WO2011122958A1 - Alliage d'aluminium stable à haute température - Google Patents

Alliage d'aluminium stable à haute température Download PDF

Info

Publication number
WO2011122958A1
WO2011122958A1 PCT/NO2011/000111 NO2011000111W WO2011122958A1 WO 2011122958 A1 WO2011122958 A1 WO 2011122958A1 NO 2011000111 W NO2011000111 W NO 2011000111W WO 2011122958 A1 WO2011122958 A1 WO 2011122958A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
alloys
exposure
precipitate
alloy according
Prior art date
Application number
PCT/NO2011/000111
Other languages
English (en)
Inventor
Calin Daniel Marioara
Sigmund Jarle Andersen
Sverre Gulbrandsen-Dahl
Jon Holmestad
Randi Holmestad
Tor-Erik Nicolaisen
Inge-Erland Opheim
Oddvin Reiso
Jostein RØYSET
Original Assignee
Norsk Hydro Asa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44712437&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011122958(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Norsk Hydro Asa filed Critical Norsk Hydro Asa
Priority to EP11763104.4A priority Critical patent/EP2553131B1/fr
Publication of WO2011122958A1 publication Critical patent/WO2011122958A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Definitions

  • the present invention relates to Al-Mg-Si-Cu alloy optimised for high temperature stability.
  • Alloys of the Al-Mg-Si system have an attractive combination of processability, mechanical strength and response to surface finishing treatments, thus making them the alloys of choice for several applications within the building industry and the automotive industry. Some of the automotive applications require that the alloy should maintain a certain mechanical strength after defined thermal exposures. Requirements for thermal exposure are expected to increase in the future. There is therefore a strong drive in the aluminium industry for developing aluminium alloys that can meet the current and the future requirements.
  • a common aluminium alloy for structural applications in the European market is the standard 6082 alloy.
  • This alloy contains sufficient amounts of Mg and Si for obtaining tensile strength of typically 300-320 MPa under common industrial practices.
  • the alloy contains a substantial amount of Mn.
  • the Mn forms dispersoids during homogenisation of the alloy.
  • the purpose of the dispersoids is to control the microstructure during thermo-mechanical processing, such as for example obtaining a fibrous grain structure after extrusion of the alloy.
  • the 6082 alloys do, however, lose strength after prolonged temperature exposure at for instance 200°C.
  • a novel Al-Mg-Si-Cu alloy optimised for high temperature stability optimised for high temperature stability.
  • FIG. 1 is a diagram showing the development in strength of tested precipitation strengthened alloys 1 , 2 and 3, defined in Table 1 in the description, as a result of exposure to a temperature of 200°C, is Transmission Electron Microscopy images of precipitate types of a) alloy 1 , b) alloy 2 and c) alloy 3 after exposure of temperature of 200°C for 7 days.
  • Figure 4 a) shows the precipitate number density and volume fraction
  • Figure 4 b) shows the average precipitate length and cross-section as a function of the effective Mg/Si ratio of the alloys.
  • Examples of precipitate types and orientations are indicated on the images, as well as the crystallographic [100] and [010] orientation in the aluminium lattice.
  • Fig. 7 shows diagrams summing up Transmission Electron Microscope characterisation of precipitates in alloys 3, 8 and 9 after exposure of a temperature of 200°C for 7 days.
  • Figure 7 a) shows the precipitate number density and volume fraction
  • Figure 7 b) shows the average precipitate length and cross-section as a function of the total content of Mg + Si + Cu in the alloys
  • Fig. 8 is a diagram showing the development in strength of precipitation strengthened alloys 6 and 10 as defined in Table 1 as a result of exposure to a temperature of 200°C.
  • Fig. 9 is a diagram showing the development in strength of precipitation strengthened alloys 6, 11 , 12 and 13 as defined in Table 1 as a result of exposure to a temperature of 200°C.
  • Fig. 10 is a diagram comparing the development in strength of precipitation strengthened alloys 10 and 14 as defined in Table 1 as a result of exposure to a temperature of 200°C.
  • Fig. 11 is a Transmission Electron Microscopy image of alloy 12 after exposure of a
  • Fig. 12 is a diagram comparing the development in strength of precipitation strengthened alloys 3, 6, 15 and 16 as defined in Table 1 as a result of exposure to a temperature of 250°C.
