WO2011125674A1 - アフィニティークロマトグラフィー用充填剤 - Google Patents
アフィニティークロマトグラフィー用充填剤 Download PDFInfo
- Publication number
- WO2011125674A1 WO2011125674A1 PCT/JP2011/057886 JP2011057886W WO2011125674A1 WO 2011125674 A1 WO2011125674 A1 WO 2011125674A1 JP 2011057886 W JP2011057886 W JP 2011057886W WO 2011125674 A1 WO2011125674 A1 WO 2011125674A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- affinity chromatography
- protein
- group
- mass
- ligand
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
- B01D15/26—Selective adsorption, e.g. chromatography characterised by the separation mechanism
- B01D15/38—Selective adsorption, e.g. chromatography characterised by the separation mechanism involving specific interaction not covered by one or more of groups B01D15/265 - B01D15/36
- B01D15/3804—Affinity chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
- B01J20/286—Phases chemically bonded to a substrate, e.g. to silica or to polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/26—Esters containing oxygen in addition to the carboxy oxygen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F8/00—Chemical modification by after-treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2982—Particulate matter [e.g., sphere, flake, etc.]
Definitions
- the present invention relates to a packing material for affinity chromatography useful for protein purification, which has high protein dynamic binding capacity and excellent alkali resistance.
- the present invention relates to a specific affinity chromatography filler useful for antibody purification and the like.
- Affinity chromatography plays an important role in the research, development and production of proteins including monoclonal antibodies.
- Affinity chromatography packing generally includes a solid support having a ligand that selectively binds to a target molecule.
- Affinity chromatography is superior to other chromatography methods such as ion chromatography, gel filtration chromatography, and reverse phase liquid chromatography because the ligand on the solid support has high selectivity for the target molecule. Yield and high speed and economical purification.
- a strong alkali aqueous solution such as a sodium hydroxide aqueous solution is used for washing in repeated purification steps, and therefore, a high alkali resistance is required for the packing material for affinity chromatography.
- a protein such as protein A as a ligand
- the protein ligand itself deteriorates or the reaction between the protein ligand and the remaining reactive group on the solid support during washing or storage with a strong alkaline aqueous solution. Therefore, improvement in alkali resistance and storage stability is required.
- a silica-based filler which is widely used for analytical chromatography or the like, dissolves in a strong alkaline aqueous solution, and thus cannot be used for affinity chromatography for protein purification that is repeatedly used.
- agarose particles since agarose particles generally have a low elastic modulus, they have a disadvantage that the pressure of the column increases when a medium is flowed at a high speed. Moreover, since agarose particles are generally produced from natural seaweed through a long and complicated process, it is difficult to obtain particles of a certain quality.
- porous particles made of a copolymer of vinyl monomers such as styrene-divinylbenzene are generally excellent in alkali resistance, but have low hydrophilicity and thus low ligand activity and dynamic binding to target molecules. It has the disadvantage of low capacity.
- porous particles made of a polymer of a hydroxyl group-containing crosslinkable vinyl monomer which has been used in gel filtration chromatography and reverse phase liquid chromatography as in the past, are highly dynamic as a filler for affinity chromatography. It is not possible to achieve both binding capacity and storage stability.
- the present invention includes a porous particle made of a polymer using a specific vinyl monomer and a ligand that binds to the porous particle, so that the protein has a high dynamic binding capacity and is also resistant to alkali. And a packing material for affinity chromatography having excellent storage stability.
- the packing material for affinity chromatography comprises: (M-1) 40 to 99.5 parts by mass of a vinyl monomer containing a hydroxyl group and containing no methacryloyl group containing no epoxy group (M-2) 0.5 to 30 parts by mass of an epoxy group-containing vinyl monomer, (M-3) 0 to 59.5 parts by mass of a vinyl monomer containing a methacryloyl group other than (M-1) and (M-2), and (M-4) (M-1), (M- 2) Vinyl monomer other than (M-3) 0 to 25 parts by mass (provided that the total of (M-1), (M-2), (M-3) and (M-4) is 100 masses) Part.) Porous particles made of a copolymer of A ring-opening epoxy group obtained by ring-opening an epoxy group contained in the copolymer; And a ligand bound to the porous particles.
- the ligand may be an alkali-resistant immunoglobulin binding protein.
- the vinyl monomer containing (M-1) a hydroxyl group and a methacryloyl group not containing an epoxy group may be a monomer represented by the following general formula (A). . H 2 C ⁇ C (CH 3 ) C ( ⁇ O) OCH 2 CH (OH) —R (A) (In the formula, R represents a hydrogen atom or a monovalent organic group.)
- R in the general formula (A) may be a hydroxymethyl group or a methacryloyloxymethyl group.
- the porous particles may have a particle size of 35 to 100 ⁇ m.
- a method for isolating an immunoglobulin according to another aspect of the present invention includes: Adsorbing immunoglobulin to the filler, using the filler for affinity chromatography, A step of eluting the immunoglobulin, and a step of washing the filler with an alkaline liquid.
- a column according to another embodiment of the present invention is a packed column for affinity chromatography packed with the above packing material for affinity chromatography.
- the dynamic binding capacity of the protein is high, and the alkali resistance and the storage stability are excellent.
- the immunoglobulin dynamic binding capacity is unlikely to decrease even if it is used repeatedly, so that inexpensive immunoglobulin purification is possible.
- FIG. 1 shows the amino acid sequence of the immunoglobulin binding protein (SP4Z) prepared in Example 1 of the present invention.
- FIG. 2 is a diagram for explaining the structure of a DNA fragment encoding the immunoglobulin-binding protein according to Example 1 of the present invention inserted into an expression vector (pETM-11).
- FIG. 3 is a view showing the amino acid sequence of the immunoglobulin binding protein (SPATK) prepared in Example 2 of the present invention.
- FIG. 4 is a diagram for explaining the structure of a DNA fragment encoding the immunoglobulin binding protein according to Example 2 of the present invention inserted into an expression vector (pETM-11).
- the porous particles constituting the filler for affinity chromatography of the present invention are: (M-1) 40 to 99.5 parts by mass of a vinyl monomer containing a methacryloyl group containing a hydroxyl group and no epoxy group, (M-2) 0.5-30 parts by mass of an epoxy group-containing vinyl monomer, (M-3) 0 to 59.5 parts by mass of a vinyl monomer containing a methacryloyl group other than (M-1) and (M-2), and (M-4) (M-1), (M- 2) 0 to 25 parts by weight of vinyl monomers other than (M-3) (provided that the total of (M-1), (M-2), (M-3) and (M-4) is 100 parts by weight) Part) and having a ring-opened epoxy group obtained by ring-opening an epoxy group contained in the copolymer.
- the porous particles refer to carrier particles before ligand binding.
- (M-1) Vinyl monomer having a methacryloyl group containing a hydroxyl group and containing no epoxy group
- (M-1) A vinyl monomer containing a methacryloyl group containing a hydroxyl group and no epoxy group is contained in one molecule.
- (M-1) as a vinyl monomer containing a methacryloyl group containing a hydroxyl group and not containing an epoxy group
- (M-1-1) a hydroxyl group-containing non-crosslinking property having one methacryloyl group in one molecule
- the description will be divided into a vinyl monomer and a (M-1-2) hydroxyl group-containing crosslinkable vinyl monomer having two or more methacryloyl groups in one molecule.
- Hydroxyl-containing non-crosslinkable vinyl monomers having one methacryloyl group in one molecule include, for example, glycerol monomethacrylate, trimethylolethane monomethacrylate, trimethylolpropane monomethacrylate, butanetriol.
- Examples include monomethacrylate, pentaerythritol monomethacrylate, dipentaerythritol monomethacrylate, inositol monomethacrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxyethyl methacrylamide, and polyethylene glycol methacrylic ester.
- the monomer represented by the formula (A) is preferable.
- R represents a hydrogen atom or a monovalent organic group.
- R when R is a monovalent organic group having no methacryloyl group, it is preferably an organic group having 1 to 8 carbon atoms.
- M-1-1) includes glycerol monomethacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate and the like, and glycerol monomethacrylate in which R corresponds to a hydroxymethyl group is most preferable.
- (M-1-2) Hydroxyl-containing cross-linkable vinyl monomer having two or more methacryloyl groups in one molecule includes di- or higher-substituted methacrylates of various sugars, methacrylates of polyhydric alcohols, or polyhydric alcohols.
- the methacrylamide is preferred.
- glycerin dimethacrylate trimethylolethane dimethacrylate, trimethylolpropane dimethacrylate, butanetriol dimethacrylate, pentaerythritol dimethacrylate, pentaerythritol trimethacrylate, dipentaerythritol dimethacrylate, dipentaerythritol trimethacrylate, dipenta Examples include erythritol tetramethacrylate, dipentaerythritol pentamethacrylate, inositol dimethacrylate, inositol trimethacrylate, and inositol tetramethacrylate.
- methacrylates of two or more substituted saccharides such as glucose dimethacrylate, glucose trimethacrylate, glucose tetramethacrylate, mannitol dimethacrylate, mannitol trimethacrylate, mannitol tetramethacrylate, and mannitol pentamethacrylate.
- a hydroxyl group-containing cross-linkable vinyl monomer having a structure similar to that of a dehydration condensation reaction product of a polyhydric amino alcohol such as diaminopropanol, trishydroxymethylaminomethane, glucosamine and methacrylic acid is also included.
- R is preferably an organic group having 1 to 8 carbon atoms.
- M-1-2 glycerol dimethacrylate in which R corresponds to a methacryloyloxymethyl group is most preferable.
- (M-1) The amount of the vinyl monomer containing a hydroxyl group and a methacryloyl group not containing an epoxy group is 40 to 99.5 mass out of 100 parts by mass of all monomers constituting the copolymer. Part, preferably 45 to 95 parts by weight.
- (M-1) is less than 40 parts by mass, the amount of dynamic binding of the protein decreases because the ligand activity is low, and when it exceeds 99.5 parts by mass, (M-2) is 0.5 parts by mass. Therefore, the amount of ligand binding decreases and the amount of protein dynamic binding decreases.
- (M-1) and (M-1-2) may be used in combination, but it is preferable to use only (M-1-1).
- Epoxy group-containing vinyl monomer (M-2)
- the epoxy group-containing vinyl monomer is composed of one or more polymerizable vinyl groups (groups having an ethylenically unsaturated bond) in one molecule.
- the epoxy group-containing vinyl monomer is an essential component for introducing an appropriate amount of epoxy groups into the porous particles made of the copolymer to obtain an appropriate ligand binding amount.
- epoxy group-containing vinyl monomer a monomer having one polymerizable vinyl group and one epoxy group in one molecule can be easily obtained industrially.
- examples of such an epoxy group-containing vinyl monomer include glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, 3,4-epoxycyclohexylmethyl (meth) acrylate, and ⁇ - (meth) acrylic.
- -(Meth) acrylic acid esters such as ⁇ -glycidyl polyethylene glycol; aromatic vinyl compounds such as vinyl benzyl glycidyl ether; allyl glycidyl ether, 3,4-epoxy-1-butene, 3,4-epoxy-3-methyl -1-butene and the like, glycidyl methacrylate and 4-hydroxybutyl acrylate glycidyl ether are preferable, and glycidyl methacrylate is particularly preferable.
- a vinyl monomer containing a hydroxyl group and an epoxy group and containing a methacryloyl group can be used.
- examples of such monomers include glycerin monomethacrylate glycidyl ether and pentaerythritol dimethacrylate glycidyl ether.
- (M-2) The amount of the epoxy group-containing vinyl monomer used is 0.5 to 30 parts by mass, preferably 1 to 20 parts by mass, out of 100 parts by mass of all monomers constituting the copolymer. .
- (M-2) is less than 0.5 parts by mass, the amount of ligand binding decreases and the amount of protein dynamic binding decreases, and when it exceeds 30 parts by mass, the activity of the ligand decreases during storage. The amount of protein dynamic binding is reduced.
- (M-3) Vinyl monomer containing a methacryloyl group other than (M-1) and (M-2) above (M-3) A methacryloyl group other than (M-1) and (M-2) above Specific examples of the vinyl monomer contained include (M-3-1) a hydroxyl group-free non-crosslinkable vinyl monomer having one methacryloyl group in one molecule, and (M-3-2). ) A hydroxyl group-free crosslinkable vinyl monomer having two or more methacryloyl groups in one molecule.
- M-3-1 a hydroxyl group-free non-crosslinkable vinyl monomer having one methacryloyl group in one molecule
- (M-3-2) A hydroxyl group-free crosslinkable vinyl monomer having two or more methacryloyl groups in one molecule.
- Non-crosslinking vinyl monomer having no methacryloyl group in one molecule is a nonionic monomer from the viewpoint of preventing nonspecific adsorption of contaminating proteins during purification.
- nonionic monomers include methacrylates such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, cyclohexyl methacrylate, and methoxyethyl methacrylate, methacrylamide such as methacrylamide, dimethylmethacrylamide, methacryloylmorpholine, and diacetone methacrylamide.
- hydrophobic methacrylates such as 2-ethylhexyl methacrylate and stearyl methacrylate are not preferred because they may increase nonspecific adsorption of contaminating proteins during purification.
- Examples of the hydroxyl group-free crosslinkable vinyl monomer having two or more methacryloyl groups in one molecule include ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene.
- Glycol dimethacrylate propylene glycol dimethacrylate, dipropylene glycol dimethacrylate, tripropylene glycol dimethacrylate, tetrapropylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, trimethylolpropane trimethacrylate And pentaerythritol tetramethacrylate.
- Trimethylolpropane trimethacrylate is particularly preferred because good porosity can be obtained with a relatively small amount of use, and the amount of (M-1) used is limited.
- the amount of the vinyl monomer containing a methacryloyl group other than the above (M-1) and (M-2) is 0 in 100 parts by mass of all monomers constituting the copolymer. To 59.5 parts by mass, preferably 0 to 50 parts by mass. When (M-3) exceeds 59.5 parts by mass, the ligand activity becomes low and the dynamic binding amount of the protein becomes low.
- (M-4) Vinyl monomers other than (M-1), (M-2) and (M-3) above (M-4) (M-1), (M-2) and (M- The vinyl monomers other than 3) are the remaining vinyl monomers other than (M-1), (M-2) and (M-3). It can be used in an amount of 25 parts by mass or less as long as it does not inhibit the high dynamic protein binding amount and excellent alkali resistance, which are the objects of the present invention.
- Examples of (M-4) include ethylene, propylene, styrene, vinyl acetate, N-vinylacetamide and the like as non-crosslinkable monomers, and divinylbenzene, butadiene, diallyl isocyanurate, Examples include triallyl isocyanurate.
- Divinylbenzene is an effective monomer for increasing the hardness of the porous particles and decreasing the pressure of the chromatography column. When (M-4) exceeds 25 parts by mass, the amount of dynamic binding of protein decreases or the alkali resistance decrease
- (M-1) 45 to 95 parts by mass of a vinyl monomer containing a hydroxyl group and containing no methacryloyl group containing no epoxy group
- (M-2) 1 to 20 parts by mass of an epoxy group-containing vinyl monomer
- (M-3) 0 to 50 parts by mass of a vinyl monomer containing a methacryloyl group other than (M-1) and (M-2), and (M-4)
- a vinyl monomer other than (M-3) 0 to 25 parts by mass of a copolymer (provided that the total of (M-1), (M-2), (M-3) and (M-4) is 100 parts by mass.) Is mentioned.
