WO2011123998A1 - 用于生产多晶硅的反应器及系统 - Google Patents

用于生产多晶硅的反应器及系统 Download PDF

Info

Publication number
WO2011123998A1
WO2011123998A1 PCT/CN2010/000540 CN2010000540W WO2011123998A1 WO 2011123998 A1 WO2011123998 A1 WO 2011123998A1 CN 2010000540 W CN2010000540 W CN 2010000540W WO 2011123998 A1 WO2011123998 A1 WO 2011123998A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
chassis
silicon core
reactor according
center
Prior art date
Application number
PCT/CN2010/000540
Other languages
English (en)
French (fr)
Inventor
陈涵斌
陈其国
钟真武
Original Assignee
江苏中能硅业科技发展有限公司
陈文龙
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44294659&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011123998(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 江苏中能硅业科技发展有限公司, 陈文龙 filed Critical 江苏中能硅业科技发展有限公司
Publication of WO2011123998A1 publication Critical patent/WO2011123998A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process

Definitions

  • This invention relates to systems for producing polycrystalline silicon, and more particularly to reactors for producing rod-shaped polycrystalline silicon and systems incorporating the same. Background technique
  • polysilicon production mainly adopts the modified Siemens process.
  • the principle of the Siemens process is to reduce high-purity trichlorosilane (SiHCD) with high-purity hydrogen (H2) on a high-purity silicon core of about 110 CTC to form polysilicon deposited on the silicon core.
  • the improved Siemens process is based on the Siemens process, adding a dry exhaust gas recovery system, silicon tetrachloride (SiC14) hydrogen technology to achieve closed loop, and reducing the energy consumption per unit by using a large reduction furnace.
  • the modified Siemens process mainly uses a bell-type reactor (also called a reduction furnace) and a silicon core connected to the electrode as a deposition substrate, and uses a high-temperature reduction process to reduce and deposit high-purity SiHC13 in a H2 atmosphere to form polycrystalline silicon.
  • the above chemical vapor deposition process is carried out in a bell-type reactor, the reaction vessel is sealed, a discharge port and a feed port and a plurality of pairs of electrodes are mounted on the chassis, and the electrodes are connected with a diameter of 5-10 mm and a length.
  • a silicon core of 1500-3000 mm, two silicon cores on each pair of electrodes are connected to each other at the other end by a short silicon rod to form a paired silicon core.
  • both the silicon core and the silicon rod are broken down to conduct electricity and heated to 1000-115 CTC, and the SiHC 13 reacts on the surface of the silicon core, which contains The silicon is reduced by hydrogen and deposited on the surface of the silicon core, so that the diameter of the silicon core is gradually increased, and finally reaches about 120-200 mm.
  • high purity silicon rods with a diameter of 120-200 mm are produced with a reaction time of approximately 150-300 hours.
  • Chinese Patent No. ZL200820006917.2 discloses a reduction furnace in which 13 pairs of electrodes (corresponding to 13 pairs of electrodes) are uniformly arranged on two sides of the reduction furnace, and 8 pairs of electrodes are arranged on the outer circumference, and the inner circumference is arranged. Five pairs of electrodes are arranged, and the inlet nozzles are evenly distributed on the chassis. This layout improves the utilization of the space in the reduction furnace and makes the power consumption of the inner and outer rings close. Compared with the conventional 12 pairs of electrodes, the production of polysilicon per furnace is improved, and accordingly, the production cost and energy consumption are reduced. .
  • Chinese Patent No. ZL200820006916.8 also discloses such a reduction furnace in which 18 pairs of electrodes are uniformly arranged in three circles on the chassis of the reduction furnace (corresponding to 18 pairs of silicon cores, 9 pairs of electrodes are arranged in the outermost week, 3 pairs of electrodes are arranged in the innermost week, and 6 pairs of electrodes are arranged in the middle one week, and the inlet nozzles are all distributed on the chassis.
  • This layout can further increase the output of the reduction furnace, thereby reducing the production cost and energy consumption of the polysilicon.
  • the Chinese patent No. ZL200820105591.9 further improved the layout of the upper electrode pairs on the above chassis.
  • the reduction furnace disclosed in this patent still arranges the electrode pairs in three circumferential directions, but the number of electrode pairs on each circumference is increased, so that the total number of electrode pairs reaches 24 pairs.
  • Such an electrode pair layout results in a substantial increase in the production of polysilicon per furnace, which in turn results in a significant reduction in production costs and energy consumption.
  • this circular layout still has drawbacks.
  • One drawback is that when the silicon core is in the circular 4# column, the distance between adjacent silicon cores is different, and the geometrical configuration of the space is also different, which is not conducive to the uniform distribution of the gas flow field and the temperature field in the reduction furnace, the gas flow. Uneven field and temperature fields can cause significant particles on the surface of the resulting polycrystalline silicon rod, resulting in a drop in quality.
  • the present invention provides a reactor for producing polycrystalline silicon, particularly rod-shaped polycrystalline silicon.
  • the reactor adopts the following technical solution: It comprises a chassis and a cylinder covered on the chassis, the chassis is densely provided with a plurality of pairs of silicon core seats, at least one air inlet and at least one air outlet, the center of the silicon core, The center of the air inlet and the center of the exhaust port together form a center of lattice on the chassis, and at least a part of the center point of the center lattice is equal to the distance between adjacent center points.
  • any three adjacent center points of at least a portion of the center points form an equilateral triangle.
  • any adjacent three center points located in the middle of the chassis constitute an equilateral triangle; a center point outside the chassis is arranged on at least one circumference along the circumference of the chassis.
  • any adjacent three center points located outside the chassis constitute an equilateral triangle; a center point located in the middle of the chassis is disposed on at least one circumference along the circumference of the chassis.
  • center point of the silicon core seat disposed on the circumference is an even number.
  • the distance between all the center points and the adjacent center points is equal, and any three adjacent center points constitute an equilateral triangle.