  • Fig. 13 is a Mg-Si chart illustrating the Mg and Si contents of claims 1 through 6.
  • Al-Mg-Si alloys gain their strength from precipitation hardening (also commonly denoted artificial age hardening), a heat treatment by which a fine dispersion of precipitates is formed. The precipitates strengthen the alloy by impeding dislocation movements.
  • the common temperatures used for precipitation hardening of 6xxx alloys for structural applications lie in the range 150-190°C.
  • the hardness of the alloy will increase to a maximum level and thereafter decrease.
  • the condition of the alloy is referred to as "overaged”.
  • Exposure of the alloy to temperatues higher than the normal age hardening temperatures gives an acceleration of the mechanisms that lead to overageing
  • SSSS supersaturated solid solution
  • GP-zones is a precursor to the hardening particles
  • ⁇ " is the principal hardening particle
  • ⁇ ' is a particle type formed in alloys artificially aged to past their maximum hardness (overaged)
  • is the equilibrium phase Mg 2 Si.
  • Which particle types within ⁇ ' B' U1 or U2 that form in the overaged state depends on alloy composition and the thermo-mechanical treatment. More often than not, one finds that two or more particle types coexist, but if one of the types is found in significantly higher number density than the others this type is thus the "dominating" particle type for that particular alloy in that particular condition.
  • a commonly known aluminium alloy for structural applications in the European market is the standard 6082 alloy.
  • This alloy contains sufficient amounts of Mg and Si for obtaining tensile strength of typically 300-320 MPa under common industrial practices.
  • the alloy contains a substantial amount of Mn.
  • the Mn forms dispersoids during homogenisation of the alloy.
  • the purpose of the dispersoids is to control the microstructure during thermo-mechanical processing, such as for example obtaining a fibrous grain structure after extrusion of the alloy.
  • the 6082 alloys do, however, lose strength after prolonged temperature exposure at for instance 200°C.
  • several alloy compositions were investigated, as explained in the examples below. For the purpose of grain structure control, a Mn-level typical for 6082-alloys was chosen for all alloy compositions.
  • Zr and Cr serve the same purpose as Mn in this type of alloys and could have been used as partial or complete replacements of Mn.
  • the alloys were cast as 095mm logs (extrusion ingots), homogenised at a temperature in the range 520 - 600°C for a length of time between 1 and 10 hours, and pre-cut to extrusion billets of 200mm length.
  • the extrusion billets were preheated in an induction furnace, and extruded to cylindrical rods of 20mm diameter.
  • Samples of the extruded rods were solution heat treated in the range 520 - 600°C, water-quenched, stored 4 hour at room- temperature, and then precipitation hardened at 155°C for 12h, corresponding approximately to maximum hardness of the alloy. This is referred to as the T6 condition and this was the starting condition for all the high-temperature exposure measurements in the examples below.
  • Fig. 1 shows the development in Vickers hardness as a function of exposure time at 200°C for an alloy of composition 1 in Table 1 above.
  • This alloy represents a typical composition for a 6082-alloy.
  • the hardness declines rapidly, and after a day the hardness is down to approx. 2/3 of that of the starting condition. Further exposure at 200°C reduces the hardness to 50% of that the starting condition after 1 week.
  • TEM investigations reveal that this is due to an even smaller precipitate size than in alloy 2.
  • Fig. 2 c shows a TEM image of equal magnification as for alloys 1 and 2, after exposure at 200°C for 7 days.
  • Q' is the dominating precipitate type in alloy 2
  • alloy 3 contains mostly L-type precipitates. These precipitate types are even more stable against coarsening than the Q'-type, and the features of these precipitates (crystal structure and orientation relationship with the aluminium crystal lattice) are preferred for alloys designed for high temperature stability.
  • the L- phase is the dominating precipitate type.
  • a flat rectangular cross-section with a well-defined long edge aligned in the [100] direction of the aluminium lattice This is the precipitate type that is most resistant to coarsening, and the key to successfully make a high-temperature stable alloy is that this precipitate type becomes dominant upon high-temperature exposure.
