA a composition obtained by partially 3-aminopropylating ethylenediamine obtained in this Production Example is referred to as “APEDA”.
  • Example 1 Composition of dimer acid of C 18 unsaturated fatty acid containing 7% by weight of monomeric acid and 14% by weight of trimer acid in a 1000 ml glass container [manufactured by Chikuno Food Industry Co., Ltd., trade name: Tsunodim 216, acid value: 193.6 mgKOH / G, corresponding to component (C).
  • 100 g of diethylenetriamine manufactured by Tosoh Corporation
  • [total number of moles of compound (A) and compound (B)] / [number of moles of component (C) in terms of dimer acid] is 3/2.
  • 21.4 g and N-aminoethylpiperazine [available from Tosoh Corporation, compound (B).
  • reaction vessel was cooled to 100 ° C., toluene was added to a solid concentration of 70% by weight and stirred to obtain a uniform toluene solution, and then cooled to room temperature.
  • the reaction product (dimer acid polyamidoamine condensate) obtained here was amber and had an active hydrogen equivalent of 227 in the absence of toluene.
  • Examples 2 to 9 and Comparative Examples 1 to 15 It implemented like Example 1 except having used the raw material of the kind and quantity shown in Table 1 and Table 2. The results are also shown in Table 1 and Table 2.
  • the coating film prepared with the polyamide curing agent composition of the present invention has a tensile elongation and tensile strength when a curing agent composition derived from triethylenetetramine is used (Comparative Example).
  • the tensile elongation was about 2 to 3 times that of 1). Therefore, when the polyamide curing agent composition of the present invention is used, it exhibits excellent flexibility as compared with the curing agent composition derived from triethylenetetramine (Comparative Example 1), and in particular, flexibility is required. It turns out that it can use suitably for the coating material (For example, coating material of the turbine for wind power generation).
  • curing agent composition of this invention is excellent in storage stability compared with the hardening
  • Comparative Examples 12 to 14 when triethylenetetramine having an active hydrogen number of 6 per molecule is used instead of the compound (B), the tensile elongation is the same as that of Comparative Example 1. Compared to about 1.5 times, it is difficult to say that sufficient flexibility has been imparted. In Comparative Examples 12 to 14, the molar ratios of diethylenetriamine / triethylenetetramine were 80/20, 70/30, and 60/40, respectively.
  • Comparative Example 15 when APEDA was used, the coating film became brittle and lost flexibility, and as a result, the tensile elongation and tensile strength compared to the triethylenetetramine-derived polyamide curing agent composition (Comparative Example 1). Both strengths have deteriorated and are not practical.
  • Example 10 Composition of dimer acid of C 18 unsaturated fatty acid containing 7% by weight of monomeric acid and 14% by weight of trimer acid in a 1000 ml glass container [manufactured by Chikuno Food Industry Co., Ltd., trade name: Tsunodim 216, acid value: 193.6 mgKOH / G, corresponding to component (C). 100 g and tetraethylene so that the ratio of [total number of moles of compound (A) and compound (B)] / [number of moles of component (C) in terms of dimer acid] is 3/2. 41.8 g of pentamine (manufactured by Tosoh Corporation) [corresponds to compound (A). ] And N-aminoethylpiperazine (manufactured by Tosoh Corporation) 5.0 g [corresponds to compound (B). Was slowly added with stirring.
  • pentamine manufactured by Tosoh Corporation
  • N-aminoethylpiperazine
  • the mixture was heated at 120 ° C. and stirred until it was completely uniform.
  • the stirring speed was increased to 150 rpm, heating was performed at 200 ° C. for 4 hours under a nitrogen atmosphere, and 6.2 g of water was removed by distillation. Furthermore, reaction was performed at 200 degreeC and 10 mmHg for 1 hour.
  • the reaction vessel was cooled to 100 ° C., toluene was added to a solid concentration of 70% by weight and stirred to obtain a uniform toluene solution, and then cooled to room temperature.
  • the reaction product (dimer acid polyamidoamine condensate) obtained here was amber and had an active hydrogen equivalent of 167 in the absence of toluene.
  • An epoxy resin with an epoxy equivalent of 474 (trade name: Epicoat 1001, bisphenol A type epoxy resin with an epoxy equivalent of 474, manufactured by Yuka Shell Epoxy Co., Ltd.) diluted to 70% by weight with toluene is cured with polyamide.
  • agent composition a toluene solution of the obtained dimer acid polyamidoamine condensate was added in a proportion of 26 parts by weight, and the mixture was sheared and stirred for 5 minutes at room temperature using a spatula.
  • [amine hydrogen atom in polyamide curing agent composition of the present invention] / [epoxy group in epoxy resin] was 1/1 (molar ratio).
  • Table 3 shows the results of measuring the curing rate and physical properties of the coating film according to the evaluation method described above.
  • S-PEHA shown in Table 3 and Table 4 is a mixture of heavy ethyleneamine obtained by further distilling the distillation residue of pentaethylenehexamine (PEHA) obtained in the production process of ethyleneamines. (Made by Tosoh Corporation). Its molecular weight is higher than that of PEHA, and it is characterized by a large number of nitrogen atoms per molecule.
  • the coating film curing time with the polyamide curing agent composition of the present invention was faster than that of the standardly used triethylenetetramine-derived polyamide curing agent composition (Comparative Example 16). Therefore, it can be seen that the present invention enables fast low-temperature curability and increases the productivity of coating.
  • the coating film prepared with the polyamide curing agent composition of the present invention had the same tensile elongation and tensile strength as the triethylenetetramine-derived polyamide curing agent composition. Therefore, according to the present invention, flexibility and coating film strength equivalent to those of triethylenetetramine can be realized, and sufficient coating film flexibility required for a paint can be provided.
  • the polyamide curing agent composition of the present invention was able to maintain the same water resistance as the triethylenetetramine-derived polyamide curing agent. Moreover, it turns out that the polyamide hardening
  • Comparative Example 35 when APEDA was used, the coating film became brittle and lost flexibility. As a result, the tensile elongation and tensile strength compared to the triethylenetetramine-derived polyamide curing agent composition (Comparative Example 1). Both strengths have deteriorated and are not practical.
  • Reference examples include tetraethylenepentamine (manufactured by Tosoh Corporation) as the compound (A), N-aminoethylpiperazine (manufactured by Tosoh Corporation) as the compound (B), and tunodime 216 (trade name) as the component (C). , Manufactured by Chikuno Food Industry Co., Ltd.) and triethylenetetramine (manufactured by Tosoh Corporation).
  • a large amount of triethylenetetramine added as a raw material does not contribute to shortening the curing time of the coating film and improving the tensile strength and water resistance of the obtained coating film. .
  • the polyamide curing agent composition of the present invention exhibits better performance than the commonly used polyamide curing agent derived from triethylenetetramine, and is suitably used, for example, in the paint field. It should be noted that the specifications, claims and abstracts of Japanese Patent Application 2010-082141 filed on March 31, 2010 and Japanese Patent Application 2010-082142 filed on March 31, 2010 are as follows. The entire contents are hereby incorporated by reference as the disclosure of the specification of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paints Or Removers (AREA)
  • Polyamides (AREA)

