EP2553131B1 - Alliage d'aluminium stable à haute température - Google Patents

Alliage d'aluminium stable à haute température Download PDF

Info

Publication number
EP2553131B1
EP2553131B1 EP11763104.4A EP11763104A EP2553131B1 EP 2553131 B1 EP2553131 B1 EP 2553131B1 EP 11763104 A EP11763104 A EP 11763104A EP 2553131 B1 EP2553131 B1 EP 2553131B1
Authority
EP
European Patent Office
Prior art keywords
alloy
alloys
exposure
precipitate
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP11763104.4A
Other languages
German (de)
English (en)
Other versions
EP2553131A4 (fr
EP2553131A1 (fr
Inventor
Calin Daniel Marioara
Sigmund Jarle Andersen
Sverre Gulbrandsen-Dahl
Jon Holmestad
Randi Holmestad
Tor-Erik Nicolaisen
Inge-Erland Opheim
Oddvin Reiso
Jostein RØYSET
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norsk Hydro ASA
Original Assignee
Norsk Hydro ASA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=44712437&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2553131(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Norsk Hydro ASA filed Critical Norsk Hydro ASA
Publication of EP2553131A1 publication Critical patent/EP2553131A1/fr
Publication of EP2553131A4 publication Critical patent/EP2553131A4/fr
Application granted granted Critical
Publication of EP2553131B1 publication Critical patent/EP2553131B1/fr
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Definitions