  • alloys two more alloys with effective atomic Mg/Si ratio of 2 were prepared; alloy 8 which has approximately 10% higher content of Mg+Si+Cu than alloy 3, and alloy 9 which has approximately 10% lower content of Mg+Si+Cu than alloy 3, see Table 1 for full composition.
  • Fig. 6 shows the results of the development in Vickers hardness as a function of exposure time at 200°C for these alloys. One finds that the hardness of alloy 3 mostly lies in between those of alloy 8 an 9. For long exposure times the hardness of alloy 3 and 8 approach the same level, whereas the hardness of alloy 9 is clearly lower. This indicates that the sum of alloying elements Mg+Si+Cu chosen for alloy 3 is fairly optimal.
  • Figure 7 shows the precipitate statistics as measured in TEM for alloy 3, 8 and 9 after 1 week exposure at 200°C.
  • the L-type precipitate was dominating for all alloys in this condition.
  • Alloy 8 with the highest Mg+Si+Cu content, has the highest number densitiy of precipitates, but also the smallest precipitate size, of the alloys. These two differences seem to nearly cancel out on the effect of strength compared to alloy 3
  • Alloy 9 with the lowest Mg+Si+Cu content has slightly lower number density of precipitates, slightly lower volume fraction, and slightly lower precipitate size than alloy 3. These differences all have a negative effect on strength, and in sum they give a significantly lower strength in alloy 9 than in alloy 3.
  • Example 4
  • Cu is a critical element in the sense that a high Cu content may be detrimental for processing and fabrication characteristics, such as castability and extrudability of the alloys, as well as for corrosion properties of components.
  • a certain Cu content is necessary to achieve the desired precipitate types in the alloys, namely the precipitate types that have been proven to be most resistant to coarsening during high temperature exposure.
  • alloy 10 was prepared, which is similar to alloy 6 (Mg/Si ratio is 3) except for the Cu content, which is 0.30 wt.%.
  • the development in Vickers hardness as a function of exposure time at 200°C for alloy 6 and alloy 10 is shown in Fig. 8. The results show that the lower Cu content has a significant negative effect on the strength, and possibly also a slight negative effect on the softening rate of the alloy.
  • the recommended Cu level of the alloy will therefore be dictated by the strength requirement for the desired application.
  • Fig. 9 compares the development in Vickers hardness as a function of exposure time at 200°C of the alloys 11 , 12 and 13 to that of alloy 6. It is seen that the substitution of a fraction of Si with Ge (alloy 6 vs alloy 12) enhances the temperature stability of the alloy somewhat. Just adding Ag to the alloy does lower the temperature stability (alloy 11 vs alloy 6), but when used in combination with the Ge it seems to further enhance the temperature stability of the alloy (alloy 13 vs alloy 12)
  • Fig. 10 compares the development in Vickers hardness as a function of exposure time at 200°C of alloy 14 to that of alloy 10.
  • the substitution of a fraction of Si with Ge leads to a considerable increase in the hardness, and by comparing Fig. 10 with Fig. 8 one finds that the Ge/Si substitution compensates for the lower level of Cu in alloy 10 compared to alloy 6.
  • FIG. 11 shows a TEM image of alloy 12 after exposure to 200°C for 1 week. The condition of the material and magnification of the image is identic to those of Figure 2, and can be compared directly. It is evident that the Ge-modification leads to a finer precipitate structure.
  • Figure 12 shows the development in hardness of alloy 3, 6, 15 and 16 during high-temperature exposure at 250°C. Alloys 3 and 6, which lie within the optimal alloy window revealed in this application, have a much better temperature stability than alloys 15 and 16, which are outside this optimal window. It is worthwhile to note that the temperature stability of alloys 3 and 6 at 250°C is much better than that of alloy 2 at 200°C (compare Figs. 1 and 12). This illustrates the great advantage in temperature stability of alloys according to the present invention in comparison with the common 6082-alloy.
  • Alloys 3 and 6 were also subjected to a high temperature exposure of 350°C for 5h. After this heat treatment there has been a change in dominating precipitate type from L to Q'.
  • Fig. 13 shows an Mg-Si chart illustrating polygons defined by the coordinates in the Mg-Si diagram visualizing as rectangles the Mg and Si contents as defined in claims 1 through 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Conductive Materials (AREA)