- Porous particles can be produced by known seed polymerization, suspension polymerization or the like.
- seed polymerization method a two-stage swelling polymerization method described in JP-B-57-24369 is also preferably used.
- water and porogen are essential components, and a polymerization initiator, a polymer dispersant, a surfactant, a salt, seed particles, a water-soluble polymerization inhibitor and the like are used as necessary. .
- a preferred polymerization method in the production of porous particles is: 100 parts by weight of the above monomer mixture ((M-1) and (M-2) and (M-3) and / or (M-4) as required) (P-1)
- At least one porogen selected from linear, branched and cyclic alcohols having 7 to 14 carbon atoms, ethers, aldehydes, ketones, esters, and alkylbenzenes having 8 to 10 carbon atoms is essential. This is a suspension polymerization method of an aqueous mixture as a component.
- a porogen other than (P-1) may be used in combination as (P-2).
- the amount of porogen used is preferably 100 to 400 parts by mass in total with respect to 100 parts by mass of the monomer.
- the amount of (P-1) used is preferably 10% by mass or more in 100% by mass of the total amount of porogen.
- porogen of (P-1) As alcohols, 1-heptanol, 2-heptanol, 3-heptanol, 4-heptanol, 2,4-dimethyl-3-pentanol, 5-methyl-2-hexanol, 2-ethyl-1-hexanol, 2-octanol, 3-octanol, 5-methyl-3-heptanol, 1-nonanol, 3,5,5-trimethylhexanol; As ethers, hexyl methyl ether, dibutyl ether, cineol; As aldehydes, heptanal, octanal, 2-ethyl-1-hexanal, nonanal, 3,5,5-trimethylhexanal, 1-decanal, dodecanal; As ketones, 2-heptanone, 3-heptanone, 4-heptanone, 2,4-dimethyl-3-pentanone, 4,4-dimethyl-2-pentanone
- the porogen of (P-1) is preferably an alcohol, ether, aldehyde, ketone, or ester, more preferably a ketone or ester, and a carbon number of 7 to 10 because it can maintain high ligand activity without inhibiting hydrophilicity. Most preferred are ketones and esters.
- (P-2) is a porogen other than (P-1) and may be added to adjust the pore volume of the porous particles, and the solubility of (P-2) in water at 20 ° C. Is preferably 20% or less.
- the porogen is composed of (P-2) porogen, that is, linear and branched alcohols having less than 7 carbon atoms, ethers, aldehydes, ketones, esters, and alkylbenzenes having less than 8 carbon atoms as main components, protein separation and the like
- P-2 porogen
- the pore size is not suitable and the pore volume is small.
- alcohol, ether, aldehyde, ketone, ester having more than 14 carbon atoms, or alkylbenzene having more than 10 carbon atoms is used as a main component, pore volume is reduced or non-porous fine particles are formed. There is a case.
- the total amount of porogen containing (P-1) is usually 100 to 400 parts by weight, preferably 150 to 300 parts by weight, with respect to 100 parts by weight of the monomer mixture.
- the total amount of the porogen is less than 100 parts by mass, the pore diameter is not suitable for protein separation and the pore volume is reduced.
- the total amount of porogen exceeds 400 parts by mass, the pore volume becomes excessive or fine particles that are not porous are formed.
- (P-1) is preferably 10% by mass or more, more preferably 20% by mass or more, in 100% by mass of the total amount of porogen.
- the pore volume may be small.
- the polymerization solvent in suspension polymerization is water.
- the water may contain an organic solvent such as alcohol as long as the effects of the present invention are not impaired.
- the amount of water is preferably 200 to 10000 parts by mass, more preferably 500 to 5000 parts by mass with respect to 100 parts by mass of the total amount of monomers. When the amount of water is within the above range, coalescence of particles during polymerization is suppressed, particle size control is easy, and productivity is excellent.
- Polymerization initiators include persulfates such as potassium persulfate, sodium persulfate, and ammonium persulfate, hydrogen peroxide, t-butyl hydroperoxide, t-butyl peroxymaleic acid, succinic peroxide, 2,2 ′ -Water-soluble initiators such as azobis [2-N-benzylamidino] propane hydrochloride; benzoyl peroxide, lauroyl peroxide, cumene hydroperoxide, diisopropyl peroxydicarbonate, cumylperoxyneodecanoate, cumylperoxy Oil-soluble initiators such as octanoate, t-butylperoxy-2-ethylhexanoate, 3,5,5-trimethylhexanoyl peroxide, azobisisobutyronitrile, azobisisovaleronitrile; Oxide and sodium sulfite , Rongalite, a redox initi
- the amount of the polymerization initiator is preferably 0.01 to 10 parts by mass, more preferably 0.05 to 5 parts by mass with respect to 100 parts by mass of the total amount of monomers.
- These polymerization initiators may be dissolved in water, a monomer mixture or porogen and used for the polymerization system, or may be added alone to the polymerization system at room temperature and during heating. If an initiator that shows acidity or basicity during polymerization is used, such as persulfate, and it is necessary to prevent hydrolysis of the epoxy group, it is suspended in a buffer solution that maintains the pH near neutrality. Polymerization is preferred. It is possible to perform suspension polymerization without using an initiator by irradiating ultraviolet rays, electron beams, etc., and it is also possible to use a known photoradical initiator.
- water-soluble polymers such as polyvinyl alcohol and polyvinyl pyrrolidone having a saponification degree of 80 to 95% can be used.
- anionic surfactants such as sodium dodecyl sulfate, sodium dodecyl benzene sulfonate, polyoxyethylene dodecyl ether sulfate ester salts, nonionic surfactants such as polyoxyethylene alkyl ether, etc. should be used. Can do.
- sodium chloride, sodium sulfate, sodium carbonate and the like can be suitably used as the salt.
- polystyrene particles having a weight average molecular weight of about 1,000 to 100,000, polyalkyl (meth) acrylate particles, and the like can be used as the seed particles.
- Suitable water-soluble polymerization inhibitors include iodide salts such as potassium iodide, nitrites such as sodium nitrite, thiosulfates such as sodium thiosulfate, and water-soluble quinone compounds such as sulfonated naphthohydroquinone ammonium salts. Can be used.
- porous particles having a particle size necessary as a filler for affinity chromatography of the present invention In seed polymerization, by adjusting the size and amount of seed particles, the amount of monomer, and the amount of porogen, it is possible to obtain porous particles having a particle size necessary as a filler for affinity chromatography of the present invention. .
- the particles necessary as the filler for affinity chromatography of the present invention are adjusted by adjusting the type and amount of the polymer dispersant and the surfactant, the stirring speed, the shape and size of the stirring blade and the polymerization vessel. Porous particles having a diameter can be obtained.
- the pore volume of porous particles is adjusted by changing the ratio of monomer to porogen.
- the pore volume of the porous particles can be adjusted by the kind and amount of the salt and polymerization inhibitor used in the polymerization, the polymerization temperature, and the like.
- the pore volume of the porous particles as a packing material for affinity chromatography can be adjusted by the pore volume of the porous particles before ligand binding and the amount of the ligand to be bound.
- the polymerization temperature and time are preferably 40 to 100 ° C. for 30 minutes to 24 hours, more preferably 60 to 90 ° C. for 1 to 10 hours when an initiator other than the redox initiator is used.
- washing with seed particles and / or a good solvent of porogen is preferable from the viewpoint of easy binding of a ligand described later.
- the washing solvent acetone, ethanol, isopropyl alcohol or the like can be preferably used.
- Epoxy group content The epoxy group contained in the porous particles before ligand binding is a functional group for binding the ligand, and further improves hydrophilicity as a packing material for affinity chromatography after ring opening. It is a functional group.
- the epoxy group content of the porous particles before ligand binding is preferably 0.05 to 2 mmol / g, more preferably 0.08 to 1.5 mmol / g, and most preferably 0.10 to 1. 0 mmol / g. When the epoxy group content of the porous particles before binding to the ligand is 0.05 mmol / g or more, the binding amount of the ligand is moderate and the decrease in the dynamic binding capacity of the protein is suppressed.
- the epoxy group content of the porous particles before ligand binding is determined by opening the epoxy groups by adding hydrochloric acid (or a salt containing chloride ions) to the porous particles and adding hydrochloric acid to the porous particles. After neutralizing the hydrochloric acid with an excess amount of base (for example, aqueous sodium hydroxide solution), the remaining sodium hydroxide can be quantified by back titrating with hydrochloric acid.
- hydrochloric acid or a salt containing chloride ions
- the epoxy group content of the porous particles before ligand binding should be adjusted by the amount of the epoxy group-containing vinyl monomer, the polymerization temperature, the polymerization time, the pH of the polymerization solution, and the ring-opening treatment after polymerization. I can do it.
- the affinity chromatography filler of the present invention comprises a copolymer of the monomers, and is obtained by ring-opening an epoxy group contained in the copolymer. And a ligand that binds to the porous particle.
- Ligand The type of ligand is not particularly limited as long as it has an appropriate affinity for a target.
- protein such as protein A, protein G and avidin; peptide such as insulin; antibody such as monoclonal antibody Enzyme; hormone; DNA; RNA; carbohydrate such as heparin, Lewis X, ganglioside; iminodiacetic acid, synthetic dye, 2-aminophenylboronic acid, 4-aminobenzamidine, glutathione, biotin and derivatives thereof Compounds can be used.
- the ligand illustrated above may use the whole, the fragment obtained by a recombinant, an enzyme treatment, etc. may be used. Further, it may be an artificially synthesized peptide or peptide derivative.
- Suitable ligands for immunoglobulin separation or purification are, for example, protein A and protein G, more preferably protein A immunoglobulin binding domain, most preferably 4A at the end of protein A immunoglobulin binding domain.
- a protein to which a peptide containing at least one continuous histidine unit is added examples include an immunoglobulin-binding protein represented by the following general formula (1) or general formula (2). .
- the term “protein” refers to any molecule having a peptide structural unit, for example, a concept including a partial fragment of a natural protein or a variant obtained by artificially modifying the amino acid sequence of a natural protein. is there.
- the “immunoglobulin binding domain” represents a functional unit of a polypeptide having immunoglobulin binding activity alone, and the “immunoglobulin binding protein” has a specific affinity for immunoglobulin, and Represents a protein comprising an “immunoglobulin binding domain”.
- “Immunoglobulin binding” refers to binding to a region other than the complementarity determining region (CDR) of an immunoglobulin molecule, particularly to an Fc fragment.
- the term “ligand” used in connection with affinity chromatography refers to a molecule that binds to a target substance for affinity chromatography.
- the immunoglobulin binding domain of protein A may be a naturally occurring immunoglobulin binding domain or a recombinant immunoglobulin binding domain.
- the immunoglobulin binding domain of protein A is preferably at least one selected from the A domain, B domain, C domain, D domain, E domain, and Z domain.
- the amino acid sequences of the A domain, B domain, C domain, D domain, and E domain are described in, for example, Moks T, Abrahms L, et al. , Staphylococcal protein accounts of five IgG-binding domains, Eur J Biochem. 1986, 156, 637-643, FIG. 1.
- the document is included in the disclosure by this reference.
- a protein comprising an amino acid sequence having 70% or more (preferably 90% or more) homology with the amino acid sequence of each domain described in the above document should also be used as an immunoglobulin binding domain of protein A in the present invention. Can do.
- the recombinant immunoglobulin binding domain can be treated as equivalent to the immunoglobulin binding domain before modification in immunoglobulin binding activity.
- the amino acid sequence of the native protein A immunoglobulin binding domain is 70%. % Or more (preferably 90% or more) of homology is preferable.
- Specific examples include the Z domain (SEQ ID NO: 1) described in Nilsson B. et al., Protein engineering, 1987, Vol. 1, No. 2, pages 107-113, Examples include a Z domain mutant having alkali resistance described in US Patent Application 2006 / 0194955A1 by Huber S et al.
- the ligand used in the packing material for affinity chromatography of the present invention may have a plurality of the same or different types of immunoglobulin binding domains.
- the above-mentioned ligand represents (D domain-A domain) n (where n is an integer of 1 or more (preferably 1 to 6) as an immunoglobulin-binding domain of protein A. Arbitrary amino acid sequences may exist between them.) That is, it may include a repeating unit including an A domain and a D domain.
- the packing material for affinity chromatography of the present invention since the packing material for affinity chromatography of the present invention has an opportunity to come into contact with an alkaline aqueous solution at the time of use, the ligand may contain a repeating unit containing the Z domain of protein A.
- the ligand may contain two or more of each of the above domains, or a fragment or variant thereof alone or in combination.
- the fragment of an immunoglobulin binding domain refers to a fragment having a part of the amino acid sequence of the domain and having immunoglobulin binding activity.
- the fragment of an immunoglobulin binding domain refers to a fragment having sequence identity of 90% or more, more preferably 95% or more with the amino acid sequence of the domain, and having immunoglobulin binding activity.
- the variant of the immunoglobulin binding domain preferably has a sequence identity of 90% or more, more preferably 95% or more with the amino acid sequence of the domain, and has immunoglobulin binding activity.
- the ligand used in the present invention can contain at least one selected from the Z domain, or a fragment or variant thereof.
- the Z domain is described in Nilsson B. et al., Protein engineering, 1987, Vol. 1, No. 2, pages 107-113).
- the ligand can contain two or more (preferably 4 to 10) Z domains, or fragments or mutants thereof alone or in combination.
- Z domain mutants include proteins having the sequence described in Japanese Patent No. 4391830.
- claim 1 of Japanese Patent No. 4391830 describes a protein comprising two or more repeating units (Z domain) defined by SEQ ID NO: 1 and the amino acid residue at position 23 is threonine.
- the Z domain fragment has a part of the amino acid sequence of the Z domain, and preferably has 90% or more of the amino acid sequence of the Z domain, for example, 95% or more. More preferably, it has an immunoglobulin binding activity.
- the Z domain variant is, for example, one having 90% or more homology with the amino acid sequence of the Z domain, preferably one having 95% or more homology, and immunoglobulin binding activity. The thing which has. It is preferable that the mutant of the Z domain has improved alkali resistance compared to the Z domain. In this case, whether the mutant of the Z domain has improved alkali resistance as compared with the Z domain can be confirmed by the method described in the examples described later.
- Immunoglobulin binding protein 1 An immunoglobulin binding protein (hereinafter also referred to as “protein 1”), which is an example of a preferred ligand, is represented by the following general formula (1).
- RR 2 (1) (Wherein R represents an amino acid sequence consisting of 4 to 300 amino acids including a continuous site of 4 to 20 histidines, and R 2 represents 50 to 500 including at least one immunoglobulin binding domain of protein A) (Wherein the terminal where R 2 binds to R is the C-terminal or N-terminal of the immunoglobulin binding domain).