  • the present invention relates to Al-Mg-Si-Cu alloy optimised for high temperature stability.
  • Alloys of the Al-Mg-Si system have an attractive combination of processability, mechanical strength and response to surface finishing treatments, thus making them the alloys of choice for several applications within the building industry and the automotive industry. Some of the automotive applications require that the alloy should maintain a certain mechanical strength after defined thermal exposures. Requirements for thermal exposure are expected to increase in the future. There is therefore a strong drive in the aluminium industry for developing aluminium alloys that can meet the current and the future requirements.
  • a common aluminium alloy for structural applications in the European market is the standard 6082 alloy.
  • This alloy contains sufficient amounts of Mg and Si for obtaining tensile strength of typically 300-320 MPa under common industrial practices.
  • the alloy contains a substantial amount of Mn.
  • the Mn forms dispersoids during homogenisation of the alloy.
  • the purpose of the dispersoids is to control the microstructure during thermo-mechanical processing, such as for example obtaining a fibrous grain structure after extrusion of the alloy.
  • the 6082 alloys do, however, lose strength after prolonged temperature exposure at for instance 200°C.
  • Document JP2009084698A discloses an aluminum alloy that has the components of, by mass, 0.3 to 1.0% Si, 0.2 to 0.6% Cu, 0.8 to 1.5% Mg, 0.05 to 0.5% Cr, 0.05 to 0.15% Mn and 0.18 to 0.40% Fe, and the balance Al with inevitable impurities.
  • Document US6248189B1 discloses an alloy that includes, in weight %, 0.50 to 0.70% Si, up to 0.30% Fe, 0.20 to 0.40% Cu, up to 0.03% Mn, 0.80 to 1.10% Mg, up to 0.03% Cr, balance Al and impurities.
  • the alloy is characterized by the features as defined in the independent claim 1.
  • Al-Mg-Si alloys gain their strength from precipitation hardening (also commonly denoted artificial age hardening), a heat treatment by which a fine dispersion of precipitates is formed. The precipitates strengthen the alloy by impeding dislocation movements.
  • the common temperatures used for precipitation hardening of 6xxx alloys for structural applications lie in the range 150-190°C.
  • the hardness of the alloy will increase to a maximum level and thereafter decrease.
  • the condition of the alloy is referred to as "overaged”.
  • Exposure of the alloy to temperatues higher than the normal age hardening temperatures gives an acceleration of the mechanisms that lead to overageing
  • the L-phase can be found to in highest number density, i.e. it is "dominating", in the overaged state for some alloy compositions and thermomechanical treatments.
  • a commonly known aluminium alloy for structural applications in the European market is the standard 6082 alloy.
  • This alloy contains sufficient amounts of Mg and Si for obtaining tensile strength of typically 300-320 MPa under common industrial practices.
  • the alloy contains a substantial amount of Mn.
  • the Mn forms dispersoids during homogenisation of the alloy.
  • the purpose of the dispersoids is to control the microstructure during thermo-mechanical processing, such as for example obtaining a fibrous grain structure after extrusion of the alloy.
  • the 6082 alloys do, however, lose strength after prolonged temperature exposure at for instance 200°C.
  • a Mn-level typical for 6082-alloys was chosen for all alloy compositions.
  • Zr and Cr serve the same purpose as Mn in this type of alloys and could have been used as partial or complete replacements of Mn.
  • the alloys were cast as ⁇ 95mm logs (extrusion ingots), homogenised at a temperature in the range 520 - 600°C for a length of time between 1 and 10 hours, and pre-cut to extrusion billets of 200mm length.
  • the extrusion billets were preheated in an induction furnace, and extruded to cylindrical rods of 20mm diameter. Samples of the extruded rods were solution heat treated in the range 520 - 600°C, water-quenched, stored 4 hour at roomtemperature, and then precipitation hardened at 155°C for 12h, corresponding approximately to maximum hardness of the alloy.
  • Fig. 1 shows the development in Vickers hardness as a function of exposure time at 200°C for an alloy of composition 1 in Table 1 above.
  • This alloy represents a typical composition for a 6082-alloy.
  • the hardness declines rapidly, and after a day the hardness is down to approx. 2/3 of that of the starting condition. Further exposure at 200°C reduces the hardness to 50% of that the starting condition after 1 week.
  • the types of precipitates are different in the two alloys.
  • the Cu-free alloy 1 one finds a combination of B', ⁇ ', U2 and U1 precipitates.
  • the dominating precipitate type is the Q'-phase. It seems that Q' is more stable against precipitate coarsening than B', ⁇ ', U2 and U1.
  • TEM investigations reveal that this is due to an even smaller precipitate size than in alloy 2.
  • Fig. 2 c shows a TEM image of equal magnification as for alloys 1 and 2, after exposure at 200°C for 7 days.
  • Q' is the dominating precipitate type in alloy 2
  • alloy 3 contains mostly L-type precipitates. These precipitate types are even more stable against coarsening than the Q'-type, and the features of these precipitates (crystal structure and orientation relationship with the aluminium crystal lattice) are preferred for alloys designed for high temperature stability.
  • the L-phase is the dominating precipitate type.
  • a flat rectangular cross-section with a well-defined long edge aligned in the [100] direction of the aluminium lattice This is the precipitate type that is most resistant to coarsening, and the key to successfully make a high-temperature stable alloy is that this precipitate type becomes dominant upon high-temperature exposure.
  • alloy 8 which has approximately 10% higher content of Mg+Si+Cu than alloy 3
  • alloy 9 which has approximately 10% lower content of Mg+Si+Cu than alloy 3, see Table 1 for full composition.
  • Fig. 6 shows the results of the development in Vickers hardness as a function of exposure time at 200°C for these alloys.
  • the hardness of alloy 3 mostly lies in between those of alloy 8 an 9.
  • the hardness of alloy 9 is clearly lower. This indicates that the sum of alloying elements Mg+Si+Cu chosen for alloy 3 is fairly optimal.
  • Figure 7 shows the precipitate statistics as measured in TEM for alloy 3, 8 and 9 after 1 week exposure at 200°C.
  • the L-type precipitate was dominating for all alloys in this condition.
  • Alloy 8 with the highest Mg+Si+Cu content, has the highest number densitiy of precipitates, but also the smallest precipitate size, of the alloys. These two differences seem to nearly cancel out on the effect of strength compared to alloy 3
  • Alloy 9 with the lowest Mg+Si+Cu content has slightly lower number density of precipitates, slightly lower volume fraction, and slightly lower precipitate size than alloy 3. These differences all have a negative effect on strength, and in sum they give a significantly lower strength in alloy 9 than in alloy 3.
  • Cu is a critical element in the sense that a high Cu content may be detrimental for processing and fabrication characteristics, such as castability and extrudability of the alloys, as well as for corrosion properties of components.
  • a certain Cu content is necessary to achieve the desired precipitate types in the alloys, namely the precipitate types that have been proven to be most resistant to coarsening during high temperature exposure.
  • alloy 10 was prepared, which is similar to alloy 6 (Mg/Si ratio is 3) except for the Cu content, which is 0.30 wt.%.
  • the development in Vickers hardness as a function of exposure time at 200°C for alloy 6 and alloy 10 is shown in Fig. 8 .
  • the results show that the lower Cu content has a significant negative effect on the strength, and possibly also a slight negative effect on the softening rate of the alloy.
  • the recommended Cu level of the alloy will therefore be dictated by the strength requirement for the desired application.
  • Fig. 9 compares the development in Vickers hardness as a function of exposure time at 200°C of the alloys 11, 12 and 13 to that of alloy 6. It is seen that the substitution of a fraction of Si with Ge (alloy 6 vs alloy 12) enhances the temperature stability of the alloy somewhat. Just adding Ag to the alloy does lower the temperature stability (alloy 11 vs alloy 6), but when used in combination with the Ge it seems to further enhance the temperature stability of the alloy (alloy 13 vs alloy 12)
  • Fig. 10 compares the development in Vickers hardness as a function of exposure time at 200°C of alloy 14 to that of alloy 10.
  • the substitution of a fraction of Si with Ge leads to a considerable increase in the hardness, and by comparing Fig. 10 with Fig. 8 one finds that the Ge/Si substitution compensates for the lower level of Cu in alloy 10 compared to alloy 6.
  • Figure 11 shows a TEM image of alloy 12 after exposure to 200°C for 1 week. The condition of the material and magnification of the image is identic to those of Figure 2 , and can be compared directly. It is evident that the Ge-modification leads to a finer precipitate structure.
  • Figure 12 shows the development in hardness of alloy 3, 6, 15 and 16 during high-temperature exposure at 250°C. Alloys 3 and 6, which lie within the optimal alloy window revealed in this application, have a much better temperature stability than alloys 15 and 16, which are outside this optimal window. It is worthwhile to note that the temperature stability of alloys 3 and 6 at 250°C is much better than that of alloy 2 at 200°C (compare Figs. 1 and 12 ). This illustrates the great advantage in temperature stability of alloys according to the present invention in comparison with the common 6082-alloy.
  • Alloys 3 and 6 were also subjected to a high temperature exposure of 350°C for 5h. After this heat treatment there has been a change in dominating precipitate type from L to Q'.
  • Fig. 13 shows an Mg-Si chart illustrating polygons defined by the coordinates in the Mg-Si diagram visualizing as rectangles the Mg and Si contents as defined in claims 1 through 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Conductive Materials (AREA)