Abstract

 最も一般的に使用されているトリエチレンテトラミン由来ポリアミド硬化剤を代替しうる、トリエチレンテトラミン非由来のポリアミド硬化剤組成物を提供する。 ジエチレントリアミン(a1)、及び下記式(1) (式中、nは3以上の数を表す。) で示される1分子当りの窒素原子数が5以上のアミン化合物(a2)からなる群より選択される化合物(A)、1分子当りの窒素原子数が4以下であって活性水素数が2又は3のアミン化合物(B)、並びにダイマー酸を含む成分(C)の反応生成物であって、 [化合物(A)と化合物(B)との合計のモル数]/[成分(C)のダイマー酸換算のモル数]が2/1~4/3の範囲である反応生成物をポリアミド硬化剤組成物として用いる。

Description

ポリアミド硬化剤組成物
 本発明は、ポリアミド硬化剤組成物に関する。
 本発明のポリアミド硬化剤組成物は、塗料、接着剤、フローリング用途等に使用されるエポキシ樹脂の硬化性組成物として使用される。
 ポリアミド樹脂組成物は、一般に、多塩基酸とポリアミン化合物を原料とし、加熱下にアミノ基とカルボキシル基の間で脱水縮合して、アミド結合の形成とポリマー鎖の延伸を行い合成される。具体的には、アジピン酸、ダイマー酸等の2塩基酸又は多塩基酸と、エチレンジアミン、ジエチレントリアミン等のポリアミン類とを出発原料として、アミド結合で両構成単位を連結した樹脂等が従来より知られている(例えば、特許文献1参照)。ここで、ダイマー酸は反応性に富み、工業的に得られる最も高分子量の2塩基酸である。
 これらポリアミド樹脂組成物のうち、ダイマー酸から誘導されるポリアミドは強靭で、柔軟性を示し、かつ良好な接着性能を有するので、接着剤、インク、表面コーティング剤や、エポキシ樹脂硬化剤としてエポキシ樹脂に配合され、金属、プラスチック、セラミック等の表面コーティング用として、又は二液反応型接着剤等に用いられている。
 ポリアミド樹脂組成物の製造には、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、テトラエチレンペンタミン(TEPA)、ペンタエチレンヘキサミン(PEHA)等のポリエチレンアミンが使用されるが、商業的に最も普通に使用されるポリエチレンアミンはTETAである。
 しかしながら、従来のトリエチレンテトラミン由来ポリアミド硬化剤はその低温硬化性に課題を有していた。
 また、近年、風力発電用タービン等の塗料分野において、TETAベースのポリアミド硬化剤よりも、さらに可撓性が高くなるポリアミド硬化剤が求められている。これは、同分野において、タービンのたわみが大きい、飛来物との接触等の問題が顕在し、より剥離しない塗膜が要望されているためである。
 このため、トリエチレンテトラミンとピペラジン環を有するポリアミンの混合組成物を用いたポリアミド硬化剤が提案されている(例えば、特許文献2参照)。同公報によれば、得られるポリアミド硬化剤は、ポリアミド硬化剤に対するエポキシ樹脂量を減らすことができるため、これによってシステムの粘度を下げられ、より短い塗膜硬化時間及び耐衝撃性に優れる塗膜が得られるとしている。
 しかしながら、同公報に記載されたポリアミド硬化剤は、トリエチレンテトラミンを単独で使用する場合に比べて塗膜の引張強度が低くなる傾向があり、トリエチレンテトラミン同等の性能が要求される分野には必ずしも好適とは言い難い。また、活性水素当量が大きくなって、ポリアミド/エポキシ樹脂比率が高くなるため、高い耐水性が要求される用途へ好適とは言い難い。
 また、トリエチレンテトラミン(TETA)は原料供給量が限られ、他のポリエチレンポリアミンに比べ価格が高いため、ポリアミド硬化剤の製造においてTETAに対するより安定供給が可能で経済的な代替成分が求められている。
 そこで、トリエチレンテトラミン(TETA)を代替するポリアミン成分として、N-3-アミノプロピルエチレンジアミン、N、N’-ビス(3-アミノプロピル)エチレンジアミン、N、N、N’-トリス(3-アミノプロピル)エチレンジアミン、N、N、N’、N’-テトラキス(3-アミノプロピル)エチレンジアミンを含む混合物を用いたポリアミド硬化剤が提案されている(例えば、特許文献3参照)。同公報によれば、TETAに比べて短い塗膜硬化時間が得られるとしている。
 しかしながら、同公報に記載されたポリアミド硬化剤によるエポキシ樹脂硬化物は、従来のポリアミド硬化剤に比べて可撓性に劣るため、特に可撓性を要求される塗料用途においては、容易にTETAを代替するとは言えない。
米国特許第2450940号明細書 特開平11-228672号公報 特開2008-7776号公報
 本発明は、上記の背景技術に鑑みてなされたものであり、その目的は、最も一般的に使用されているトリエチレンテトラミン由来ポリアミド硬化剤を代替しうる、トリエチレンテトラミン非由来のポリアミド硬化剤組成物を提供することである。
 具体的には、(1)トリエチレンテトラミン由来ポリアミド硬化剤に比べ、良好な可撓性と貯蔵安定性を示す、トリエチレンテトラミン非由来のポリアミド硬化剤組成物を提供すること、又は(2)トリエチレンテトラミン由来ポリアミド硬化剤と同等の可撓性、耐水性を示し、より良好な硬化性能と貯蔵安定性を示す、トリエチレンテトラミン非由来のポリアミド硬化剤組成物を提供することである。
 本発明者らは、ポリアミド硬化剤組成物について、鋭意検討を重ねた結果、本発明を完成するに至った。
 すなわち、本発明は以下に示すとおりのポリアミド硬化剤組成物、及びそれを用いて得られるエポキシ樹脂硬化物に関する。
 [1]ジエチレントリアミン(a1)、及び下記式(1)
Figure JPOXMLDOC01-appb-C000002
(式中、nは3以上の数を表す。)
で示される1分子当りの窒素原子数が5以上のアミン化合物(a2)からなる群より選択される化合物(A)、1分子当りの窒素原子数が4以下であって活性水素数が2又は3のアミン化合物(B)、並びにダイマー酸を含む成分(C)の反応生成物であって、
[化合物(A)と化合物(B)との合計のモル数]/[成分(C)のダイマー酸換算のモル数]が2/1~4/3の範囲であり、かつ
化合物(A)と化合物(B)とのモル比(A/B)が90/10~15/85の範囲である反応生成物
を含有することを特徴とするポリアミド硬化剤組成物。
 [2]化合物(A)が、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ヘキサエチレンヘプタミン、ポリエチレンポリアミン、又はこれらの混合物である上記[1]に記載のポリアミド硬化剤組成物。
 [3]化合物(B)が、N-アミノエチルピペラジン、ピペラジン、ジエチレントリアミンの部分N-メチル化物、N,N-ジメチルアミノプロピルアミン又はこれらの混合物である上記[1]又は[2]に記載のポリアミド硬化剤組成物。
 [4]化合物(A)と化合物(B)とのモル比(A/B)が90/10~40/60の範囲である上記[1]乃至[3]のいずれかに記載のポリアミド硬化剤組成物。
 [5]化合物(A)と化合物(B)とのモル比(A/B)が85/15~50/50の範囲である上記[1]乃至[3]のいずれかに記載のポリアミド硬化剤組成物。
 [6]成分(C)が、成分(C)の全量に対して、ダイマー酸を70~95重量%含有する上記[1]乃至[5]のいずれかに記載のポリアミド硬化剤組成物。