- the number of amino acids contained in the amino acid sequence represented by R is preferably 8 to 100, and the number of histidines at sites where histidines contained in R are continuous is 4 to 8 It is preferable that In the general formula (1), the number of amino acids contained in the amino acid sequence represented by R 2 is preferably 120 to 480.
- At least one of the amino acid sequence represented by R and the amino acid sequence represented by R 2 includes 1 to 50 amino acids including one amino acid selected from lysine, arginine, and cysteine. It preferably contains a domain t consisting of amino acids. In this case, the same or different domain t may be contained in the amino acid sequence.
- R- is preferably a group represented by the following general formula (2).
- R 1 represents an amino acid sequence consisting of 4 to 100 amino acids including a site in which 4 to 20 histidines are continuous (wherein, in R 1 , the end of the site in which the histidines are continuous is r and And r represents an arbitrary amino acid sequence consisting of 7 to 200 amino acids.)
- the number of amino acids contained in the amino acid sequence represented by R 1 is 4 to 25, the number of histidine site histidine continuous contained in R 1 is 4- The number is preferably 8.
- the number of amino acids contained in the amino acid sequence represented by r is preferably 10-50.
- the amino acid sequence represented by r shown in the general formula (2) may contain a TEV domain. Since the TEV domain is contained in the amino acid sequence represented by r, it is possible to separate R and R 2 by cleavage with TEV protease, and the TEV domain has a large amount of immobilization to the carrier. And it is a preferable sequence in order to realize the effect of enhancing the immunoglobulin retention ability of the carrier. Further, in the amino acid sequence represented by r, a mutant (mutant) of TEV domain (regardless of whether or not it can be cleaved by the TEV protease, homology of 70% or more, preferably 90% or more, with the amino sequence of TEV domain) May be included).
- the total number of amino acids constituting protein 1 used in the present invention is usually 54 to 800, and preferably 80 to 600 when used for binding to particles.
- the ligand may be an alkali-resistant immunoglobulin binding protein.
- An immunoglobulin-binding protein (hereinafter also referred to as “protein 2”), which is another example of a preferred ligand as an alkali-resistant immunoglobulin-binding protein, is represented by the following general formula (3).
- RR 2 (3) (Wherein R represents an amino acid sequence consisting of 4 to 300 amino acids including a continuous site of 4 to 20 histidines, and R 2 represents 50 to 500 amino acids including a Z domain, or a fragment or variant thereof)
- the amino acid sequence which consists of an amino acid and which can be combined with immunoglobulin is shown (here, the terminal where R 2 binds to R is the C-terminal or N-terminal of the immunoglobulin binding domain).
- the number of amino acids contained in the amino acid sequence represented by R is preferably 8 to 100, and the number of histidines at sites where histidines contained in R are continuous is 4 to 8 It is preferable that In the general formula (1), the number of amino acids contained in the amino acid sequence represented by R 2 is preferably 120 to 480.
- R- is preferably a group represented by the following general formula (4).
- R 1 represents an amino acid sequence consisting of 4 to 100 amino acids including a site in which 4 to 20 histidines are continuous (wherein, in R 1 , the end of the site in which the histidines are continuous is r and And r represents an arbitrary amino acid sequence consisting of 7 to 200 amino acids.)
- the amino acid sequence represented by r in the general formula (4) may include a TEV domain. Since the TEV domain is contained in the amino acid sequence represented by r, it is possible to separate R and R 2 by cleavage with TEV protease, and the TEV domain has the effect of the present invention (immobilization on a carrier). This is a preferable sequence for realizing a large amount and increasing the ability of the carrier to retain immunoglobulin). Further, in the amino acid sequence represented by r, a mutant (mutant) of TEV domain (regardless of whether or not it can be cleaved by the TEV protease, homology of 70% or more, preferably 90% or more, with the amino sequence of TEV domain) May be included).
- the number of amino acids contained in the amino acid sequence represented by R 1 is 4 to 25, the number of histidine site histidine continuous contained in R 1 is 4- The number is preferably 8.
- the number of amino acids contained in the amino acid sequence represented by r is preferably 10-50.
- At least one of the amino acid sequence represented by R and the amino acid sequence represented by R 2 includes 1 to 50 amino acids including one amino acid selected from lysine, arginine, and cysteine. It preferably contains a domain t consisting of amino acids. In this case, the same or different domain t may be contained in the amino acid sequence.
- the packing material for affinity chromatography of the present invention when protein 2 is used as a ligand, it has high resistance to washing under alkaline conditions (for example, washing using an alkaline solution such as sodium hydroxide).
- alkaline conditions for example, washing using an alkaline solution such as sodium hydroxide.
- the reason is that by adding a site where histidine is continuous to the Z domain, the binding position of the porous particle and the Z domain is different from the case where there is no histidine continuous site, and there is some structure in the Z domain after immobilization. It is possible that changes have occurred and alkali resistance has increased. Although the actual reason could not be confirmed by experiment, the alkali resistance experimental result shows that there is an effect by adding a histidine continuous site.
- the step of adsorbing immunoglobulin to the packing material using the packing material for affinity chromatography of the present invention first The immunoglobulin can be isolated by the step of 2), the step of eluting the immunoglobulin (second step), and the step of CIP washing the filler with an alkaline solution (third step).
- a solution containing immunoglobulin is passed through a column or the like packed with the above affinity chromatography packing material under conditions that allow the immunoglobulin to adsorb to the ligand of the packing material.
- the solution containing immunoglobulin may be any solution containing immunoglobulin, and examples thereof include biological samples such as serum, supernatant of hybridoma medium, and the like.
- the conditions for adsorbing the immunoglobulin include an immunoglobulin concentration of 0.1 to 10 g / L, a pH of the solution of 5 to 9, a residence time in the column of 0.5 to 50 minutes, and a temperature of 0 to 40 ° C.
- this first step most of the substances other than immunoglobulin in the solution pass through the column without being adsorbed.
- a neutral buffer containing a salt such as NaCl is used to remove some weakly retained material, such as sodium dihydrogen phosphate / disodium hydrogen phosphate solution, citric acid / phosphoric acid Wash with disodium hydrogen solution, hydrochloric acid / tris (hydroxymethyl) aminomethane solution, HEPES / sodium hydroxide solution, etc.
- an appropriate buffer having a pH of 2 to 5, for example, citric acid / sodium citrate solution, acetic acid / sodium acetate solution, hydrochloric acid / glycine solution, etc. is run to elute the immunoglobulin.
- the filler is washed with an alkaline liquid (CIP washing).
- alkaline liquid used here examples include an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, triethylamine, and tetrabutylammonium hydroxide.
- Standard techniques for producing proteins 1 and 2 used in the present invention include, for example, Frederick M. et al. Ausbel et al. Current Protocols In Molecular Biology and Sambrook et al editing Molecular Cloning (Cold Spring Harbor Laboratory Press , 3 rd edition, 2001) may be a known gene recombination techniques are described in, for example.
- protein 1 or 2 used in the present invention can be produced using a gene recombination technique described in US Pat. No. 5,151,350.
- protein 1 or 2 used in the present invention can be obtained in large quantities and economically.
- any known vector that can replicate in bacteria can be used.
- plasmids described in US Pat. No. 5,151,350, Molecular edited by Sambrook et al. Cloning (Cold Spring Harbor Laboratory Press, 3 rd edition, 2001) include plasmids such as those described in.
- any method known in the art may be used.
- Molecular Cloning Cold Spring Harbor Laboratory Press, Cold Spring et al., Edited by Sambrook et al. 3 rd edition, 2001
- Methods for cultivating transformed bacteria and recovering the expressed protein are well known to those skilled in the art.
- a target expression vector is obtained by dividing a DNA encoding a desired amino acid sequence into synthetic oligonucleotides consisting of several tens of bases, linking them by a ligation reaction with DNA ligase and inserting them into a plasmid. Can be obtained.
- a method generally performed by those skilled in the art to employ a nucleic acid sequence using an optimal codon of Escherichia coli in order to efficiently express the protein in Escherichia coli, it is a method generally performed by those skilled in the art to employ a nucleic acid sequence using an optimal codon of Escherichia coli.
- a DNA sequence encoding a desired amino acid sequence can be constructed from the genomic DNA of Streptococcus aureus using PCR (Polymerase Chain Reaction) technology.
- the nucleic acid used in the above production method can encode an immunoglobulin-binding protein (protein 1 or 2) or an equivalent functional variant thereof.
- an “isovariant variant” of an immunoglobulin binding protein is an immunoglobulin binding protein that has been altered by partial amino acid addition, deletion, substitution, chemical modification of amino acid residues, or the like. And having at least 70%, preferably 90% or more homology with the amino acid sequence of the immunoglobulin binding protein before modification, and having the same immunoglobulin binding activity as that of the immunoglobulin binding protein before modification. It means something that can be handled. That is, the nucleic acid includes a nucleic acid encoding protein 1 or 2 in the present specification.
- the proteins 1 and 2 used in the present invention may be proteins containing one or more immunoglobulin binding domains (preferably 2 to 12, more preferably 4 to 10).
- a cDNA encoding such a protein can be easily prepared by linking a predetermined number of cDNAs (complementary DNAs) encoding one immunoglobulin binding domain in series. By inserting the cDNA thus prepared into an appropriate expression plasmid and using it, a protein containing one or more immunoglobulin binding domains can be easily produced.
- a protein having an amino acid sequence of SEQ ID NO: 4 (SPATK) or a protein having an amino acid sequence of SEQ ID NO: 2 (SP4Z) shown in Examples described later, one or several amino acids in SEQ ID NO: 2 or SEQ ID NO: 4
- a protein comprising an amino acid sequence in which is deleted, substituted or added and having immunoglobulin binding activity is suitable as an immunoglobulin binding protein used in the present invention.
- the epoxy group contained in the porous particle is used as it is as a binding site for the ligand because the process is simple.
- the alcoholic hydroxyl group generated by ring-opening the epoxy group contained in the porous particle is activated with a tosyl group and the like, and then the ligand is bonded, the epoxy group contained in the porous particle, or the epoxy group A linker may be further extended from a group generated by ring opening of the group, and then a ligand may be bound to the porous particle through the linker.
- the ligand binding conditions vary depending on the epoxy group content of the porous particles before ligand binding and the type of ligand, but methods known to those skilled in the art can be employed.
- the ligand is a protein
- the amino group at the N-terminal of the protein, lysine and cysteine contained in the protein can be the reaction site with the epoxy.
- binding proteins for example, using an aqueous solution of buffers close to the isoelectric point of the protein, adding a salt such as sodium chloride or sodium sulfate as necessary, and mixing the protein and porous particles at 0 to 40 ° C.
- the protein as a ligand can be bound by reacting for 1 to 24 hours.
- the binding amount of the ligand is appropriately adjusted depending on the type of ligand, the type of target molecule, etc., but when binding an antibody binding protein such as protein A as a ligand, it is preferably 10 to 200 mg per 1 g of porous particles. More preferably, it is 25 to 100 mg.
- the binding capacity of the ligand per gram of porous particles is 10 mg or more, and the dynamic binding capacity is excellent, and when it is 200 mg or less, the bound antibody is eluted. Therefore, a large amount of eluate becomes an appropriate amount.
- the porous particles constituting the filler for affinity chromatography of the present invention have a ring-opening epoxy group.
- This ring-opening epoxy group opens the epoxy group contained in the polymer, that is, the remaining epoxy group other than the epoxy group bonded to the ligand, after binding the ligand to the porous particles made of the specific polymer. Can be obtained. This means that substantially all of the epoxy groups on the surface of the porous particles are ring-opened before the porous particles are used as a filler for affinity chromatography.
- substantially all of the epoxy groups on the surface of the porous particles are ring-opened, specifically, the epoxy groups remaining in the porous particles having ring-opened epoxy groups are preferably 0.04 mmol / It means less than g, more preferably less than 0.02 mmol / g, and most preferably no epoxy group remains.
- the storage stability is excellent.
- the alcoholic hydroxyl group which is a ring-opened epoxy group generated by the ring opening of the epoxy group, makes the particle surface hydrophilic, prevents non-specific adsorption of proteins, etc., and improves the toughness of the particles in water. Plays a role in preventing particle destruction.
- the ring opening method of the epoxy group in the porous particle include a method of heating or stirring at room temperature with an acid or alkali in an aqueous solvent.
- the epoxy group may be ring-opened with a blocking agent having a mercapto group such as mercaptoethanol or thioglycerol or a blocking agent having an amino group such as monoethanolamine.
- the most preferred ring-opening epoxy group is a ring-opening epoxy group obtained by opening the epoxy group contained in the porous particles with thioglycerol.
- Thioglycerol is less toxic than mercaptoethanol as a raw material, and the epoxy ring-opening group added with thioglycerol has lower non-specific adsorption than the ring-opening group with a blocking agent having an amino group, and the amount of dynamic binding. Has the advantage of becoming higher.
- the particle diameter of the porous particles constituting the filler for affinity chromatography of the present invention is usually 35 to 100 ⁇ m, preferably 38 to 75 ⁇ m. When the particle diameter is 35 ⁇ m or more, the pressure characteristics are excellent. When the thickness is 100 ⁇ m or less, a filler having a high dynamic binding capacity can be obtained. As described above, the particle diameter of the porous particles having a ring-opening epoxy group can be adjusted under the conditions for polymerizing the porous particles.
- the “particle diameter” in the present invention is a volume average particle diameter obtained by a laser diffraction / scattering particle size distribution measuring apparatus.
- the porous particles having a ring-opening epoxy group constituting the packing material for affinity chromatography of the present invention preferably have a pore size corresponding to a pore size in the range of 10 to 5000 nm with a mercury porosimeter, and preferably 1.00 to 3. It has a pore volume of 00 ml / g, more preferably 1.05 to 2.10 ml / g. When the pore volume is within the above range, a filler having a high protein dynamic binding capacity can be obtained.
- the porous particles having a ring-opened epoxy group constituting the filler for affinity chromatography of the present invention preferably have a specific surface area of 80 to 150 m 2 / g, more preferably 100 to 140 m 2 / g.
- the specific surface area is less than 80 m 2 / g, the dynamic binding capacity is inferior.
- the specific surface area exceeds 150 m 2 / g, the strength of the filler is inferior, so the filler is destroyed at a high flow rate.
- the column pressure may increase.
- the “specific surface area” in the present invention is a value obtained by dividing the surface area of pores having a pore diameter of 10 to 5000 nm obtained by a mercury porosimeter by the dry mass of the particles.
- the porous particles having a ring-opened epoxy group constituting the filler for affinity chromatography of the present invention preferably have a volume average pore diameter of 55 to 300 nm, more preferably 60 to 250 nm.
- the “volume average pore diameter” in the present invention is a volume average pore diameter of pores having a pore diameter of 10 to 5000 nm obtained by a mercury porosimeter.
- Epoxy group content of the porous particles before ligand binding is about 10% by mass concentration so that the number of moles of epoxy group calculated from the amount of epoxy group-containing monomer used in the polymerization is 2.00 mmol.
- the aqueous dispersion of porous particles whose exact mass concentration is known is measured in a polyethylene bottle by mass, and 25 mL of 38% aqueous calcium chloride solution and 2.00 mL of 2N hydrochloric acid are added thereto, and the mixture is heated at 75 ° C. for 2 hours.