Claims (6)

  1. Alliage de Al-Mg-Si-Cu possédant une bonne stabilité thermique, dans lequel sa teneur en Mg et en Si se situe à l'intérieur d'un polygone défini par les coordonnées suivantes d'un diagramme de Mg-Si :
    a1 - a2 - a3 - a4 - a1
    dans lequel en termes de pourcentage massique, a1 = 0,60 Mg, 0,60 Si, a2 = 0,90 Mg, 0,90 Si, a3 = 1,30 Mg, 0,60 Si et a4 = 1,00 Mg, 0,30 Si, et dans lequel Mn est compris entre 0,40 et 0,80 % en poids à des fins d'ajustement de la structure de grains pendant le traitement de l'alliage,
    et avec les éléments d'alliages suivants :
    - Cu compris entre 0,20 et 0,50 % en poids
    - Fe compris entre 0,08 et 0,40 % en poids,
    et où éventuellement au moins un des éléments suivants est ajouté à des fins d'ajustement de la structure de grains pendant le traitement de l'alliage
    - Cr compris entre 0 et 0,30 % en poids
    - Zr compris entre 0 et 0,30 % en poids,
    et jusqu'à éventuellement 0,1 % en poids de Ti et jusqu'à 0,1 % en poids de B en tant qu'éléments de raffinage de grains,
    et où Ge est encore éventuellement compris entre 0 et 0,20 % en poids et Ag est compris entre 0 et 0,20 % en poids, le reste étant Al comprenant des impuretés fortuites.
  2. Alliage de Al-Mg-Si-Cu selon la revendication 1,
    caractérisé en ce que la phase L constitue le type de précipité dominant par rapport à la densité en nombre au sur-vieillissement.
  3. Alliage de Al-Mg-Si-Cu selon la revendication 1 ou la revendication 2,
    caractérisé en ce que sa teneur en Mg et en Si se situe à l'intérieur d'un polygone défini par les coordonnées suivantes d'un diagramme de Mg-Si :
    b1 - b2 - b3 - b4 - b1
    dans lequel en termes de pourcentage massique b1 = 0,70 Mg, 0,60 Si, b2 = 0,90 Mg, 0,80 Si, b3 = 1,20 Mg, 0,60 Si et b4 = 0,98 Mg, 0,37 Si.
  4. Alliage de Al-Mg-Si-Cu selon l'une quelconque des revendications 1 à 3,
    caractérisé en ce que sa teneur en Mg et en Si se situe à l'intérieur d'un polygone défini par les coordonnées suivantes d'un diagramme de Mg-Si :
    c1 - c2 - c3 - c4 - c1
    dans lequel en termes de pourcentage massique c1 = 0,75 Mg, 0,62 Si, c2 = 0,90 Mg, 0,75 Si, c3 = 1,15 Mg, 0,58 Si et c4 = 0,98 Mg, 0,42 Si.
  5. Alliage de Al-Mg-Si-Cu selon l'une quelconque des revendications 1 à 4,
    caractérisé en ce que
    Ge est compris entre 0,004 et 0,20 % en poids.
  6. Alliage de Al-Mg-Si-Cu selon l'une quelconque des revendications 1 à 5,
    caractérisé en ce que
    le rapport Mg/Si est compris entre 1,5 et 4.
EP11763104.4A 2010-03-30 2011-03-30 Alliage d'aluminium stable à haute température Revoked EP2553131B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20100474 2010-03-30
PCT/NO2011/000111 WO2011122958A1 (fr) 2010-03-30 2011-03-30 Alliage d'aluminium stable à haute température

