WO2011125186A1 - ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両 - Google Patents

ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両 Download PDF

Info

Publication number
WO2011125186A1
WO2011125186A1 PCT/JP2010/056299 JP2010056299W WO2011125186A1 WO 2011125186 A1 WO2011125186 A1 WO 2011125186A1 JP 2010056299 W JP2010056299 W JP 2010056299W WO 2011125186 A1 WO2011125186 A1 WO 2011125186A1
Authority
WO
WIPO (PCT)
Prior art keywords
mode
discharge allowable
power
allowable power
internal combustion
Prior art date
Application number
PCT/JP2010/056299
Other languages
English (en)
French (fr)
Inventor
山本 雅哉
優 仲尾
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012509233A priority Critical patent/JP5344086B2/ja
Priority to PCT/JP2010/056299 priority patent/WO2011125186A1/ja
Priority to CN201080066644.0A priority patent/CN102883933B/zh
Priority to EP10849430.3A priority patent/EP2557006B1/en
Priority to US13/639,495 priority patent/US8924060B2/en
Publication of WO2011125186A1 publication Critical patent/WO2011125186A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/192Mitigating problems related to power-up or power-down of the driveline, e.g. start-up of a cold engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/082Selecting or switching between different modes of propelling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/086Power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention relates to a hybrid vehicle control device and a hybrid vehicle including the same, and more particularly to a hybrid vehicle control device equipped with an internal combustion engine and an electric motor as a power source and a hybrid vehicle including the same.
  • Hybrid vehicles are attracting attention as environmentally friendly vehicles.
  • a hybrid vehicle is equipped with a power storage device, an inverter, and an electric motor driven by the inverter as a power source for traveling the vehicle.
  • a catalyst device for purifying exhaust gas of the internal combustion engine is provided in the same manner as a vehicle using only the internal combustion engine as a power source.
  • the catalyst device can sufficiently purify the regulated component in the exhaust gas when the catalyst temperature is increased by the exhaust gas of the internal combustion engine and the catalyst is activated. That is, the catalyst device needs to be warmed up before use.
  • Patent Document 1 discloses a technique capable of improving a regulated component discharged during warm-up of a catalyst device in a hybrid vehicle.
  • this hybrid vehicle when it is determined that the catalyst device is warming up, traveling in a power mode that is one of a plurality of traveling modes is prohibited. Thereby, since the increase of the exhaust gas from an internal combustion engine is suppressed, the control object component discharged
  • plug-in hybrid vehicles For hybrid vehicles, it is desirable to run with the internal combustion engine stopped as much as possible.
  • plug-in hybrid vehicles that can charge an in-vehicle power storage device from a power source outside the vehicle have attracted attention, but such demands are particularly strong for plug-in hybrid vehicles (hereinafter referred to as the following).
  • EV Electric Vehicle
  • HV Hybrid Vehicle traveling
  • a first mode in which EV running is given priority (hereinafter referred to as “CD (Charge Depleting) mode”) and the internal combustion engine are operated.
  • CD Charge Depleting
  • CS Charge Sustaining
  • SOC State Of Charge
  • the traveling mode is the CD mode and the internal combustion engine is stopped
  • the traveling mode is the CD mode and the internal combustion engine is operating, or the traveling mode is CS.
  • the traveling mode is the CD mode and the internal combustion engine is stopped, that is, when the discharge allowable power Wout is increased, the warming-up of the catalyst device is started in preparation for HV traveling.
  • the discharge allowable power Wout returns to the non-expanded state.
  • the vehicle required power is larger than the discharge allowable power Wout (non-expanded state)
  • the warming up of the catalyst device is interrupted, and the HV traveling is started in a state where the catalyst device is not warmed up. appear.
  • an object of the present invention is to expand EV traveling and prevent the warm-up of the catalyst device from being interrupted in a hybrid vehicle.
  • the hybrid vehicle control device includes a travel mode control unit and a discharge allowable power control unit.
  • the hybrid vehicle uses an internal combustion engine that generates a vehicle driving force, a chargeable / dischargeable power storage device, an electric motor that generates a vehicle driving force when power is supplied from the power storage device, and purifies exhaust gas from the internal combustion engine using a catalyst. And a catalytic device.
  • the travel mode control unit maintains the predetermined amount of the CD mode in which the internal combustion engine is stopped and the travel using only the electric motor is prioritized, and the internal combustion engine is operated to indicate the state of charge of the power storage device. Controls switching of the running mode including the CS mode.
  • the discharge allowable power control unit changes the discharge allowable power Wout based on the running mode, the operation / stop of the internal combustion engine, and whether the catalyst device is warming up.
  • the discharge allowable power control unit when the traveling mode is the CD mode and the internal combustion engine is stopped, the discharge allowable power control unit is configured when the traveling mode is the CD mode and the internal combustion engine is operating, or Discharge allowable power Wout is increased as compared with when the traveling mode is the CS mode. Further, even when the traveling mode is the CD mode and the internal combustion engine is operating, or even when the traveling mode is the CS mode, the discharge allowable power control unit when the catalyst device is warming up. Increases the discharge allowable power Wout in the same manner as when the traveling mode is the CD mode and the internal combustion engine is stopped.
  • the discharge allowable power control unit when the traveling mode is the CD mode and the internal combustion engine is stopped, the discharge allowable power control unit is configured such that when the traveling mode is the CD mode and the internal combustion engine is operating, Alternatively, discharge allowable power Wout is increased as compared with when the traveling mode is the CS mode.
  • the start of the internal combustion engine is requested when the traveling mode is the CD mode, warming up of the catalyst device is started while maintaining an increase in the discharge allowable power Wout. After the warm-up of the catalyst device, the discharge allowable power control unit returns the discharge allowable power Wout to the non-expanded state.
  • the discharge allowable power control unit when the traveling mode is the CD mode and the internal combustion engine is stopped, the discharge allowable power control unit is configured such that when the traveling mode is the CD mode and the internal combustion engine is operating, Alternatively, discharge allowable power Wout is increased as compared with when the traveling mode is the CS mode.
  • the discharge allowable power control unit At the time of switching from the CD mode to the CS mode, warming up of the catalyst device is started while maintaining an increase in the discharge allowable power Wout. After the warm-up of the catalyst device, the discharge allowable power control unit returns the discharge allowable power Wout to the non-expanded state.
  • the hybrid vehicle further includes a charging device configured to receive power supplied from a power source outside the vehicle and charge the power storage device. Then, after the power storage device is charged by the charging device, the travel mode control unit sets the travel mode to the CD mode.
  • a charging device configured to receive power supplied from a power source outside the vehicle and charge the power storage device. Then, after the power storage device is charged by the charging device, the travel mode control unit sets the travel mode to the CD mode.
  • the hybrid vehicle includes any one of the control devices described above.
  • the discharge allowable power Wout is changed based on the running mode, the operation / stop of the internal combustion engine, and whether or not the catalyst device is warming up.
  • the traveling mode is the CD mode and the internal combustion engine is stopped
  • the traveling mode is the CD mode and the internal combustion engine is operating, or the traveling mode is the CS mode.
  • the discharge allowable power Wout can be increased more than the time.
  • the traveling mode is the CD mode and the internal combustion engine is operating, or even when the traveling mode is the CS mode
  • the traveling mode is the CD mode when the catalyst device is warming up.
  • the discharge allowable power Wout can be increased in the same manner as when the internal combustion engine is stopped, the warm-up of the catalyst device is interrupted when the discharge allowable power Wout returns to the non-expanded state. There is nothing. Therefore, according to the present invention, it is possible to expand EV traveling and prevent the warm-up of the catalyst device from being interrupted.
  • FIG. 1 is a block diagram showing an overall configuration of a hybrid vehicle to which a control device according to an embodiment of the present invention is applied. It is a block diagram which shows the structure of the electric system of the hybrid vehicle shown in FIG.
  • FIG. 3 is a functional block diagram of an ECU shown in FIG. 2. It is the figure which showed the relationship between the change of SOC of an electrical storage apparatus, and driving modes. It is the figure which showed the discharge allowable power of an electrical storage apparatus. It is a figure for demonstrating expansion / non-expansion of discharge allowable electric power according to driving
  • FIG. 1 is a block diagram showing an overall configuration of a hybrid vehicle to which a control device according to an embodiment of the present invention is applied.
  • hybrid vehicle 100 includes power storage device 10, ECU (Electronic Control Unit) 15, PCU (Power Control Unit) 20, power output device 30, differential gear (hereinafter referred to as “DG (Differential Gear)”. ) ").) 40.
  • Hybrid vehicle 100 further includes front wheels 50L, 50R, rear wheels 60L, 60R, front seats 70L, 70R, rear seat 80, charging inlet 90, and charger 92.
  • the power storage device 10 is a rechargeable DC power source, and is composed of, for example, a secondary battery such as nickel hydride or lithium ion.
  • the power storage device 10 is disposed, for example, at the rear portion of the rear seat 80 and is electrically connected to the PCU 20 to supply a DC voltage to the PCU 20.
  • the power storage device 10 is charged by receiving the power generated by the power output device 30 from the PCU 20.
  • the power storage device 10 is charged by a charger 92 that receives power supplied from a power source external to the vehicle connected to the charging inlet 90.
  • the power source outside the vehicle is also referred to as “external power source”, and charging of the power storage device 10 by the external power source is also referred to as “external charging”.
  • the PCU 20 collectively indicates power converters required in the hybrid vehicle 100.
  • PCU 20 includes a converter that boosts the voltage supplied from power storage device 10, an inverter that drives a motor generator included in power output device 30, and the like.
  • the ECU15 receives the various sensor outputs 17 from the various sensors which show a driving condition and a vehicle condition.
  • the various sensor outputs 17 include the accelerator opening corresponding to the depression amount of the accelerator pedal 35, the vehicle speed corresponding to the wheel speed, and the like.
  • the ECU 15 executes various controls relating to the hybrid vehicle 100 based on the input sensor outputs.
  • the power output device 30 is provided as a wheel driving force source, and includes motor generators MG1 and MG2 and an engine. These are mechanically connected via a power split device (not shown). Then, according to the traveling state of the hybrid vehicle 100, the driving force is distributed and combined among the three persons via the power split device, and as a result, the front wheels 50L and 50R are driven.
  • the DG 40 transmits the power output from the power output device 30 to the front wheels 50L and 50R, and transmits the rotational force received from the front wheels 50L and 50R to the power output device 30.
  • the power output device 30 transmits the power from the engine and the motor generator to the front wheels 50L and 50R via the DG 40 to drive the front wheels 50L and 50R.
  • the power output device 30 receives the rotational force of the motor generator from the front wheels 50L and 50R to generate power, and supplies the generated power to the PCU 20.
  • Motor generators MG1 and MG2 can function both as a generator and an electric motor, but motor generator MG1 mainly operates as a generator, and motor generator MG2 mainly operates as an electric motor. Specifically, motor generator MG1 receives a part of the output of the engine distributed by the power split device and generates power. Further, motor generator MG1 operates as an electric motor upon receiving power supply from power storage device 10, and cranks and starts the engine.
  • Motor generator MG2 is driven by at least one of the electric power stored in power storage device 10 and the electric power generated by motor generator MG1.
  • the driving force of motor generator MG2 is transmitted to the driving shafts of front wheels 50L and 50R via DG40. Thereby, motor generator MG2 assists the engine to travel the vehicle, or travels the vehicle only by its own driving force.
  • motor generator MG2 is driven by front wheels 50L and 50R to operate as a generator. At this time, the electric power generated by motor generator MG2 is charged into power storage device 10 via PCU 20.
  • PCU 20 boosts the DC voltage received from power storage device 10 in accordance with a control instruction from ECU 15, converts the boosted DC voltage into an AC voltage, and causes motor generators MG 1 and MG 2 included in power output device 30 to To drive.
  • PCU 20 charges power storage device 10 by converting the AC voltage generated by motor generators MG1 and MG2 into a DC voltage in accordance with a control instruction from ECU 15 during regenerative operation of motor generators MG1 and MG2.
  • the charging inlet 90 is configured so that a connector of a charging cable (not shown) connected to an external power source can be connected.
  • a connector of a charging cable (not shown) connected to an external power source can be connected.
  • Electric power is received from an external power source connected to the charging inlet 90, and the received electric power is supplied to the charger 92.
  • Charger 92 is provided between charging inlet 90 and power storage device 10, converts power supplied from an external power source connected to charging inlet 90 into a voltage level of power storage device 10, and outputs the voltage level to power storage device 10. .
  • FIG. 2 is a block diagram showing the configuration of the drive system of hybrid vehicle 100 shown in FIG.
  • the drive system includes power storage device 10, SMR (System Main Relay) 105, 106, PCU 20, motor generators MG1, MG2, engine ENG, power split device 107, and exhaust pipe 108.
  • Motor generators MG1 and MG2 are connected to engine ENG and drive wheels (not shown) (front wheels 50L and 50R in FIG. 1) via power split device 107.
  • Hybrid vehicle 100 can travel using engine ENG and motor generator MG2, and motor generator MG1 starts engine ENG and generates power using the power of engine ENG.
  • Engine ENG converts thermal energy generated by combustion of fossil fuels such as gasoline and light oil, or alcohol fuels such as ethanol into kinetic energy of moving elements such as pistons and rotors, and the converted kinetic energy is transmitted to power split device 107.
  • Output For example, if the motion element is a piston and the motion is a reciprocating motion, the reciprocating motion is converted into a rotational motion via a so-called crank mechanism, and the kinetic energy of the piston is transmitted to the power split device 107.
  • the catalyst device 109 is provided in the exhaust pipe 108 of the engine ENG and purifies exhaust gas discharged from the engine ENG.
  • the catalyst device 109 can sufficiently purify the regulated components in the exhaust gas when the catalyst temperature is increased by the exhaust gas of the engine ENG and the catalyst is activated.
  • the SMR 105 is provided between the power storage device 10 and the PCU 20, and is turned on in response to a command from the ECU 15 when the vehicle is traveling.
  • SMR 106 is provided between power storage device 10 and charger 92 and is turned on in response to a command from ECU 15 during external charging.
  • the PCU 20 includes a converter 110, a capacitor 120, motor drive controllers 131 and 132, a converter / inverter control unit 140, and an engine control unit 142.
  • motor generators MG1 and MG2 are AC motors
  • motor drive controllers 131 and 132 are constituted by inverters.
  • the motor drive controller 131 (132) is also referred to as an “inverter 131 (132)”.
  • Converter 110 boosts voltage Vm between positive electrode line 103 and negative electrode line 102 to voltage Vb or higher of power storage device 10 based on control signal Scnv from converter / inverter control unit 140.
  • Converter 110 is formed of, for example, a current reversible boost chopper circuit.
  • Inverters 131 and 132 are provided corresponding to motor generators MG1 and MG2, respectively. Inverters 131 and 132 are connected to converter 110 in parallel with each other, and drive motor generators MG1 and MG2 based on control signals Spwm1 and Spwm2 from converter / inverter control unit 140, respectively.
  • Converter / inverter control unit 140 drives converter 110 and motor generators MG1, MG2 based on a control command value received from ECU 15 (a target value of voltage Vm, a torque target value of motor generators MG1, MG2, etc.), respectively.
  • Control signals Scnv, Spwm1, and Spwm2 are generated.
  • Converter / inverter control unit 140 then outputs the generated control signals Scnv, Spwm1, and Spwm2 to converter 110 and inverters 131 and 132, respectively.
  • Engine control unit 142 calculates the rotational speed and output torque of engine ENG based on the control command value received from ECU 15. Then, engine control unit 142 generates a control signal for driving engine ENG based on the calculation result, and outputs the generated control signal to engine ENG.
  • the ECU 15 Based on the various sensor outputs 17, the ECU 15 performs various controls such as control of the travel mode of the hybrid vehicle 100, start / stop determination of the engine ENG, charge / discharge control of the power storage device 10, warm-up control of the catalyst device 109. Do. ECU 15 generates a control command value for driving PCU 20, and outputs the generated control command value to converter / inverter control unit 140 and engine control unit 142 of PCU 20. In addition, the ECU 15 generates a signal for driving the charger 92 during external charging, and outputs the generated signal to the charger 92.
  • FIG. 3 is a functional block diagram of the ECU 15 shown in FIG.
  • ECU 15 includes an SOC calculation unit 150, a travel mode control unit 152, a Wout control unit 154, and an engine start / stop determination unit 156.
  • ECU 15 further includes a command generation unit 158, a charge control unit 160, a rate processing unit 162, a temporary enlargement processing unit 164, and a catalyst warm-up control unit 166.
  • the SOC calculation unit 150 calculates the SOC indicating the state of charge of the power storage device 10 based on the voltage Vb and current Ib of the power storage device 10 detected by a sensor (not shown). This SOC represents the amount of power stored in the fully charged state of the power storage device 10 as 0 to 100%, and indicates the remaining amount of power stored in the power storage device 10. Various known methods can be used for calculating the SOC.
  • Travel mode control unit 152 controls switching of the travel mode of the vehicle based on the SOC calculated by SOC calculation unit 150. Specifically, traveling mode control unit 152 sets engine mode to CD mode in which engine ENG is stopped and traveling using only motor generator MG2 is prioritized, or engine ENG is operated to set the SOC of power storage device 10 to a predetermined value. Controls whether the CS mode is maintained at the target.
  • This CD mode is a traveling mode in which the vehicle is basically driven using the electric power stored in the power storage device 10 as an energy source without maintaining the SOC of the power storage device 10.
  • the discharge rate is often relatively larger than the charge.
  • the CS mode is a traveling mode in which the engine ENG is operated as necessary to generate power by the motor generator MG1 in order to maintain the SOC of the power storage device 10 at a predetermined target, and the engine ENG is always operated. It is not limited to running.
  • the traveling mode is the CD mode
  • the engine ENG operates if a large vehicle power is required due to a large depression of the accelerator pedal.
  • the travel mode is the CS mode
  • FIG. 4 is a diagram showing the relationship between the SOC change of the power storage device 10 and the travel mode.
  • SOC MAX
  • the running mode is set to CD mode. While traveling in the CD mode, the SOC may temporarily increase due to regenerative power collected when the vehicle decelerates, but the SOC decreases as the travel distance increases as a whole.
  • the traveling mode is switched to the CS mode, and the SOC is controlled in the vicinity of the threshold value Sth.
  • driving mode control unit 152 when driving mode control unit 152 receives charging end signal CGEND indicating the end of external charging from charging control unit 160, driving mode control unit 152 sets the driving mode to the CD mode as described above. Then, traveling mode control unit 152 outputs a mode signal MD indicating whether the traveling mode is the CD mode or the CS mode to Wout control unit 154, engine start / stop determination unit 156, and command generation unit 158.
  • the Wout control unit 154 receives the SOC of the power storage device 10 from the SOC calculation unit 150, and receives the mode signal MD indicating the travel mode from the travel mode control unit 152. Wout control unit 154 receives engine mode signal EGMD indicating whether engine ENG is operating or stopped from engine start / stop determination unit 156. Further, Wout control unit 154 receives a warm-up signal CW from catalyst warm-up control unit 166 indicating whether or not catalyst device 109 (FIG. 2) is warming up. Then, Wout control unit 154 calculates discharge allowable power Wout indicating power (W) that can be discharged by power storage device 10 based on these signals.
  • W discharge allowable power Wout indicating power
  • FIG. 5 is a diagram showing the discharge allowable power Wout of the power storage device 10.
  • discharge allowable power Wout is the maximum value of power (W) that power storage device 10 can output.
  • W power
  • discharge allowable power Wout is changed based on the vehicle running mode, engine ENG operation / stop, and whether or not catalyst device 109 is warming up. Specifically, discharge allowable power Wout is set to a default value W0 when travel mode is CD mode and engine ENG is operating, or when travel mode is CS mode. On the other hand, when the traveling mode is the CD mode and engine ENG is stopped, discharge allowable power Wout is increased from W0 to a predetermined W1. Further, even when the traveling mode is the CD mode and the engine ENG is operating, or even when the traveling mode is the CS mode, the discharge allowable power Wout is not reduced when the catalyst device 109 is warming up. It is expanded from W0 to W1.
  • the chargeable power Win is the maximum value of power (W) that can be input to the power storage device 10.
  • W the maximum value of power
  • the allowable charging power Win when the SOC of the power storage device 10 becomes high, the allowable charging power Win is limited to prevent overcharging.
  • Wout control unit 154 calculates discharge allowable power Wout (default value W0) based on the SOC, temperature, and the like of power storage device 10 using a map prepared in advance. Then, Wout control unit 154 includes a travel mode indicated by mode signal MD received from travel mode control unit 152, an operation / stop of engine ENG indicated by an engine mode signal EGMD signal received from engine start / stop determination unit 156, and a catalyst. The discharge allowable power Wout is changed based on whether or not the catalyst device 109 is being warmed up, as indicated by the warm-up signal CW received from the warm-up control unit 106.
  • the Wout control unit 154 performs the discharge allowable power Wout when the traveling mode is the CD mode and the engine ENG is stopped. Is expanded from W0 to a predetermined W1 (FIG. 5).
  • Wout control unit 154 does not increase discharge allowable power Wout.
  • the reason why the allowable discharge power Wout is increased when the traveling mode is the CD mode and the engine ENG is stopped is to increase the EV traveling by reducing the starting frequency of the engine ENG as much as possible. That is, as described above, even when the traveling mode is the CD mode, when the accelerator pedal is depressed and the vehicle required power exceeds the discharge allowable power Wout, the engine ENG starts to satisfy the required power and the EV traveling starts. Switch to HV driving.
  • the running mode is the CD mode and the engine ENG is stopped, the discharge allowable power Wout is increased, and the frequency of starting the engine ENG is suppressed to suppress the EV running feeling. It was decided to increase.
  • the allowable discharge power Wout is not always increased, but when the traveling mode is the CD mode and the engine ENG is operating, or when the traveling mode is the CS mode.
  • the discharge allowable power Wout is not increased. This is because the increase in the thermal load of the electrical components (mainly converter 110) is suppressed, and the acceleration characteristics of the vehicle when the engine is operating and when traveling in the CS mode are not changed before and after the application of the present embodiment. It is for doing so.
  • the Wout control unit 154 also increases the discharge allowable power Wout from W0 to W1.
  • the traveling mode is the CD mode and the engine ENG is operating or when the traveling mode is the CS mode
  • the catalyst device 109 is being warmed up.
  • the discharge allowable power Wout is increased to prevent the warming-up of the catalyst device 109 from being interrupted.
  • Wout control unit 154 determines discharge allowable power Wout that has undergone the above-described change processing based on the travel mode, operation / stop of engine ENG, and whether or not catalyst device 109 is warming up. Output to engine start / stop determination unit 156 and command generation unit 158. In addition, when the discharge allowable power Wout is increased, the Wout control unit 154 notifies the temporary expansion processing unit 164 (described later) that the discharge allowable power Wout is increased.
  • Engine start / stop determination unit 156 receives discharge allowable power Wout from Wout control unit 154. Further, engine start / stop determination unit 156 receives mode signal MD indicating the travel mode from travel mode control unit 152. Engine start / stop determination unit 156 performs engine ENG start determination and stop determination based on the travel mode and discharge allowable power Wout.
  • the engine start / stop determination unit 156 calculates the vehicle required power based on the accelerator opening ACC, the vehicle speed SPD, and the like received as various sensor outputs 17 (FIG. 1). As shown in FIG. 8, when the traveling mode is the CD mode, engine start / stop determination unit 156 provides the maximum output that motor generator MG2 can output based on the increased discharge allowable power Wout (W1 in FIG. 5). Power is calculated, and engine ENG start determination and stop determination are performed based on a comparison result between the calculated maximum power and vehicle required power.