Abstract

La présente invention porte sur un alliage d'Al-Mg-Si-Cu optimisé pour la stabilité à haute température. L'alliage est caractérisé en ce que sa teneur en Mg et Si se situe dans un polygone délimité par les coordonnées suivantes d'un diagramme de Mg-Si : a1 - a2 - a3 - a4 -a1 où en % en poids a1 = (0,60 Mg, 0,60 Si), a2 = (0,90 Mg, 0,90 Si), a3 = (1,30 Mg, 0,60 Si) et a4 = (1,00 Mg, 0,30 Si), et en ce qu'il comprend les éléments d'alliage additionnels : entre 0,20 et 0,50 % en poids de Cu, entre 0,08 et 0,40 % en poids de Fe, en ce qu'au moins l'un des éléments suivants est ajouté à des fins d'ajustement de la structure des grains pendant le traitement de l'alliage : entre 0 et 0,80 % en poids de Mn, entre 0 et 0,30 % en poids de Cr, entre 0 et 0,30 % en poids de Zr et éventuellement jusqu'à 0,1 % en poids de Ti et jusqu'à 0,1 % en poids de B comme éléments d'affinage des grains, et encore éventuellement entre 0 et 0,20 % en poids de Ge et entre 0 et 0,20 % en poids d'Ag, le reste étant Al, dont les impuretés fortuites. Dans l'alliage tel que défini ci-dessus, la phase L est le type de précipité dominant en ce qui concerne la densité en nombre au survieillissement.
PCT/NO2011/000111 2010-03-30 2011-03-30 Alliage d'aluminium stable à haute température WO2011122958A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11763104.4A EP2553131B1 (fr) 2010-03-30 2011-03-30 Alliage d'aluminium stable à haute température

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20100474 2010-03-30
NO20100474 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122958A1 true WO2011122958A1 (fr) 2011-10-06

Family

ID=44712437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NO2011/000111 WO2011122958A1 (fr) 2010-03-30 2011-03-30 Alliage d'aluminium stable à haute température

Country Status (2)

Country Link
EP (1) EP2553131B1 (fr)
WO (1) WO2011122958A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013162374A1 (fr) 2012-04-25 2013-10-31 Norsk Hydro Asa Alliage d'aluminium al-mg-si à propriétés améliorées
WO2017066609A1 (fr) * 2015-10-14 2017-04-20 NanoAL LLC Alliages de zirconium-aluminium-fer
EP3456853A1 (fr) 2017-09-13 2019-03-20 Univerza v Mariboru Fakulteta za strojnistvo Fabrication d'alliages d'aluminium à haute résistance mécanique et thermique renforcés par des précipités doubles
EP3307919B1 (fr) 2015-06-15 2020-08-05 Constellium Singen GmbH Fabrication de profiles pleins en alliage d'aluminium 6xxx pour des systèmes de remorquage
US10815552B2 (en) 2013-06-19 2020-10-27 Rio Tinto Alcan International Limited Aluminum alloy composition with improved elevated temperature mechanical properties
CN113564433A (zh) * 2021-08-10 2021-10-29 江苏亚太航空科技有限公司 一种耐腐蚀的6082铝合金材料及其熔铸工艺