Publications (3)

Publication Number Publication Date
EP2553131A1 EP2553131A1 (fr) 2013-02-06
EP2553131A4 EP2553131A4 (fr) 2017-04-05
EP2553131B1 true EP2553131B1 (fr) 2019-05-08

Family

ID=44712437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11763104.4A Revoked EP2553131B1 (fr) 2010-03-30 2011-03-30 Alliage d'aluminium stable à haute température

Country Status (2)

Country Link
EP (1) EP2553131B1 (fr)
WO (1) WO2011122958A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10633725B2 (en) * 2015-10-14 2020-04-28 NaneAL LLC Aluminum-iron-zirconium alloys
EP3122912B1 (fr) * 2014-03-24 2024-05-15 Constellium Extrusion Decin S.r.o. Produit filé en alliage 6xxx apte au décolletage et présentant une faible rugosité après anodisation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3339457T3 (pl) * 2012-04-25 2020-12-14 Norsk Hydro Asa Wyciskany profil stopu aluminium al-mg-si o polepszonych właściwościach
WO2014201565A1 (fr) 2013-06-19 2014-12-24 Rio Tinto Alcan International Limited Composition d'alliage d'aluminium présentant des propriétés mécaniques améliorées, à température élevée
CN107743526B (zh) 2015-06-15 2020-08-25 肯联铝业辛根有限责任公司 用于获得由6xxx铝合金制成的用于牵引孔眼的高强度固体挤出产品的制造方法
SI25352A (sl) 2017-09-13 2018-07-31 UNIVERZA V MARIBORU Fakulteta za Strojništvo Izdelava visokotrdnostnih in temperaturnoobstojnih aluminijevih zlitin utrjenih z dvojnimi izločki
CN111014332B (zh) * 2019-12-31 2021-05-28 辽宁忠旺集团有限公司 具有高长期热稳定性的6系高合金成分及其制备方法
CN113564433B (zh) * 2021-08-10 2022-06-03 江苏亚太航空科技有限公司 一种耐腐蚀的6082铝合金材料及其熔铸工艺

Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1602294A (fr) 1967-02-27 1970-11-02
DE2103614A1 (de) 1970-02-25 1971-09-09 Olin Corp Warmverformbare Alumimumlegierungen und Verfahren zu deren Verarbeitung
US3717512A (en) 1971-10-28 1973-02-20 Olin Corp Aluminum base alloys
US4082578A (en) 1976-08-05 1978-04-04 Aluminum Company Of America Aluminum structural members for vehicles
JPS58167575A (ja) 1982-03-16 1983-10-03 バイエル・アクチエンゲゼルシヤフト フエノキシプロピルトリアゾリル−ケトン及びカルビノ−ル、その製法並びに利用
JPS58167757A (ja) 1982-03-29 1983-10-04 Nippon Light Metal Co Ltd 耐食性,溶接性および焼入性のすぐれた加工用Al−Mg−Si系合金の製造法
DE4421744A1 (de) 1993-07-02 1995-01-12 Fuchs Fa Otto Verwendung einer Knetlegierung des Types AlMgSiCu zur Herstellung von hochfesten und korrosionsbeständigen Teilen
EP0676480A1 (fr) 1994-04-07 1995-10-11 Northwest Aluminum Company Alliage d'aluminium du type MG-Si à haute résistance mécanique
WO1995027091A1 (fr) 1994-03-30 1995-10-12 Reynolds Metals Company Procede de fabrication de pieces extrudees d'alliage d'aluminium
EP0687743A1 (fr) 1994-06-16 1995-12-20 The Furukawa Electric Co., Ltd. Matériau de renforcement en alliage d'aluminium pour pare-choc et procédé de fabrication
JPH086161B2 (ja) 1988-03-07 1996-01-24 日本軽金属株式会社 高強度A1‐Mg‐Si系合金部材の製造法
US5888320A (en) 1995-05-11 1999-03-30 Kaiser Aluminum & Chemical Corporation Aluminum alloy having improved damage tolerant characteristics
EP0936278A1 (fr) 1998-02-17 1999-08-18 Hoogovens Aluminium Profiltechnik Bonn GmbH Alliage d'aluminium et procédé pour sa fabrication
EP0987344A1 (fr) 1998-08-25 2000-03-22 Kabushiki Kaisha Kobe Seiko Sho Pièces forgées en alliage d'aluminium à haute résistance mécanique
EP0997547A1 (fr) 1998-10-27 2000-05-03 Kabushiki Kaisha Kobe Seiko Sho Extrusion d'un alliage de Al-Mg-Si à base d'aluminium
EP1041165A1 (fr) 1999-04-02 2000-10-04 Kabushiki Kaisha Kobe Seiko Sho Matériau amortissant les chocs
EP1104815A1 (fr) 1999-12-02 2001-06-06 Alusuisse Technology & Management AG Alliage d'aluminium et produit extrudé de celui-ci
US6248189B1 (en) 1998-12-09 2001-06-19 Kaiser Aluminum & Chemical Corporation Aluminum alloy useful for driveshaft assemblies and method of manufacturing extruded tube of such alloy
US6258465B1 (en) 1997-07-09 2001-07-10 Kabushiki Kaisha Kobe Seiko Sho Energy absorbing member
WO2002099151A2 (fr) 2001-06-01 2002-12-12 Alcoa Inc. Procede d'amelioration des alliages de la serie 6xxx par la reduction des sites de densite alteres
JP2003155535A (ja) 2001-11-16 2003-05-30 Nippon Light Metal Co Ltd 自動車ブラケット用アルミニウム合金押出材およびその製造方法
JP2003181530A (ja) 2001-12-20 2003-07-02 Mitsubishi Alum Co Ltd 曲げ加工性およびエネルギー吸収特性に優れたアルミニウム合金押出し材の製造方法
JP2004292937A (ja) 2003-03-28 2004-10-21 Kobe Steel Ltd 輸送機構造材用アルミニウム合金鍛造材およびその製造方法
EP1614760A1 (fr) 2003-04-15 2006-01-11 Nippon Light Metal Company Ltd. Plaque d'alliage d'aluminium presentant une excellente formabilite de pressage et une excellente soudabilite par points presentant une resistance continue, ainsi que methode pour sa production
EP1715067A1 (fr) 2003-12-26 2006-10-25 Nippon Light Metal, Co., Ltd. Procede de production de plaques d'alliage d'al-mg-si presentant une excellente capacite de durcissement thermique
DE102005060297A1 (de) 2005-11-14 2007-05-16 Fuchs Kg Otto Energieabsorbtionsbauteil
WO2007094686A1 (fr) 2006-02-17 2007-08-23 Norsk Hydro Asa Alliage en aluminium presentant des proprietes d'ecrasement ameliorees
EP2003219A2 (fr) 2006-03-31 2008-12-17 Kabushiki Kaisha Kobe Seiko Sho Element forge d'alliage d'aluminium et son procede de production
JP2009084698A (ja) 2003-11-10 2009-04-23 Showa Denko Kk 成形品の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56139646A (en) * 1980-04-03 1981-10-31 Sukai Alum Kk Aging aluminum alloy for ironing
JP5366748B2 (ja) * 2009-09-30 2013-12-11 株式会社神戸製鋼所 曲げ圧壊性と耐食性に優れたアルミニウム合金押出材