  • the regular triangle is the most dense dot matrix arrangement.
  • the dot pitch is constant, the number of raw material gas inlets and exhaust gas outlets is constant, the maximum number of silicon cores can be set, from another In terms of the number of silicon cores and the number of gas inlets and outlets, and the point spacing is constant, the required chassis area is the smallest.
  • the distance between any two adjacent center points is, for example, 150 mm to 300 mm, preferably 210 mm to 250 mm.
  • the cylinder includes a head and a barrel, and the height of the barrel is, for example, 1.8 m to 3 m, preferably 2.1 m to 2.8 m. At least one viewing window is provided on the cylinder.
  • the cylinder is made of a metal material and is provided with a cooling jacket for the cooling medium to flow therethrough. Cooling shield Example: ⁇ is water or heat transfer oil.
  • the distance between the center of the silicon core seat adjacent to the inner wall of the barrel and the inner wall is equal, for example, 150 mm to 300 mm, preferably 180 mm to 230 mm.
  • the chassis is made of a metal material, and the chassis is provided with a cooling jacket for the cooling medium to flow therethrough.
  • the cooling medium is, for example, water or a heat transfer oil.
  • the silicon core seat is made of a graphite material.
  • Each of the silicon core holders can receive a rod-shaped silicon core, and the silicon core is vertically inserted into the silicon core seat via the lower end thereof, and the upper end of the silicon core and the upper end of the adjacent other silicon core are coupled into the paired silicon core via the connecting member.
  • the connector is a horizontally placed silicon rod with a silicon rod shorter than the silicon core.
  • the resistivity of the silicon core is the same as the resistivity of the polysilicon to be produced, and the silicon rod and the silicon core are made of the same material.
  • the silicon core and the silicon rod can be produced by a Czochralski method, a zone melting method or a cutting method, and the silicon core and the silicon rod can be any shape suitable.
  • the diameter or equivalent diameter of the silicon core is, for example, 6 mm to 20 mm, and the height is, for example, 1.8 m to 3 m. More preferably, the diameter or equivalent diameter of the silicon core is 8 mm to 10 mm, and the height is 2 m to 2.8 m.
  • the number of silicon core seats is a multiple of 6, for example 12 pairs, 24 pairs, 36 pairs, 48 pairs
  • the present invention also discloses a system for producing polycrystalline silicon comprising the reactor disclosed herein.
  • the present invention has the following advantages over existing reduction furnaces:
  • a denser silicon core arrangement is realized, the heat energy utilization rate in the reduction furnace is improved, the ineffective space in the reduction furnace is reduced, the heat loss is reduced, the unit energy consumption is reduced, the side reaction is suppressed, and the single pass is improved. rate.
  • Figure 1 is a schematic vertical sectional view showing a preferred embodiment of a reactor for producing polycrystalline silicon according to the present invention.
  • FIG. 2 is a schematic diagram of the center dot matrix arrangement of the embodiment shown in FIG. 1.
  • FIG. 2 is a schematic diagram of the center dot matrix arrangement of the embodiment shown in FIG. 1.
  • Figure 3 is a schematic illustration of a central lattice arrangement of another preferred embodiment of a reactor for producing polycrystalline silicon of the present invention. detailed description
  • Figure 1 shows a preferred embodiment of a reactor for producing polycrystalline silicon of the present invention.
  • the reactor 1 mainly comprises a bell jar type cylinder 11, a chassis 12, a silicon core holder 13, a silicon core 14 and a beam silicon rod 17, a material inlet port 15, and an exhaust gas exhaust port 16.
  • the bell jars 11 are fixed to the chassis 12 and form a seal with each other.
  • the silicon core holder 13, the silicon core 14 and the beam silicon rod 17, the material inlet port 15, and the exhaust gas exhaust port 16 are both located in a closed space surrounded by the barrel 11 and the chassis 12.
  • the center lattice of the geometric center of the silicon core holder 13, the material inlet 15 and the exhaust port 16 are all arranged in an equilateral triangle, and the distance between adjacent points of all the center points is equal.
  • the distance between two adjacent points is 220mm.
  • the distance may be any other suitable distance in other embodiments.
  • the center point of the silicon core seat near the inner wall of the cylinder 11 is kept at a distance from the inner wall of the cylinder.
  • the distance between the center point of the silicon core seat adjacent to the inner wall of the cylinder and the inner wall of the cylinder may also be different according to the arrangement requirements.
  • the distance between the center point of the silicon core seat adjacent to the inner wall of the cylinder and the inner wall of the cylinder is 190 mm.
  • the distance may be any other suitable distance in other embodiments.
  • the feed air inlet 15 is evenly disposed on the chassis 12 and communicates with the feed air intake duct 20 outside the reactor 1.
  • the feed air intake direction is vertically upward.
  • a nozzle of any structure may be added to the inlet of the raw material to increase the flow rate of the feed gas and adjust the injection angle of the feed gas, thereby improving the flow field of the raw material in the reduction furnace.
  • the chassis 12 is provided with an exhaust vent 16 which is located at the center of the chassis.
  • the exhaust gas exhaust port 16 is connected to the exhaust gas pipe 21.
  • the exhaust pipe is sleeve-shaped so that the intake pipe can be nested inside the exhaust pipe to connect to the intake port.
  • the exhaust gas exhaust ports may also be plural, for example, three, which may be evenly arranged between the silicon core seats.
  • the bell jar type 11 is of a metal structure, for example, made of a stainless steel material.
  • the barrel is composed of a lower barrel 111 and a top head 112, and the barrel 111 has a height of 2.5 m. Alternatively, it may be any other suitable height in other embodiments.
  • the barrel 111 is provided with three viewing ports (not shown) which are respectively disposed at different heights of the barrel and which are formed 120 with each other. angle.
  • a cooling jacket is also provided in the barrel 11 from which the cooling medium can flow to cool the barrel.
  • the cooling medium is water and the temperature is 50 to 150. (: In other embodiments, the cooling medium may also be a heat transfer oil.