- the epoxy group was opened by stirring for 30 minutes, cooled, neutralized with 2.50 mL of 2N aqueous sodium hydroxide solution, and back titrated with 0.1N hydrochloric acid while monitoring the pH with a pH meter. Quantified.
- Particle size volume average particle size
- the volume average particle size of the particles was measured with a laser diffraction / scattering particle size distribution analyzer (LS13320, manufactured by Beckman Coulter, Inc.).
- Pore volume, specific surface area, volume average pore diameter Vacuum dried at 40 ° C. for 24 hours to obtain dry particles, and the pore volume, specific surface area, and volume average of the dry particles with a mercury porosimeter (Autopore IV9520, manufactured by Shimadzu Corporation) The pore diameter (pore diameter) was determined. The measurement range was 10 to 5000 nm in the pore diameter range.
- washing and neutralization flow rate were measured and used as neutralization flow rate after alkali deterioration.
- the difference in liquid volume between the initial neutralization flow rate and the neutralization flow rate after alkali deterioration (described as “liquid volume difference” in Tables 2 to 4) was used as an indicator of alkali resistance. That is, it can be said that the smaller the difference in the liquid volume between the initial neutralization flow rate and the neutralization flow rate after alkali deterioration, the less the alkali deterioration and the better the alkali resistance.
- DBC Dynamic Binding Capacity of Protein
- SPA protein A
- BCA bicinchoninic acid
- 1 mg of filler in terms of solid content was collected in a test tube, and this was quantified with a BCA Protein Assay Kit from Thermo Fisher Scientific (formerly PIERCE).
- the reaction was performed by inversion mixing at 37 ° C. for 30 minutes.
- the calibration curve was prepared using the same lot as protein A bound to porous particles.
- (M-1) glycerol monomethacrylate (manufactured by NOF Corporation) 82.4 g, (M-2) glycidyl methacrylate (manufactured by Mitsubishi Rayon) 16.5 g, (M-3) trimethylolpropane trimethacrylate (Sartomer) 65.9 g) was dissolved in 246 g of 2-octanone (Toyo Gosei Co., Ltd.) and 61.7 g of acetophenone (Wako Pure Chemical Industries, Ltd.) to prepare a monomer solution.
- the number of parts of each monomer is 80 parts by mass of glycerol monomethacrylate, 10 parts by mass of glycidyl methacrylate, and 40 parts by mass of trimethylolpropane trimethacrylate.
- the prepared aqueous solution (S-1) and the monomer solution were put into a 7 L separable flask with a baffle, a thermometer, a stirring blade and a cooling tube were attached, set in a hot water bath, and a nitrogen atmosphere Under stirring, stirring was started at 240 rpm. Subsequently, the separable flask was heated with a hot water bath, and when the internal temperature reached 85 ° C., an initiator dispersion was added and stirred for 5 hours while maintaining the temperature at 85 ° C.
- the reaction solution was filtered with Nutsche and washed with pure water and isopropyl alcohol.
- the washed particles were transferred to a polybin, dispersed in water and decanted three times to remove small particles.
- 12.5% by mass of porous particles 1 particles dry mass of 105 g dispersed in water were obtained.
- the epoxy group content of the porous particles 1 was 0.55 mmol / g.
- FIG. 2 is a diagram for explaining a method of constructing the SP4Z vector.
- Step 1 Using a DNA encoding the monomer Z domain as a starting material, a monomer Z domain vector (A-pETM11) (SP1Z) having an NcoI cleavage site and an EcoRI cleavage site was constructed.
- A-pETM11 monomer Z domain vector having an NcoI cleavage site and an EcoRI cleavage site was constructed.
- Step 2 Next, another Z domain was added to the A-pETM11 vector to construct a dimeric Z domain vector (AB-pETM11) (SP2Z) having an EcoRI cleavage site and a SacI cleavage site.
- AB-pETM11 dimeric Z domain vector
- Step 3 Another Z domain was added to the AB-pETM11 vector to construct a trimeric Z domain vector (ABC-pETM11) (SP3Z) having a SacI cleavage site and a Hind III cleavage site.
- Step 4 Finally, a fourth Z domain was added to the ABC-pETM11 vector to construct a pETM11-SP4Z vector having a HindIII cleavage site and an XhoI cleavage site.
- SP1Z-pETM11 vector (monomer Z domain vector with stop codon) (step 1 in FIG. 2) PCR was performed using SPZK DNA (SEQ ID NO: 3) as a template, primer 153 (SEQ ID NO: 5) as a forward primer, and primer 156 (SEQ ID NO: 8) as a reverse primer.
- primer 153 and primer 156 include an NcoI cleavage site and a SacI restriction enzyme cleavage site, respectively.
- the conditions for PCR are as follows.
- Step 1 94 ° C for 1 minute
- Step 2 94 ° C for 30 seconds, 55 ° C for 30 seconds, 72 ° C for 2.5 minutes (25 cycles)
- Step 3 72 ° C for 10 minutes for 1 minute, then hold at 4 ° C .
- the PCR product was purified with a generation kit manufactured by GE Healthcare Bioscience.
- the pETM11 vector cleaved with NcoI restriction enzyme and SacI restriction enzyme was ligated with the PCR product.
- the digestion reaction with a restriction enzyme was performed at 37 ° C. for 1 hour using NcoI restriction enzyme and SacI restriction enzyme made by New England Biolabs, and was purified by PCR using a production kit made by GE Healthcare Biosciences.
- the ligation reaction was performed overnight at room temperature with T4 DNA ligase (manufactured by Invitrogen).
- the vector obtained by ligation was transformed with DH5a competent cell (Biomedical Life Science), and the resulting transformant was cultured overnight in LB medium containing kanamycin at 37 ° C., and a plasmid was extracted from positive colony.
- the sequence of the inserted DNA fragment was confirmed with 3730 DNA Sequencer (Applied Biosystems).
- A-pETM11 vector (monomer Z domain vector without stop codon) Experiment 2.2 using primer 153 as a forward primer and primer 154 (SEQ ID NO: 6) as a reverse primer instead of primers 153 and 156 1.2.
- primer 153 as a forward primer
- primer 154 SEQ ID NO: 6
- reverse primer instead of primers 153 and 156 1.2.
- an A-pETM11 vector was constructed. The DNA fragment is inserted using the NcoI cleavage site and EcoRI cleavage site of pETM11.
- SP2Z-pETM11 vector (a dimeric Z domain vector with a stop codon)
- a primer having EcoRI and SacI cleavage sites by PCR using primer 155 (SEQ ID NO: 7) as a forward primer and primer 156 as a reverse primer.
- a DNA of a monomer Z domain was prepared and constructed by inserting it into EcoRI cleavage site and SacI cleavage site of A-pETM11. Experiment 2.1.2. The same conditions were used.
- AB-pETM11 vector (dimeric Z domain vector without stop codon) Termination with EcoRI and SacI cleavage sites by PCR using primer 155 as forward primer and primer 157 (SEQ ID NO: 9) as reverse primer A codon-free monomeric Z domain DNA was prepared and inserted into the EcoRI and SacI cleavage sites of A-pETM11 to construct the AB-pETM11 vector. Experiment 2.1.2. The same conditions were used.
- SP4Z-pETM11 vector (tetramer Z domain vector with stop codon) DNA of monomeric Z domain having HindIII cleavage site and XhoI cleavage site by PCR using primer 160 (SEQ ID NO: 12) and primer 161 was inserted into the HindIII and XhoI cleavage sites of ABC-pETM11 to construct the SP4Z-pETM11 vector.
- primer 160 SEQ ID NO: 12
- primer 161 was inserted into the HindIII and XhoI cleavage sites of ABC-pETM11 to construct the SP4Z-pETM11 vector.
- Experiment 2.1.2 The same conditions were used.
- SP4Z-pETM11 vector was transformed into E. coli.
- the cells were introduced into E. coli (BL21 strain) cells (manufactured by STRATAGENE), 1 mM IPTG (manufactured by Sigma-Aldrich) was added at 18 ° C., and incubated for 15 hours to express a recombinant immunoglobulin binding protein (SP4Z). Prior to induction, the cells were incubated at 37 ° C. until the absorbance (OD600) reached approximately 0.6. After protein expression, the cells were collected and disrupted in Tris buffer at pH 8.0.
- the obtained recombinant immunoglobulin binding protein (SP4Z) was purified by Ni affinity chromatography (Ni-NTA (nitrilotriacetic acid) particles, manufactured by Qiagen).
- the purified immunoglobulin binding protein was further purified by anion exchange chromatography (Q-Sepharose FF, manufactured by GE Biosciences). The purity of the immunoglobulin binding protein confirmed by SDS-PAGE was 96%.
- the obtained recombinant immunoglobulin binding protein (SP4Z) was confirmed to have the amino acid sequence (SEQ ID NO: 2) shown in FIG. 1 by MALDI-TOF mass spectral analysis because the amino acid sequences were identical. It was.
- R and R 2 correspond to R and R 2 in the general formula (1) and (3)
- R 1 and r is the general formula (2) and (4) in R 1 and r
- TEV domain TEV protease (peptide bond hydrolase) cleavage site
- Affinity chromatography filler 1 (A-1) comprising porous particles having an epoxy group and a ligand bound thereto was obtained.
- Affinity chromatography filler 1 (A-1) comprising porous particles having an epoxy group and a ligand bound thereto was obtained.
- the amount of SP4Z bound to the particles was 84 mg / g particles.
- the particle diameter of (A-1) was 58 ⁇ m, the pore volume was 1.22 mL / g, the specific surface area was 111 m 2 / g, and the volume average pore diameter was 74 nm.
- the liquid volume difference due to alkali degradation is 0.32 mL, the dynamic binding capacity of protein (human IgG antibody) is 43 mg / mL, the dynamic binding capacity of protein (human IgG antibody) after storage test is 44 mg / mL, and DBC The maintenance rate was 102%.
- Step 1 Using the genomic DNA of Staphylococcus aureus as a template, DNA encoding a DA domain was obtained by PCR using a primer having a restriction enzyme NcoI site (Primer11) and a primer having restriction enzymes BamH1 and HindIII sites (Primer12). This DNA was digested with restriction enzymes NcoI and HindIII and ligated to pETM11 which was also digested with restriction enzymes NcoI and HindIII to construct a SPAK plasmid.
- Step 2 using the SPAK plasmid obtained above as a template, a DNA encoding a new DA domain by PCR using a primer having a restriction enzyme BamHI site (Primer13) and a primer having a restriction enzyme HindIII site (Primer14). Obtained. This DNA was cleaved with restriction enzymes BamHI and HindIII, and ligated to the SPAK plasmid obtained above, which was also cleaved with restriction enzymes BamHI and HindIII, to construct a SPATK plasmid.
- Step 1 94 ° C. for 1 minute
- Step 2 94 ° C. for 30 seconds, 53 ° C. for 30 seconds, 72 ° C. for 2.5 minutes (25 cycles)
- Step 3 72 ° C. for 10 minutes for 1 minute, then hold at 4 ° C. .
- the PCR product was purified with a purification kit manufactured by GE Healthcare Bioscience. Next, it cut
- the pETM11 vector was similarly cut with NcoI restriction enzyme and HindIII restriction enzyme.
- the digestion reaction with a restriction enzyme was performed using NcoI restriction enzyme and HindIII restriction enzyme made by New England Biolabs, and purified with a purification kit made by GE Healthcare Biosciences.
- the ligation reaction was performed overnight at room temperature with T4 DNA ligase (Invitrogen).
- the vector obtained by ligation was transformed into DH5a competent cell (manufactured by Biomedical Life Science), and the sequence of the positive colony plasmid (SPAK plasmid) was confirmed by 3730 DNA Sequencer (manufactured by Applied Biosystems).
- the digestion reaction with a restriction enzyme was purified with a purification kit made by GE Healthcare Biosciences using BamHI restriction enzyme and HindIII restriction enzyme made by New England Biolabs.
- the ligation reaction was performed overnight at room temperature with T4 DNA ligase (Invitrogen).
- the vector obtained by ligation was transformed into DH5a competent cell (manufactured by Biomedical Life Science), and it was confirmed with 3730 DNA Sequencer (manufactured by Applied Biosystems) that the sequence of the positive colony plasmid (SPATK plasmid) was correct.
- SPATK recombinant immunoglobulin binding protein
- the obtained recombinant immunoglobulin binding protein was purified by Ni affinity chromatography (Ni-NTA (nitrilotriacetic acid) particles, manufactured by Qiagen).
- Ni-NTA nitrilotriacetic acid
- the purified immunoglobulin binding protein was further purified by anion exchange chromatography (Q-Sepharose FF, manufactured by GE Biosciences). The purity of the immunoglobulin binding protein confirmed by SDS-PAGE was 96%.
- SPATK immunoglobulin binding protein
- the particle diameter of (A-2) was 58 ⁇ m, the pore volume was 1.23 mL / g, the specific surface area was 112 m 2 / g, and the volume average pore diameter was 76 nm.
- the liquid volume difference due to alkali degradation is 0.33 mL, the dynamic binding capacity of protein (human IgG antibody) is 44 mg / mL, the dynamic binding capacity of protein (human IgG antibody) after storage test is 32 mg / mL, and DBC The maintenance rate was 74%.
- Example 3 To 4091 g of pure water, 8.52 g of polyvinyl alcohol (PVA-217 manufactured by Kuraray Co., Ltd.), 2.13 g of sodium dodecyl sulfate (Emar 10G manufactured by Kao Co., Ltd.) and 4.26 g of sodium carbonate were added and stirred overnight to prepare an aqueous solution (S -2-1) was prepared. On the day of the polymerization, 30 g of (S-2-1) was extracted separately, and 2.13 g of sodium nitrite was dissolved in the remaining (S-2-1) to prepare an aqueous solution (S-2-2).
- PVA-217 polyvinyl alcohol
- Emar 10G manufactured by Kao Co., Ltd.
- glycerol methacrylate manufactured by NOF Corporation
- 125 g of glycerin dimethacrylate manufactured by Shin-Nakamura Chemical Co., Ltd.
- 17.9 g of glycidyl methacrylate manufactured by Mitsubishi Rayon Co., Ltd.
- 2-octanone manufactured by Toyo Gosei Co., Ltd.
- acetophenone manufactured by Wako Pure Chemical Industries, Ltd.
- the number of parts of each monomer is 20 parts by mass of glycerol methacrylate, 70 parts by mass of glycerin dimethacrylate, and 10 parts by mass of glycidyl methacrylate.
- the prepared aqueous solution (S-2-2) and the monomer solution are put into a 7 L separable flask with a baffle, a thermometer, a stirring blade, and a cooling tube are attached, and set in a hot water bath. Stirring was started at 220 rpm in a nitrogen atmosphere. Subsequently, the separable flask was heated with a hot water bath, and when the internal temperature reached 85 ° C., an initiator dispersion was added and stirred for 5 hours while maintaining the temperature at 85 ° C.
- the reaction solution was filtered with Nutsche and washed with pure water and isopropyl alcohol.
- the washed particles were transferred to a polybin, dispersed in water and decanted three times to remove small particles.