Patent Citations (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1602294A (fr) 1967-02-27 1970-11-02
DE2103614A1 (de) 1970-02-25 1971-09-09 Olin Corp Warmverformbare Alumimumlegierungen und Verfahren zu deren Verarbeitung
US3717512A (en) 1971-10-28 1973-02-20 Olin Corp Aluminum base alloys
US4082578A (en) 1976-08-05 1978-04-04 Aluminum Company Of America Aluminum structural members for vehicles
JPS58167575A (ja) 1982-03-16 1983-10-03 バイエル・アクチエンゲゼルシヤフト フエノキシプロピルトリアゾリル−ケトン及びカルビノ−ル、その製法並びに利用
JPS58167757A (ja) 1982-03-29 1983-10-04 Nippon Light Metal Co Ltd 耐食性,溶接性および焼入性のすぐれた加工用Al−Mg−Si系合金の製造法
JPH086161B2 (ja) 1988-03-07 1996-01-24 日本軽金属株式会社 高強度A1‐Mg‐Si系合金部材の製造法
DE4421744A1 (de) 1993-07-02 1995-01-12 Fuchs Fa Otto Verwendung einer Knetlegierung des Types AlMgSiCu zur Herstellung von hochfesten und korrosionsbeständigen Teilen
WO1995027091A1 (fr) 1994-03-30 1995-10-12 Reynolds Metals Company Procede de fabrication de pieces extrudees d'alliage d'aluminium
EP0676480A1 (fr) 1994-04-07 1995-10-11 Northwest Aluminum Company Alliage d'aluminium du type MG-Si à haute résistance mécanique
EP0687743A1 (fr) 1994-06-16 1995-12-20 The Furukawa Electric Co., Ltd. Matériau de renforcement en alliage d'aluminium pour pare-choc et procédé de fabrication
US5888320A (en) 1995-05-11 1999-03-30 Kaiser Aluminum & Chemical Corporation Aluminum alloy having improved damage tolerant characteristics
US6258465B1 (en) 1997-07-09 2001-07-10 Kabushiki Kaisha Kobe Seiko Sho Energy absorbing member
EP0936278A1 (fr) 1998-02-17 1999-08-18 Hoogovens Aluminium Profiltechnik Bonn GmbH Alliage d'aluminium et procédé pour sa fabrication
EP0987344A1 (fr) 1998-08-25 2000-03-22 Kabushiki Kaisha Kobe Seiko Sho Pièces forgées en alliage d'aluminium à haute résistance mécanique
EP0997547A1 (fr) 1998-10-27 2000-05-03 Kabushiki Kaisha Kobe Seiko Sho Extrusion d'un alliage de Al-Mg-Si à base d'aluminium
US6248189B1 (en) 1998-12-09 2001-06-19 Kaiser Aluminum & Chemical Corporation Aluminum alloy useful for driveshaft assemblies and method of manufacturing extruded tube of such alloy
EP1041165A1 (fr) 1999-04-02 2000-10-04 Kabushiki Kaisha Kobe Seiko Sho Matériau amortissant les chocs
EP1104815A1 (fr) 1999-12-02 2001-06-06 Alusuisse Technology & Management AG Alliage d'aluminium et produit extrudé de celui-ci
WO2002099151A2 (fr) 2001-06-01 2002-12-12 Alcoa Inc. Procede d'amelioration des alliages de la serie 6xxx par la reduction des sites de densite alteres
JP2003155535A (ja) 2001-11-16 2003-05-30 Nippon Light Metal Co Ltd 自動車ブラケット用アルミニウム合金押出材およびその製造方法
JP2003181530A (ja) 2001-12-20 2003-07-02 Mitsubishi Alum Co Ltd 曲げ加工性およびエネルギー吸収特性に優れたアルミニウム合金押出し材の製造方法
JP2004292937A (ja) 2003-03-28 2004-10-21 Kobe Steel Ltd 輸送機構造材用アルミニウム合金鍛造材およびその製造方法
EP1614760A1 (fr) 2003-04-15 2006-01-11 Nippon Light Metal Company Ltd. Plaque d'alliage d'aluminium presentant une excellente formabilite de pressage et une excellente soudabilite par points presentant une resistance continue, ainsi que methode pour sa production
JP2009084698A (ja) 2003-11-10 2009-04-23 Showa Denko Kk 成形品の製造方法
EP1715067A1 (fr) 2003-12-26 2006-10-25 Nippon Light Metal, Co., Ltd. Procede de production de plaques d'alliage d'al-mg-si presentant une excellente capacite de durcissement thermique
DE102005060297A1 (de) 2005-11-14 2007-05-16 Fuchs Kg Otto Energieabsorbtionsbauteil
WO2007094686A1 (fr) 2006-02-17 2007-08-23 Norsk Hydro Asa Alliage en aluminium presentant des proprietes d'ecrasement ameliorees
EP2003219A2 (fr) 2006-03-31 2008-12-17 Kabushiki Kaisha Kobe Seiko Sho Element forge d'alliage d'aluminium et son procede de production