  • the chassis 12 is also of a metal construction, such as a stainless steel material.
  • the chassis is also provided with a cooling jacket through which the cooling medium flows to cool the chassis.
  • the cooling medium is water at a temperature of 30 to 100. C.
  • the cooling medium may also be a heat transfer oil.
  • silicon core holders 13 are arranged on the chassis 12.
  • the silicon core holder 13 is fixed to the chassis and made of a graphite material.
  • the silicon core holder can be made of other suitable materials.
  • each of the silicon cores 14 is vertically inserted into the corresponding silicon core holder 13, and the upper end of the silicon core is connected to the upper end of one of the adjacent silicon cores by the horizontally disposed silicon rods 17, thereby forming a paired silicon core
  • One of the pair of silicon cores with the mating silicon core is internally provided with a positive electrode and the other is internally A negative electrode is provided to apply a voltage to the paired silicon core. All electrodes are connected to a power supply system (not shown).
  • the silicon core seat is circular, and the upper surface has a diameter of 120 mm to 200 mm, preferably 140 mm to 180 mm.
  • the upper surface of the silicon core seat is provided with a graphite fixing member for fixing the silicon core and connecting the bottom of the silicon core to the electrode.
  • the silicon core 14 and the beam silicon rod 17 are produced by using polysilicon having the same resistivity as the target polysilicon, and can be prepared by cutting, straight pulling or zone melting.
  • the silicon core and the beam silicon rod can be in any form, for example, a thin cylindrical shape. , a silicon tube, a silicon ribbon, an S-shape, an X-shape, a +-shape, etc., preferably a thin cylindrical shape, having a diameter of 6 mm to 20 mm, preferably 8 nm! ⁇ 12mm, height 1.8m ⁇ 3m, preferably 2m ⁇ 2.8m.
  • a total of 120 silicon core holders of 60 pairs of rod-shaped silicon cores, together with 30 raw material inlets, are placed on the chassis to achieve an optimized raw material flow field and furnace temperature field.
  • the pair of silicon core holders may be a multiple of 6, for example 12 pairs, 24 pairs, 36 pairs or 48 pairs. Accordingly, the number of intake ports can be increased or decreased according to actual needs, and kept evenly arranged on the chassis.
  • Figure 3 is another preferred embodiment of the present invention.
  • the distance between the silicon core 14 in the middle of the chassis and the adjacent silicon core or feed inlet or exhaust vent remains the same, similar to the previous embodiment.
  • the outermost silicon cores 14' of the chassis are not arranged in an equilateral triangle, but are arranged on the same circumference, for example, on the circumference centered on the center of the chassis, and a total of 12 pairs of silicon cores are disposed.
  • other logarithmic silicon cores on the circumference may also be arranged.
  • the silicon core holders at the periphery of the center lattice may be arranged on two circumferences or even more circumferences as needed.
  • the center point of the center of the center lattice may be arranged on one or more circumferences, for example on the circumference centered on the center of the chassis.
  • the center points around the center of the lattice are arranged in a regular triangle, depending on the actual needs.
  • a feed air inlet 15 is provided inside the exhaust vent 16 to provide a more uniform flow field within the reactor.
  • FIG. 3 Other aspects of the embodiment shown in Fig. 3 may be similar to the embodiment shown in Fig. 1, except for the foregoing differences.
  • monosilane can be used as a raw material; halo-silicon germanium can also be used as a raw material and hydrogen is added, and the volume ratio of halogenated monosilane to hydrogen is 3: 1 ⁇ 9: 1.
  • the silicon conversion rate of the silicon compound is calculated according to the following formula:
  • ⁇ - silicon single-pass yield m - total mass of a single furnace polycrystalline silicon rod; M - silicon elemental molar mass; V - a silicon-containing raw material gas volume flow; t - one silicon containing raw material gas access time.
  • the single pass yield of silicon is affected by the reaction time, the total mass of the single furnace polycrystalline silicon rod, and the volume flow rate of the silicon-containing raw material gas.
  • the height of the silicon core is 2m.
  • the average flow rate of trichlorosilane is about 450 m 3 /h, and the average flow rate of hydrogen is about 1700 m 3 /h.
  • the trichlorosilane feed time is about 100 hours, and about 7500 kg of polycrystalline silicon rods are produced.
  • the reduction furnace consumes about 5 x 105 kWh, the average power consumption of polysilicon is about 67 kWh/kg, and the silicon element in the trichlorosilane is one way.
  • the yield is about 13.3%, and the rod-shaped polycrystalline silicon has a smooth surface and a dense texture.
  • a mixed chlorosilane having a chlorosilane content of 6% and a trichlorosilane content of 94% is used as a raw material gas.
  • the height of the silicon core is 2m.
  • the average flow rate of mixed chlorosilane is about 360m 3 /h, and the average flow rate of hydrogen is about 1400 m 3 /h.
  • the mixing time of chlorosilane is about 80 hours, and about 6500kg of polycrystalline silicon rod is produced.
  • the reduction furnace consumes about 3 x 105kWh, the average power consumption of polysilicon is about 46kWh/kg, and the silicon element in trichlorosilane is single-pass. The rate is about 18%, and the product bar-like polycrystalline silicon has a smooth surface and a dense texture.
  • the furnace is at atmospheric pressure.
  • the height of the core is 2m.
  • the average flow of monosilane is about 120 m 3 /h.
  • the trichlorosilane feed time is about 80 hours, and about 7500 kg of polycrystalline silicon rod is produced.
  • the reduction furnace consumes about 2.5 x 105 kWh, the average power consumption of polysilicon is about 33 kWh/kg, and the silicon element in the trichlorosilane is one-way.
  • the yield is about 60%, and the product rod-shaped polycrystalline silicon has a smooth surface and a dense texture.
  • the rod-shaped polycrystalline silicon produced by the reactor of the present invention has a smooth surface and a dense texture as a whole.
  • the reaction time is significantly shortened compared to the conventional 150 to 300 hours, so the reactor of the present invention can not only improve the single-pass yield of the raw material gas, reduce the unit power consumption, but also significantly increase the amount of polysilicon shield of the product and improve the surface of the polycrystalline silicon rod. Morphology.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Description