 [7]上記[1]乃至[6]のいずれかに記載のポリアミド硬化剤組成物とエポキシ樹脂とを反応させて得られるエポキシ樹脂硬化物。
 [8]エポキシ樹脂中のエポキシ基に対するポリアミド硬化剤組成物中のアミン水素原子のモル比が、1.5/1~1/1.5の範囲である上記[7]に記載のエポキシ樹脂硬化物。
 [9]エポキシ樹脂が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、又はこれらの混合物である上記[7]又は[8]に記載のエポキシ樹脂硬化物。
 本発明のポリアミド硬化剤組成物は、一般に多用されるトリエチレンテトラミン由来ポリアミド硬化剤よりも良好な性能を示すものである。
 例えば、化合物(A)としてジエチレントリアミン(a1)を含む本発明のポリアミド硬化剤組成物は、従来のトリエチレンテトラミン由来ポリアミド硬化剤よりも良好な可撓性と貯蔵安定性を示すものである。よって、高い可撓性が要求される塗料分野に好適に使用することができる。
 また、化合物(A)として、上記式(1)で示される1分子当りの窒素原子数が5以上のアミン化合物(a2)を含む本発明のポリアミド硬化剤組成物は、従来のトリエチレンテトラミン由来ポリアミド硬化剤と同等の可撓性、耐水性を示し、より良好な硬化性能と貯蔵安定性を示すものである。さらには、従来のトリエチレンテトラミン由来ポリアミド硬化剤の欠点であった低温硬化性をも改善することができる。
 以下、本発明を詳細に説明する。
 本発明のポリアミド硬化剤組成物は、
ジエチレントリアミン(a1)、及び下記式(1)
Figure JPOXMLDOC01-appb-C000003
(式中、nは3以上の数を表す。)
で示される1分子当りの窒素原子数が5以上のアミン化合物(a2)からなる群より選択される化合物(A)、1分子当りの窒素原子数が4以下であって活性水素数が2又は3のアミン化合物(B)、並びにダイマー酸を含む成分(C)の反応生成物であって、
[化合物(A)と化合物(B)との合計のモル数]/[成分(C)のダイマー酸換算のモル数]が2/1~4/3の範囲であり、かつ
化合物(A)と化合物(B)とのモル比(A/B)が90/10~15/85の範囲である反応生成物
を含有することをその特徴とする。
 本発明において、化合物(A)に用いられるジエチレントリアミン(a1)は、例えば、1,2-ジクロロエタンとアンモニアを反応させることによって合成することができ、蒸留精製することによって単一化合物として入手することができる。また、市販品を使用することもできる。
 また化合物(A)に用いられる上記式(1)で示される1分子当りの窒素原子数が5以上のアミン化合物(a2)は、例えば、1,2-ジクロロエタンとアンモニアを反応させることによって合成することができる。このようなアミン化合物としては、具体的には、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ヘキサエチレンヘプタミン、ポリエチレンポリアミン等が例示される。
 化合物(A)としては、これらの化合物を単独で用いても良いし、組み合わせて用いても良い。これらのうち好ましくは、ジエチレントリアミン、ペンタエチレンヘキサミン、ヘキサエチレンヘプタミン、又はこれらの混合物である。
 本発明において、化合物(B)としては、特に限定するものではないが、N-アミノエチルピペラジン、ピペラジン、ジエチレントリアミンの部分N-メチル化物や、N-メチルエチレンジアミン、N-エチルエチレンジアミン、N-イソプロピルエチレンジアミン、N-メチルアミノプロピルアミン、N,N-ジメチルアミノプロピルアミン、N,N-ジエチルアミノプロピルアミン、エチレンジアミン(EDA)のモノ又はジ-N-メチル化物、牛脂アミン(例えば、1,3-ジアミノプロパンをベースアミンとし、1位のアミノ基にC16又はC18のアルキル基が2つ結合して3級アミノ基となっているもの等。)等が挙げられる。
 化合物(B)としては、これらの化合物を単独で用いても良いし、組み合わせて用いても良い。これらのうち好ましくは、ジエチレントリアミンの部分N-メチル化物、N-アミノエチルピペラジン、ピペラジン、N,N-ジメチルアミノプロピルアミン又はこれらの混合物である。
 ジエチレントリアミンを部分的にN-メチル化する方法としては、特に限定するものではないが、例えば、N-メチル化剤としてホルムアルデヒドを用いる方法が好適なものとして挙げられる。
 このようにして得られたN-メチル化体において、前駆体であるジエチレントリアミン内の、窒素原子に結合する活性水素原子(以下、分子内の窒素原子に結合する活性水素原子を、「アミノ水素原子」と称する場合がある。)がメチル化される割合は、40%~60%の範囲が好ましい。
 本発明において、化合物(A)と化合物(B)との混合比率(A/B)は、90/10~15/85(モル比)の範囲であるが、90/10~40/60(モル比)の範囲が好ましく、85/15~50/50(モル比)の範囲がより好ましい。
 本発明において、成分(C)に用いられる「ダイマー酸」とは、不飽和脂肪酸を重合して、二量化した酸を意味し、そのエステルを包含するものとする。
 ダイマー酸の合成において使用される不飽和脂肪酸としては、例えば、モノ官能性不飽和脂肪酸が挙げられる。具体的には、ステアリン酸、パルミチン酸、オレイン酸、リノール酸、リネイン酸、又はそれらの混合物や、トール油脂肪酸、大豆脂肪酸、菜種油脂肪酸、綿実脂肪酸等が好適なものとして例示される。最も好ましい不飽和脂肪酸はトール油脂肪酸(オレイン酸とリノール酸を主成分とする。)である。
 また、ダイマー酸の原料としては、上記した不飽和脂肪酸に加えて、そのエステルを用いてもよい。不飽和脂肪酸のエステルとしては、例えば、上記したモノ官能性不飽和脂肪酸の低級アルキルエステルが好適なものとして挙げられる。具体的には、上記したモノ官能性不飽和脂肪酸のメチルエステル、エチルエステル、n-プロピルエステル、第三ブチルエステル等が例示される。これらは単独で使用してもよいし、2種類以上を併用してもよい。ダイマー酸の原料として、不飽和脂肪酸のエステルを併用した場合には、ダイマー酸のエステルが得られる。
 ダイマー酸は、一般に、上記した原料を加圧下で重合することによって調製される。ここで、重合反応は、高酸強度のルイス酸型又はブレンステッド酸型触媒の存在下に行うことが好ましい。また、不飽和脂肪酸のエステルを原料とした場合には、さらに加水分解工程を経ることによりダイマー酸が得られる。
 このようにして得られたダイマー酸を主成分とする反応液は、通常、トリマー酸やより重合度の高い酸を含み、さらには未反応の不飽和脂肪酸や副生する分岐脂肪酸等のモノマー成分を含有している。このため、これらモノマー成分の大部分を蒸留によって除去する。蒸留としては特に限定するものではないが、減圧常圧することが好ましい。この反応液をさらに水素化してもよく、これにより、生成物の不飽和度及び着色が低減される。また、蒸留残渣を分子蒸留することによりさらに精製してもよい。なお、反応液中のダイマー酸と、トリマー酸及びより重合度高い酸との比率は重合条件、精製条件、及び原料である不飽和脂肪酸等に応じて変動する。
 本発明においては、このようにして得られた反応生成物を、成分(C)として用いることができる。成分(C)は、通常、ダイマー酸、トリマー酸、より重合度の高い酸等の多官能性脂肪酸やそのエステルを含む。