- 12.5% by mass of porous particles 3 particles dry mass 123 g dispersed in water were obtained.
- the epoxy group content of the porous particles 3 was 0.47 mmol / g.
- the packing material 3 for affinity chromatography comprising the porous particle 3 having a ring-opened epoxy group and a ligand bound thereto ( A-3) was obtained.
- the results are shown in Table 3.
- Example 4 To 300 g of pure water, 0.600 g of polyvinyl alcohol (PVA-217 manufactured by Kuraray Co., Ltd.), 0.030 g of sodium dodecyl sulfate (Emar 10G manufactured by Kao Co., Ltd.) and 1.50 g of sodium sulfate were added and stirred overnight for an aqueous solution (S -3-1) was prepared. On the day of the polymerization, 5 g of (S-3-1) was extracted separately, and 0.150 g of sodium nitrite was dissolved in the remaining (S-3-1) to prepare an aqueous solution (S-3-2).
- PVA-217 polyvinyl alcohol
- Emar 10G manufactured by Kao Co., Ltd.
- aqueous solution (S-3-2) and the monomer solution are put into a 0.5 L separable flask with a baffle, and a thermometer, a stirring blade, and a cooling pipe are attached to a hot water bath. Setting was started and stirring was started at 680 rpm in a nitrogen atmosphere. Subsequently, the separable flask was heated with a hot water bath, and when the internal temperature reached 85 ° C., an initiator dispersion was added and stirred for 5 hours while maintaining the temperature at 85 ° C.
- the reaction solution was filtered with Nutsche and washed with pure water and isopropyl alcohol.
- the washed particles were transferred to a polybin, dispersed in water and decanted three times to remove small particles.
- 12.5% by mass of porous particles 4 particles dry mass 8.7 g dispersed in water were obtained.
- the epoxy group content of the porous particles 4 was 1.7 mmol / g.
- Example 4 a porous structure having a ring-opened epoxy group and a ligand bonded thereto was used except that the amount of each monomer was 100 parts by mass and the number of parts of each monomer was as shown in Table 3. Affinity chromatography packing materials 5 to 7 (A-5 to 7) consisting of fine particles were obtained and evaluated. The results are shown in Table 3.
- Example 8 To 343 g of pure water, 0.687 g of polyvinyl alcohol (PVA-217 manufactured by Kuraray Co., Ltd.), 0.071 g of sodium dodecyl sulfate (Emar 10G manufactured by Kao Co., Ltd.) and 1.78 g of sodium sulfate were added and stirred overnight to obtain an aqueous solution (S -4) was prepared. On the day of the polymerization, another 10 g of (S-4) was withdrawn.
- PVA-217 polyvinyl alcohol
- Emar 10G sodium dodecyl sulfate
- glycerol methacrylate manufactured by NOF Corporation
- 1.60 g of 4-hydroxybutyl acrylate glycidyl ether manufactured by Nippon Kasei Co., Ltd.
- 6.41 g of trimethylolpropane trimethacrylate manufactured by Sartomer
- 2-octanone A monomer solution was prepared by dissolving in 19.4 g of Toyo Gosei Co., Ltd. and 4.99 g of acetophenone (Wako Pure Chemical Industries, Ltd.).
- the number of parts of each monomer is 50 parts by mass of glycerol methacrylate, 10 parts by mass of 4-hydroxybutyl acrylate glycidyl ether, 40 parts by mass of trimethylolpropane trimethacrylate. It is.
- aqueous solution (S-4) and the monomer solution were put into a 0.5 L separable flask with a baffle, and a thermometer, a stirring blade, and a cooling tube were attached and set in a hot water bath. Stirring was started at 550 rpm in a nitrogen atmosphere. Subsequently, the separable flask was heated with a hot water bath, and when the internal temperature reached 85 ° C., an initiator dispersion was added and stirred for 5 hours while maintaining the temperature at 85 ° C.
- the reaction solution was filtered with Nutsche and washed with pure water and isopropyl alcohol.
- the washed particles were transferred to a polybin, dispersed in water and decanted three times to remove small particles.
- 12.5% by mass of porous particles 8 particles dry mass 7.5 g
- the epoxy group content of the porous particles 8 was 0.33 mmol / g.
- Comparative Example 3 A filler 3 (B-3) for comparative affinity chromatography was obtained and evaluated in the same manner as in Example 8, except that the type and number of monomers were as shown in Table 4. The results are shown in Table 4.
- Example 9 In Example 8, the amount of sodium dodecyl sulfate was 0.036 g, the type and number of monomers were as shown in Table 4, and the number of stirring was 450 rpm. Affinity chromatography packing material 69 (A-9) comprising porous particles 9 bound with a ligand was obtained and evaluated. The results are shown in Table 4.
- Comparative Example 4 A filler 4 (B-4) for comparative affinity chromatography was obtained and evaluated in the same manner as in Example 9, except that the number of monomers was as shown in Table 4. The results are shown in Table 4.
- a monomer composed of 60% by mass of pentaerythritol triacrylate and 40% by mass of pentaerythritol tetraacrylate (trade name “NK Ester A-TMM-3LM-N” manufactured by Shin-Nakamura Chemical Co., Ltd.) 104 g, 4-hydroxybutyl 20.7 g of acrylate glycidyl ether (manufactured by Nippon Kasei Co., Ltd.) and 82.9 g of hydroxyethyl acrylamide (manufactured by Kojin Co., Ltd.) are dissolved in 134 g of 2-octanone (manufactured by Toyo Gosei Co., Ltd.) and 169 g of acetophenone (manufactured by Wako Pure Chemical Industries, Ltd.).
- a monomer solution was prepared.
- the total mass of the monomers is 100 parts by mass, the number of parts of each monomer is 30 parts of pentaerythritol triacrylate, 20 parts of pentaerythritol tetraacrylate, 10 parts of 4-hydroxybutyl acrylate glycidyl ether, hydroxy 40 parts of ethyl acrylamide.
- the prepared aqueous solution (S-5-2) and the monomer solution are put into a 7 L separable flask with a baffle, a thermometer, a stirring blade, and a cooling pipe are attached, and set in a hot water bath. Stirring was started at 300 rpm in a nitrogen atmosphere. Subsequently, the separable flask was heated with a warm water bath, and when the internal temperature reached 80 ° C., an initiator dispersion was added and stirred for 5 hours while maintaining the temperature at 80 ° C.
- the reaction solution was filtered with Nutsche and washed with pure water and isopropyl alcohol.
- the washed particles were transferred to a polybin, dispersed in water and decanted three times to remove small particles.
- 12.5 mass% porous particles particle dry mass 107 g
- the epoxy content of the porous particles was 0.29 mmol / g.
- the present invention is not limited to the above-described embodiments, and various modifications can be made.
- the present invention also includes configurations that are substantially the same as the configurations described in the embodiments (for example, configurations that have the same functions, methods, and results, or configurations that have the same purposes and results).
- the invention includes a configuration in which a non-essential part of the configuration described in the embodiment is replaced.
- the present invention includes a configuration that achieves the same effect as the configuration described in the embodiment or a configuration that can achieve the same object.
- the invention includes a configuration in which a known technique is added to the configuration described in the embodiment.
- the packing material for affinity chromatography of the present invention has a large amount of immunoglobulin-binding protein compared to conventional carriers and is excellent in the ability to retain the protein. Thereby, since the capture amount of the target protein can be increased, the binding capacity of the target protein (antibody) can be increased. As a result, a high-purity target protein can be purified efficiently, at low cost and in large quantities.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Chemical & Material Sciences (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
(M-1)水酸基を含有しエポキシ基を含有しないメタクリロイル基を含有するビニル単量体 40~99.5質量部
(M-2)エポキシ基含有ビニル単量体 0.5~30質量部、
(M-3)(M-1)および(M-2)以外のメタクリロイル基を含有するビニル単量体 0~59.5質量部、ならびに
(M-4)(M-1)、(M-2)および(M-3)以外のビニル単量体 0~25質量部(但し、(M-1)、(M-2)、(M-3)および(M-4)の合計は100質量部である。)
の共重合体からなる多孔質粒子と、
前記共重合体に含まれるエポキシ基を開環させて得られる開環エポキシ基と、
前記多孔質粒子に結合したリガンドと
を含む。
H2C=C(CH3)C(=O)OCH2CH(OH)-R ・・・(A)
(式中、Rは水素原子または1価の有機基を示す。)
上記アフィニティークロマトグラフィー用充填剤を用いて、前記充填剤にイムノグロブリンを吸着させる工程、
前記イムノグロブリンを溶出させる工程、および
前記充填剤をアルカリ性液で洗浄する工程
を含む。
1.1.多孔質粒子の構成
本発明のアフィニティークロマトグラフィー用充填剤を構成する多孔質粒子は、
(M-1)水酸基を含有しエポキシ基を含有しないメタクリロイル基を含有するビニル単量体 40~99.5質量部、
(M-2)エポキシ基含有ビニル単量体 0.5~30質量部、
(M-3)(M-1)および(M-2)以外のメタクリロイル基を含有するビニル単量体 0~59.5質量部、ならびに
(M-4)(M-1)、(M-2)および(M-3)以外のビニル単量体0~25質量部(但し、(M-1)、(M-2)、(M-3)および(M-4)の合計は100質量部)の共重合体からなり、該共重合体に含まれるエポキシ基を開環させて得られる開環エポキシ基を有する。ここで、多孔質粒子は、リガンド結合前の担体粒子をいう。
(M-1)水酸基を含有しエポキシ基を含有しないメタクリロイル基を含有するビニル単量体は、1分子中に、1個以上のメタクリロイル基と、1個以上の水酸基とを有し、エポキシ基を含有しないビニル単量体である。(M-1)を特定量用いて、多孔質粒子を親水化し、これを含むことにより、タンパク質の動的結合容量が高く、しかも耐アルカリ性に優れたアフィニティークロマトグラフィー用充填剤を得ることが出来る。
(式中、Rは水素原子または1価の有機基を示す。)