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3018823B1 (fr) * 2014-03-24 2018-01-05 Constellium Extrusion Decin S.R.O Produit file en alliage 6xxx apte au decolletage et presentant une faible rugosite apres anodisation
CN111014332B (zh) * 2019-12-31 2021-05-28 辽宁忠旺集团有限公司 具有高长期热稳定性的6系高合金成分及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139646A (en) * 1980-04-03 1981-10-31 Sukai Alum Kk Aging aluminum alloy for ironing
JPS58167757A (ja) * 1982-03-29 1983-10-04 Nippon Light Metal Co Ltd 耐食性,溶接性および焼入性のすぐれた加工用Al−Mg−Si系合金の製造法
JP2009084698A (ja) * 2003-11-10 2009-04-23 Showa Denko Kk 成形品の製造方法
WO2011040453A1 (fr) * 2009-09-30 2011-04-07 株式会社神戸製鋼所 Extrudat d'alliage d'aluminium présentant d'excellentes résistances à la flexion, à la compression et à la corrosion

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1211563A (en) 1967-02-27 1970-11-11 Fulmer Res Inst Ltd Improvements relating to aluminium-base alloys
US3642542A (en) 1970-02-25 1972-02-15 Olin Corp A process for preparing aluminum base alloys
US3717512A (en) 1971-10-28 1973-02-20 Olin Corp Aluminum base alloys
US4082578A (en) 1976-08-05 1978-04-04 Aluminum Company Of America Aluminum structural members for vehicles
DE3209431A1 (de) 1982-03-16 1983-09-22 Bayer Ag, 5090 Leverkusen Phenoxypropyltriazolyl-ketone und -carbinole, verfahren zu ihrer herstellung und ihre verwendung als fungizide
JPH086161B2 (ja) 1988-03-07 1996-01-24 日本軽金属株式会社 高強度A1‐Mg‐Si系合金部材の製造法
DE4421744C2 (de) 1993-07-02 1996-05-23 Fuchs Fa Otto Verwendung einer Knetlegierung des Types AlMgSiCu zur Herstellung von hochfesten und korrosionsbeständigen Teilen
US5503690A (en) 1994-03-30 1996-04-02 Reynolds Metals Company Method of extruding a 6000-series aluminum alloy and an extruded product therefrom
US5571347A (en) 1994-04-07 1996-11-05 Northwest Aluminum Company High strength MG-SI type aluminum alloy
JPH0860285A (ja) 1994-06-16 1996-03-05 Furukawa Electric Co Ltd:The アルミニウム合金製バンパー補強材およびその製造方法
DE69628922T2 (de) 1995-05-11 2004-01-29 Kaiser Aluminium Chem Corp Aluminium 6xxx-legierung mit verbesserter beschädigungsbeständigkeit
DE19830560B4 (de) 1997-07-09 2006-07-20 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe Energie-absorbierendes Element
ATE272725T1 (de) 1998-02-17 2004-08-15 Corus Aluminium Profiltechnik Aluminium-legierung und verfahren zu ihrer herstellung
DE69921925T2 (de) 1998-08-25 2005-11-10 Kabushiki Kaisha Kobe Seiko Sho, Kobe Hochfeste Aluminiumlegierungsschmiedestücke
US20020014287A1 (en) 1998-10-27 2002-02-07 Shinji Yoshihara A1-mg-si based aluminum alloy extrusion
US6248189B1 (en) * 1998-12-09 2001-06-19 Kaiser Aluminum & Chemical Corporation Aluminum alloy useful for driveshaft assemblies and method of manufacturing extruded tube of such alloy
EP1041165A1 (fr) 1999-04-02 2000-10-04 Kabushiki Kaisha Kobe Seiko Sho Matériau amortissant les chocs
EP1104815A1 (fr) 1999-12-02 2001-06-06 Alusuisse Technology & Management AG Alliage d'aluminium et produit extrudé de celui-ci
US6613167B2 (en) 2001-06-01 2003-09-02 Alcoa Inc. Process to improve 6XXX alloys by reducing altered density sites
JP2003155535A (ja) 2001-11-16 2003-05-30 Nippon Light Metal Co Ltd 自動車ブラケット用アルミニウム合金押出材およびその製造方法