用于生产多晶硅的反应器及系统 技术领域
本发明涉及生产多晶硅的系统,尤其涉及生产棒状多晶硅的反应器及 包含该反应器的系统。 背景技术
目前, 多晶硅生产主要采用改良西门子工艺法。 所说西门子工艺的原 理就是在 110CTC左右的高纯硅芯上用高纯氢 (H2 )还原高纯三氯氢硅 ( SiHCD ), 生成多晶硅沉积在硅芯上。 改良西门子工艺则是在西门子工 艺的基础上, 增加了还原尾气干法回收系统、 四氯化硅(SiC14 ) 氢化工 艺, 实现闭路循环, 通过采用大型还原炉, 降低了单位产品的能耗。
改良西门子工艺主要采用钟罩型反应器(也称为还原炉)和与电极相 连的硅芯作为沉积基底, 采用高温还原工艺, 以高纯的 SiHC13在 H2气 氛中还原沉积而生成多晶硅。上述化学气相沉积过程是在钟罩型的反应器 中进行的, 该反应容器是密封的,底盘上安装有出料口和进料口以及若干 对电极, 电极上连接着直径 5-10mm、 长度 1500-3000mm的硅芯, 每对电 极上的两根硅芯又在另一端通过一较短的硅棒相互连接形成配对硅芯。当 向与该配对硅芯电连通的电极施加 6〜12kV左右的高压时, 硅芯和硅棒都 被击穿导电并被加热至 1000-115CTC , SiHC13在硅芯的表面发生反应, 其 所含的硅经氢还原, 沉积在硅芯的表面上, 使硅芯的直径逐渐增大, 最终 达到 120-200mm左右。通常情况下,生产直径为 120-200mm的高纯硅棒, 所需的反应时间大约为 150-300小时。
由于炉筒和底盘一般为圓形, 因此在传统的还原炉中, 一般将硅芯按 圆形进行排列, 底盘上设有原料气进出口。 专利号为 ZL200820006917.2 的中国专利就公开了这样的还原炉, 其中, 在该还原炉的底盘上分两个圆 周均匀布置 13对电极(对应 13对电极), 外周布置 8对电极, 内周布置 5对电极, 而进气喷口均匀分布在底盘上。 这种布局提高了还原炉内空间 的利用率, 并使内外圈耗电功率接近, 与传统的 12对电极相比, 每炉的 多晶硅生产量得到提高, 相应地, 生产成本及耗能被降低。
类似地, 专利号为 ZL200820006916.8的中国专利也公开了这样的还 原炉, 其中, 在该还原炉的底盘上分三个圆周均匀布置 18对电极(对应 18对硅芯), 最外一周布置 9对电极, 最内一周布置 3对电极, 中间一周 布置 6对电极, 进气喷口则均勾地分布在底盘上。这种布局能够进一步提 高还原炉的产量, 进而降低多晶硅的生产成本和能耗。
出于持续不断的节能降耗需求, 专利号为 ZL200820105591.9的中国 专利对上述底盘上电极对的布局作了进一步的改进。该专利所公开的还原 炉仍分三个圆周布置电极对,但是每个圆周上的电极对数量都增加了,使 电极对的总量达到了 24对。 这样的电极对布局使得每炉的多晶硅产量得 到大幅度的提升, 随之而来的是生产成本和能耗的大幅度降低。
尽管上述的电极对圆形布局有助于多晶硅产量的提高以及生产成本 和能耗的降低,但是这种圆形布局方式仍存在缺陷。一种缺陷就是硅芯按 圆形 4#列时,相邻硅芯之间的距离不同,在空间构成的几何形态也有差别, 不利于还原炉内气体流场以及温度场的均匀分布,气体流场以及温度场不 均匀会导致生成的多晶硅棒表面出现明显的颗粒,造成质量的下降。 另一 种缺陷是圆形排列的硅芯对还原炉空间的利用率并不是最高的,而反应空 间利用率将会直接影响多晶硅沉积速率、原料的一次转化率以及反应器内 热效率, 即直接影响多晶硅生产成本。
因此, 仍然存在对硅芯布局方式进行改进的需求, 以改进还原炉内气 体流场的分布和提高还原炉空间的利用率,从而提高多晶硅产量, 降 ^多 晶硅的生产成本和能耗。 发明内容
为了克服上述缺陷, 本发明提供一种用于生产多晶硅的反应器, 尤其 是棒状多晶硅。该反应器采用如下的技术方案: 其包括底盘和罩在底盘上 的筒体, 底盘上密集地设有多对硅芯座、至少一个进气口和至少一个排气 口, 硅芯座中心、 进气口中心和排气口中心一起在底盘上构成申心点阵, 中心点阵的至少一部分中心点与相邻中心点之间的距离都相等。
.采用硅芯、原料气进口和尾气出口密集排布的方式可以提高反应器内 沉积表面积, 减少反应器无效空间, 提高能量密度及利用率, 降低平均热 损失, 从而直接降低棒状多晶硅生产成本。 同时, 中心点阵的至少一部分 中心点与相邻中心点之间的距离保持相等可以使原料进气更加均衡,得到 更加优化的原料气流场,从而改善棒状多晶硅表面形貌, 提升多晶硅产品 质量。 作为本发明的一个优选实施例,至少部分中心点中的任意相邻的三个 中心点构成正三角形。
进一步地,位于底盘中部的任意相邻的三个中心点构成正三角形;位 于底盘外部的中心点沿底盘的圆周向布置在至少一个圆周上。
或者,位于所述底盘外部的任意相邻的三个中心点构成正三角形;位 于所述底盘中部的中心点沿所述底盘的圆周向布置在至少一个圆周上。
进一步地, 布置在圆周上的硅芯座中心点为偶数。
作为本发明的另一个优选实施例,所有中心点与相邻中心点之间的距 离均相等, 并且任意相邻的三个中心点构成正三角形。
正三角形是最为密集的点阵排布方式, 此种排列中,在相同面积的底 盘上, 当点距一定, 原料气进口与尾气出口数量一定时, 能够设置最多数 量的硅芯, 从另一方面看, 当硅芯数量和气体进出口数量一定, 并且点距 一定时, 所需的底盘面积最小。
进一步地, 任意两个相邻中心点之间的距离例如为 150mm〜300mm, 优选为 210mm~250mm。
作为本发明的又一个优选实施例, 筒体包括封头和筒身, 筒身高度例 如为 1.8m〜3m, 优选则为 2.1m〜2.8m。 筒体上设有至少一个观察窗。 筒体 由金属材料制成, 并且设有冷却夹套以供冷却介质从其中流过。冷却介盾 例:^为水或导热油。
进一步地,与筒身的内壁相邻的硅芯座中心与该内壁之间的距离都相 等, 例如为 150mm~300mm, 优选为 180mm〜230mm。
作为本发明的又一个优选实施例,底盘由金属材料制成, 并且底盘设 有冷却夹套以供冷却介质从其中流过。 冷却介质例如为水或导热油。
进一步地,硅芯座由石墨材料制成。每个硅芯座可接纳一根棒状硅芯, 硅芯经其下端竖向插入硅芯座,硅芯的上端则与相邻的另一根硅芯的上端 经由连接件联接成配对硅芯, 以允许施加电流通过该配对硅芯。连接件为 水平放置的硅棒, 硅棒短于硅芯。 在该实施例中, 硅芯的电阻率与待生产 的多晶硅的电阻率相同, 并且硅棒和硅芯由相同材料制成。硅芯和硅棒可 以通过直拉法、区熔法或切割法生产,硅芯和硅棒可以是适合的任意形状。 硅芯的直径或当量直径例如为 6mm〜20mm, 高度例如为 1.8m~3m, 更优 选地, 硅芯的直径或当量直径为 8mm〜10mm, 高度为 2m〜2.8m。
优选地, 硅芯座数量为 6的倍数, 例如 12对、 24对、 36对、 48对 本发明还公开了一种用于生产多晶硅的系统,该系统包含本发明所公 开的反应器。
总地讲, 与现有还原炉相比, 本发明具有以下优点:
1 ) 实现了更密集的硅芯排布, 提高了还原炉内热能利用率, 缩减了 还原炉内无效空间, 减少了热损失, 降低了单位能耗, 并抑制了副反应, 提高了单程收率。
2 ) 实现了更均匀的流场分布, 改善了原料在硅芯表面的分配, 优化 了棒状多晶硅产品表面形貌, 提升了多晶硅沉积速率, 缩短了沉积时间, 提升了产能。 附图说明
以下通过具体的实施例并结合附图对本发明中的装置进行详细说明, 但这些实施例仅仅是例示的目的, 并不旨在对本发明的范围进行任何限 定。
图 1 为根据本发明的用于生产多晶硅的反应器的一个优选实施例的 立式截面示意图。
图 2为图 1所示实施例的中心点阵排布示意图。
图 3 为本发明的用于生产多晶硅的反应器的另一个优选实施例的中 心点阵排布示意图。 具体实施方式
图 1 为本发明的用于生产多晶硅的反应器一个优选实施例。 如图 1 所示, 反应器 1主要包括钟罩式筒体 11、 底盘 12、 硅芯座 13、 硅芯 14 和横梁硅棒 17、 原料进气口 15、 以及尾气排气口 16。 钟罩式筒体 11 固 定在底盘 12上, 并且相互之间形成密封。 硅芯座 13、 硅芯 14和横梁硅 棒 17、原料进气口 15、 以及尾气排气口 16均位于筒体 11与底盘 12所围 成的密闭空间内。
硅芯座 13、 原料进气口 15和尾气排气口 16的几何中心构成的中心 点阵全部按正三角形排列, 所有中心点的相邻两点距离均相等。相邻两点 间的距离为 220mm。 可选地, 该距离在其它实施例中也可为其它任何适 合的距离。 靠近筒体 11的内壁的硅芯座中心点保持距离筒体内壁的距离一致。 可选地,在其它实施例中, 邻近筒体内壁的硅芯座中心点与筒体内壁之间 的距离根据布置需要也可以是不相同的。在本实施例中, 邻近筒体内壁的 硅芯座中心点与筒体内壁之间的距离为 190mm。 可选地, 该距离在其它 实施例中也可为其它任何适合的距离。
原料进气口 15均匀地布置在底盘 12上并与反应器 1外部的原料进气 管道 20相连通。 原料进气方向竖直向上。 原料进气口上可加装任意结构 的喷嘴, 以提高原料气进气流速以及调整原料气喷射角度,从而改善还原 炉内原料气流场。
底盘 12上设有一个尾气排气口 16, 其位于底盘的中心。 尾气排气口 16与尾气管道 21相连。 该尾气管道采用套管式设计, 这样进气管道就可 以嵌套在尾气管道内部, 从而与进气口相连。 可选地, 在其它实施例中, 尾气排气口也可以为多个, 例如 3个, 可以均匀地布置在硅芯座之间。
钟罩式筒体 11为金属结构, 例如由不锈钢材料制成。 筒体由下部的 筒身 111和顶部的封头 112两部分组成,筒身 111的高度为 2.5m。可选地, 在其它实施例中也可以为任何其它适合的高度。筒身 111上设有三个观察 口 (未示出), 分别设置在筒身的不同高度上, 并且相互形成 120。角。 筒 体 11 中还设有冷却夹套, 冷却介质可以从该冷却夹套中流过以冷却该筒 体。 在本实施例中, 冷却介质为水, 温度为 50〜: 150。 (:。 在其它实施例中, 冷却介质也可以是导热油。 ,
底盘 12也为金属结构, 例如由不锈钢材料制成。 底盘也设有供冷却 介质从其中流过的冷却夹套, 以便冷却底盘。 同样地, 冷却介质为水, 温 度为 30〜100。C。 可选地, 在其它实施例中, 冷却介质也可以是导热油。
如图 2所示, 底盘 12上布置有 60对硅芯 14、 30个原料进气口 15 和一个尾气排气口 16。
对应的, 底盘 12上布置有 120个硅芯座 13。 硅芯座 13 固定在底盘 上, 并且由石墨材料制成。 可选地, 在其它实施例中, 硅芯座也可由其它 适合材料制成。
每个硅芯 14的下端竖向地插在对应的硅芯座 13中,并且该硅芯的上 端通过横放的硅棒 17与相邻硅芯中的一个的上端连接, 从而形成配对硅 心
装有配对硅芯的成对硅芯座中的一个内部设有正电极,另一个内部则 设有负电极, 以便向配对的硅芯施加电压。 所有电极都与供电系统(未示 出)相连。
硅芯座为圆形, 上表面直径为 120mm〜200mm , 优选地为 140mm〜l 80mm, 硅芯座上表面设有石墨固定件用于固定硅芯并使硅芯底 部与电极相连。
硅芯 14及横梁硅棒 17采用与目标多晶硅具有相同电阻率的多晶硅进 行生产, 可采用切割、 直拉或区熔等方式进行制备, 硅芯及横梁硅棒可采 用任意形式, 例如细圆柱形、 硅管、 硅带、 S形、 X形、 +形等, 优选地 为细圓柱形,直径为 6mm〜20mm,优选地为 8mn!〜 12mm,高度为 1.8m~3m, 优选地为 2m〜2.8m。
60对棒状硅芯共 120个硅芯座, 连同 30个原料进气口均勾 4 布在底 盘上, 实现最优化的原料流场和炉内温度场。
可选地, 成对的硅芯座可以是 6的倍数, 例如是 12对、 24对、 36对 或 48对。 相应地, 进气口的数量根据实际需要可以增加或减少, 并保持 均匀地布置在底盘上。
图 3为本发明的另一个优选实施例。在该实施例中,位于底盘中部的 硅芯 14与相邻的硅芯或原料进气口或尾气排气口的距离都保持相同, 类 似前述的实施例。 然而, 底盘最外侧的硅芯 14'没有按照正三角形进行排 列, 而是布置在同一个圆周上, 例如以底盘中心为圆心的圆周上, 一共布 置了 12对硅芯。 可选地, 在该圆周上其它对数的硅芯也可以布置。
可选地,才艮据需要, 中心点阵外围的硅芯座也可以布置在两个圆周或 甚至更多的圆周上。
或者可选地, 中心点阵中部的中心点可以布置在一个或更多圆周上, 例如以底盘中心为圆心的圆周上。中心点阵外围的中心点则按正三角形进 行排列, 这取决于实际的需要。
在图 3所示的实施例中,尾气排气口 16内部增设一个原料进气口 15, 以使反应器内的流场更加均匀。
除了前述的不同之处,图 3所示实施例的其它方面可以与图 1所示实 施例 目同。
下面通过实验数据来反映本发明的反应器的有益效果。
首先需说明的是, 在改良西门子工艺中, 可采用甲硅烷作为原料; 也 可采用卤代甲硅垸作为原料并附加氢气,卤代甲硅烷与氢气的体积比为 3: 1〜9: 1。
其中, 硅化合物的硅转化率按照以下公式计算:
ri =(22.4m/MVt)xl00%
其中: η——硅元素单程收率; m—一单炉多晶硅棒总质量; M——硅元 素摩尔质量; V—一含硅原料气体体积流量; t一一含硅原料气通入时间。 根据该计算公式可知,硅元素单程收率受到反应时间、单炉多晶硅棒总质 量以及含硅原料气体体积流量的影响。
下面的实 是基于图 1所示实施例。
实猃 1 :
1 ) 采用纯三氯甲硅烷与氢气作为原料气体。
2 ) 炉内压力为 0.1MPa。
3 ) 硅芯高度为 2m。
4 ) 三氯甲硅烷平均流量约为 450m3/h , 氢气平均流量约为 1700m3/h。
5 ) 启炉后三氯甲硅烷通料时间约为 100小时,生产约 7500kg多晶 硅棒, 还原炉耗电约 5 x l05kWh, 多晶硅平均电耗约为 67kWh/kg, 三氯 氢硅中硅元素单程收率约为 13.3%, 并且产品棒状多晶硅整体均表面光 滑, 质地致密。
实验 2:
1 ) 采用二氯甲硅烷含量 6%,三氯甲硅烷含量 94%的混合氯硅烷与 氢气作为原料气体。
2 ) 炉内压力为 0.1MPa。
3 ) 硅芯高度为 2m。
4 ) 混合氯硅烷平均流量约为 360m3/h, 氢气平均流量约为 1400 m3/h。
5 ) 启炉后混合氯硅烷通料时间约为 80小时, 生产约 6500kg多晶 硅棒, 还原炉耗电约 3 x 105kWh, 多晶硅平均电耗约为 46kWh/kg, 三氯 氢硅中硅元素单程收率约为 18%, 并且产品棒状多晶硅整体均表面光滑, 质地致密。
实验 3:
1 ) 采用纯甲硅烷为原料气体。
2 ) 炉内为常压。 3 ) 娃芯高度为 2m。
4 ) 甲硅烷平均流量约为 120 m3/h。
5 ) 启炉后三氯甲硅烷通料时间约为 80小时, 生产约 7500kg多晶 硅棒, 还原炉耗电约 2.5 x 105kWh, 多晶硅平均电耗约为 33kWh/kg, 三 氯氢硅中硅元素单程收率约为 60%, 并且产品棒状多晶硅整体均表面光 滑, 质地致密。
根据上述的实^ r数据可知,通过本发明的反应器生产出来的棒状多晶 硅整体均表面光滑, 质地致密。 另外, 相比传统的 150〜300小时, 反应时 间明显缩短了, 因此本发明的反应器不但能够提高原料气体单程收率、 降 低单位电耗,并且能够显著提高产品多晶硅盾量,改善多晶硅棒表面形貌。
尽管上文对本发明的具体实施方式给予了详细描述和说明,但是应该 和修改, 其所产生的功能作用仍未超出说明书及附图所涵盖的精神时, 均 应在本发明的保护范围之内。