一般式(A)において、Rは、1~8個の炭素原子を有する有機基であるのが好ましい。このような(M-1-2)としては、Rがメタクリロイルオキシメチル基に相当するグリセリンジメタクリレートが最も好ましい。
(M-2)エポキシ基含有ビニル単量体は、1分子中に、1個以上の重合性ビニル基(エチレン性不飽和結合を有する基)と、1個以上のエポキシ基とを有する単量体である。エポキシ基含有ビニル単量体は、得られる共重合体からなる多孔質粒子に適切な量のエポキシ基を導入し、適切なリガンド結合量を得るための必須成分である。
(M-3)上記(M-1)および(M-2)以外のメタクリロイル基を含有するビニル単量体としては、具体的には、(M-3-1)1分子中に1個のメタクリロイル基を有する水酸基非含有非架橋性ビニル単量体と、(M-3-2)1分子中に2個以上のメタクリロイル基を有する水酸基非含有架橋性ビニル単量体とが挙げられる。以下、各々に分けて説明する。
(M-4)上記(M-1)、(M-2)および(M-3)以外のビニル単量体は、上記(M-1)、(M-2)および(M-3)以外の残余のビニル単量体である。本発明の目的である高いタンパク質の動的結合量と優れた耐アルカリ性を阻害しない範囲で25質量部以下の量で使用できる。(M-4)としては、非架橋性単量体として、エチレン、プロピレン、スチレン、酢酸ビニル、N-ビニルアセトアミドなどが挙げられ、架橋性単量体として、ジビニルベンゼン、ブタジエン、イソシアヌル酸ジアリル、イソシアヌル酸トリアリルなどが挙げられる。ジビニルベンゼンは、多孔質粒子の硬さを増し、クロマトグラフィーカラムの圧力を低下させるために有効な単量体である。(M-4)は、25質量部を超えると、タンパク質の動的結合量が低下したり、耐アルカリ性が低下したりする。
(M-1)水酸基を含有しエポキシ基を含有しないメタクリロイル基を含有するビニル単量体 45~95質量部
(M-2)エポキシ基含有ビニル単量体 1~20質量部、
(M-3)(M-1)および(M-2)以外のメタクリロイル基を含有するビニル単量体 0~50質量部、ならびに
(M-4)(M-1)、(M-2)および(M-3)以外のビニル単量体 0~25質量部の共重合体(但し、(M-1)、(M-2)、(M-3)および(M-4)の合計は100質量部である。)
が挙げられる。
多孔質粒子は、公知のシード重合、懸濁重合などにより製造することができる。シード重合法として、特公昭57-24369号公報記載の二段膨潤重合法も好適に用いられる。重合に際しては、上記単量体の他、水、ポロジェンを必須成分とし、重合開始剤、高分子分散剤、界面活性剤、塩、シード粒子、水溶性重合禁止剤などを必要に応じて使用する。
上述の単量体混合物((M-1)および(M-2)、ならびに必要に応じて(M-3)および/または(M-4))100質量部と、
(P-1)炭素数7~14である直鎖状、分岐鎖状および環状のアルコール、エーテル、アルデヒド、ケトン、エステル、炭素数8~10のアルキルベンゼンから選ばれる少なくとも1つのポロジェンと、を必須成分とする水系混合物の懸濁重合法である。
アルコールとして、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、4-ヘプタノール、2,4-ジメチル-3-ペンタノール、5-メチル-2-ヘキサノール、2-エチル-1-ヘキサノール、2-オクタノール、3-オクタノール、5-メチル-3-ヘプタノール、1-ノナノール、3,5,5-トリメチルヘキサノール;
エーテルとして、ヘキシルメチルエーテル、ジブチルエーテル、シネオール;
アルデヒドとして、ヘプタナール、オクタナール、2-エチル-1-ヘキサナール、ノナナール、3,5,5-トリメチルヘキサナール、1-デカナール、ドデカナール;
ケトンとして、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、2,4-ジメチル-3-ペンタノン、4,4-ジメチル-2-ペンタノン、5-メチル-2-ヘキサノン、2-オクタノン、3-オクタノン、5-メチル-3-ヘプタノン、2,6-ジメチル-4-ヘプタノン、2-ノナノン、3-ノナノン、4-ノナノン、3,3,5-トリメチルシクロヘキサノン、2-デカノン、3-デカノン、2-ウンデカノン、4-t-ペンチルシクロヘキサノン、2-ヘキシルシクロペンタノン、2-ヘプチルシクロペンタノン、ジシクロヘキシルケトン;
エステルとして、蟻酸ヘキシル、酢酸ペンチル、酢酸イソペンチル、プロピオン酸ブチル、プロピオン酸イソブチル、酪酸プロピル、酪酸イソプロピル、イソ酪酸プロピル、イソ酪酸イソプロピル、吉草酸エチル、イソ吉草酸エチル、ピバル酸エチル、ヘキサン酸メチル、酢酸ヘキシル、酢酸シクロヘキシル、酢酸-2-エチルブチル、プロピオン酸イソペンチル、酪酸ブチル、イソ酪酸ブチル、酪酸イソブチル、イソ酪酸イソブチル、吉草酸プロピル、イソ吉草酸プロピル、ヘキサン酸エチル、ヘプタン酸メチル、酢酸ヘプチル、プロピオン酸ヘキシル、酪酸ペンチル、酪酸イソペンチル、イソ酪酸ペンチル、イソ酪酸イソペンチル、吉草酸イソブチル、ヘキサン酸プロピル、ヘキサン酸イソプロピル、ヘプタン酸エチル、オクタン酸メチル、酢酸オクチル、酢酸イソオクチル、酢酸-2-エチルヘキシル、酪酸ヘキシル、酪酸シクロヘキシル、吉草酸ペンチル、イソ吉草酸イソペンチル、ヘキサン酸ブチル、ヘキサン酸イソブチル、オクタン酸エチル、ノナン酸メチル、酢酸ノニル、ヘキサン酸ペンチル、ノナン酸エチル、2-エチルヘキサン酸プロピル、3,5,5-トリメチルヘキサン酸エチル、デカン酸メチル、δ-ドデカノラクトン、酢酸デシル、デカン酸エチル、酢酸シトロネリル、ドデカン酸メチル、酢酸ドデシル、ドデカン酸エチル;
アルキルベンゼンとして、キシレン、エチルベンゼン、クメン、n-プロピルベンゼン、n-ブチルベンゼン、t-ブチルベンゼン、sec-ブチルベンゼン、iso-ブチルベンゼン、エチルトルエン、シメン、メシチレンなどが挙げられる。
リガンド結合前の多孔質粒子に含まれるエポキシ基は、リガンドを結合するための官能基であり、また、さらに開環後にアフィニティークロマトグラフィー用充填剤としての親水性向上の元となる官能基である。リガンド結合前の多孔質粒子のエポキシ基含有量は、好ましくは0.05~2mmol/gであり、さらに好ましくは0.08~1.5mmol/gであり、最も好ましくは0.10~1.0mmol/gである。リガンド結合前の多孔質粒子のエポキシ基含有量が0.05mmol/g以上であると、リガンドの結合量が適度であり、タンパク質の動的結合容量の低下が抑制される。リガンド結合前の多孔質粒子のエポキシ基含有量が2mmol/g以下であると、保存中におけるリガンドの活性の低下が抑制され、タンパク質の動的結合容量の低下も抑制される。リガンド結合前の多孔質粒子のエポキシ基含有量は、多孔質粒子に塩酸(または、塩化物イオンを含む塩)を過剰に添加して塩酸を付加反応することによりエポキシ基を開環し、残余の塩酸を過剰量の塩基(例えば水酸化ナトリウム水溶液)で中和した後、残余の水酸化ナトリウムを塩酸で逆滴定することにより定量することが出来る。リガンド結合前の多孔質粒子のエポキシ基含有量は、エポキシ基含ビニル単量体の量、重合温度、重合時間、重合液のpH、さらには、重合後の開環処理などによって、調整することが出来る。
本発明のアフィニティークロマトグラフィー用充填剤は、前記単量体の共重合体からなり、前記共重合体に含まれるエポキシ基を開環させて得られる開環エポキシ基を有する多孔質粒子と、前記多孔質粒子に結合するリガンドと、を含む。
リガンドは、標的物に対して適度なアフィニティーを有するものであれば、その種類は特に限定されないが、例えば、プロテインA、プロテインG、アビジン等のタンパク質;インシュリン等のペプチド;モノクローナル抗体等の抗体;酵素;ホルモン;DNA;RNA;ヘパリン、ルイスX、ガングリオシド等の糖質;イミノジ酢酸、合成色素、2-アミノフェニル硼素酸、4-アミノベンズアミジン、グルタチオン、ビオチンやその誘導体のような低分子化合物を用いることができる。上記に例示したリガンドはその全体を用いてもよいが、リコンビナント、酵素処理等によって得られるそのフラグメントを用いてもよい。また、人工的に合成されたペプチドやペプチド誘導体であってもよい。
プロテインAのイムノグロブリン結合ドメインは、天然型のイムノグロブリン結合ドメインであってもよいし、または、組換え型のイムノグロブリン結合ドメインであってもよい。プロテインAのイムノグロブリン結合ドメインは、Aドメイン、Bドメイン、Cドメイン、Dドメイン、Eドメイン、およびZドメインから選ばれる少なくとも1種であることが好ましい。Aドメイン、Bドメイン、Cドメイン、Dドメイン、およびEドメインのアミノ酸配列は例えば、Moks T, Abrahms L, et al., Staphylococcal protein Aconsists of five IgG-binding domains, Eur J Biochem. 1986, 156, 637-643のFig.1に記載されている。該文献はこの参照により開示に含まれる。また、上記文献に記載された各ドメインのアミノ酸配列と70%以上(好ましくは90%以上)の相同性を有するアミノ酸配列からなるタンパク質も、本発明におけるプロテインAのイムノグロブリン結合ドメインとして使用することができる。
好ましいリガンドの一例であるイムノグロブリン結合タンパク質(以下、「タンパク質1」ともいう。)は、下記一般式(1)で表される。
(式中、Rは4~20個のヒスチジンが連続した部位を含む4~300個のアミノ酸からなるアミノ酸配列を示し、R2はプロテインAのイムノグロブリン結合ドメインを少なくとも1個含む50~500個のアミノ酸からなるアミノ酸配列を示す(ここで、R2がRに結合する末端はイムノグロブリン結合ドメインのC末端またはN末端である。)。)
(式中、R1は4~20個のヒスチジンが連続した部位を含む4~100個のアミノ酸からなるアミノ酸配列を示し(ここで、R1において、前記ヒスチジンが連続した部位の末端がrと結合する。)、rは7~200個のアミノ酸からなる任意のアミノ酸配列を示す。)
リガンドは、耐アルカリ性のイムノグロブリン結合性タンパク質であってもよい。耐アルカリ性のイムノグロブリン結合性タンパク質として、好ましいリガンドの別の一例であるイムノグロブリン結合タンパク質(以下、「タンパク質2」ともいう。)は、下記一般式(3)で表される。
(式中、Rは4~20個のヒスチジンが連続した部位を含む4~300個のアミノ酸からなるアミノ酸配列を示し、R2はZドメイン、またはそのフラグメントもしくは変異体を含む50~500個のアミノ酸からなる、イムノグロブリンと結合可能なアミノ酸配列を示す(ここで、R2がRに結合する末端はイムノグロブリン結合ドメインのC末端またはN末端である。)。)
(式中、R1は4~20個のヒスチジンが連続した部位を含む4~100個のアミノ酸からなるアミノ酸配列を示し(ここで、R1において、前記ヒスチジンが連続した部位の末端がrと結合する。)、rは7~200個のアミノ酸からなる任意のアミノ酸配列を示す。)
本発明で用いるタンパク質1および2を製造するための標準技術としては、例えば、Frederick M. AusbelらによるCurrent Protocols In Molecular BiologyやSambrookら編集のMolecular Cloning(Cold Spring Harbor Laboratory Press, 3rd edition, 2001)などに記載されている公知の遺伝子組換え技術を利用することができる。例えば、本発明で用いるタンパク質1または2は、米国特許第5,151,350号明細書に記載されている遺伝子組換え技術を用いて製造することができる。すなわち、目的の改変タンパク質(タンパク質1または2)をコードする核酸配列を含有させた発現ベクターを大腸菌などの宿主に形質転換し、当該細胞を適切な液体培地で培養することにより、培養後の細胞から、本発明で用いるタンパク質1または2を大量かつ経済的に取得することができる。好ましい発現ベクターとしては、細菌内で複製可能な既知のベクターのいずれをも用いることができ、例えば、米国特許第5,151,350号明細書に記載されているプラスミドや、Sambrookら編集のMolecular Cloning(Cold Spring Harbor Laboratory Press, 3rd edition, 2001)などに記載されているプラスミドが挙げられる。また、宿主中に核酸を導入することにより宿主を形質転換させるためには、当該技術分野において知られるいずれの方法を用いてもよく、例えば、Sambrookら編集のMolecular Cloning(Cold Spring Harbor Laboratory Press, 3rd edition, 2001)などに記載されている公知の方法を利用することができる。形質転換した細菌を培養して、発現されたタンパク質を回収する方法は、当業者によく知られている。
上記担体と上記リガンドの結合方法としては、多孔質粒子に含まれるエポキシ基をそのままリガンドとの結合部位として利用することが、プロセスとして簡便であり、好ましい。その他に、多孔質粒子に含まれるエポキシ基を開環して生成するアルコール性水酸基をトシル基などで活性化してから、リガンドを結合する方法や、多孔質粒子に含まれるエポキシ基または、当該エポキシ基の開環により生成する基からさらにリンカーを伸ばしてから、当該リンカーを介して多孔質粒子にリガンドを結合しても良い。
本発明のアフィニティークロマトグラフィー用充填剤を構成する多孔質粒子は、開環エポキシ基を有する。この開環エポキシ基は、上記特定の重合体からなる多孔質粒子にリガンドを結合した後に、該重合体に含まれるエポキシ基、すなわち、リガンドと結合したエポキシ基以外の残余のエポキシ基を開環させて得られる。これは、多孔質粒子をアフィニティークロマトグラフィー用充填剤として使用する前に、多孔質粒子の表面のエポキシ基が実質的に全て開環していることを意味する。
本発明のアフィニティークロマトグラフィー用充填剤を構成する多孔質粒子の粒子径は、通常、35~100μmであり、好ましくは38~75μmである。粒子径が、35μm以上であると、圧力特性に優れる。100μm以下であると、動的結合容量が高い充填剤が得られる。開環エポキシ基を有する多孔質粒子の粒子径は、上述の通り、多孔質粒子を重合する際の条件で調整することができる。なお、本発明における「粒子径」とは、レーザ回折散乱式粒度分布測定装置により得られる体積平均粒子径である。
以下、本発明のアフィニティークロマトグラフィー用充填剤を、実施例を挙げてさらに具体的に説明する。また、以下の記載は本発明の態様を概括的に示すものであり、特に理由なく、かかる記載により本発明は限定されるものではない。
2.1.1.エポキシ基含有量
リガンド結合前の多孔質粒子のエポキシ基含有量は、重合で使用したエポキシ基含有モノマー量より計算されるエポキシ基のモル数が2.00mmolとなるように、質量濃度約10%で正確な質量濃度がわかっている多孔質粒子水分散体をポリエチレンボトルに質量で測り取り、これに濃度38%の塩化カルシウム水溶液25mLおよび2規定の塩酸2.00mLを加えて、75℃で2時間30分攪拌することによりエポキシ基を開環し、冷却後、2規定の水酸化ナトリウム水溶液2.50mLで中和し、さらにpHメーターでpHをモニターしながら0.1規定の塩酸で逆滴定することにより定量した。
レーザ回折散乱式粒度分布測定装置(ベックマン・コールター社製 LS13320)により、粒子の体積平均粒子径を測定した。
40℃で24時間真空乾燥させて乾燥粒子を得、水銀ポロシメーター(島津製作所社製 オートポアIV9520)にて乾燥粒子の細孔容積、比表面積、および体積平均細孔径(細孔径)を求めた。測定範囲は細孔径範囲で10~5000nmとした。
得られた多孔質粒子とこれに結合したリガンドとを含む充填剤を1mL(5mmΦ×50mm長)カラムに充填し、GEヘルスケアバイオサイエンス社製AKTAprime plusに接続して、20mMのリン酸バッファー(pH7.5)を20mL流して洗浄し、次に75mMグリシン塩酸塩バッファー(pH3.2)を流速0.2mL/分で流しながら、pH6.5に達するまでの通液容量を測定して、初期の中和通液量とした。次に、0.3規定の水酸化ナトリウム水溶液でカラム内を置換してから、25℃で15時間静置した。上記と同様に洗浄、中和通液量を測定し、アルカリ劣化後の中和通液量とした。初期の中和通液量とアルカリ劣化後の中和通液量との液量差(表2~表4において「液量差」と記載する。)を耐アルカリ性の指標とした。すなわち、初期の中和通液量とアルカリ劣化後の中和通液量との液量差が小さいほど、アルカリ劣化が少なく、耐アルカリ性が優れているといえる。
GEヘルスケアバイオサイエンス社製AKTAprime plusを用いて、線流速300cm/hrにおけるタンパク質(ヒトIgG抗体)の動的結合容量を測定した。カラム容量は4mL(5mmΦ×200mm長)、ヒトIgG抗体(Equitech Bio社製 HGG-1000)は20mMリン酸バッファー(pH7.5)で5mg/mLに希釈したものを使用し、溶出先端10%ブレークスルーのときのヒトIgG抗体吸着量とカラム充填体積から動的結合容量(表2~表4において「DBC」と記載する。)を求めた。以下、動的結合容量はDBCと記載することがある。
初期のDBCを測定したカラムのまま、40℃で3週間保存し、このカラムの保存後のDBCを同様に測定した。初期のDBCに対する保存後のDBCの割合(維持率)を%で示し、保存安定性の指標とした。
多孔質粒子に結合したリガンドであるプロテインA(SPA)の結合量は、ビシンコニン酸(BCA)試薬を用いた試薬セットで定量した。具体的には、固形分換算で1mgの充填剤をテストチューブに採取し、これをThermo Fisher Scientific社(旧PIERCE社)のBCA Protein Assay Kitで定量した。反応は、37℃で30分間、転倒混和することによって行った。検量線は、多孔質粒子に結合させたプロテインAと同一のロットのものを用いて作成した。
2.2.1.実施例1
(i)多孔質粒子の懸濁重合
4251gの純水にポリビニルアルコール(クラレ社製 PVA-217)8.50g、ドデシル硫酸ナトリウム(花王社製 エマール10G)0.43gおよび硫酸ナトリウム21.3gを添加し、一晩撹拌して水溶液(S-1)を調製した。重合当日、(S-1)の20gを別に抜き取っておいた。
2.2.1.1.SP4Z発現ベクターの構築
イムノグロブリン結合タンパク質(SP4Z)発現ベクターを下記のステップで構築した。図2は、SP4Zベクターの構築方法を説明する図である。
単量体ZドメインをコードするDNAを出発物質として、NcoI切断部位およびEcoRI切断部位を有する単量体Zドメインベクター(A-pETM11)(SP1Z)を構築した。
次に、A-pETM11ベクターにもう一個Zドメインを付加して、EcoRI切断部位およびSacI切断部位を有する2量体Zドメインベクター(AB-pETM11)(SP2Z)を構築した。
次いで、AB-pETM11ベクターに更にもう一個Zドメインを付加して、SacI切断部位およびHind III切断部位を有する3量体Zドメインベクター(ABC-pETM11)(SP3Z)を構築した。
最後に、ABC-pETM11ベクターに4個目のZドメインを付加して、HindIII切断部位およびXhoI切断部位を有するpETM11-SP4Zのベクターを構築した。
SPZK DNA(配列番号3)をテンプレートとし、フォワードプライマーとしてプライマー153(配列番号5)およびリバースプライマーとしてプライマー156(配列番号8)を用いてPCRを実施した。プライマー153およびプライマー156にはそれぞれ、NcoI切断部位およびSacIの制限酵素切断部位が含まれる。PCRの条件は以下の通りである。
プライマー153,156の代わりに、フォワードプライマーとしてプライマー153およびリバースプライマーとしてプライマー154(配列番号6)を用いて、実験2.2.1.2.と同様にA-pETM11ベクターを構築した。なお、DNAフラグメントの挿入は、pETM11のNcoI切断部位およびEcoRI切断部位を利用している。
フォワードプライマーとしてプライマー155(配列番号7)およびリバースプライマーとしてプライマー156を用いて、PCRでEcoRI切断部位およびSacI切断部位を有する単量体ZドメインのDNAを調製し、A-pETM11のEcoRI切断部位およびSacI切断部位に挿入して構築した。実験は実験2.2.1.2.と同様の条件で行った。
フォワードプライマーとしてプライマー155およびリバースプライマーとしてプライマー157(配列番号9)を用いて、PCRでEcoRI切断部位およびSacI切断部位を有する終止コドンなしの単量体ZドメインのDNAを調製し、A-pETM11のEcoRI切断部位およびSacI切断部位に挿入して、AB-pETM11ベクターを構築した。実験は実験2.2.1.2.と同様の条件で行った。
フォワードプライマーとしてプライマー158(配列番号10)およびリバースプライマーとしてプライマー161(配列番号13)を用いて、PCRでSacI切断部位およびXhoI切断部位を有する単量体ZドメインのDNAを調製し、AB-pETM11のEcoRI切断部位およびSacI切断部位に挿入して構築した。実験は実験2.2.1.2.と同様の条件で行った。
フォワードプライマーとしてプライマー158およびリバースプライマーとしてプライマー159(配列番号11)を用いて、PCRでSacI切断部位およびHindIII切断部位を有する終止コドン無しの単量体ZドメインのDNAを調製し、AB-pETM11のSacI切断部位およびHindIII切断部位に挿入して、ABC-pETM11ベクターを構築した。実験は実験2.2.1.2.と同様の条件で行った。
プライマー160(配列番号12)およびプライマー161を用いて、PCRでHindIII切断部位およびXhoI切断部位を有する単量体ZドメインのDNAを調製し、ABC-pETM11のHindIII切断部位およびXhoI切断部位に挿入して、SP4Z-pETM11ベクターを構築した。実験は実験2.2.1.2.と同様の条件で行った。
得られたSP4Z-pETM11ベクターをE.coli(BL21株)細胞(STRATAGENE製)に導入し、18℃で1mMのIPTG(Sigma-Aldrich製)を添加し、15時間インキュベートして、組み換え型イムノグロブリン結合タンパク質(SP4Z)を発現させた。誘導に先立って、吸光度(OD600)が約0.6に到達するまで上記細胞を37℃でインキュベートした。タンパク質発現後、細胞を回収し、pH8.0のトリス緩衝液中で破砕した。
粒子乾燥質量換算で1gの多孔質粒子1、0.1gのSP4Zが25mLの0.1Mリン酸バッファー(pH6.8)に分散した混合液を調製し、10℃で24時間転倒混和し、SP4Z(リガンド)を多孔質粒子1に結合させた。生成した粒子を濾過した後、1Mチオグリセロール25mLと混合し30℃で4時間反応させ、残余のエポキシ基を開環し、PBS/0.5%Tween20で洗浄後、PBSで洗浄し、開環エポキシ基を有しリガンドが結合した多孔質粒子からなるアフィニティークロマトグラフィー用充填剤1(A-1)を得た。Thermo Scientific Pierce BCA Protein Assay kitで定量測定を行ったところ、前記粒子に結合したSP4Zの量は84mg/g粒子であった。
(A-1)の粒子径は58μm、細孔容積は1.22mL/g、比表面積は111m2/g、体積平均細孔径は74nmであった。アルカリ劣化による液量差は0.32mL、タンパク質(ヒトIgG抗体)の動的結合容量は43mg/mL、保存試験後のタンパク質(ヒトIgG抗体)の動的結合容量は44mg/mLであり、DBC維持率は102%であった。
(i)リガンドの作製
後述する調製例(1)~(5)により、図3に示されるアミノ酸配列を有するイムノグロブリン結合タンパク質(SPATK(配列番号4))を調製した。
Staphylococus aureusのゲノムDNAをテンプレートとして、制限酵素NcoIサイトを有するプライマー(Primer11)、及び制限酵素BamH1とHindIIIサイトを有するプライマー(Primer12)を用いてPCRでD-AドメンをコードするDNAを得た。このDNAを制限酵素NcoIおよびHindIIIで切断し、同じく制限酵素NcoIおよびHindIIIで切断されたpETM11にライゲーションしてSPAKプラスミドを構築した。
次に、上記に得られたSPAKプラスミドをテンプレートとして制限酵素BamHIサイトを有するプライマー(Primer13)と制限酵素HindIIIサイトを有するプライマー(Primer14)を用いてPCRで新たなD-AドメンをコードするDNAを得た。このDNAを制限酵素BamHIおよびHindIIIで切断し、同じく制限酵素BamHIおよびHindIIIで切断された上記に得られたSPAKプラスミドにライゲーションしてSPATKプラスミドを構築した。
Staphylococus aureusのゲノムDNAをテンプレートとして、Primer11とPrimer12を用いてPCRを実施した。PCRの条件は以下の通りである。
SPAKプラスミドをテンプレートとしてPrimer13とPrimer14を用いてPCRで新たなD-AドメンをコードするDNAを得た。PCRの条件は段階1:94℃1分間1サイクル、段階2:94℃30秒間、55℃30秒間、72℃2.5分間(25サイクル)、段階3:72℃10分間1サイクル、その後4℃で保持した。PCR生成物はGEヘルスケアバイオサイエンス社製の精製キットで精製した。次に、BamHI制限酵素およびHindIII制限酵素用いてこのDNAを切断した。SPAKプラスミドについても同じくBamHI制限酵素およびHindIII制限酵素で切断した。制限酵素による消化反応は、New England Biolabs製BamHI制限酵素およびHindIII制限酵素を用い、GEヘルスケアバイオサイエンス社製精製キットで精製した。ライゲーション反応は、T4 DNAリガーゼ(Invitrogen社製)で室温にて終夜行った。ライゲーションで得られたベクターをDH5a competent cell(Biomedal Life Science社製)に形質転換させ、陽性colonyのプラスミド(SPATKプラスミド)の配列が正しいことを3730 DNA Sequencer(Applied Biosystems社製)で確認した。
得られたSPATKプラスミドをE.coli(BL21株)細胞(STRATAGENE製)に形質転換した。18℃で1mMのIPTG(Sigma-Aldrich製)を添加し、15時間インキュベートして、組み換え型イムノグロブリン結合タンパク質(SPATK)を発現させた。誘導に先立って、吸光度(OD600)が約0.6に到達するまで上記細胞を37℃でインキュベートした。タンパク質発現後、細胞を回収し、pH8.0のトリス緩衝液中で破砕した。
リガンドとしてSP4Zの代わりにSPATKを使用した以外は、実施例1と同様にして、実施例1で得られた多孔質粒子1を使用して、開環エポキシ基を有しリガンドが結合した多孔質粒子からなるアフィニティークロマトグラフィー用充填剤2(A-2)を得た。前記粒子に結合したSPATKの量は83mg/g粒子であった。結果を表2に示す。
実施例1~2で、各単量体の部数を表2の通りとした以外は、同様にして、開環エポキシ基を有しリガンドが結合した多孔質粒子2からなるアフィニティークロマトグラフィー用充填剤1~2(B-1~2)を得、評価した。結果を表2に示す。
4091gの純水にポリビニルアルコール(クラレ社製 PVA-217)8.52g、ドデシル硫酸ナトリウム(花王社製 エマール10G)2.13gおよび炭酸ナトリウム4.26gを添加し、一晩撹拌して水溶液(S-2-1)を調製した。さらに重合当日、(S-2-1)の30gを別に抜き取り、残りの(S-2-1)に亜硝酸ナトリウム2.13gを溶解して、水溶液(S-2-2)を調製した。
300gの純水にポリビニルアルコール(クラレ社製 PVA-217)0.600g、ドデシル硫酸ナトリウム(花王社製 エマール10G)0.030gおよび硫酸ナトリウム1.50gを添加し、一晩撹拌して水溶液(S-3-1)を調製した。さらに重合当日、(S-3-1)の5gを別に抜き取り、残りの(S-3-1)に亜硝酸ナトリウム0.150gを溶解して、水溶液(S-3-2)を調製した。
実施例4において、単量体全量を100質量部としたときの、各単量体の部数を表3の通りとした以外は、同様にして、開環エポキシ基を有しリガンドが結合した多孔質粒子からなるアフィニティークロマトグラフィー用充填剤5~7(A-5~7)を得、評価した。結果を表3に示す。
343gの純水にポリビニルアルコール(クラレ社製 PVA-217)0.687g、ドデシル硫酸ナトリウム(花王社製 エマール10G)0.071gおよび硫酸ナトリウム1.78gを添加し、一晩撹拌して水溶液(S-4)を調製した。重合当日、(S-4)の10gを別に抜き取っておいた。
実施例8で、単量体の種類および部数を、表4の通りとした以外は、同様にして、比較アフィニティークロマトグラフィー用充填剤3(B-3)を得、評価した。結果を表4に示す。
実施例8で、ドデシル硫酸ナトリウムの量を0.036gとし、単量体の種類および部数を表4の通りとし、攪拌数を450rpmとした以外は、同様にして、開環エポキシ基を有しリガンドが結合した多孔質粒子9からなるアフィニティークロマトグラフィー用充填剤69(A-9)を得、評価した。結果を表4に示す。
実施例9で、単量体の部数を、表4の通りとした以外は、同様にして、比較アフィニティークロマトグラフィー用充填剤4(B-4)を得、評価した。結果を表4に示す。
(i)多孔質粒子の懸濁重合
4257gの純水にポリビニルアルコール(クラレ社製 PVA-217)8.51g、ドデシル硫酸ナトリウム(花王社製 エマール10G)0.425gおよび硫酸ナトリウム21.3gを添加し、一晩撹拌して水溶液(S-5-1)を調製した。さらに重合当日、(S-5-1)の20gを別に抜き取り、残りの(S-5-1)にヨウ化カリウム2.13gを溶解して、水溶液(S-5-2)を調整した。
Claims (7)
- (M-1)水酸基を含有しエポキシ基を含有しないメタクリロイル基を含有するビニル単量体 40~99.5質量部
(M-2)エポキシ基含有ビニル単量体 0.5~30質量部、
(M-3)(M-1)および(M-2)以外のメタクリロイル基を含有するビニル単量体 0~59.5質量部、ならびに
(M-4)(M-1)、(M-2)および(M-3)以外のビニル単量体 0~25質量部(但し、(M-1)、(M-2)、(M-3)および(M-4)の合計は100質量部である。)
の共重合体からなる多孔質粒子と、
前記共重合体に含まれるエポキシ基を開環させて得られる開環エポキシ基と、
前記多孔質粒子に結合したリガンドと
を含むことを特徴とする、
アフィニティークロマトグラフィー用充填剤。 - 前記リガンドが、耐アルカリ性のイムノグロブリン結合性タンパク質である、請求項1に記載のアフィニティークロマトグラフィー用充填剤。
- (M-1)水酸基を含有しエポキシ基を含有しないメタクリロイル基を含有するビニル単量体が下記一般式(A)で示される単量体である、請求項1または2に記載のアフィニティークロマトグラフィー用充填剤。
H2C=C(CH3)C(=O)OCH2CH(OH)-R ・・(A)
(式中、Rは水素原子または1価の有機基を示す。) - 上記一般式(A)におけるRがヒドロキシメチル基またはメタクリロイルオキシメチル基である、請求項3に記載のアフィニティークロマトグラフィー用充填剤。
- 前記多孔質粒子の粒子径が35~100μmである、請求項1~4のいずれか1つに記載のアフィニティークロマトグラフィー用充填剤。
- 請求項1~5のいずれか1つに記載のアフィニティークロマトグラフィー用充填剤を用いて、前記充填剤にイムノグロブリンを吸着させる工程、
前記イムノグロブリンを溶出させる工程、および
前記充填剤をアルカリ性液で洗浄する工程
を含む、イムノグロブリンを単離する方法。 - 請求項1~5のいずれか1つに記載のアフィニティークロマトグラフィー用充填剤が充填された、アフィニティークロマトグラフィー用充填カラム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020127025516A KR20130018256A (ko) | 2010-03-31 | 2011-03-29 | 친화성 크로마토그래피용 충전제 |
JP2012509493A JP5998050B2 (ja) | 2010-03-31 | 2011-03-29 | アフィニティークロマトグラフィー用充填剤 |
US13/638,751 US9162161B2 (en) | 2010-03-31 | 2011-03-29 | Filler for affinity chromatography |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-081425 | 2010-03-31 | ||
JP2010081425 | 2010-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011125674A1 true WO2011125674A1 (ja) | 2011-10-13 |
Family
ID=44762621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/057886 WO2011125674A1 (ja) | 2010-03-31 | 2011-03-29 | アフィニティークロマトグラフィー用充填剤 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9162161B2 (ja) |
JP (1) | JP5998050B2 (ja) |
KR (1) | KR20130018256A (ja) |
WO (1) | WO2011125674A1 (ja) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015080174A1 (ja) | 2013-11-27 | 2015-06-04 | Jsr株式会社 | 固相担体、固相担体の製造方法、アフィニティ精製用担体、アフィニティクロマトグラフィー用充填剤の製造方法、アフィニティクロマトグラフィー用充填剤、クロマトグラフィーカラムおよび精製方法 |
WO2015199196A1 (ja) * | 2014-06-27 | 2015-12-30 | Jsr株式会社 | アフィニティークロマトグラフィー用担体 |
JP2016507729A (ja) * | 2012-12-14 | 2016-03-10 | ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ | 充填ベッドクロマトグラフィーカラムの洗浄方法 |
JP2016050897A (ja) * | 2014-09-02 | 2016-04-11 | Jsr株式会社 | 担体の製造方法、担体、クロマトグラフィーカラム、及び目的物質の精製方法 |
JP2017037069A (ja) * | 2015-08-06 | 2017-02-16 | 三菱化学株式会社 | 分離剤及びその製造方法、並びに当該分離剤を用いた標的分子の分離方法及びクロマトグラフィー用カラム |
WO2017115773A1 (ja) * | 2015-12-28 | 2017-07-06 | 中外製薬株式会社 | Fc領域含有ポリペプチドの精製を効率化するための方法 |
JP2017122638A (ja) * | 2016-01-07 | 2017-07-13 | 日立化成株式会社 | 分離材及びカラム |
JP2017125815A (ja) * | 2016-01-15 | 2017-07-20 | 日立化成株式会社 | 分離材及びカラム |
JP2018155730A (ja) * | 2017-03-17 | 2018-10-04 | 三菱ケミカル株式会社 | 複合化高分子の製造方法 |
JP2018155745A (ja) * | 2017-03-17 | 2018-10-04 | 三菱ケミカル株式会社 | 分離剤、並びに当該分離剤を用いた標的分子の分離方法及びクロマトグラフィー用カラム |
US10435458B2 (en) | 2010-03-04 | 2019-10-08 | Chugai Seiyaku Kabushiki Kaisha | Antibody constant region variants with reduced Fcgammar binding |
US10450381B2 (en) | 2010-11-17 | 2019-10-22 | Chugai Seiyaku Kabushiki Kaisha | Methods of treatment that include the administration of bispecific antibodies |
US10934344B2 (en) | 2006-03-31 | 2021-03-02 | Chugai Seiyaku Kabushiki Kaisha | Methods of modifying antibodies for purification of bispecific antibodies |
US11046784B2 (en) | 2006-03-31 | 2021-06-29 | Chugai Seiyaku Kabushiki Kaisha | Methods for controlling blood pharmacokinetics of antibodies |
US11124576B2 (en) | 2013-09-27 | 2021-09-21 | Chungai Seiyaku Kabushiki Kaisha | Method for producing polypeptide heteromultimer |
US11142587B2 (en) | 2015-04-01 | 2021-10-12 | Chugai Seiyaku Kabushiki Kaisha | Method for producing polypeptide hetero-oligomer |
US11168344B2 (en) | 2005-03-31 | 2021-11-09 | Chugai Seiyaku Kabushiki Kaisha | Methods for producing polypeptides by regulating polypeptide association |
US11248053B2 (en) | 2007-09-26 | 2022-02-15 | Chugai Seiyaku Kabushiki Kaisha | Method of modifying isoelectric point of antibody via amino acid substitution in CDR |
US11332533B2 (en) | 2007-09-26 | 2022-05-17 | Chugai Seiyaku Kabushiki Kaisha | Modified antibody constant region |
US12122840B2 (en) | 2007-09-26 | 2024-10-22 | Chugai Seiyaku Kabushiki Kaisha | Method of modifying isoelectric point of antibody via amino acid substitution in CDR |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015071913A1 (en) * | 2013-11-17 | 2015-05-21 | New Proteintech Inc. | Method of preparing chromatographic materials |
CN109071613A (zh) | 2016-05-11 | 2018-12-21 | 通用电气医疗集团生物工艺研发股份公司 | 分离基质 |
US10730908B2 (en) | 2016-05-11 | 2020-08-04 | Ge Healthcare Bioprocess R&D Ab | Separation method |
CN109311949B (zh) * | 2016-05-11 | 2022-09-16 | 思拓凡生物工艺研发有限公司 | 储存分离基质的方法 |
US10889615B2 (en) | 2016-05-11 | 2021-01-12 | Cytiva Bioprocess R&D Ab | Mutated immunoglobulin-binding polypeptides |
US10703774B2 (en) | 2016-09-30 | 2020-07-07 | Ge Healthcare Bioprocess R&D Ab | Separation method |
US11285404B2 (en) | 2017-02-27 | 2022-03-29 | Showa Denko K.K. | Packing material for size exclusion chromatography and method for producing the same |
US10359350B1 (en) * | 2018-01-23 | 2019-07-23 | Hai Lin | Method and system for particle characterization in harsh environments |
CN110577878B (zh) * | 2019-08-30 | 2022-11-04 | 安徽省金裕皖酒业有限公司 | 一种利用副产物黄水提高白酒抗氧化活性的方法 |
CA3184943A1 (en) | 2020-07-06 | 2022-01-13 | Perfect Fit Crowns, Llc | Method and apparatus for dental crown restorations using prefabricated sleeve-crown pairs |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6138462A (ja) * | 1984-07-30 | 1986-02-24 | Japan Exlan Co Ltd | 液体クロマトグラフイ−用充填剤の製造法 |
JPH01217035A (ja) * | 1988-02-26 | 1989-08-30 | Hitachi Chem Co Ltd | 架橋重合体粒子の製造法 |
JPH039908A (ja) * | 1989-06-06 | 1991-01-17 | Mitsubishi Kasei Corp | 親水性架橋共重合体粒子の製造方法 |
JPH055731A (ja) * | 1991-06-28 | 1993-01-14 | Sekisui Chem Co Ltd | アフイニテイクロマトグラフイー用担体 |
JPH059233A (ja) * | 1990-07-18 | 1993-01-19 | Mitsubishi Kasei Corp | 架橋共重合体粒子及びその製造法 |
JP2003231648A (ja) * | 2001-12-07 | 2003-08-19 | Jsr Corp | 生理活性物質担体用ポリマー粒子およびその製造方法 |
WO2007142331A1 (ja) * | 2006-06-08 | 2007-12-13 | Reverse Proteomics Research Institute Co., Ltd. | アフィニティ担体及びその製造方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5019270A (en) | 1989-07-06 | 1991-05-28 | Perseptive Biosystems, Inc. | Perfusive chromatography |
US5228989A (en) | 1989-07-06 | 1993-07-20 | Perseptive Biosystems, Inc. | Perfusive chromatography |
US20030155300A1 (en) | 1989-07-06 | 2003-08-21 | Perseptive Biosystems, Inc. | Perfusive chromatography |
WO1991000762A1 (en) | 1989-07-06 | 1991-01-24 | Perseptive Biosystems, Inc. | Perfusive chromatography |
JP3316915B2 (ja) | 1993-03-12 | 2002-08-19 | 三菱化学株式会社 | 分離用樹脂及びその製造方法 |
US5583162A (en) | 1994-06-06 | 1996-12-10 | Biopore Corporation | Polymeric microbeads and method of preparation |
JP2002239380A (ja) | 2001-02-15 | 2002-08-27 | Showa Denko Kk | 親水性分離担体粒子及びその製造方法 |
US20020155090A1 (en) | 2001-02-15 | 2002-10-24 | Showa Denko K.K. | Hydrophilic separating carrier particle and process for producing the same |
CA2586803C (en) | 2004-12-14 | 2012-12-11 | Ge Healthcare Bio-Sciences Ab | Purification of immunoglobulins |
US8728828B2 (en) | 2004-12-22 | 2014-05-20 | Ge Healthcare Bio-Sciences Ab | Purification of immunoglobulins |
US7833723B2 (en) | 2006-01-06 | 2010-11-16 | Millipore Corporation | Affinity chromatography matrices and methods of making and using the same |
-
2011
- 2011-03-29 WO PCT/JP2011/057886 patent/WO2011125674A1/ja active Application Filing
- 2011-03-29 KR KR1020127025516A patent/KR20130018256A/ko not_active Application Discontinuation
- 2011-03-29 JP JP2012509493A patent/JP5998050B2/ja active Active
- 2011-03-29 US US13/638,751 patent/US9162161B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6138462A (ja) * | 1984-07-30 | 1986-02-24 | Japan Exlan Co Ltd | 液体クロマトグラフイ−用充填剤の製造法 |
JPH01217035A (ja) * | 1988-02-26 | 1989-08-30 | Hitachi Chem Co Ltd | 架橋重合体粒子の製造法 |
JPH039908A (ja) * | 1989-06-06 | 1991-01-17 | Mitsubishi Kasei Corp | 親水性架橋共重合体粒子の製造方法 |
JPH059233A (ja) * | 1990-07-18 | 1993-01-19 | Mitsubishi Kasei Corp | 架橋共重合体粒子及びその製造法 |
JPH055731A (ja) * | 1991-06-28 | 1993-01-14 | Sekisui Chem Co Ltd | アフイニテイクロマトグラフイー用担体 |
JP2003231648A (ja) * | 2001-12-07 | 2003-08-19 | Jsr Corp | 生理活性物質担体用ポリマー粒子およびその製造方法 |
WO2007142331A1 (ja) * | 2006-06-08 | 2007-12-13 | Reverse Proteomics Research Institute Co., Ltd. | アフィニティ担体及びその製造方法 |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11168344B2 (en) | 2005-03-31 | 2021-11-09 | Chugai Seiyaku Kabushiki Kaisha | Methods for producing polypeptides by regulating polypeptide association |
US10934344B2 (en) | 2006-03-31 | 2021-03-02 | Chugai Seiyaku Kabushiki Kaisha | Methods of modifying antibodies for purification of bispecific antibodies |
US11046784B2 (en) | 2006-03-31 | 2021-06-29 | Chugai Seiyaku Kabushiki Kaisha | Methods for controlling blood pharmacokinetics of antibodies |
US11248053B2 (en) | 2007-09-26 | 2022-02-15 | Chugai Seiyaku Kabushiki Kaisha | Method of modifying isoelectric point of antibody via amino acid substitution in CDR |
US11332533B2 (en) | 2007-09-26 | 2022-05-17 | Chugai Seiyaku Kabushiki Kaisha | Modified antibody constant region |
US12116414B2 (en) | 2007-09-26 | 2024-10-15 | Chugai Seiyaku Kabushiki Kaisha | Method of modifying isoelectric point of antibody via amino acid substitution in CDR |
US12122840B2 (en) | 2007-09-26 | 2024-10-22 | Chugai Seiyaku Kabushiki Kaisha | Method of modifying isoelectric point of antibody via amino acid substitution in CDR |
US10435458B2 (en) | 2010-03-04 | 2019-10-08 | Chugai Seiyaku Kabushiki Kaisha | Antibody constant region variants with reduced Fcgammar binding |
US10450381B2 (en) | 2010-11-17 | 2019-10-22 | Chugai Seiyaku Kabushiki Kaisha | Methods of treatment that include the administration of bispecific antibodies |
JP2016507729A (ja) * | 2012-12-14 | 2016-03-10 | ジーイー・ヘルスケア・バイオサイエンス・アクチボラグ | 充填ベッドクロマトグラフィーカラムの洗浄方法 |
US11124576B2 (en) | 2013-09-27 | 2021-09-21 | Chungai Seiyaku Kabushiki Kaisha | Method for producing polypeptide heteromultimer |
KR20160078451A (ko) | 2013-11-27 | 2016-07-04 | 제이에스알 가부시끼가이샤 | 고상 담체, 고상 담체의 제조 방법, 친화성 정제용 담체, 친화성 크로마토그래피용 충전제의 제조 방법, 친화성 크로마토그래피용 충전제, 크로마토그래피 칼럼 및 정제 방법 |
WO2015080174A1 (ja) | 2013-11-27 | 2015-06-04 | Jsr株式会社 | 固相担体、固相担体の製造方法、アフィニティ精製用担体、アフィニティクロマトグラフィー用充填剤の製造方法、アフィニティクロマトグラフィー用充填剤、クロマトグラフィーカラムおよび精製方法 |
JPWO2015199196A1 (ja) * | 2014-06-27 | 2017-04-20 | Jsr株式会社 | アフィニティークロマトグラフィー用担体 |
WO2015199196A1 (ja) * | 2014-06-27 | 2015-12-30 | Jsr株式会社 | アフィニティークロマトグラフィー用担体 |
KR20170020372A (ko) | 2014-06-27 | 2017-02-22 | 제이에스알 가부시끼가이샤 | 친화성 크로마토그래피용 담체 |
JP2016050897A (ja) * | 2014-09-02 | 2016-04-11 | Jsr株式会社 | 担体の製造方法、担体、クロマトグラフィーカラム、及び目的物質の精製方法 |
US11142587B2 (en) | 2015-04-01 | 2021-10-12 | Chugai Seiyaku Kabushiki Kaisha | Method for producing polypeptide hetero-oligomer |
JP2017037069A (ja) * | 2015-08-06 | 2017-02-16 | 三菱化学株式会社 | 分離剤及びその製造方法、並びに当該分離剤を用いた標的分子の分離方法及びクロマトグラフィー用カラム |
IL259247B2 (en) * | 2015-12-28 | 2023-02-01 | Chugai Pharmaceutical Co Ltd | A method for promoting purification efficiency of a polypeptide containing an fc region |
WO2017115773A1 (ja) * | 2015-12-28 | 2017-07-06 | 中外製薬株式会社 | Fc領域含有ポリペプチドの精製を効率化するための方法 |
CN108368166A (zh) * | 2015-12-28 | 2018-08-03 | 中外制药株式会社 | 提高含fc区多肽纯化效率的方法 |
IL259247B (en) * | 2015-12-28 | 2022-10-01 | Chugai Pharmaceutical Co Ltd | A method for promoting purification efficiency of a polypeptide containing an fc region |
JPWO2017115773A1 (ja) * | 2015-12-28 | 2018-10-18 | 中外製薬株式会社 | Fc領域含有ポリペプチドの精製を効率化するための方法 |
US11649262B2 (en) | 2015-12-28 | 2023-05-16 | Chugai Seiyaku Kabushiki Kaisha | Method for promoting efficiency of purification of Fc region-containing polypeptide |
AU2016381992B2 (en) * | 2015-12-28 | 2024-01-04 | Chugai Seiyaku Kabushiki Kaisha | Method for promoting efficiency of purification of Fc region-containing polypeptide |
JP2017122638A (ja) * | 2016-01-07 | 2017-07-13 | 日立化成株式会社 | 分離材及びカラム |
JP2017125815A (ja) * | 2016-01-15 | 2017-07-20 | 日立化成株式会社 | 分離材及びカラム |
JP7024509B2 (ja) | 2017-03-17 | 2022-02-24 | 三菱ケミカル株式会社 | 分離剤、並びに当該分離剤を用いた標的分子の分離方法及びクロマトグラフィー用カラム |
JP2018155730A (ja) * | 2017-03-17 | 2018-10-04 | 三菱ケミカル株式会社 | 複合化高分子の製造方法 |
JP2018155745A (ja) * | 2017-03-17 | 2018-10-04 | 三菱ケミカル株式会社 | 分離剤、並びに当該分離剤を用いた標的分子の分離方法及びクロマトグラフィー用カラム |
Also Published As
Publication number | Publication date |
---|---|
KR20130018256A (ko) | 2013-02-20 |
JPWO2011125674A1 (ja) | 2013-07-08 |
US20130085199A1 (en) | 2013-04-04 |
JP5998050B2 (ja) | 2016-09-28 |
US9162161B2 (en) | 2015-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5998050B2 (ja) | アフィニティークロマトグラフィー用充填剤 | |
JP5354094B2 (ja) | アフィニティークロマトグラフィー用充填剤 | |
JP5626526B2 (ja) | アフィニティークロマトグラフィー用充填剤 | |
EP3162809B1 (en) | Carrier for affinity chromatography | |
US9051355B2 (en) | Filler for affinity chromatography and method for isolating immunoglobulin | |
JP6630036B2 (ja) | 標的物の精製方法、及び、ミックスモード用担体 | |
KR101921392B1 (ko) | 고상 담체, 고상 담체의 제조 방법, 친화성 정제용 담체, 친화성 크로마토그래피용 충전제의 제조 방법, 친화성 크로마토그래피용 충전제, 크로마토그래피 칼럼 및 정제 방법 | |
KR102549800B1 (ko) | 크로마토그래피용 담체, 리간드 고정 담체, 크로마토그래피 칼럼, 표적 물질의 정제 방법 및 크로마토그래피용 담체의 제조 방법 | |
JP2010189290A (ja) | リガンド結合担体およびその製造方法 | |
JP2017025177A (ja) | 組成物、組成物の製造方法、糖鎖試料の調製方法及び糖鎖の分析方法 | |
JP2021098660A (ja) | アフィニティ担体、クロマトグラフィーカラム、及び抗体又はその断片の単離方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11765574 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012509493 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 20127025516 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13638751 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11765574 Country of ref document: EP Kind code of ref document: A1 |