  • the traveling mode is the CD mode
  • the discharge allowable power Wout is non-expanded (default value W0) during the operation of the engine ENG (FIG. 6).
  • the expanded discharge allowable power Wout (W1) is used.
  • engine start / stop determination unit 156 calculates the maximum power of motor generator MG2 based on non-expandable discharge allowable power Wout (W0), and the calculated maximum power and Based on the comparison result with the vehicle required power, the engine ENG is determined to start and stop.
  • command generation unit 158 controls control command value (for example, voltage Vm) for driving PCU 20 based on the running mode, discharge allowable power Wout and engine mode indicating the operation / stop of engine ENG. , Target torque values of motor generators MG1, MG2, etc.). Then, command generation unit 158 outputs the generated control command value to converter / inverter control unit 140 (FIG. 2) of PCU 20.
  • control command value for example, voltage Vm
  • charging control unit 160 controls signal for driving charger 92 based on input voltage Vac and input current Iac detected by a sensor (not shown). Is output to the charger 92.
  • charging control unit 160 ends charging control and outputs a charging end signal CGEND indicating charging end to traveling mode control unit 152. To do. Thereby, as described above, the travel mode control unit 152 sets the travel mode to the CD mode.
  • Rate processing unit 162 applies rate processing to the change in discharge allowable power Wout when discharge allowable power Wout is expanded from W0 to W1 in Wout control unit 154 and when discharge allowable power Wout returns from W1 to W0. .
  • the rate processing unit 162 makes the change rate when the discharge allowable power Wout returns from W1 to W0 smaller than the change rate when the discharge allowable power Wout expands from W0 to W1. As a result, the discharge power of power storage device 10 is prevented from exceeding discharge allowable power Wout due to a delay in tracking power control.
  • the rate processing unit 162 makes the change rate when the discharge allowable power Wout expands from W0 to W1 larger than the change rate when the discharge allowable power Wout returns from W1 to W0. This prevents the vehicle from being slack due to insufficient output when switching from HV traveling to EV traveling in the CD mode.
  • Temporary expansion processing unit 164 temporarily expands discharge allowable power Wout of power storage device 10 when a large amount of power is temporarily required, such as during cranking of engine ENG by motor generator MG1.
  • the temporary expansion processing unit 164 does not execute the temporary expansion process of the discharge allowable power Wout. Since the discharge allowable power Wout has already been expanded by the Wout control unit 154, the enlargement process by the temporary enlargement processing unit 164 is unnecessary.
  • discharge allowable power Wout When engine ENG is started in Wout control unit 154 while discharge allowable power Wout is being changed (when W0 is expanded from W1 and when W1 is restored from W0), discharge allowable power is during engine ENG startup. It is desirable to fix Wout.
  • engine ENG when engine ENG is started when the driving mode is switched (when switching from CD mode to CS mode and when switching from CS mode to CD mode), discharge allowable power Wout is fixed during startup of engine ENG. Is desirable.
  • the value of discharge allowable power Wout is fixed to the value when engine ENG starts. As a result, the power output from power storage device 10 is stabilized when engine ENG is started, so that the engine start process is stabilized.
  • the catalyst warm-up control unit 166 When the catalyst warm-up control unit 166 receives the determination result of starting the engine ENG from the engine start / stop determination unit 156, if the catalyst device 109 is not warmed up, the catalyst warm-up control unit 166 A command to instruct execution is output to the engine control unit 142. Then, the catalyst warm-up control unit 166 activates the warm-up signal CW output to the Wout control unit 154 while the catalyst device 109 is warmed up.
  • FIG. 9 is a flowchart for explaining a series of processing procedures relating to the control of the discharge allowable power Wout.
  • ECU 15 calculates discharge allowable power Wout (default value W0) using a map or the like prepared in advance (step S10).
  • the ECU 15 determines whether or not the traveling mode is the CD mode and the engine ENG is stopped (step S20). If it is determined that the traveling mode is not the CD mode (that is, the CS mode) or the engine ENG is operating (NO in step S20), the ECU 15 determines whether or not the catalyst device 109 is warming up ( Step S25). If it is determined that catalyst device 109 is not warming up (NO in step S25), ECU 15 proceeds to step S70 described later.
  • step S20 it is determined that the traveling mode is the CD mode and the engine ENG is stopped (YES in step S20), or in step S25, it is determined that the catalyst device 109 is warming up. Then (YES in step S25), ECU 15 increases discharge allowable power Wout from W0 to a predetermined W1 as shown in FIG. 5 (step S30).
  • the ECU 15 executes a rate limit process for limiting the change rate of the discharge allowable power Wout (step S40). Further, here, the ECU 15 determines whether or not the start of the engine ENG is requested during the change of the discharge allowable power Wout (step S50). If it is determined that the engine ENG is required to be started during the change of discharge allowable power Wout (YES in step S50), ECU 15 fixes discharge allowable power Wout (step S60). As an example, discharge allowable power Wout is fixed to a value when engine ENG start is requested.
  • step S70 the ECU 15 performs a Wout restriction process.
  • a Wout restriction process As an example, as shown in FIG. 5, when the SOC of power storage device 10 decreases, discharge allowable power Wout is limited. Alternatively, discharge allowable power Wout may be limited when the temperature of converter 110 rises.
  • the ECU 15 determines whether or not the start of the engine ENG is requested (step S80). If it is determined that start of engine ENG is requested (YES in step S80), ECU 15 further determines whether or not discharge allowable power Wout is increasing (step S90). If it is determined that discharge allowable power Wout is not being increased (YES in step S90), ECU 15 executes a process for temporarily increasing discharge allowable power Wout (step S100).
  • step S90 if it is determined in step S90 that discharge allowable power Wout is being expanded (YES in step S90), it is determined that the temporary expansion process is unnecessary because discharge allowable power Wout has already been expanded. The process proceeds to step S110 without executing S100.
  • FIG. 10 is a flowchart for explaining a processing procedure relating to warm-up control of the catalyst device 109.
  • ECU 15 determines whether or not to switch the travel mode from the CD mode to the CS mode based on the SOC of power storage device 10 (FIG. 2) (step S210). If it is determined that the travel mode is to be switched from the CD mode to the CS mode (YES in step S210), ECU 15 determines whether or not warming-up of catalyst device 109 has already been performed (step S220).
  • step S220 If it is determined that the warm-up of the catalyst device 109 has been executed (NO in step S220), the ECU 15 proceeds to step S280 without executing the subsequent processing. On the other hand, if it is determined in step S220 that the catalyst device 109 has not been warmed up (YES in step S220), the ECU 15 starts the engine ENG to warm up the catalyst device 109, and the catalyst device 109 Warm-up is executed (step S230).
  • the traveling mode is the CD mode and the engine ENG is stopped. Therefore, the discharge allowable power Wout of the power storage device 10 is expanded to W1. Yes.
  • the engine ENG is started as the catalyst device 109 starts warming up, as described above, the ECU 15 maintains the increase in the discharge allowable power Wout while the catalyst device 109 is warmed up.
  • ECU 15 returns discharge allowable power Wout from W1 to a non-expanded state W0 (step S250).
  • step S210 determines whether or not the current travel mode is the CD mode (step S260). If it is determined that the traveling mode is the CD mode (YES in step S260), ECU 15 determines whether or not the engine ENG is requested to start (step S270). If it is determined that the engine ENG is required to be started (YES in step S270), ECU 15 proceeds to step S220.
  • the traveling mode is the CD mode
  • the engine ENG is stopped, so that the discharge allowable power Wout of the power storage device 10 is set to W1.
  • the ECU 15 warms up the catalyst device 109 while maintaining the increase in the discharge allowable power Wout.
  • step S260 If it is determined in step S260 that the travel mode is the CS mode (NO in step S260), or if it is determined in step S270 that there is no engine ENG start request (NO in step S270), ECU 15 Then, the process proceeds to step S280.
  • FIG. 11 is a diagram showing a change in discharge allowable power Wout when engine ENG starts in the CD mode.
  • EV in the engine mode indicates EV traveling with engine ENG stopped
  • HV indicates HV traveling in which engine ENG is operated.
  • engine ENG Before time t1, engine ENG is stopped (engine mode “EV”), and discharge allowable power Wout is expanded to W1.
  • engine ENG is started and warming up of catalyst device 109 is started (assuming that warming up of catalyst device 109 has not been performed).
  • time t2 when the warming-up of the catalyst device 109 ends, the engine ENG is operating, but the catalyst device 109 is warming up, so the discharge allowable power Wout is maintained at W1.
  • the discharge allowable power Wout returns from W1 to the non-expanded state W0.
  • FIG. 12 is a diagram showing a change in discharge allowable power Wout when the running mode is switched from the CD mode to the CS mode. Referring to FIG. 12, before time t3, it is assumed that the traveling mode is the CD mode and engine ENG is stopped (EV traveling). Therefore, discharge allowable power Wout is expanded to W1.
  • the traveling mode is switched to the CS mode (FIG. 4). Then, engine ENG is started and warm-up of catalyst device 109 is started (assuming that warm-up of catalyst device 109 has not been executed). Until time t4 when the warming-up of the catalyst device 109 ends, the engine ENG is operating, but the catalyst device 109 is warming up, so the discharge allowable power Wout is maintained at W1. Then, at time t4, when warming up of catalyst device 109 is completed, discharge allowable power Wout returns from W1 to W0.
  • the traveling mode when the traveling mode is the CD mode and the engine ENG is stopped, the traveling mode is the CD mode and the engine ENG is operating.
  • discharge allowable power Wout is expanded as compared with when the traveling mode is the CS mode.
  • traveling power during EV traveling can be ensured, and an increase in thermal load on the electrical components can be suppressed during operation of engine ENG and CS mode. Therefore, according to this embodiment, EV travel can be expanded while taking into consideration the thermal load on the electrical components.
  • the catalyst device 109 is being warmed up.
  • the traveling mode is the CD mode and the engine ENG is stopped, the discharge allowable power Wout is increased.
  • the warm-up of the catalyst device 109 is not interrupted by the discharge allowable power Wout returning to the non-expanded state. Therefore, according to this embodiment, EV traveling can be expanded and the warm-up of the catalyst device 109 can be prevented from being interrupted.
  • a charging inlet 90 and a charger 92 for external charging are provided, and the traveling mode is set to the CD mode after external charging. Therefore, according to this embodiment, it is possible to expand EV traveling using electric power from external charging.
  • the power storage device 10 and the converter 110 are provided one by one.
  • an electric system including a plurality of power storage devices and converters for example, a plurality of power storage devices in parallel with each other.
  • the present invention can also be applied to an electrical system including a plurality of connected converters.
  • external charging is performed by connecting an external power source to the charging inlet 90.
  • external charging may be performed using a non-contact power feeding method such as a resonance method or electromagnetic induction.
  • engine ENG corresponds to an embodiment of “internal combustion engine” in the present invention
  • motor generator MG2 corresponds to an embodiment of “electric motor” in the present invention
  • Wout control unit 154 corresponds to an example of “discharge allowable power control unit” in the present invention
  • charging inlet 90 and charger 92 form an example of “charging device” in the present invention.
  • 10 power storage device 15 ECU, 17 sensor outputs, 20 PCU, 30 power output device, 35 accelerator pedal, 40 DG, 50L, 50R front wheel, 60L, 60R rear wheel, 70L, 70R front seat, 80 rear seat, 90 charging inlet , 92 charger, 100 hybrid vehicle, 105, 106 SMR, 107 power split device, 108 exhaust pipe, 109 catalyst device, 110 converter, 120 capacitor, 131, 132 inverter, 140 converter / inverter control unit, 142 engine control unit, 150 SOC calculation unit, 152 driving mode control unit, 154 Wout control unit, 156 engine start / stop determination unit, 158 command generation unit, 160 charge control unit, 162 rate processing unit, 164 Enlargement processing unit, 166 a catalyst warm-up control unit, MG1, MG2 motor generator, ENG engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 ECUは、予め準備されるマップ等を用いて、蓄電装置から放電可能な電力を示す放電許容電力(Wout)を算出する(S10)。そして、走行モードがCDモードであって、かつ、エンジンが停止しているとき(S20にてYES)、ECUは、放電許容電力(Wout)を予め定められた値に拡大する(S30)。また、走行モードがCSモードであり、または、エンジンが動作していても(S20にてNO)、エンジンの排気管に設けられた触媒装置の暖機中のときは(S25にてYES)、ECUは、放電許容電力(Wout)を拡大する(S30)。