Claims

权 利 要 求
1. 一种用于生产多晶硅的反应器, 其包括底盘和罩在所述底盘上的 筒体, 所述底盘上密集地设有多对硅芯座、至少一个进气口和至少一个排 气口, 硅芯座中心、进气口中心和排气口中心一起在所述底盘上构成中心 点阵, 其特征在于: 所述中心点阵的至少一部分中心点与相邻中心点之间 的距离都相等。
2. 根据权利要求 1所述的反应器, 其特征在于: 至少部分中心点中 的任意相邻的三个中心点构成正三角形。
3. 根据权利要求 2所述的反应器, 其特征在于: 位于所述底盘中部 的任意相邻的三个中心点构成正三角形。
4. 根据权利要求 3所述的反应器, 其特征在于: 位于所述底盘外部 的中心点沿所述底盘的圆周向布置在至少一个圆周上。
5. 根据权利要求 2所述的反应器, 其特征在于: 位于所述底盘外部 的任意相邻的三个中心点构成正三角形。
6. 根据权利要求 5所述的反应器, 其特征在于: 位于所述底盘中部 的中心点沿所述底盘的圆周向布置在至少一个圆周上。
7. 根据权利要求 4或 6所述的反应器, 其特征在于: 布置在所述圆 周上的硅芯座中心点为偶数。
8. 根据权利要求 1所述的反应器, 其特征在于: 所有中心点与相邻 中心点之间的 J巨离均相等。
9. 根据权利要求 3或 5所述的反应器, 其特征在于: 任意相邻的三 个中心点构成正三角形。
10. 根据权利要求 1所述的反应器, 其特征在于: 任意两个相邻中心 点之间的距离为 150mm〜300mm, 优选为 210mm〜250mm。
11. 根据权利要求 1所述的反应器, 其特征在于: 所述筒体由金属材 料制成, 并且所述筒体设有冷却夹套以供冷却介质从其中流过。
12. 根据权利要求 1所述的反应器, 其特征在于: 所述筒体设有至少 一个观察窗。
13. 根据权利要求 1所述的反应器, 其特征在于: 所述筒体包括封头 和筒身, 所述筒身高度为 1.8m〜3m, 优选为 2.1m~2.8m。
14. 根据权利要求 1所述的反应器, 其特征在于: 与所述筒身的内壁 相邻的硅芯座中心点与该内壁之间的距离可都相等。
15. 根据权利要求 14 所述的反应器, 其特征在于: 所述距离为 150mm〜300mm, 优选为 180mm~230mm。
16. 根据权利要求 1所述的反应器, 其特征在于: 所述底盘由金属材 料制成, 并且所述底盘设有冷却夹套以供冷却介质从其中流过。
17. 根据权利要求 1所述的反应器, 其特征在于: 所述硅芯座由石墨 材料制成。
18. 根据权利要求 1所述的反应器, 其特征在于: 每个硅芯座可接纳 一根棒状硅芯, 所述硅芯经其下端竖向插入所述硅芯座, 所述硅芯的上端 与相邻的另一才艮硅芯的上端经由连接件联接成配对硅芯 ,以允许施加电流 通过该配对娃芯。
19. 根据权利要求 18所述的反应器, 其特征在于: 所述硅芯的电阻 率与待生产的多晶硅的电阻率相同。
20. 根据权利要求 18或 19所述的反应器, 其特征在于: 所述连接件 为水平放置的硅棒, 所述硅棒短于所述硅芯。
21. 根据权利要求 20所述的反应器, 其特征在于: 所述硅棒和所述 硅芯由相同材料制成。
22. 根据权利要求 20所述的反应器, 其特征在于: 所述硅芯和所述 硅棒可以通过直拉法、 区熔法或切割法生产, 所述硅芯和所述硅棒可以是 任意适合的形状。
23. 根据权利要求 18所述的反应器, 其特征在于: 所述硅芯的直径 或当量直径为 6mm〜20mm, 优选为 8mm~ 10mm, 高度为 1.8m~3m, 优选 为 2m~2.8m。
24. 一种用于生产棒状多晶硅的系统, 其包括根据权利要求 1-23任 一项所述的反应器。
PCT/CN2010/000540 2010-04-08 2010-04-20 用于生产多晶硅的反应器及系统 WO2011123998A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201010141882 CN102134745B (zh) 2010-04-08 2010-04-08 用于生产多晶硅的反应器及系统
CN201010141882.5 2010-04-08

Publications (1)

Publication Number Publication Date
WO2011123998A1 true WO2011123998A1 (zh) 2011-10-13

Family

ID=44294659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000540 WO2011123998A1 (zh) 2010-04-08 2010-04-20 用于生产多晶硅的反应器及系统

Country Status (2)

Country Link
CN (1) CN102134745B (zh)
WO (1) WO2011123998A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011089695A1 (de) * 2011-12-22 2013-06-27 Schmid Silicon Technology Gmbh Reaktor und Verfahren zur Herstellung von Reinstsilizium
US9534290B2 (en) 2011-10-07 2017-01-03 Wacker Chemie Ag Apparatus for deposition of polycrystalline silicon comprising uniformly spaced filament rods and gas inlet orifices, and process for deposition of polycrystalline silicon using same
DE102022116233A1 (de) 2021-07-05 2023-01-05 Shin-Etsu Chemical Co., Ltd. Vorrichtung zur herstellung eines polysiliziumstabs und verfahren zur herstellung eines polysiliziumstabs

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417181A (zh) * 2011-09-15 2012-04-18 中国恩菲工程技术有限公司 具有新型喷嘴的多晶硅还原炉
CN105271241B (zh) * 2014-06-26 2019-05-14 江苏中能硅业科技发展有限公司 用于生产多晶硅的反应器
CN106276915B (zh) * 2016-10-21 2018-07-03 哈尔滨化兴软控科技有限公司 一种改进的改良西门子法多晶硅还原炉底盘
CN109319787B (zh) * 2018-11-02 2021-12-21 中国南玻集团股份有限公司 一种高效生产多晶硅的还原装置及工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172092A (ja) * 1992-12-10 1994-06-21 Koujiyundo Silicon Kk 半導体級多結晶シリコン製造用反応炉
CN201105991Y (zh) * 2007-10-23 2008-08-27 四川永祥多晶硅有限公司 多晶硅氢还原炉
CN201162065Y (zh) * 2008-02-02 2008-12-10 江苏中能硅业科技发展有限公司 新型多晶硅还原炉
CN201162066Y (zh) * 2008-02-02 2008-12-10 江苏中能硅业科技发展有限公司 节能型多晶硅还原炉
CN201214631Y (zh) * 2008-04-20 2009-04-01 徐州东南多晶硅材料研发有限公司 多晶硅还原炉

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5509578B2 (ja) * 2007-11-28 2014-06-04 三菱マテリアル株式会社 多結晶シリコン製造装置及び製造方法
CN201326030Y (zh) * 2008-12-03 2009-10-14 西安核设备有限公司 一种多晶硅还原炉
CN201665536U (zh) * 2009-12-31 2010-12-08 江苏中能硅业科技发展有限公司 一种适用于西门子工艺生产多晶硅的还原炉

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172092A (ja) * 1992-12-10 1994-06-21 Koujiyundo Silicon Kk 半導体級多結晶シリコン製造用反応炉
CN201105991Y (zh) * 2007-10-23 2008-08-27 四川永祥多晶硅有限公司 多晶硅氢还原炉
CN201162065Y (zh) * 2008-02-02 2008-12-10 江苏中能硅业科技发展有限公司 新型多晶硅还原炉
CN201162066Y (zh) * 2008-02-02 2008-12-10 江苏中能硅业科技发展有限公司 节能型多晶硅还原炉
CN201214631Y (zh) * 2008-04-20 2009-04-01 徐州东南多晶硅材料研发有限公司 多晶硅还原炉

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9534290B2 (en) 2011-10-07 2017-01-03 Wacker Chemie Ag Apparatus for deposition of polycrystalline silicon comprising uniformly spaced filament rods and gas inlet orifices, and process for deposition of polycrystalline silicon using same
DE102011089695A1 (de) * 2011-12-22 2013-06-27 Schmid Silicon Technology Gmbh Reaktor und Verfahren zur Herstellung von Reinstsilizium
DE102022116233A1 (de) 2021-07-05 2023-01-05 Shin-Etsu Chemical Co., Ltd. Vorrichtung zur herstellung eines polysiliziumstabs und verfahren zur herstellung eines polysiliziumstabs
KR20230007226A (ko) 2021-07-05 2023-01-12 신에쓰 가가꾸 고교 가부시끼가이샤 다결정 실리콘 로드의 제조 장치 및 제조 방법

Also Published As

Publication number Publication date
CN102134745B (zh) 2013-07-10
CN102134745A (zh) 2011-07-27

Similar Documents

Publication Publication Date Title
US10081003B2 (en) Fluidized bed reactor and a process using same to produce high purity granular polysilicon
WO2011123998A1 (zh) 用于生产多晶硅的反应器及系统
CN102205967A (zh) 一种节能多晶硅还原炉及多晶硅的制造方法
CN201105995Y (zh) 改进型多晶硅还原炉
CN201793375U (zh) 一种用于生产多晶硅的还原炉
CN103990422A (zh) 流化床反应器及其用于制备粒状多晶硅和三氯氢硅的方法
CN201125165Y (zh) 有双重冷却系统的多晶硅还原炉
KR20120020928A (ko) 폴리실리콘 제조용 cvd 반응기의 노즐 겸용 척 및 이를 포함하는 폴리실리콘 제조용 cvd 반응기
CN105271241A (zh) 用于生产多晶硅的反应器
CN216863655U (zh) 一种可促进区熔级多晶硅均匀致密沉积的硅烷热分解炉
CN202046891U (zh) 一种有隔热屏节能型多晶硅还原炉
CN201214631Y (zh) 多晶硅还原炉
CN202131105U (zh) 多晶硅还原炉电极棒分布结构
CN102060298B (zh) 一种多晶硅生产装置及多晶硅生产方法
CN201990494U (zh) 一种节能型多晶硅还原炉
JPS6077115A (ja) 高純度シリコンの製造方法およびその装置
JP5642755B2 (ja) 多結晶シリコンを析出させるための装置及び方法
CN201678457U (zh) 一种用于多晶硅分解炉的导热油硅芯夹套装置
CN104876222B (zh) 硅烷热解的多晶硅生产方法与装置
CN216512891U (zh) 多晶硅还原炉的硅芯结构、多晶硅还原炉
CN108394904A (zh) 一种圆台形冷却夹套的甲硅烷热分解炉
CN201665537U (zh) 用于连续生产液体硅的装置
KR101755764B1 (ko) 폴리실리콘의 제조 장치 및 이를 이용한 폴리실리콘 제조방법
CN211035255U (zh) 一种用于生产多晶硅的超大型反应器
JPS6077116A (ja) シリコン粒の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10849235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10849235

Country of ref document: EP

Kind code of ref document: A1