 成分(C)の組成としては、特に限定するものではないが、成分(C)の全量に対し、ダイマー酸を70重量%~95重量%含有することが好ましい。また、トリマー酸及びより重合度の高い酸(それらのエステルを含む)を3重量%~30重量%含有することが好ましい。さらに残部として、原料の不飽和脂肪酸や、必要に応じて他のモノ官能性カルボン酸又は多官能性カルボン酸を含有していてもよい。成分(C)としては、原料として、オレイン酸やその低級アルキルエステルを70重量%以上を含有するモノ官能性不飽和脂肪酸を用いて得られたものが特に好適に用いられる。
 エポキシ樹脂の硬化剤として作用するには、末端アミノ基の存在が必要とされるため、化合物(A)、化合物(B)及び成分(C)は、[化合物(A)と化合物(B)との合計のモル数]/[成分(C)のダイマー酸換算のモル数]が、通常2/1~4/3の割合で反応される。これらの割合を4/3以上とすることで、反応物の分子量を適度に調節することができ、目的とするポリアミド硬化剤組成物を液状物として得ることができる。また、比率を2/1以下とすることで原料のアミン化合物が未反応で残存するのを防ぐことができる。
 なお、化合物(B)として、ジエチレントリアミンを部分的にN-メチル化して得られる組成物を用いた場合には、アミン化合物の合計のモル数は、ジエチレントリアミンを部分的にN-メチル化して得られる組成物の平均分子量に基づいて計算される。
 また、成分(C)のダイマー酸換算のモル数は、成分(C)の酸価から計算され、平均2官能の酸として算出される。
 化合物(A)、化合物(B)及び成分(C)の反応は、通常、常圧下、120~280℃、好ましくは180~250℃の温度範囲において加熱することにより行われる。また、生成物の着色を防止するために。窒素ガス等の不活性ガス雰囲気下で行うのが有利である。
 反応時間は反応温度や使用する原料の種類により左右され、一概に定めることはできないが、通常は2~5時間程度で十分である。また、反応終了前には減圧状態で適当な時間熟成することが望ましい。反応の進行に伴い、反応液の粘度が上昇するが、反応終了後でも反応生成物は固化することがなく、反応容器から保存容器への移送は室温でも容易である。また、所望に応じ反応終了時に、トルエン、キシレン、アルコール等の溶媒を添加してもよい。
 本発明のポリアミド硬化剤組成物は、このようにして得られた反応生成物を含有するものである。
 本発明のポリアミド硬化剤組成物は、芳香族炭化水素化合物、脂肪族炭化水素化合物、エステル、ケトン、エーテル、アルコール等の溶媒を含んでいてもよい。溶媒としては、トルエン、キシレン等が好ましい。ポリアミド硬化剤組成物中の溶媒の含有量は、0~60重量%の範囲が好ましく、0~40重量%の範囲がより好ましい。
 また、本発明のポリアミド硬化剤組成物には、さらに他の多官能性アミンを含有させてもよい。このような多官能性アミンとしては、特に限定するものではないが、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、より分子量の高いポリエチレンアミン、ピペラジン、メタ-キシリレンジアミン、イソホロンジアミン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルメタン、2,4’-ジアミノジシクロヘキシルメタン、1,2-ジアミノプロパン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、ビス-(3-アミノプロピル)アミン、N,N’-ビスー(3-アミノプロピル)-1,2-ジアミノエタン、1,2-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、ポリオキシアルキレンポリアミン(例えば、Jeffamine D-230、Jeffamine D-400、Jeffamine D-2000、Jeffamine D-4000、Jeffamine T-403)等が挙げられる。
 次に、本発明のエポキシ樹脂硬化物について説明する。
 本発明のエポキシ樹脂硬化物は、本発明のポリアミド硬化剤組成物とエポキシ樹脂とを反応させることにより形成される。本発明のポリアミド硬化剤組成物とエポキシ樹脂との反応については、特に限定するものではないが、例えば、これらを混合、接触させることにより、硬化物が形成される。必要に応じて、加熱処理を施し、強制的に硬化させることもできる。
 本発明のエポキシ樹脂硬化物に用いられるエポキシ樹脂としては、特に限定するものではないが、例えば、1分子当たり2以上の1,2-エポキシ基を含有する未硬化のポリエポキシ化合物が挙げられ、具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、エポキシノボラック樹脂、脂環式エポキシ樹脂、多官能性エポキシ樹脂、臭素化エポキシ樹脂等が例示される。これらのエポキシ樹脂は無溶媒のものでも、溶媒で希釈したものでも使用することができる。
 本発明において、本発明のポリアミド硬化剤組成物とエポキシ樹脂とは、[本発明のポリアミド硬化剤組成物中のアミン水素原子]/[エポキシ樹脂中のエポキシ基]が、通常1.5/1~1/1.5(モル比率)の範囲で、好ましくは1.2/1~1/1.2(モル比)の範囲で反応させる。このようにすることにより、良好なエポキシ樹脂の硬化物性を発揮させることができる。
 本発明において、エポキシ樹脂硬化物を形成する際には、本発明のポリアミド硬化剤組成物に加えて、従来公知の硬化促進剤を併用することができる。このような硬化促進剤としては、特に限定するものではないが、例えば、有機酸化合物、アルコール化合物、フェノール、第三アミン、ヒドロキシルアミンのほか、これらに類する化合物が挙げられる。これらのうちでも、特に有用な硬化促進剤としては、フェノール、ノニルフェノール、クレゾール、ビスフェノールA、サリチル酸、ジメチルアミノメチルフェノール、ビス(ジメチルアミノメチル)フェノール、トリス(ジメチルアミノメチル)フェノール等が挙げられる。
 また、本発明において、エポキシ樹脂硬化物を形成する際には、従来公知の可塑剤を使用することができる。このような可塑剤としては、特に限定するものではないが、ベンジルアルコール、ノニルフェノール、種々のフタル酸エステル等が好適なものとして挙げられる。
 さらに、本発明において、エポキシ樹脂硬化物を形成する際には、溶媒、充填剤、顔料、顔料分散剤、レオロジー修飾剤、チキソトロピー剤、流動化及び平滑化補助剤、消泡剤等を用いてもよい。好適な溶媒としては、例えば、芳香族炭化水素化合物、脂肪族炭化水素化合物、エステル、ケトン、エーテル、アルコール等が挙げられる。
 本発明を以下の参考例及び実施例により更に詳細に説明するが、本発明はこれらに限定して解釈されるものではない。
 なお、反応生成物の分析は以下の方法で行った。
 <反応生成物の分析>
 (1)ガスクロマトグラフィー分析.
 分析カラム:DB-5(アジレント・テクノロジー社製、長さ30m、フィルム厚2.5μm、内径0.32mm),
 カラム温度:60℃+10℃/分昇温+280℃/15分。
 (2)核磁気共鳴(NMR)分析(H-NMR)
 Gemini-200型核磁気共鳴装置(Varian Inc.社製)を用いて行った。
 エポキシ樹脂硬化物について、塗膜の硬化速度と物性測定の評価は以下のとおり、実施した。
 <薄膜硬化時間の評価>
 エポキシ樹脂組成物を、インチアプリケーターを用いて76マイクロメーターの湿潤膜厚さの塗膜をガラスパネル(25cm×2cm×0.2cm)に適用した。低温恒温恒湿機(エスペック社製、商品名:PL-3K)を用い、温度25℃、相対湿度50%の一定条件において硬化後、RC型ドライングタイムレコーダー(コーティングテスター社製)を使用して測定した。この測定で示される2次線状痕消失時間(Hr.)により硬化性を評価した。
 <塗膜の引張強度及び可撓性の評価>
 エポキシ樹脂組成物を、隙間を200マイクロメーターに調整したドクターブレードを用いてポリプロピレンフィルム(20cm×40cm×0.2mm)上に均一塗布し、低温恒温恒湿機(エスペック社製、商品名:PL-3K)を用いて、25℃、相対湿度50%の一定条件で48時間乾燥、硬化させた。
 その後、引張試験用ダンベル型打ち抜き器(JIS K 6259 2号型ダンベル状)を用いてテストピースを作成した。平行締付錠を用いてテストピースをテンシロン万能試験機(オリエンテック社製、商品名:RTM500)に取り付け、30mm/minの速度で引張り、サンプルピースの最大引張り強度(kgf/mm)を測定した。同時に、テストピース破断時の標線間距離(初期は40mm)を定規で計測し、破断時の引張伸び(%)を測定した。引張伸び(%)が大きいほど塗膜の可撓性が高いと判断される。
 <硬化塗膜の耐水性評価>
 1及び7日硬化後の塗膜を40℃に調温した水槽に24時間浸した後、塗膜の状態変化を目視により評価した。結果は次の4段階で評価した.
 ◎:優秀(変化無し)、○:良好、△:やや不良、×:不良(塗膜表面の膨れ及び変形、塗膜の変色が発生)。
 <貯蔵安定性の評価>
 合成したダイマー酸ポリアミドアミン縮合物を恒温機(楠本化成社製、商品名:HIFLEX FL4050)に入れ、-20℃まで冷却して1時間保持した。その後、恒温機の温度を0℃に上げ、1時間温度を維持した後、ダイマー酸ポリアミドアミン縮合物の状態を目視で調べた。同様に、温度を20、25、30、35、40、50、60、70、80、100℃と上げ、それぞれ1時間保持後にポリアミドの状態を目視で調べた。ダイマー酸ポリアミドアミン縮合物が液状となった温度を「液状化温度」と定義した。液状化温度が低いほど、ダイマー酸ポリアミドアミン縮合物の結晶性が低く、ポリアミド硬化剤組成物の貯蔵安定性が良いと判断される。
 製造例1 ジエチレントリアミンの部分N-メチル化.
 1000mlの攪拌機付きオートクレーブ内に、ジエチレントリアミン200g(東ソー社製、商品名:DETA)、水100g及び触媒Pd-C(5%担持)2.0gを仕込んだ。オートクレーブを密閉、水素置換後、攪拌下に130℃まで昇温した。続けてオートクレーブ内に圧力3MPaで水素を導入しつつ、37%ホルマリン水溶液314gを7時間かけてポンプで供給した。1時間熟成反応を行った後、冷却して反応液を取り出した。
 蒸留装置を用いて反応液から水を留去後、減圧下に生成物236gを得た。この生成物をガスクロマトグラフ分析及びH-NMR分析した結果、ジエチレントリアミンの窒素原子に結合した水素基に対し40%がメチル基に変換していた([メチル基]/[水素原子]=40/60(モル比))。よって、この生成物1分子当りの平均の活性水素数は3である。
 また、得られたアミン化合物の組成は、DETA/モノメチル体/ジメチル体/テトラメチル体/ペンタメチル体=7.7/25.9/34.7/23.1/7.6/1.0(GC面積比)であった。
 以下、本製造例で得られたジエチレントリアミンを部分的にN-メチル化して得られた組成物を「DETA-2M」と称する。
 製造例2 エチレンジアミンの部分3-アミノプロピル化.
 1リットルの反応容器に236gのエチレンジアミンを加えて60℃に加熱した。この混合物に417gのアクリロニトリルを2時間にわたって加えた。アクリロニトリルの追加完了後、60℃でさらに2時間反応を維持した。
 1リットルのバッチ反応器に前工程でできた生成物500gを加え、さらに100gのイソプロパノール及び7.5gのRaneyCo触媒を詰め込んだ。反応容器内を窒素置換して空気を追い出した後、5.5MPaの水素で満たしそして120℃に加熱した。反応器圧力を5.5MPa、温度を120℃に維持して、1時間反応を行った。
 反応器を室温まで冷却し、ろ過により固形分を取り除いた反応液を得た。反応液からイソプロパノール及び低沸点成分を減圧留去することで682gの生成物を得た。この生成物をガスクロマトグラフ分析及びH-NMR分析した結果、エチレンジアミンの窒素原子に結合した水素基のうち50%がアミノプロピル基に置換していた。また、得られた生成物の組成は、モノアミノプロピル置換体/ビスアミノプロピル置換体/トリスアミノプロピル置換体/テトラキスアミノプロピル置換体=7/80/11/2(GC面積比)であった。
 以下、本製造例で得られたエチレンジアミンを部分的に3-アミノプロピル化して得られた組成物を「APEDA」と称する。
 実施例1.
 1000mlのガラス容器に、モノマー酸7重量%、トリマー酸14重量%を含むC18不飽和脂肪酸のダイマー酸の組成物[筑野食品工業社製、商品名:ツノダイム216、酸価:193.6mgKOH/g、成分(C)に該当する。]100gを加え、さらに[化合物(A)と化合物(B)との合計のモル数]/[成分(C)のダイマー酸換算のモル数]が3/2になるようにジエチレントリアミン(東ソー社製)21.4gとN-アミノエチルピペラジン[東ソー社製、化合物(B)に該当する。]6.7gを、攪拌しながらゆっくり加えた。攪拌速度を150rpmに上げ、窒素雰囲気下200℃で4時間加熱し、6.2gの水を蒸留によって除去した。さらに200℃、10mmHgで1時間反応を行った。
 次に、反応容器を100℃まで冷却し、固形物濃度70重量%になるようにトルエンを加えて攪拌して均一なトルエン溶液とした後、室温まで冷却した。ここで得られた反応生成物(ダイマー酸ポリアミドアミン縮合物)は琥珀色であり、トルエンを含まない状態での活性水素当量が227であった。
 エポキシ当量474のエポキシ樹脂(油化シェルエポキシ社製、商品名:エピコート1001、エポキシ当量474のビスフェノールA型エポキシ樹脂)をトルエンで70重量%に希釈したエポキシ樹脂溶液32重量部に対し、得られたダイマー酸ポリアミドアミン縮合物のトルエン溶液を、68重量部の割合で添加し、スパチュラを用いて室温下5分間せん断攪拌した。ここで、[本発明のポリアミド硬化剤組成物中のアミン水素原子]/[エポキシ樹脂中のエポキシ基]は1/1(モル比)であった。上記評価方法に従って、塗膜の硬化速度と物性測定を行った結果を表1に示す。
 実施例2~実施例9及び比較例1~比較例15.
 表1及び表2に示す種類と量の原料を用いた以外は、実施例1と同様に実施した。その結果を表1及び表2に併せて示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例1~実施例9から明らかなとおり、本発明のポリアミド硬化剤組成物で調製した塗膜は、引張伸び及び引張強度が、トリエチレンテトラミン由来の硬化剤組成物を使用した場合(比較例1)に比べて約2倍~約3倍の引張伸びを示した。よって、本発明のポリアミド硬化剤組成物を用いた場合には、トリエチレンテトラミン由来の硬化剤組成物(比較例1)に比べて優れた可撓性を示し、特に可撓性が要求される塗料(例えば、風力発電用タービンの塗料)用途に好適に用いることができることがわかる。また、本発明のポリアミド硬化剤組成物は、トリエチレンテトラミン由来の硬化剤組成物(比較例1)に比べて貯蔵安定性に優れる。さらに、本発明のポリアミド硬化剤組成物は、ポリエチレンアミンとしてジエチレントリアミンを使用するため、トリエチレンテトラミンに比べて供給安定性に優れる。
 一方、比較例2~比較例5に示すように、トリエチレンテトラミンとピペラジン環を有する化合物を併用した場合、得られた塗膜は引張強度が著しく低い為、実用的とは言い難い。
 一方、比較例6に示すように、化合物(B)を含まない反応生成物の場合、得られる塗膜は引張伸びがトリエチレンテトラミンに比べて約1.5倍しか増えておらず、十分な可撓性が付与されたとは言い難い。
 一方、比較例7~比較例11に示すように、化合物(A)と化合物(B)のモル比(A/B)が15/85を逸脱して過剰の化合物(B)が含まれる場合、引張伸びが約2倍~3倍出ても引張強度が極端に低いため、実用的とは言い難い。
 一方、比較例12~比較例14に示すように、化合物(B)の替わりに、1分子当りの活性水素数が6であるトリエチレンテトラミンを用いた場合には、引張伸びは比較例1に比べて約1.5倍しか増えておらず、十分な可撓性が付与されたとは言い難い。なお、比較例12~比較例14における、ジエチレントリアミン/トリエチレンテトラミンのモル比は、それぞれ、80/20、70/30、60/40であった。
 また、比較例15に示すように、APEDAを用いた場合、塗膜が脆くなって柔軟性を失った結果、トリエチレンテトラミン由来ポリアミド硬化剤組成物(比較例1)に比べて引張伸び及び引張強度が共に悪化しており、実用的とは言い難い。
 実施例10.
 1000mlのガラス容器に、モノマー酸7重量%、トリマー酸14重量%を含むC18不飽和脂肪酸のダイマー酸の組成物[筑野食品工業社製、商品名:ツノダイム216、酸価:193.6mgKOH/g、成分(C)に該当する。]100gを加え、さらに[化合物(A)と化合物(B)との合計のモル数]/[成分(C)のダイマー酸換算のモル数]の比が3/2になるように、テトラエチレンペンタミン(東ソー社製)41.8g[化合物(A)に該当する。]とN-アミノエチルピペラジン(東ソー社製)5.0g[化合物(B)に該当する。]を、攪拌しながらゆっくり加えた。
 120℃で加熱し、完全に均一になるまで攪拌を行った。攪拌速度を150rpmに上げ、窒素雰囲気下200℃で4時間加熱し、6.2gの水を蒸留によって除去した。さらに200℃、10mmHgで1時間反応を行った。次に、反応容器を100℃まで冷却し、固形物濃度70重量%になるようにトルエンを加えて攪拌して均一なトルエン溶液とした後、室温まで冷却した。ここで得られた反応生成物(ダイマー酸ポリアミドアミン縮合物)は琥珀色であり、トルエンを含まない状態での活性水素当量が167であった。
 エポキシ当量474のエポキシ樹脂(油化シェルエポキシ社製、商品名:エピコート1001、エポキシ当量474のビスフェノールA型エポキシ樹脂)をトルエンで70重量%に希釈したエポキシ樹脂溶液74重量部に対し、ポリアミド硬化剤組成物として、得られたダイマー酸ポリアミドアミン縮合物のトルエン溶液を26重量部の割合で添加し、スパチュラを用いて室温下5分間せん断攪拌した。ここで、[本発明のポリアミド硬化剤組成物中のアミン水素原子]/[エポキシ樹脂中のエポキシ基]は1/1(モル比)であった。上記した評価方法に従って、塗膜の硬化速度と物性測定を行った結果を表3に示す。
 実施例10~実施例18、比較例16~比較例35、及び参考例.
 表1及び表2に示す種類と量の原料を用いた以外は、実施例1と同様に実施した。その結果を表3及び表4に併せて示す。なお、表3及び表4中に示した「S-PEHA」とは、エチレンアミン類の製造工程において得られるペンタエチレンヘキサミン(PEHA)蒸留残渣を、更に蒸留して得られる重質エチレンアミンの混合物をいう(東ソー社製)。PEHAよりも分子量が大きく、1分子当りの窒素原子数が多いのがその特徴である。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 実施例10~実施例18から明らかなとおり、本発明のポリアミド硬化剤組成物による塗膜硬化時間は、標準的に用いられるトリエチレンテトラミン由来ポリアミド硬化剤組成物(比較例16)より速かった。よって、本発明により、速い低温硬化性が可能となり、塗装の生産性が上がることがわかる。
 また、本発明のポリアミド硬化剤組成物で調製した塗膜は、引張伸び及び引張強度がトリエチレンテトラミン由来ポリアミド硬化剤組成物と同等であった。よって、本発明により、トリエチレンテトラミンと同等の可撓性、塗膜強度を実現でき、塗料に要求される十分な塗膜可撓性を提供できることができる。
 さらに、本発明のポリアミド硬化剤組成物は、トリエチレンテトラミン由来ポリアミド硬化剤と同等の耐水性を維持することができた。また、本発明のポリアミド硬化剤組成物は、トリエチレンテトラミン由来の硬化剤組成物(比較例16)に比べて貯蔵安定性に優れることが分かる。
 一方、比較例17~比較例20に示すように、トリエチレンテトラミンとピペラジン環を有する化合物を併用した場合、塗膜の硬化時間が本発明に比べて長かった。また、得られた塗膜は引張強度が低く、耐水性が本発明に比べて劣っていた。
 また、比較例21~比較例26に示すように、化合物(B)を含まない反応生成物の場合や、化合物(A)と化合物(B)とのモル比が90/10を逸脱して過剰の化合物(A)を含む場合、得られる塗膜は引張伸びが小さく、可撓性がトリエチレンテトラミン由来ポリアミド硬化剤組成物(比較例1)に比べて劣った。
 また、比較例27~比較例31に示すように、化合物(A)と化合物(B)とのモル比が15/85を逸脱して過剰の化合物(B)を含む場合や、化合物(A)を含まない反応生成物の場合、塗膜の引張強度がトリエチレンテトラミン由来ポリアミド硬化剤組成物(比較例1)に比べて極端に低くなり、十分な強度が得られなかった。
 また、比較例32~比較例34に示すように、化合物(B)を含まない反応生成物の場合、トリエチレンテトラミン由来ポリアミド硬化剤組成物に比べて、得られる塗膜の引張伸びが小さく、可撓性が劣った。
 また、比較例35に示すように、APEDAを用いた場合、塗膜が脆くなって柔軟性を失った結果、トリエチレンテトラミン由来ポリアミド硬化剤組成物(比較例1)に比べて引張伸び及び引張強度が共に悪化しており、実用的とは言い難い。
 なお、参考例は、化合物(A)として、テトラエチレンペンタミン(東ソー社製)、化合物(B)として、N-アミノエチルピペラジン(東ソー社製)、成分(C)として、ツノダイム216(商品名、筑野食品工業社製)、及びトリエチレンテトラミン(東ソー社製)の反応生成物を用いた例である。参考例の反応生成物において、原料として加えられた多量のトリエチレンテトラミンが、塗膜の硬化時間の短縮や、得られた塗膜の引張強度、耐水性の向上に寄与しないことが理解される。
 本発明のポリアミド硬化剤組成物は、一般に多用されるトリエチレンテトラミン由来ポリアミド硬化剤よりも良好な性能を示すものであり、例えば、塗料分野において好適に使用される。
 なお、2010年3月31日に出願された日本特許出願2010-082141号及び2010年3月31日に出願された日本特許出願2010-082142号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (9)

  1.  ジエチレントリアミン(a1)、及び下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、nは3以上の数を表す。)
    で示される1分子当りの窒素原子数が5以上のアミン化合物(a2)からなる群より選択される化合物(A)、1分子当りの窒素原子数が4以下であって活性水素数が2又は3のアミン化合物(B)、並びにダイマー酸を含む成分(C)の反応生成物であって、
    [化合物(A)と化合物(B)との合計のモル数]/[成分(C)のダイマー酸換算のモル数]が2/1~4/3の範囲であり、かつ
    化合物(A)と化合物(B)とのモル比(A/B)が90/10~15/85の範囲である反応生成物
    を含有することを特徴とするポリアミド硬化剤組成物。
  2.  化合物(A)が、テトラエチレンペンタミン、ペンタエチレンヘキサミン、ヘキサエチレンヘプタミン、ポリエチレンポリアミン、又はこれらの混合物である請求項1に記載のポリアミド硬化剤組成物。
  3.  化合物(B)が、N-アミノエチルピペラジン、ピペラジン、ジエチレントリアミンを部分N-メチル化物、N,N-ジメチルアミノプロピルアミン又はこれらの混合物である請求項1又は請求項2に記載のポリアミド硬化剤組成物。
  4.  化合物(A)と化合物(B)とのモル比(A/B)が90/10~40/60の範囲である請求項1乃至請求項3のいずれかに記載のポリアミド硬化剤組成物。
  5.  化合物(A)と化合物(B)とのモル比(A/B)が85/15~50/50の範囲である請求項1乃至請求項3のいずれかに記載のポリアミド硬化剤組成物。
  6.  成分(C)が、成分(C)の全量に対して、ダイマー酸を70~95重量%含有する請求項1乃至請求項5のいずれかに記載のポリアミド硬化剤組成物。
  7.  請求項1乃至請求項6のいずれかに記載のポリアミド硬化剤組成物とエポキシ樹脂とを反応させて得られるエポキシ樹脂硬化物。
  8.  エポキシ樹脂中のエポキシ基に対するポリアミド硬化剤組成物中のアミン水素原子のモル比が、1.5/1~1/1.5の範囲である請求項7に記載のエポキシ樹脂硬化物。
  9.  エポキシ樹脂が、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、又はこれらの混合物である請求項7又は請求項8に記載のエポキシ樹脂硬化物。
PCT/JP2011/058306 2010-03-31 2011-03-31 ポリアミド硬化剤組成物 WO2011125888A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180017046.9A CN102822236B (zh) 2010-03-31 2011-03-31 聚酰胺固化剂组合物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-082142 2010-03-31
JP2010082142 2010-03-31
JP2010082141 2010-03-31
JP2010-082141 2010-03-31

Publications (1)

Publication Number Publication Date
WO2011125888A1 true WO2011125888A1 (ja) 2011-10-13

Family

ID=44762826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/058306 WO2011125888A1 (ja) 2010-03-31 2011-03-31 ポリアミド硬化剤組成物

Country Status (4)

Country Link
JP (1) JP2011225869A (ja)
CN (1) CN102822236B (ja)
TW (1) TW201202175A (ja)
WO (1) WO2011125888A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513376B2 (en) * 2011-03-15 2013-08-20 Air Products And Chemicals, Inc. Polyamides and amidoamines from selectively modified amine amines
KR101861381B1 (ko) 2012-10-09 2018-07-05 주식회사 케이씨씨 폴리아마이드 어덕트 경화제 조성물 및 이를 포함하는 선박 방청용 프라이머 에폭시 도료
JP2014095027A (ja) * 2012-11-08 2014-05-22 Tosoh Corp エポキシ硬化剤用アミン組成物
CN106414543A (zh) * 2014-05-14 2017-02-15 亨斯迈先进材料美国有限责任公司 用于防护涂层的多官能聚酰胺
CN104448244A (zh) * 2014-11-30 2015-03-25 桂林理工大学 一种环氧树脂低温固化剂的制备方法
CN106928453B (zh) * 2015-12-30 2019-08-09 江西省宜春远大化工有限公司 一种聚酰胺固化剂及其合成方法
CN106046326A (zh) * 2016-07-27 2016-10-26 中科院广州化学有限公司南雄材料生产基地 一种环氧树脂透水材料固化剂及其制备方法和应用
JP6964428B2 (ja) * 2017-03-31 2021-11-10 ソマール株式会社 エポキシ樹脂接着剤
JP7271146B2 (ja) * 2017-12-28 2023-05-11 日鉄ケミカル&マテリアル株式会社 ダイマージアミン組成物、その製造方法及び樹脂フィルム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345397A (en) * 1976-10-06 1978-04-24 Nippon Zeneraru Miruzu Kagaku Method of making hardener for epoxide resin
JPH05156004A (ja) * 1991-07-31 1993-06-22 Lion Corp 熱硬化性樹脂用反応性可塑剤
JPH0632877A (ja) * 1991-08-09 1994-02-08 Union Camp Corp 硬化しうる樹脂組成物及びその製造方法
JPH08506369A (ja) * 1993-02-10 1996-07-09 エア プロダクツ アンド ケミカルズ インコーポレーテッド 接着促進剤
JPH11228672A (ja) * 1997-11-19 1999-08-24 Air Prod And Chem Inc ポリエチレンアミンとピペラジン誘導体との混合物をベースとするポリアミドキュアリング剤
JPH11279263A (ja) * 1997-12-04 1999-10-12 Air Prod And Chem Inc ポリエチレン−アミン、ピペラジンおよび脱アミン化されたビス−(p−アミノシクロヘキシル)メタンの混合物をベースとするポリアミンキュアリング剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345397A (en) * 1976-10-06 1978-04-24 Nippon Zeneraru Miruzu Kagaku Method of making hardener for epoxide resin
JPH05156004A (ja) * 1991-07-31 1993-06-22 Lion Corp 熱硬化性樹脂用反応性可塑剤
JPH0632877A (ja) * 1991-08-09 1994-02-08 Union Camp Corp 硬化しうる樹脂組成物及びその製造方法
JPH08506369A (ja) * 1993-02-10 1996-07-09 エア プロダクツ アンド ケミカルズ インコーポレーテッド 接着促進剤
JPH11228672A (ja) * 1997-11-19 1999-08-24 Air Prod And Chem Inc ポリエチレンアミンとピペラジン誘導体との混合物をベースとするポリアミドキュアリング剤
JPH11279263A (ja) * 1997-12-04 1999-10-12 Air Prod And Chem Inc ポリエチレン−アミン、ピペラジンおよび脱アミン化されたビス−(p−アミノシクロヘキシル)メタンの混合物をベースとするポリアミンキュアリング剤

Also Published As

Publication number Publication date
CN102822236B (zh) 2014-08-13
TW201202175A (en) 2012-01-16
CN102822236A (zh) 2012-12-12
JP2011225869A (ja) 2011-11-10

Similar Documents

Publication Publication Date Title
WO2011125888A1 (ja) ポリアミド硬化剤組成物
US10669370B2 (en) Benzylated mannich base curing agents, compositions, and methods
JP5711070B2 (ja) ポリアミド硬化性剤組成物
CN112135855B (zh) 用于环氧树脂组合物的改性酚醛胺固化剂及其用途
KR20130004255A (ko) 에폭시 수지 경화 조성물 및 이를 포함하는 에폭시 수지계
KR101430329B1 (ko) 에폭시 수지 경화 조성물 및 이를 포함하는 에폭시 수지계
MX2015005355A (es) Endurecedores de poliamida para resinas epoxi.
CN108602938B (zh) 酰氨基胺和多酰胺固化剂、组合物和方法
CN115109230A (zh) 水性环氧固化剂
US5948881A (en) Polyamide curing agents based on mixtures of polyethylene-amines, piperazines and deaminated bis-(p-aminocyclohexyl) methane
JP6945650B2 (ja) エポキシ硬化剤、組成物およびその使用
EP2151463B1 (en) Alkylated aminopropylated methylene-di-(cyclohexylamine) and uses thereof
JP6802710B2 (ja) 保護コーティング用多官能ポリアミド
JP2012121997A (ja) ポリアミド樹脂組成物
US20120190799A1 (en) Polyamide Curative Composition
US6046282A (en) Reactive diluents for polyamidoamine epoxy curatives
JP6136245B2 (ja) エポキシ硬化剤用アミン組成物
JP2014095027A (ja) エポキシ硬化剤用アミン組成物
JP5776500B2 (ja) エポキシ硬化剤用アミン組成物
WO2023242041A1 (en) Method for preparing an epoxy-derived covalent adaptable network
WO2013069787A1 (ja) エポキシ硬化剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017046.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11765788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11765788

Country of ref document: EP

Kind code of ref document: A1