Description

ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
 この発明は、ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両に関し、特に、内燃機関および電動機を動力源として搭載するハイブリッド車両の制御装置およびそれを備えるハイブリッド車両に関する。
 環境に配慮した車両としてハイブリッド車両(Hybrid Vehicle)が注目されている。ハイブリッド車両は、従来の内燃機関に加え、蓄電装置とインバータとインバータによって駆動される電動機とを車両走行用の動力源として搭載する。
 このようなハイブリッド車両においても、内燃機関を搭載している以上、従来の内燃機関のみを動力源とする車両と同様に、内燃機関の排出ガスを浄化する触媒装置が設けられる。一般的に、触媒装置は、内燃機関の排出ガスにより触媒温度が高められて触媒が活性化した時点で排出ガス中の規制対象成分を十分に浄化可能となる。すなわち、触媒装置は、その使用前に暖機される必要がある。
 特開2008-163867号公報(特許文献1)は、ハイブリッド車両において、触媒装置の暖機中に排出される規制対象成分を改善可能な手法を開示する。このハイブリッド車両においては、触媒装置が暖機中であると判断されると、複数の走行モードの1つであるパワーモードによる走行が禁止される。これにより、内燃機関からの排出ガスの増加が抑制されるので、触媒装置の触媒により十分に処理されずに排出される規制対象成分を改善することができる(特許文献1参照)。
特開2008-163867号公報
 ハイブリッド車両については、できる限り内燃機関を停止させての走行が望まれている。近年、車両外部の電源から車載の蓄電装置を充電可能な、いわゆるプラグイン・ハイブリッド車が注目されているが、プラグイン・ハイブリッド車に対しては、そのような要求が特に強い(なお、以下では、内燃機関を停止して電動機のみを用いての走行を「EV(Electric Vehicle)走行」と称し、これに対して、内燃機関を動作させての走行を「HV(Hybrid Vehicle)走行」と称する。)。
 そこで、内燃機関が始動する頻度を抑制することによってEV走行感を高めるために、EV走行を優先させる第1のモード(以下「CD(Charge Depleting)モード」と称する。)と、内燃機関を動作させて蓄電装置のSOC(State Of Charge)を所定の目標に維持する第2のモード(以下「CS(Charge Sustaining)モード」と称する。)とを含む走行モードおよび内燃機関の動作/停止に基づいて、蓄電装置が放電可能な電力(以下「放電許容電力Wout」と称する。)を変更することができる。具体的には、走行モードがCDモードであり、かつ、内燃機関が停止している場合に、走行モードがCDモードであり、かつ、内燃機関が動作しているとき、または、走行モードがCSのときよりも放電許容電力Woutを拡大することによって、内燃機関が始動する頻度を抑制してEV走行感を高めることができる。
 しかしながら、走行モードがCDモードであり、かつ、内燃機関が停止しているとき、すなわち、放電許容電力Woutが拡大されているときに、HV走行に備えて触媒装置の暖機が開始されると、触媒装置の暖機のために内燃機関が始動することによって放電許容電力Woutが非拡大状態に復帰する。このとき、車両要求パワーが放電許容電力Wout(非拡大状態)よりも大きいと、触媒装置の暖機が中断され、触媒装置が暖機されていない状態でHV走行が開始されてしまうという問題が発生する。
 それゆえに、この発明の目的は、ハイブリッド車両において、EV走行を拡大し、かつ、触媒装置の暖機が中断されるのを防止することである。
 この発明によれば、ハイブリッド車両の制御装置は、走行モード制御部と、放電許容電力制御部とを備える。ハイブリッド車両は、車両駆動力を発生する内燃機関と、充放電可能な蓄電装置と、蓄電装置から電力の供給を受けて車両駆動力を発生する電動機と、内燃機関の排出ガスを触媒により浄化する触媒装置とを含む。そして、走行モード制御部は、内燃機関を停止して電動機のみを用いての走行を優先させるCDモードと、内燃機関を動作させて蓄電装置の充電状態を示す状態量を所定の目標に維持するCSモードとを含む走行モードの切替を制御する。放電許容電力制御部は、走行モード、内燃機関の動作/停止および触媒装置の暖機中か否かに基づいて放電許容電力Woutを変更する。
 好ましくは、走行モードがCDモードであり、かつ、内燃機関が停止しているとき、放電許容電力制御部は、走行モードがCDモードであり、かつ、内燃機関が動作しているとき、または、走行モードがCSモードのときよりも放電許容電力Woutを拡大する。さらに、走行モードがCDモードであり、かつ、内燃機関が動作しているとき、または、走行モードがCSモードのときであっても、触媒装置の暖機中のときは、放電許容電力制御部は、走行モードがCDモードであり、かつ、内燃機関が停止しているときと同様に放電許容電力Woutを拡大する。
 また、好ましくは、走行モードがCDモードであり、かつ、内燃機関が停止しているとき、放電許容電力制御部は、走行モードがCDモードであり、かつ、内燃機関が動作しているとき、または、走行モードがCSモードのときよりも放電許容電力Woutを拡大する。走行モードがCDモードのときに内燃機関の始動が要求されると、放電許容電力Woutの拡大を維持しつつ触媒装置の暖機が開始される。触媒装置の暖機終了後、放電許容電力制御部は、放電許容電力Woutを非拡大状態に復帰させる。
 また、好ましくは、走行モードがCDモードであり、かつ、内燃機関が停止しているとき、放電許容電力制御部は、走行モードがCDモードであり、かつ、内燃機関が動作しているとき、または、走行モードがCSモードのときよりも放電許容電力Woutを拡大する。CDモードからCSモードへの切替時、放電許容電力Woutの拡大を維持しつつ触媒装置の暖機が開始される。触媒装置の暖機終了後、放電許容電力制御部は、放電許容電力Woutを非拡大状態に復帰させる。
 好ましくは、ハイブリッド車両は、車両外部の電源から電力の供給を受けて蓄電装置を充電するように構成された充電装置をさらに含む。そして、走行モード制御部は、充電装置による蓄電装置の充電後、走行モードをCDモードに設定する。
 また、この発明によれば、ハイブリッド車両は、上述したいずれかの制御装置を備える。
 この発明においては、走行モード、内燃機関の動作/停止および触媒装置の暖機中か否かに基づいて放電許容電力Woutが変更される。これにより、走行モードがCDモードであり、かつ、内燃機関が停止している場合に、走行モードがCDモードであり、かつ、内燃機関が動作しているとき、または、走行モードがCSモードのときよりも放電許容電力Woutを拡大することができる。また、走行モードがCDモードであり、かつ、内燃機関が動作しているとき、または、走行モードがCSモードのときであっても、触媒装置の暖機中のときは、走行モードがCDモードであり、かつ、内燃機関が停止しているときと同様に放電許容電力Woutを拡大することができるので、放電許容電力Woutが非拡大状態に復帰することによって触媒装置の暖機が中断されることがない。したがって、この発明によれば、EV走行を拡大し、かつ、触媒装置の暖機が中断されるのを防止することが可能となる。
この発明の実施の形態による制御装置が適用されるハイブリッド車両の全体構成を示すブロック図である。 図1に示すハイブリッド車両の電気システムの構成を示すブロック図である。 図2に示すECUの機能ブロック図である。 蓄電装置のSOCの変化と走行モードとの関係を示した図である。 蓄電装置の放電許容電力を示した図である。 走行モードおよびエンジンの動作/停止に応じた放電許容電力の拡大/非拡大を説明するための図である。 触媒装置の暖機中における放電許容電力を説明するための図である。 エンジンの停止判定に用いられる放電許容電力を示した図である。 放電許容電力の制御に関する一連の処理手順を説明するためのフローチャートである。 触媒装置の暖機制御に関する処理手順を説明するためのフローチャートである。 CDモード時にエンジンが始動するときの放電許容電力の変化を示した図である。 走行モードがCDモードからCSモードに切替わるときの放電許容電力の変化を示した図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 図1は、この発明の実施の形態による制御装置が適用されるハイブリッド車両の全体構成を示すブロック図である。図1を参照して、ハイブリッド車両100は、蓄電装置10と、ECU(Electronic Control Unit)15と、PCU(Power Control Unit)20と、動力出力装置30と、ディファレンシャルギヤ(以下「DG(Differential Gear)」とも称する。)40とを備える。また、ハイブリッド車両100は、前輪50L,50Rと、後輪60L,60Rと、フロントシート70L,70Rと、リアシート80と、充電インレット90と、充電器92とをさらに備える。
 蓄電装置10は、再充電可能な直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池から成る。蓄電装置10は、たとえばリアシート80の後方部に配置され、PCU20と電気的に接続されてPCU20へ直流電圧を供給する。また、蓄電装置10は、動力出力装置30によって発電された電力をPCU20から受けて充電される。さらに、蓄電装置10は、充電インレット90に接続される車両外部の電源から供給される電力を受ける充電器92によって充電される。なお、以下では、車両外部の電源を「外部電源」とも称し、外部電源による蓄電装置10の充電を「外部充電」とも称する。
 PCU20は、ハイブリッド車両100内で必要となる電力変換器を統括的に示したものである。PCU20は、蓄電装置10から供給される電圧を昇圧するコンバータや、動力出力装置30に含まれるモータジェネレータを駆動するインバータ等を含む。
 ECU15は、運転状況・車両状況を示す各種センサからの各種センサ出力17を受ける。各種センサ出力17には、アクセルペダル35の踏込み量に応じたアクセル開度や、車輪回転数に応じた車両速度等が含まれる。そして、ECU15は、入力されたこれらのセンサ出力に基づき、ハイブリッド車両100に関する種々の制御を実行する。
 動力出力装置30は、車輪の駆動力源として設けられ、モータジェネレータMG1,MG2およびエンジンを含む。これらは、動力分割装置(図示せず)を介して機械的に連結される。そして、ハイブリッド車両100の走行状況に応じて、動力分割装置を介して上記3者の間で駆動力の配分および結合が行なわれ、その結果として前輪50L,50Rが駆動される。DG40は、動力出力装置30から出力される動力を前輪50L,50Rへ伝達するとともに、前輪50L,50Rから受ける回転力を動力出力装置30へ伝達する。これにより、動力出力装置30は、エンジンおよびモータジェネレータによる動力を、DG40を介して前輪50L,50Rへ伝達して前輪50L,50Rを駆動する。また、動力出力装置30は、前輪50L,50Rによるモータジェネレータの回転力を受けて発電し、その発電した電力をPCU20へ供給する。
 なお、モータジェネレータMG1,MG2は、発電機としても電動機としても機能し得るが、モータジェネレータMG1が、主として発電機として動作し、モータジェネレータMG2が、主として電動機として動作する。詳細には、モータジェネレータMG1は、動力分割装置によって分配されるエンジンの出力の一部を受けて発電する。また、モータジェネレータMG1は、蓄電装置10から電力の供給を受けて電動機として動作し、エンジンをクランキングして始動する。
 モータジェネレータMG2は、蓄電装置10に蓄えられた電力およびモータジェネレータMG1の発電した電力の少なくとも一方によって駆動される。そして、モータジェネレータMG2の駆動力は、DG40を介して前輪50L,50Rの駆動軸へ伝達される。これにより、モータジェネレータMG2は、エンジンをアシストして車両を走行させたり、自己の駆動力のみによって車両を走行させたりする。また、車両の制動時には、モータジェネレータMG2は、前輪50L,50Rにより駆動されて発電機として動作する。このとき、モータジェネレータMG2により発電された電力は、PCU20を介して蓄電装置10に充電される。
 そして、PCU20は、ECU15からの制御指示に従って、蓄電装置10から受ける直流電圧を昇圧するとともに、その昇圧した直流電圧を交流電圧に変換して、動力出力装置30に含まれるモータジェネレータMG1,MG2を駆動する。また、PCU20は、モータジェネレータMG1,MG2の回生動作時には、ECU15からの制御指示に従って、モータジェネレータMG1,MG2の発電した交流電圧を直流電圧に変換して蓄電装置10を充電する。
 充電インレット90は、外部電源に接続された充電ケーブル(図示せず)のコネクタを接続可能に構成される。そして、外部充電時、充電インレット90に接続される外部電源から電力を受け、その受けた電力を充電器92へ供給する。充電器92は、充電インレット90と蓄電装置10との間に設けられ、充電インレット90に接続される外部電源から供給される電力を蓄電装置10の電圧レベルに変換して蓄電装置10へ出力する。
 図2は、図1に示したハイブリッド車両100の駆動システムの構成を示すブロック図である。図2を参照して、駆動システムは、蓄電装置10と、SMR(System Main Relay)105,106と、PCU20と、モータジェネレータMG1,MG2と、エンジンENGと、動力分割装置107と、排気管108と、触媒装置109と、ECU15と、充電インレット90と、充電器92とを含む。
 モータジェネレータMG1,MG2は、動力分割装置107を介してエンジンENGおよび図示されない駆動輪(図1の前輪50L,50R)と連結される。そして、ハイブリッド車両100は、エンジンENGおよびモータジェネレータMG2を用いて走行可能であり、モータジェネレータMG1は、エンジンENGの始動およびエンジンENGの動力を用いた発電を行なう。
 エンジンENGは、ガソリンや軽油等の化石燃料、またはエタノール等のアルコール燃料の燃焼による熱エネルギーをピストンやロータなどの運動子の運動エネルギーに変換し、その変換された運動エネルギーを動力分割装置107へ出力する。たとえば、運動子がピストンであり、その運動が往復運動であれば、いわゆるクランク機構を介して往復運動が回転運動に変換され、ピストンの運動エネルギーが動力分割装置107に伝達される。
 触媒装置109は、エンジンENGの排気管108に設けられ、エンジンENGから排出される排出ガスを浄化する。触媒装置109は、エンジンENGの排出ガスにより触媒温度が高められて触媒が活性化した時点で、排出ガス中の規制対象成分を十分に浄化することが可能となる。
 SMR105は、蓄電装置10とPCU20との間に設けられ、車両の走行時等にECU15からの指令に応じてオンされる。SMR106は、蓄電装置10と充電器92との間に設けられ、外部充電時にECU15からの指令に応じてオンされる。
 PCU20は、コンバータ110と、コンデンサ120と、モータ駆動制御器131,132と、コンバータ/インバータ制御部140と、エンジン制御部142とを含む。この実施の形態では、モータジェネレータMG1,MG2は交流モータであり、モータ駆動制御器131,132はインバータによって構成される。以下では、モータ駆動制御器131(132)を「インバータ131(132)」とも称する。
 コンバータ110は、コンバータ/インバータ制御部140からの制御信号Scnvに基づいて、正極線103および負極線102間の電圧Vmを蓄電装置10の電圧Vb以上に昇圧する。コンバータ110は、たとえば、電流可逆型の昇圧チョッパ回路によって構成される。
 インバータ131,132は、それぞれモータジェネレータMG1,MG2に対応して設けられる。インバータ131,132は、互いに並列してコンバータ110に接続され、コンバータ/インバータ制御部140からの制御信号Spwm1,Spwm2に基づいてモータジェネレータMG1,MG2をそれぞれ駆動する。
 コンバータ/インバータ制御部140は、ECU15から受ける制御指令値(電圧Vmの目標値やモータジェネレータMG1,MG2のトルク目標値等)に基づいて、コンバータ110およびモータジェネレータMG1,MG2をそれぞれ駆動するための制御信号Scnv,Spwm1,Spwm2を生成する。そして、コンバータ/インバータ制御部140は、その生成された制御信号Scnv,Spwm1,Spwm2をそれぞれコンバータ110およびインバータ131,132へ出力する。
 エンジン制御部142は、ECU15から受ける制御指令値に基づいて、エンジンENGの回転速度および出力トルクを算出する。そして、エンジン制御部142は、その算出結果に基づいてエンジンENGを駆動するための制御信号を生成し、その生成された制御信号をエンジンENGへ出力する。
 ECU15は、各種センサ出力17に基づいて、このハイブリッド車両100の走行モードの制御や、エンジンENGの始動/停止判定、蓄電装置10の充放電制御、触媒装置109の暖機制御等の各種制御を行なう。そして、ECU15は、PCU20を駆動するための制御指令値を生成し、その生成した制御指令値をPCU20のコンバータ/インバータ制御部140およびエンジン制御部142へ出力する。また、ECU15は、外部充電時、充電器92を駆動するための信号を生成し、その生成した信号を充電器92へ出力する。
 図3は、図2に示したECU15の機能ブロック図である。図3を参照して、ECU15は、SOC算出部150と、走行モード制御部152と、Wout制御部154と、エンジン始動/停止判定部156とを含む。また、ECU15は、指令生成部158と、充電制御部160と、レート処理部162と、一時拡大処理部164と、触媒暖機制御部166とをさらに含む。
 SOC算出部150は、図示されないセンサによって検出される蓄電装置10の電圧Vbおよび電流Ibに基づいて、蓄電装置10の充電状態を示すSOCを算出する。このSOCは、蓄電装置10の満充電状態に対する蓄電量を0~100%で表わしたものであり、蓄電装置10の蓄電残量を示す。なお、SOCの算出方法については、種々の公知の手法を用いることができる。
 走行モード制御部152は、SOC算出部150によって算出されたSOCに基づいて、車両の走行モードの切替を制御する。具体的には、走行モード制御部152は、エンジンENGを停止してモータジェネレータMG2のみを用いての走行を優先させるCDモードとするか、それともエンジンENGを動作させて蓄電装置10のSOCを所定の目標に維持するCSモードとするかの切替を制御する。
 なお、CDモードでも、運転者によりアクセルペダルが大きく踏込まれたり、エンジン駆動タイプのエアコン動作時やエンジン暖機時、触媒装置109の暖機時などは、エンジンENGの動作が許容される。このCDモードは、蓄電装置10のSOCを維持することなく、基本的に蓄電装置10に蓄えられた電力をエネルギー源として車両を走行させる走行モードである。このCDモードの間は、結果的に充電よりも放電の割合の方が相対的に大きくなることが多い。一方、CSモードは、蓄電装置10のSOCを所定の目標に維持するために、必要に応じてエンジンENGを動作させてモータジェネレータMG1により発電を行なう走行モードであり、エンジンENGを常時動作させての走行に限定されるものではない。
 すなわち、走行モードがCDモードであっても、アクセルペダルが大きく踏込まれて大きな車両パワーが要求されればエンジンENGは動作する。また、走行モードがCSモードであっても、SOCが目標値を上回っていればエンジンENGは停止する。そこで、走行モードに拘わらず、エンジンENGを停止してモータジェネレータMG2のみを用いての走行を「EV走行」と称し、エンジンENGを動作させてモータジェネレータMG2およびエンジンENGを用いての走行を「HV走行」と称する。
 図4は、蓄電装置10のSOCの変化と走行モードとの関係を示した図である。図4を参照して、外部充電により蓄電装置10が満充電状態となった後(SOC=MAX)、走行が開始されるものとする。外部充電後、走行モードはCDモードに設定される。CDモードでの走行中は、車両の減速時等に回収される回生電力により一時的にSOCが増加することがあるものの、全体としては走行距離の増加に伴ないSOCは減少する。そして、時刻t1においてSOCがしきい値Sthに達すると、走行モードがCSモードへ切替わり、しきい値Sthの近傍にSOCが制御される。
 再び図3を参照して、走行モード制御部152は、外部充電の終了を示す充電終了信号CGENDを充電制御部160から受けると、上述のように走行モードをCDモードに設定する。そして、走行モード制御部152は、走行モードがCDモードかCSモードかを示すモード信号MDをWout制御部154、エンジン始動/停止判定部156および指令生成部158へ出力する。
 Wout制御部154は、SOC算出部150から蓄電装置10のSOCを受け、走行モードを示すモード信号MDを走行モード制御部152から受ける。また、Wout制御部154は、エンジンENGが動作しているか停止しているかを示すエンジンモード信号EGMDをエンジン始動/停止判定部156から受ける。さらに、Wout制御部154は、触媒装置109(図2)の暖機中か否かを示す暖機信号CWを触媒暖機制御部166から受ける。そして、Wout制御部154は、これらの各信号に基づいて、蓄電装置10が放電可能な電力(W)を示す放電許容電力Woutを算出する。
 図5は、蓄電装置10の放電許容電力Woutを示した図である。図5を参照して、放電許容電力Woutは、蓄電装置10が出力可能な電力(W)の最大値である。蓄電装置10のSOCが低下すると、過放電防止のために放電許容電力Woutは制限される。
 この実施の形態では、後述するように、車両の走行モード、エンジンENGの動作/停止および触媒装置109の暖機中か否かに基づいて放電許容電力Woutが変更される。具体的には、走行モードがCDモードであり、かつ、エンジンENGが動作しているとき、または走行モードがCSモードのときは、放電許容電力Woutはデフォルト値のW0に設定される。一方、走行モードがCDモードであり、かつ、エンジンENGが停止しているときは、放電許容電力WoutがW0から予め定められたW1に拡大される。また、走行モードがCDモードであり、かつ、エンジンENGが動作しているとき、または走行モードがCSモードのときであっても、触媒装置109の暖機中のときは、放電許容電力WoutがW0からW1に拡大される。
 なお、充電許容電力Winは、蓄電装置10へ入力可能な電力(W)の最大値である。充電許容電力Winについては、蓄電装置10のSOCが高くなると、過充電防止のために充電許容電力Winが制限される。
 再び図3を参照して、Wout制御部154は、予め準備されるマップ等を用いて、蓄電装置10のSOCや温度等に基づいて放電許容電力Wout(デフォルト値W0)を算出する。そして、Wout制御部154は、走行モード制御部152から受けるモード信号MDによって示される走行モード、エンジン始動/停止判定部156から受けるエンジンモード信号EGMD信号によって示されるエンジンENGの動作/停止、および触媒暖機制御部106から受ける暖機信号CWによって示される触媒装置109の暖機中か否かに基づいて、放電許容電力Woutを変更する。
 すなわち、図6に示すように、触媒装置109の暖機中でないときは、走行モードがCDモードであって、かつ、エンジンENGが停止しているとき、Wout制御部154は、放電許容電力WoutをW0から予め定められたW1に拡大する(図5)。一方、走行モードがCDモードであって、かつ、エンジンENGが動作しているとき、または、走行モードがCSモードのとき、Wout制御部154は、放電許容電力Woutの拡大を行なわない。
 走行モードがCDモードであって、かつ、エンジンENGが停止しているときに放電許容電力Woutを拡大するのは、エンジンENGの始動頻度をできる限り減らし、EV走行を拡充するためである。すなわち、上述のように、走行モードがCDモードであっても、アクセルペダルが踏込まれて車両要求パワーが放電許容電力Woutを超えると、要求パワーを満たすためにエンジンENGが始動してEV走行からHV走行に切替わる。
 しかしながら、アクセルペダルを踏込むことによって頻繁にエンジンENGが始動していては、運転者は十分なEV走行感を得ることができない。そこで、この実施の形態では、走行モードがCDモードであって、かつ、エンジンENGが停止しているときに放電許容電力Woutを拡大し、エンジンENGが始動する頻度を抑制することによってEV走行感を高めることとしたものである。
 一方、この実施の形態では、放電許容電力Woutを常時拡大するのではなく、走行モードがCDモードであって、かつ、エンジンENGが動作しているとき、または、走行モードがCSモードのときは、放電許容電力Woutの拡大を行なわない。このようにしたのは、電気部品(主にコンバータ110)の熱負荷の増加を抑えるとともに、エンジン動作時およびCSモードでの走行時における車両の加速特性を本実施の形態の適用前後で変えないようにするためである。
 ここで、触媒装置109の暖機中のときは、図7に示すように、走行モードがCDモードであって、かつ、エンジンENGが動作しているとき、または、走行モードがCSモードのときにおいても、Wout制御部154は、放電許容電力WoutをW0からW1に拡大する。
 このようにするのは、触媒装置109の暖機が中断されるのを防止するためである。すなわち、走行モードがCDモードであって、かつ、エンジンENGが停止しているとき、すなわち、放電許容電力Woutが拡大されているときに、HV走行に備えて触媒装置109の暖機が開始されると、触媒装置109の暖機のためにエンジンENGが始動することによって放電許容電力WoutがW1からW0に復帰する。このとき、車両要求パワーが放電許容電力Wout(W0)よりも大きいと、触媒装置109の暖機が中断され、触媒装置109が暖機されていない状態でHV走行が開始されてしまうこととなる。そこで、この実施の形態では、走行モードがCDモードであって、かつ、エンジンENGが動作しているとき、または、走行モードがCSモードのときであっても、触媒装置109の暖機中のときは、放電許容電力Woutを拡大して触媒装置109の暖機が中断されるのを防止することとしたものである。
 再び図3を参照して、Wout制御部154は、走行モード、エンジンENGの動作/停止および触媒装置109の暖機中か否かに基づいて上記の変更処理が行なわれた放電許容電力Woutをエンジン始動/停止判定部156および指令生成部158へ出力する。また、Wout制御部154は、放電許容電力Woutが拡大されているとき、放電許容電力Woutが拡大されていることを一時拡大処理部164(後述)へ通知する。
 エンジン始動/停止判定部156は、Wout制御部154から放電許容電力Woutを受ける。また、エンジン始動/停止判定部156は、走行モードを示すモード信号MDを走行モード制御部152から受ける。そして、エンジン始動/停止判定部156は、走行モードおよび放電許容電力Woutに基づいて、エンジンENGの始動判定および停止判定を行なう。
 具体的には、エンジン始動/停止判定部156は、各種センサ出力17(図1)として受けるアクセル開度ACCや車両速度SPD等に基づいて車両要求パワーを算出する。そして、図8に示すように、走行モードがCDモードのとき、エンジン始動/停止判定部156は、拡大された放電許容電力Wout(図5のW1)に基づいてモータジェネレータMG2が出力可能な最大パワーを算出し、その算出された最大パワーと車両要求パワーとの比較結果に基づいて、エンジンENGの始動判定および停止判定を行なう。
 すなわち、上述のように、走行モードがCDモードのとき、エンジンENGの動作中は、放電許容電力Woutは非拡大(デフォルト値W0)であるところ(図6)、エンジンENGの停止判定には、拡大された放電許容電力Wout(W1)が用いられる。これにより、CDモード時にエンジンENGが始動した後においてはエンジンENGを停止しやすくし、EV走行感をさらに高めることができる。
 なお、走行モードがCSモードのときは、エンジン始動/停止判定部156は、非拡大の放電許容電力Wout(W0)に基づいてモータジェネレータMG2の最大パワーを算出し、その算出された最大パワーと車両要求パワーとの比較結果に基づいて、エンジンENGの始動判定および停止判定を行なう。
 再び図3を参照して、指令生成部158は、走行モード、放電許容電力WoutおよびエンジンENGの動作/停止を示すエンジンモードに基づいて、PCU20を駆動するための制御指令値(たとえば、電圧Vmの目標値やモータジェネレータMG1,MG2のトルク目標値等)を生成する。そして、指令生成部158は、その生成した制御指令値をPCU20のコンバータ/インバータ制御部140(図2)へ出力する。
 充電制御部160は、充電インレット90(図2)に外部電源が接続されると、図示されないセンサによって検出される入力電圧Vacおよび入力電流Iacに基づいて、充電器92を駆動するための制御信号を生成し、充電器92へ出力する。そして、充電制御部160は、SOC算出部150から受ける蓄電装置10のSOCが所定の上限値に達すると、充電制御を終了するとともに充電終了を示す充電終了信号CGENDを走行モード制御部152へ出力する。これにより、上述のように、走行モード制御部152において走行モードがCDモードに設定される。
 レート処理部162は、Wout制御部154において放電許容電力WoutがW0からW1へ拡大されるとき、および放電許容電力WoutがW1からW0へ復帰するとき、放電許容電力Woutの変化にレート処理を施す。ここで、レート処理部162は、放電許容電力WoutがW1からW0へ復帰するときの変化レートを、放電許容電力WoutがW0からW1へ拡大するときの変化レートよりも小さくする。これにより、電力制御の追従遅れにより蓄電装置10の放電電力が放電許容電力Woutを超えるのを抑える。
 言い換えると、レート処理部162は、放電許容電力WoutがW0からW1へ拡大するときの変化レートを、放電許容電力WoutがW1からW0へ復帰するときの変化レートよりも大きくする。これにより、CDモード時にHV走行からEV走行へ切替わるときの出力不足による車両のもたつきを防止する。
 一時拡大処理部164は、モータジェネレータMG1によるエンジンENGのクランキング時など一時的に大電力が必要とされるとき、蓄電装置10の放電許容電力Woutを一時的に拡大する。ここで、一時拡大処理部164は、放電許容電力Woutが拡大中であることを示す通知をWout制御部154から受けているときは、放電許容電力Woutの一時拡大処理を非実行とする。Wout制御部154によって放電許容電力Woutが既に拡大されているので、一時拡大処理部164による拡大処理を不要としたものである。
 なお、Wout制御部154において、放電許容電力Woutの変更中(W0からW1への拡大時およびW1からW0への復帰時)にエンジンENGが始動されるとき、エンジンENGの始動中は放電許容電力Woutを固定するのが望ましい。あるいは、走行モードの切替時(CDモードからCSモードへの切替時およびCSモードからCDモードへの切替時)にエンジンENGが始動されるとき、エンジンENGの始動中は放電許容電力Woutを固定するのが望ましい。放電許容電力Woutの値については、一例として、エンジンENGの始動が開始されたときの値に固定される。これにより、エンジンENGの始動時に蓄電装置10から出力される電力が安定するので、エンジン始動処理が安定化する。
 触媒暖機制御部166は、エンジンENGを始動するとの判定結果をエンジン始動/停止判定部156から受けると、触媒装置109の暖機が行なわれていない場合には、触媒装置109の暖機の実行を指示する指令をエンジン制御部142へ出力する。そして、触媒暖機制御部166は、触媒装置109の暖機中、Wout制御部154へ出力される暖機信号CWを活性化する。
 図9は、放電許容電力Woutの制御に関する一連の処理手順を説明するためのフローチャートである。図9を参照して、ECU15は、予め準備されるマップ等を用いて、放電許容電力Wout(デフォルト値W0)を算出する(ステップS10)。
 次いで、ECU15は、走行モードがCDモードであって、かつ、エンジンENGが停止しているか否かを判定する(ステップS20)。走行モードがCDモードでない(すなわちCSモード)、または、エンジンENGが動作していると判定されると(ステップS20においてNO)、ECU15は、触媒装置109の暖機中か否かを判定する(ステップS25)。触媒装置109の暖機中でないと判定されると(ステップS25においてNO)、ECU15は、後述のステップS70へ処理を移行する。
 ステップS20において、走行モードがCDモードであって、かつ、エンジンENGが停止していると判定されるか(ステップS20においてYES)、またはステップS25において触媒装置109の暖機中であると判定されると(ステップS25においてYES)、ECU15は、図5に示したように、放電許容電力WoutをW0から予め定められたW1へ拡大する(ステップS30)。
 ここで、放電許容電力Woutが変更されるとき、ECU15は、放電許容電力Woutの変化レートを制限するレートリミット処理を実行する(ステップS40)。さらにここで、ECU15は、放電許容電力Woutの変更中にエンジンENGの始動が要求されたか否かを判定する(ステップS50)。そして、放電許容電力Woutの変更中にエンジンENGの始動が要求されたと判定されると(ステップS50においてYES)、ECU15は、放電許容電力Woutを固定する(ステップS60)。一例として、エンジンENGの始動が要求されたときの値に放電許容電力Woutが固定される。
 次いで、ECU15は、Wout制限処理を行なう(ステップS70)。一例として、図5に示したように、蓄電装置10のSOCが低くなると、放電許容電力Woutが制限される。あるいは、コンバータ110の温度が上昇したとき等も、放電許容電力Woutを制限してもよい。
 続いて、ECU15は、エンジンENGの始動が要求されたか否かを判定する(ステップS80)。エンジンENGの始動が要求されたと判定されると(ステップS80においてYES)、ECU15は、放電許容電力Woutが拡大中であるか否かをさらに判定する(ステップS90)。そして、放電許容電力Woutは拡大中でないと判定されると(ステップS90においてYES)、ECU15は、放電許容電力Woutの一時拡大処理を実行する(ステップS100)。
 すなわち、ステップS90において放電許容電力Woutが拡大中であると判定されると(ステップS90においてYES)、放電許容電力Woutが既に拡大されていることから一時拡大処理は不要であると判定され、ステップS100を実行することなくステップS110へ処理が移行される。
 図10は、触媒装置109の暖機制御に関する処理手順を説明するためのフローチャートである。図10を参照して、ECU15は、蓄電装置10(図2)のSOCに基づいて、CDモードからCSモードへ走行モードを切替えるか否かを判定する(ステップS210)。CDモードからCSモードへ走行モードを切替えるものと判定されると(ステップS210においてYES)、ECU15は、触媒装置109の暖機が既に実行されたか否かを判定する(ステップS220)。
 触媒装置109の暖機は実行済みであると判定されると(ステップS220においてNO)、ECU15は、以降の処理を実行することなくステップS280へ処理を移行する。一方、ステップS220において触媒装置109の暖機が未実行であると判定されると(ステップS220においてYES)、ECU15は、触媒装置109の暖機のためにエンジンENGを始動して触媒装置109の暖機を実行する(ステップS230)。
 ここで、この触媒装置109の暖機が実行される前は、走行モードがCDモードであり、かつ、エンジンENGは停止しているので、蓄電装置10の放電許容電力WoutはW1に拡大されている。そして、触媒装置109の暖機の開始に伴ないエンジンENGが始動するところ、上述のように、ECU15は、触媒装置109の暖機中は、放電許容電力Woutの拡大を維持する。そして、触媒装置109の暖機が終了すると(ステップS240においてYES)、ECU15は、放電許容電力WoutをW1から非拡大状態のW0に復帰させる(ステップS250)。
 一方、ステップS210において、CDモードからCSモードへの切替はないと判定されると(ステップS210においてNO)、ECU15は、現在の走行モードがCDモードか否かを判定する(ステップS260)。走行モードがCDモードであると判定されると(ステップS260においてYES)、ECU15は、エンジンENGの始動が要求されたか否かを判定する(ステップS270)。そして、エンジンENGの始動が要求されたと判定されると(ステップS270においてYES)、ECU15は、ステップS220へ処理を移行する。
 すなわち、走行モードがCDモードのときにエンジンENGの始動が要求されると、触媒装置109の暖機が未実行であれば、ステップS230において触媒装置109の暖機が実行される。ここで、この場合も、触媒装置109の暖機が実行される前は、走行モードがCDモードであり、かつ、エンジンENGは停止しているので、蓄電装置10の放電許容電力WoutはW1に拡大されており、ECU15は、放電許容電力Woutの拡大を維持しつつ触媒装置109の暖機を実行する。
 なお、ステップS260において走行モードがCSモードであると判定されるか(ステップS260においてNO)、または、ステップS270においてエンジンENGの始動要求は無いと判定されると(ステップS270においてNO)、ECU15は、ステップS280へ処理を移行する。
 図11は、CDモード時にエンジンENGが始動するときの放電許容電力Woutの変化を示した図である。図11を参照して、エンジンモードの「EV」は、エンジンENGを停止してのEV走行であることを示し、「HV」は、エンジンENGが動作したHV走行であることを示す。
 時刻t1前は、エンジンENGは停止しており(エンジンモード「EV」)、放電許容電力Woutは、W1に拡大されている。時刻t1において、エンジンENGが始動し、触媒装置109の暖機が開始される(触媒装置109の暖機が未実行だったものとする。)。触媒装置109の暖機が終了する時刻t2までは、エンジンENGは動作しているけれども触媒装置109の暖機中であるので、放電許容電力WoutはW1に維持される。そして、時刻t2において、触媒装置109の暖機が終了すると、放電許容電力Woutは、W1から非拡大状態のW0に復帰する。
 図12は、走行モードがCDモードからCSモードに切替わるときの放電許容電力Woutの変化を示した図である。図12を参照して、時刻t3前は、走行モードがCDモードであり、エンジンENGは停止しているものとする(EV走行)。したがって、放電許容電力Woutは、W1に拡大されている。
 時刻t11において、蓄電装置10のSOCがしきい値Sthに達すると、走行モードがCSモードに切替わる(図4)。そうすると、エンジンENGが始動し、触媒装置109の暖機が開始される(触媒装置109の暖機が未実行だったものとする。)。触媒装置109の暖機が終了する時刻t4までは、エンジンENGは動作しているが触媒装置109の暖機中であるので、放電許容電力WoutはW1に維持される。そして、時刻t4において、触媒装置109の暖機が終了すると、放電許容電力Woutは、W1からW0に復帰する。
 以上のように、この実施の形態においては、走行モードがCDモードであり、かつ、エンジンENGが停止している場合において、走行モードがCDモードであり、かつ、エンジンENGが動作しているとき、または、走行モードがCSモードのときよりも放電許容電力Woutが拡大される。これにより、EV走行中の走行パワーを確保し、かつ、エンジンENGの動作時およびCSモード時においては電気部品への熱負荷の増加を抑えることができる。したがって、この実施の形態によれば、電気部品に対する熱負荷に配慮しつつEV走行を拡大することができる。
 そして、この実施の形態においては、走行モードがCDモードであり、かつ、エンジンENGが動作しているとき、または、走行モードがCSモードのときであっても、触媒装置109の暖機中のときは、走行モードがCDモードであり、かつ、エンジンENGが停止しているときと同様に放電許容電力Woutが拡大される。これにより、放電許容電力Woutが非拡大状態に復帰することによって触媒装置109の暖機が中断されてしまうことはない。したがって、この実施の形態によれば、EV走行を拡大し、かつ、触媒装置109の暖機が中断されるのを防止することができる。
 また、この実施の形態においては、外部充電用の充電インレット90および充電器92が設けられ、外部充電後は走行モードがCDモードに設定される。したがって、この実施の形態によれば、外部充電による電力を用いたEV走行の拡大を図ることができる。
 なお、上記の実施の形態においては、蓄電装置10およびコンバータ110が1つずつ設けられる構成としたが、蓄電装置およびコンバータが複数設けられた電気システム(たとえば、複数の蓄電装置と、互いに並列に接続される複数のコンバータとを備える電気システム等)に対しても、本発明を適用可能である。
 また、上記においては、充電インレット90に外部電源を接続して外部充電を行なうものとしたが、共鳴法や電磁誘導等の非接触による給電手法を用いて外部充電を行なってもよい。
 なお、上記において、エンジンENGは、この発明における「内燃機関」の一実施例に対応し、モータジェネレータMG2は、この発明における「電動機」の一実施例に対応する。また、Wout制御部154は、この発明における「放電許容電力制御部」の一実施例に対応し、充電インレット90および充電器92は、この発明における「充電装置」の一実施例を形成する。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 蓄電装置、15 ECU、17 各種センサ出力、20 PCU、30 動力出力装置、35 アクセルペダル、40 DG、50L,50R 前輪、60L,60R 後輪、70L,70R フロントシート、80 リアシート、90 充電インレット、92 充電器、100 ハイブリッド車両、105,106 SMR、107 動力分割装置、108 排気管、109 触媒装置、110 コンバータ、120 コンデンサ、131,132 インバータ、140 コンバータ/インバータ制御部、142 エンジン制御部、150 SOC算出部、152 走行モード制御部、154 Wout制御部、156 エンジン始動/停止判定部、158 指令生成部、160 充電制御部、162 レート処理部、164 一時拡大処理部、166 触媒暖機制御部、MG1,MG2 モータジェネレータ、ENG エンジン。

Claims (6)

  1.  ハイブリッド車両の制御装置であって、
     前記ハイブリッド車両(100)は、
     車両駆動力を発生する内燃機関(ENG)と、
     充放電可能な蓄電装置(10)と、
     前記蓄電装置から電力の供給を受けて車両駆動力を発生する電動機(MG2)と、
     前記内燃機関の排出ガスを触媒により浄化する触媒装置(109)とを含み、
     前記制御装置(15)は、
     前記内燃機関を停止して前記電動機のみを用いての走行を優先させる第1のモード(CDモード)と、前記内燃機関を動作させて前記蓄電装置の充電状態を示す状態量(SOC)を所定の目標に維持する第2のモード(CSモード)とを含む走行モードの切替を制御する走行モード制御部(152)と、
     前記走行モード、前記内燃機関の動作/停止および前記触媒装置の暖機中か否かに基づいて、前記蓄電装置が放電可能な電力を示す放電許容電力(Wout)を変更する放電許容電力制御部(154)とを備える、ハイブリッド車両の制御装置。
  2.  前記走行モードが前記第1のモードであり、かつ、前記内燃機関が停止しているとき、前記放電許容電力制御部は、前記走行モードが前記第1のモードであり、かつ、前記内燃機関が動作しているとき、または、前記走行モードが前記第2のモードのときよりも前記放電許容電力を拡大し、さらに、
     前記走行モードが前記第1のモードであり、かつ、前記内燃機関が動作しているとき、または、前記走行モードが前記第2のモードのときであっても、前記触媒装置の暖機中のときは、前記放電許容電力制御部は、前記走行モードが前記第1のモードであり、かつ、前記内燃機関が停止しているときと同様に前記放電許容電力を拡大する、請求の範囲1に記載のハイブリッド車両の制御装置。
  3.  前記走行モードが前記第1のモードであり、かつ、前記内燃機関が停止しているとき、前記放電許容電力制御部は、前記走行モードが前記第1のモードであり、かつ、前記内燃機関が動作しているとき、または、前記走行モードが前記第2のモードのときよりも前記放電許容電力を拡大し、
     前記走行モードが前記第1のモードのときに前記内燃機関の始動が要求されると、前記放電許容電力の拡大を維持しつつ前記触媒装置の暖機が開始され、
     前記触媒装置の暖機終了後、前記放電許容電力制御部は、前記放電許容電力を非拡大状態に復帰させる、請求の範囲1に記載のハイブリッド車両の制御装置。
  4.  前記走行モードが前記第1のモードであり、かつ、前記内燃機関が停止しているとき、前記放電許容電力制御部は、前記走行モードが前記第1のモードであり、かつ、前記内燃機関が動作しているとき、または、前記走行モードが前記第2のモードのときよりも前記放電許容電力を拡大し、
     前記第1のモードから前記第2のモードへの切替時、前記放電許容電力の拡大を維持しつつ前記触媒装置の暖機が開始され、
     前記触媒装置の暖機終了後、前記放電許容電力制御部は、前記放電許容電力を非拡大状態に復帰させる、請求の範囲1に記載のハイブリッド車両の制御装置。
  5.  前記ハイブリッド車両は、車両外部の電源から電力の供給を受けて前記蓄電装置を充電するように構成された充電装置(90,92)をさらに含み、
     前記走行モード制御部は、前記充電装置による前記蓄電装置の充電後、前記走行モードを前記第1のモードに設定する、請求の範囲2から4のいずれかに記載のハイブリッド車両の制御装置。
  6.  請求の範囲1から4のいずれかに記載の制御装置を備えるハイブリッド車両。
PCT/JP2010/056299 2010-04-07 2010-04-07 ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両 WO2011125186A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012509233A JP5344086B2 (ja) 2010-04-07 2010-04-07 ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
PCT/JP2010/056299 WO2011125186A1 (ja) 2010-04-07 2010-04-07 ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
CN201080066644.0A CN102883933B (zh) 2010-04-07 2010-04-07 混合动力车辆的控制装置及具有该控制装置的混合动力车辆
EP10849430.3A EP2557006B1 (en) 2010-04-07 2010-04-07 Control device for hybrid vehicle, and hybrid vehicle incorporating control device
US13/639,495 US8924060B2 (en) 2010-04-07 2010-04-07 Control device for hybrid vehicle, and hybrid vehicle incorporating control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/056299 WO2011125186A1 (ja) 2010-04-07 2010-04-07 ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両

Publications (1)

Publication Number Publication Date
WO2011125186A1 true WO2011125186A1 (ja) 2011-10-13

Family

ID=44762173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056299 WO2011125186A1 (ja) 2010-04-07 2010-04-07 ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両

Country Status (5)

Country Link
US (1) US8924060B2 (ja)
EP (1) EP2557006B1 (ja)
JP (1) JP5344086B2 (ja)
CN (1) CN102883933B (ja)
WO (1) WO2011125186A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157185A (ja) * 1992-09-25 1994-06-03 Furukawa Electric Co Ltd:The 化合物半導体単結晶の成長方法
JP2013180706A (ja) * 2012-03-02 2013-09-12 Mazda Motor Corp ハイブリッド自動車の制御方法及び制御装置
JP2016166002A (ja) * 2016-04-15 2016-09-15 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2433842B1 (en) * 2009-05-19 2014-10-01 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method of same
US9493150B2 (en) 2010-04-07 2016-11-15 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle, and hybrid vehicle incorporating control device
JP5400697B2 (ja) * 2010-04-28 2014-01-29 トヨタ自動車株式会社 ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
US8983699B2 (en) * 2011-02-01 2015-03-17 Toyota Jidosha Kabushiki Kaisha Vehicle, method and device for controlling vehicle
US20140002256A1 (en) * 2011-03-24 2014-01-02 Toyota Jidosha Kabushki Kaisha Vehicle and control method for vehicle
CN105189181B (zh) * 2013-05-08 2018-03-23 沃尔沃卡车集团 车辆推进系统及加热车辆排气后处理系统的至少一个组件和/或燃烧发动机的方法
JP5920306B2 (ja) * 2013-10-02 2016-05-18 トヨタ自動車株式会社 ハイブリッド車両およびハイブリッド車両の制御方法
US9079581B1 (en) 2014-01-16 2015-07-14 Ford Global Technologies, Llc Hybrid vehicle and method of operation
JP6149806B2 (ja) * 2014-06-10 2017-06-21 トヨタ自動車株式会社 ハイブリッド車両
JP6363493B2 (ja) * 2014-12-19 2018-07-25 トヨタ自動車株式会社 ハイブリッド車両
JP6515875B2 (ja) * 2016-06-10 2019-05-22 株式会社デンソー 車載電源システム
JP2018114874A (ja) * 2017-01-19 2018-07-26 トヨタ自動車株式会社 ハイブリッド自動車
US11608028B1 (en) * 2021-09-03 2023-03-21 Rivian Ip Holdings, Llc Systems and methods for multi-zoned vehicle wake up
US11745700B2 (en) 2021-09-03 2023-09-05 Rivian Ip Holdings, Llc System and method for efficient management of vehicle power modes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285116A (ja) * 2007-05-21 2008-11-27 Toyota Motor Corp 車両の制御装置
JP2009166513A (ja) * 2008-01-10 2009-07-30 Toyota Motor Corp 電源装置およびその放電制御方法
JP2010070030A (ja) * 2008-09-18 2010-04-02 Toyota Motor Corp 車両の制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5968456A (en) * 1997-05-09 1999-10-19 Parise; Ronald J. Thermoelectric catalytic power generator with preheat
US20020179354A1 (en) * 2000-05-02 2002-12-05 Sail D. White Enterprises, Inc. Extended range electric vehicle
CN100519258C (zh) * 2004-08-25 2009-07-29 丰田自动车株式会社 电动车辆及其控制方法
JP2008163867A (ja) 2006-12-28 2008-07-17 Toyota Motor Corp 車両の制御装置
JP4229185B2 (ja) * 2007-01-12 2009-02-25 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
JP4274257B2 (ja) * 2007-02-20 2009-06-03 トヨタ自動車株式会社 ハイブリッド車両
JP4341704B2 (ja) * 2007-07-12 2009-10-07 トヨタ自動車株式会社 ハイブリッド車両およびハイブリッド車両の制御方法
JP4479782B2 (ja) * 2007-11-26 2010-06-09 トヨタ自動車株式会社 車両用制御装置
JP5198147B2 (ja) * 2008-05-26 2013-05-15 トヨタ自動車株式会社 車両およびその制御方法並びに駆動装置
JP5187005B2 (ja) * 2008-06-04 2013-04-24 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
JP4525809B2 (ja) * 2008-07-28 2010-08-18 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、ならびに電源システムの制御方法
JP5131108B2 (ja) * 2008-09-16 2013-01-30 トヨタ自動車株式会社 ハイブリッド車両の制御装置
WO2010109956A1 (ja) * 2009-03-27 2010-09-30 株式会社日立製作所 蓄電装置
EP2557007B1 (en) * 2010-04-07 2019-10-02 Toyota Jidosha Kabushiki Kaisha Control device for hybrid vehicle and hybrid vehicle incorporating control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285116A (ja) * 2007-05-21 2008-11-27 Toyota Motor Corp 車両の制御装置
JP2009166513A (ja) * 2008-01-10 2009-07-30 Toyota Motor Corp 電源装置およびその放電制御方法
JP2010070030A (ja) * 2008-09-18 2010-04-02 Toyota Motor Corp 車両の制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06157185A (ja) * 1992-09-25 1994-06-03 Furukawa Electric Co Ltd:The 化合物半導体単結晶の成長方法
JP2013180706A (ja) * 2012-03-02 2013-09-12 Mazda Motor Corp ハイブリッド自動車の制御方法及び制御装置
JP2016166002A (ja) * 2016-04-15 2016-09-15 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
US20130024063A1 (en) 2013-01-24
CN102883933B (zh) 2016-03-09
EP2557006A4 (en) 2018-05-02
JP5344086B2 (ja) 2013-11-20
JPWO2011125186A1 (ja) 2013-07-08
US8924060B2 (en) 2014-12-30
EP2557006A1 (en) 2013-02-13
EP2557006B1 (en) 2021-04-07
CN102883933A (zh) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5344086B2 (ja) ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
JP5429366B2 (ja) ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
JP5400697B2 (ja) ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
JP5316703B2 (ja) ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
JP5848283B2 (ja) ハイブリッド車両の制御装置およびそれを備えるハイブリッド車両
JP5370584B2 (ja) ハイブリッド車両
JP5585666B2 (ja) ハイブリッド車両およびその制御方法
JP5725037B2 (ja) 車両および車両用制御方法
EP2983954B1 (en) Hybrid vehicle and control method therefor
JP5598555B2 (ja) 車両および車両用制御方法
JP5729475B2 (ja) 車両および車両の制御方法
JP6179504B2 (ja) ハイブリッド車両
JP5682686B2 (ja) ハイブリッド車両の制御装置
JP6213498B2 (ja) ハイブリッド車両
JP5729461B2 (ja) ハイブリッド車両の制御装置
JP2015013517A (ja) 車両の制御装置
JP5728447B2 (ja) 車両の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080066644.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849430

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012509233

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13639495

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010849430

Country of ref document: EP