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"Aluminium‐Taschenbuch 13. Auflage", 1 January 1974, ALUMINIUM VERLAG, article H NIELSEN, HUFNAGEL W, GANOULIS G: "AIMgSi-Knetlegierungen", pages: 55 - 56,69-71, XP055689753
"key to Aluminium Alloys 4th Edition", 1 January 1991, ALUMINIUM VERLAG, Düsseldorf, article W HUFNAGEL: "Alumimium-Schlüssel", pages: 108 - 109,146,201, XP055689738
ANONYMOUS: "Handbuch der knetwerkstoffe", HANDBUCH DER KNETWERKSTOFFE, HONSEL INTERNATIONAL TECHNOLOGIES, pages 1 - 40, XP055689743, Retrieved from the Internet <URL:http://www.eloxal-muenchen.de/downloads/Handbuch_Knetwerkstoffe.pdf> [retrieved on 20200428]
BECKER VON JOACHIM, ET AL.: "AS 28: Ein neuer hochfester Konstruktionswerkstoff auf der Legierungsbasis Al-Mg-Si", PUBLICATION OF OTTO FUCHS CONCERNING AS28, pages 1 - 6, XP055475045, [retrieved on 20180515]
CHAKRABARTI, D. ; LAUGHLIN, D.E.: "Phase relations and precipitation in Al-Mg-Si alloys with Cu additions", PROGRESS IN MATERIALS SCIENCE., PERGAMON PRESS., GB, vol. 49, no. 3-4, 1 January 2004 (2004-01-01), GB, pages 389 - 410, XP027512115, ISSN: 0079-6425, DOI: 10.1016/S0079-6425(03)00031-8
D.J. CHAKRABARTI ET AL.: "Precipitation In Al-Mg-Si Alloys with Cu Additions and the Role of the Q'and Related Phases", MATERIALS SCIENCE FORUM, 1999, XP055682292
DAVIS JOSEPH R.: "Alloying : understanding the basics", 1 January 2001, MATERIALS PARK, OHIO : ASM INTERNATIONAL, ISBN: 978-0-87170-744-4, article J. R. DAVIS: "Aluminum and Aluminum Alloys", pages: 351 - 416, XP055549194, DOI: 10.1361/autb2001p351
HOLMESTAD, JON: "High temperature stability of Al-Mg-Si alloys (Master's Thesis)", 15 June 2009 (2009-06-15), XP055682281, Retrieved from the Internet <URL:High-temperature stability of Al-Mg-Si alloys (master's thesis)>
L. SAGALOWICZ ET AL.: "A study of the structural precipitation in the Al-Mg-Si-Cu system", 4TH INTERNATIONAL CONFERENCE ON ALUMINUM ALLOYS, 1994, pages 636 - 643, XP055682287
MAKSIMOVIC V ET AL: "The effects of microalloying with silicon and germanium on microstructure and hardness of a commercial aluminum alloy", JOURNAL OF THE SERBIAN CHEMICAL SOCIETY, SERBIAN CHEMICAL SOCIETY, BELGRADE, vol. 68, no. 11, 1 January 2003 (2003-01-01), Belgrade, pages 893 - 901, XP002432840, ISSN: 0352-5139, DOI: 10.2298/JSC0311893M

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3122912B1 (fr) * 2014-03-24 2024-05-15 Constellium Extrusion Decin S.r.o. Produit filé en alliage 6xxx apte au décolletage et présentant une faible rugosité après anodisation
US10633725B2 (en) * 2015-10-14 2020-04-28 NaneAL LLC Aluminum-iron-zirconium alloys

Also Published As

Publication number Publication date
EP2553131A4 (fr) 2017-04-05
WO2011122958A1 (fr) 2011-10-06
EP2553131A1 (fr) 2013-02-06

Similar Documents

Publication Publication Date Title
EP2553131B1 (fr) Alliage d&#39;aluminium stable à haute température
JP5582532B2 (ja) Co基合金
EP2878692B1 (fr) Produits en alliage d&#39;aluminium à haute résistance et leur procédé de production
WO2009157556A1 (fr) SUPERALLIAGE MONOCRISTALLIN À BASE DE Ni ET ÉLÉMENT D’ALLIAGE OBTENU À PARTIR DE CELUI-CI
JP5743165B2 (ja) 銅合金及び銅合金の製造方法
EP2281909A1 (fr) Matériau de moulage d&#39;alliage d&#39;aluminium pour traitement thermique doté d&#39;une excellente conductivité thermique et procédés de fabrication correspondants
WO2011125554A1 (fr) Alliage de cuivre contenant cu-ni-si-co pour un matériau électronique et procédé de fabrication de ce dernier
JP5466879B2 (ja) 銅合金板材およびその製造方法
WO2009157555A1 (fr) SUPERALLIAGE MONOCRISTALLIN À BASE DE Ni ET ÉLÉMENT D’ALLIAGE L’UTILISANT EN TANT QUE BASE
EP2006405B1 (fr) Alliage de magnesium et son procede de fabrication
JP2009097095A (ja) チタンアルミニウムを基礎とした合金
JP2011026635A (ja) 銅合金板材、銅合金板材の製造方法、および電気電子部品
JP4025632B2 (ja) 銅合金
US6966956B2 (en) Ni-based single crystal super alloy
WO2020066371A1 (fr) Feuille d&#39;alliage de cuivre à base de cu-ni-al, son procédé de production, et élément de ressort conducteur
EP2582855B1 (fr) Alliage d&#39;aluminium à couler résistant à la chaleur
WO2006033458A1 (fr) Alliage de magnésium
CN113215459B (zh) Al-Cu-Mn纳米结构耐热变形铝合金及制备方法
US4634477A (en) Workable high strength shape memory alloy
JP3729454B2 (ja) 銅合金およびその製造方法
KR100559814B1 (ko) 구리합금 및 그 제조방법
JP2009084681A (ja) アルミニウム合金からなる応力緩衝材料
JP4904455B2 (ja) 銅合金およびその製造法
TW201816140A (zh) 鋁合金塑性加工材及其製造方法
JP7340154B2 (ja) Ni基熱間鍛造材の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROEYSET, JOSTEIN

Inventor name: HOLMESTAD, RANDI

Inventor name: MARIOARA, CALIN, DANIEL

Inventor name: OPHEIM, INGE-ERLAND

Inventor name: GULBRANDSEN-DAHL, SVERRE

Inventor name: HOLMESTAD, JON

Inventor name: ANDERSEN, SIGMUND, JARLE

Inventor name: NICOLAISEN, TOR-ERIK

Inventor name: REISO, ODDVIN

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20170303

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 21/08 20060101AFI20170227BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190226

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1130231

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011058785

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190508

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190508

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190809

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 602011058785

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

26 Opposition filed

Opponent name: TRIMET ALUMINIUM SE

Effective date: 20200207

Opponent name: C-TEC CONSTELLIUM TECHNOLOGY CENTER / CONSTELLIUM EXTRUSION DECIN S.R.O. / CONSTELLIUM VALAIS SA (LTD)

Effective date: 20200206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200330

REG Reference to a national code

Ref country code: AT

Ref legal event code: UEP

Ref document number: 1130231

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210323

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210319

Year of fee payment: 11

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 602011058785

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 602011058785

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FI

Ref legal event code: MGE

27W Patent revoked

Effective date: 20211209

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Effective date: 20211209

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220321

Year of fee payment: 12

Ref country code: AT

Payment date: 20220322

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220321

Year of fee payment: 12

Ref country code: NO

Payment date: 20220323

Year of fee payment: 12

REG Reference to a national code

Ref country code: AT

Ref legal event code: MA03

Ref document number: 1130231

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

REG Reference to a national code

Ref country code: SE

Ref legal event code: ECNC