JP3791408B2 (ja) 2001-12-20 2006-06-28 三菱アルミニウム株式会社 曲げ加工性およびエネルギー吸収特性に優れたアルミニウム合金押出し材の製造方法
JP2004292937A (ja) 2003-03-28 2004-10-21 Kobe Steel Ltd 輸送機構造材用アルミニウム合金鍛造材およびその製造方法
JP4379149B2 (ja) 2003-04-15 2009-12-09 日本軽金属株式会社 プレス成形性および連続抵抗スポット溶接性に優れたアルミニウム合金板およびその製造方法
TW200530406A (en) 2003-12-26 2005-09-16 Nippon Light Metal Co Method for producing Al-Mg-Si based aluminum alloy plate excellent in bake-hardenability
DE102005060297A1 (de) 2005-11-14 2007-05-16 Fuchs Kg Otto Energieabsorbtionsbauteil
JP2009526913A (ja) 2006-02-17 2009-07-23 ノルスク・ヒドロ・アーエスアー クラッシュ特性が改善されたアルミニウム合金
EP2003219B1 (fr) 2006-03-31 2014-02-26 Kabushiki Kaisha Kobe Seiko Sho Element forge d'alliage d'aluminium et son procede de production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139646A (en) * 1980-04-03 1981-10-31 Sukai Alum Kk Aging aluminum alloy for ironing
JPS58167757A (ja) * 1982-03-29 1983-10-04 Nippon Light Metal Co Ltd 耐食性,溶接性および焼入性のすぐれた加工用Al−Mg−Si系合金の製造法
JP2009084698A (ja) * 2003-11-10 2009-04-23 Showa Denko Kk 成形品の製造方法
WO2011040453A1 (fr) * 2009-09-30 2011-04-07 株式会社神戸製鋼所 Extrudat d'alliage d'aluminium présentant d'excellentes résistances à la flexion, à la compression et à la corrosion

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. J. CHAKRABARTI ET AL.: "Phase relations and precipitations in Al-Mg-Si alloys with Cu additions", PROGRESS IN MATERIALS SCIENCE, vol. 49, 2004, pages 389 - 410, XP027151510 *
See also references of EP2553131A4 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104245981A (zh) * 2012-04-25 2014-12-24 诺尔斯海德公司 具有改进性质的Ai-Mg-Si 铝合金
EP2841611A1 (fr) 2012-04-25 2015-03-04 Norsk Hydro ASA Alliage d'aluminium al-mg-si à propriétés améliorées
WO2013162374A1 (fr) 2012-04-25 2013-10-31 Norsk Hydro Asa Alliage d'aluminium al-mg-si à propriétés améliorées
US9840761B2 (en) 2012-04-25 2017-12-12 Norsk Hydro Asa Al—Mg—Si aluminium alloy with improved properties
EP2841611B1 (fr) 2012-04-25 2018-04-04 Norsk Hydro ASA Profil extrudé d'une alliage d'aluminium Al-Mg-Si à propriétés améliorées
US10815552B2 (en) 2013-06-19 2020-10-27 Rio Tinto Alcan International Limited Aluminum alloy composition with improved elevated temperature mechanical properties
EP3307919B1 (fr) 2015-06-15 2020-08-05 Constellium Singen GmbH Fabrication de profiles pleins en alliage d'aluminium 6xxx pour des systèmes de remorquage
US11479838B2 (en) 2015-06-15 2022-10-25 Constellium Singen Gmbh Manufacturing process for obtaining high strength solid extruded products made from 6XXX aluminium alloys for towing eye
WO2017066609A1 (fr) * 2015-10-14 2017-04-20 NanoAL LLC Alliages de zirconium-aluminium-fer
US10633725B2 (en) 2015-10-14 2020-04-28 NaneAL LLC Aluminum-iron-zirconium alloys
US10450637B2 (en) 2015-10-14 2019-10-22 General Cable Technologies Corporation Cables and wires having conductive elements formed from improved aluminum-zirconium alloys
EP3456853A1 (fr) 2017-09-13 2019-03-20 Univerza v Mariboru Fakulteta za strojnistvo Fabrication d'alliages d'aluminium à haute résistance mécanique et thermique renforcés par des précipités doubles
CN113564433A (zh) * 2021-08-10 2021-10-29 江苏亚太航空科技有限公司 一种耐腐蚀的6082铝合金材料及其熔铸工艺

Also Published As

Publication number Publication date
EP2553131B1 (fr) 2019-05-08
EP2553131A4 (fr) 2017-04-05
EP2553131A1 (fr) 2013-02-06

Similar Documents

Publication Publication Date Title
EP2553131B1 (fr) Alliage d'aluminium stable à haute température
JP4783525B2 (ja) 薄膜アルミニウム合金及び薄膜アルミニウム合金形成用スパッタリングターゲット
WO2012026354A1 (fr) Alliage à base de co
JP5743165B2 (ja) 銅合金及び銅合金の製造方法
Ünlü et al. The effect of cold work on the precipitation of Ω and θ′ in a ternary Al-Cu-Mg alloy
WO2009157556A1 (fr) SUPERALLIAGE MONOCRISTALLIN À BASE DE Ni ET ÉLÉMENT D’ALLIAGE OBTENU À PARTIR DE CELUI-CI
WO2011125554A1 (fr) Alliage de cuivre contenant cu-ni-si-co pour un matériau électronique et procédé de fabrication de ce dernier
JP3814662B2 (ja) Ni基単結晶超合金
US11066730B2 (en) Alloy material in which are dispersed oxygen atoms and a metal element of oxide-particles, and production method for same
WO2009157555A1 (fr) SUPERALLIAGE MONOCRISTALLIN À BASE DE Ni ET ÉLÉMENT D’ALLIAGE L’UTILISANT EN TANT QUE BASE
JP5586027B2 (ja) Mg基合金
JP2009097095A (ja) チタンアルミニウムを基礎とした合金
JP2001207229A (ja) 電子材料用銅合金
WO2007091576A1 (fr) Alliage à base d'iridium ayant une résistance à la chaleur élevée et une résistance élevée et procédé servant à produire celui-ci
US6966956B2 (en) Ni-based single crystal super alloy
JP2010270355A (ja) 銅合金板材およびその製造方法
WO2020066371A1 (fr) Feuille d'alliage de cuivre à base de cu-ni-al, son procédé de production, et élément de ressort conducteur
WO2006033458A1 (fr) Alliage de magnésium
JP2003049231A (ja) Ni基単結晶超合金
JP2008127668A (ja) 電子機器用銅合金およびリードフレーム材
JP3303641B2 (ja) 耐熱チタン合金
CN113215459B (zh) Al-Cu-Mn纳米结构耐热变形铝合金及制备方法
CN109763008A (zh) 一种高强高弹含铌铜合金及其制备方法
JP4904455B2 (ja) 銅合金およびその製造法
JP7340154B2 (ja) Ni基熱間鍛造材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11763104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011763104

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE