WO2011122857A9 - 유방암 예후 예측을 위한 조성물 및 이를 포함하는 키트 - Google Patents
유방암 예후 예측을 위한 조성물 및 이를 포함하는 키트 Download PDFInfo
- Publication number
- WO2011122857A9 WO2011122857A9 PCT/KR2011/002193 KR2011002193W WO2011122857A9 WO 2011122857 A9 WO2011122857 A9 WO 2011122857A9 KR 2011002193 W KR2011002193 W KR 2011002193W WO 2011122857 A9 WO2011122857 A9 WO 2011122857A9
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- breast cancer
- genes
- expression level
- prognosis
- protein
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57415—Specifically defined cancers of breast
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6893—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/118—Prognosis of disease development
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/136—Screening for pharmacological compounds
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
Definitions
- the present invention is a composition for predicting prognosis of breast cancer, including a formulation for measuring the expression level of the marker gene for predicting the prognosis of breast cancer, a kit for predicting the prognosis of breast cancer comprising the composition, by measuring the expression level of the marker gene
- a method for providing information necessary for predicting the prognosis of breast cancer and a method for screening a test substance for inhibiting recurrence of breast cancer by treating a protein encoded by the marker gene to promote or inhibit the activity of the protein. .
- Prognostic indicators provide many information about the prognosis as well as tumor size, lymph node status and histological grade and include many common factors, such as molecular markers that are likely to respond to a particular therapeutic agent.
- steroid hormone receptor status measurement of estrogen (ER) and progesterone (PR) is a routine procedure for evaluation of breast cancer patients (Fitzgibbons et al., Arch. Pathol. Lab. Med., 124: 966-978, 2000).
- Tumors that are hormone receptor positive must be responsive to hormone therapy, and typically also proliferate less actively, so the prognosis of patients with ER + / PR + tumors is better.
- HER-2 / neu human epidermal growth factor receptor 2
- trastuzumab Herceptin; Genentech
- an anti-Her-2 / neu antibody therapeutic has been developed using Her2 / neu expression levels in breast tumors.
- tumor suppressor gene p53 which is known to be associated with increased aggressiveness of the disease and poor prognosis.
- Ki-67 a cell proliferation marker with non-histone nuclear proteins, has been demonstrated to correlate with poor prognosis of breast cancer.
- prognostic criteria and molecular markers provide some guidance in predicting patient fate and selecting appropriate treatment, but are insufficient as specific and sensitive methods for evaluating breast cancer recurrence and prognosis, especially in early stage breast cancer patients.
- the development of new methods is very necessary. This method should be able to specifically identify breast cancer patients with a good prognosis and breast cancer patients with a poor prognosis, and should be able to identify early-risk, high-risk breast cancer patients requiring active adjuvant therapy.
- no markers or methods have been developed to accurately predict high prognosis for breast cancer.
- the inventors have made efforts to develop markers for predicting the prognosis of breast cancer, in particular, the possibility of recurrence after breast cancer treatment and the 2-year survival prognosis.
- the genes with the most changes were identified as marker genes by screening and observing the changes in these genes.
- systemic or local recurrence within 2 years in breast cancer patients undergoing surgical and / or chemotherapy It was confirmed that the prognosis for can be determined accurately, and completed the present invention.
- An object of the present invention includes an agent for measuring the expression level of mRNA of at least five genes or proteins encoded by these genes each selected from the group consisting of genes differentially expressed in recurrent and non-recurrent breast cancer groups, It is to provide a composition for predicting the prognosis of breast cancer.
- Another object of the present invention to provide a kit for predicting the prognosis of breast cancer comprising the composition.
- Another object of the present invention includes measuring the expression level of mRNA of at least five genes or proteins encoded by these genes each selected from the group consisting of genes differentially expressed in breast cancer recurrent and non-recurrent groups. To provide a method for providing information necessary to predict the prognosis of breast cancer.
- Another object of the present invention is to treat a test substance to a protein encoded by each gene selected from the group consisting of genes differentially expressed in breast cancer recurrent and non-relapsed groups to test substances that promote or inhibit the activity of the protein.
- the present invention relates to a method of screening as a relapse inhibitor of breast cancer.
- the present invention provides genes having a nucleotide sequence of SEQ ID NOs: 1 to 50 with differentially increased expression in breast cancer recurring group and SEQ ID NOs: 51 to 100 with differentially increased expression in non-cancerous cancer cancer group. It relates to a composition for predicting prognosis of breast cancer, comprising an agent for measuring the expression level of mRNA of at least five genes or proteins encoded by these genes, each selected from the group consisting of genes having a nucleotide sequence of.
- the composition for predicting prognosis of breast cancer according to the present invention is five or more genes selected from genes having a nucleotide sequence of SEQ ID NOs: 1 to 50 with differentially increased expression in breast cancer recurrence group, preferably Is selected from at least 10 genes, more preferably at least 20 genes as prognostic marker genes, and 5 selected from genes having a nucleotide sequence of SEQ ID NOs: 51 to 100 with differentially increased expression in non-cancerous breast cancer groups. It comprises an agent for selecting the above genes, preferably at least 10 genes, more preferably at least 20 genes as prognostic marker genes to determine the expression level of the mRNA of the selected marker genes or the protein encoded by these genes. can do. According to the exemplary embodiment of the present invention, genes were selected while increasing the number of genes by five units from each gene group in which the expression was differentially increased in the breast cancer recurring group and the non-recurring group, and then the prediction rate was calculated by applying various algorithms.
- genes having a nucleotide sequence of SEQ ID NOs: 1 to 50 exhibited differentially increased expression levels in a group of patients with recurring breast cancer within 2 years after breast cancer treatment.
- SUV39H2 (NM_024670), CDC20 (NM_001255), CDC45L (NM_003504), CDCA5 (NM_080668), CIT (NM_007174), ASF1B (NM_018154), FAM83D (NM_030919), MAD2L1 (NM_002P358) , NUP205 (NM_015135), TRIP13 (NM_004237), EZH2 (NM_004456), TOP2A (NM_001067), UBE2C (NM_181802), NCAPH (NM_015341), BUB1B (NM_001211), CENPA (NM_001809), AUR33 (M) , NEK2 (NM_002497), C13orf3 (NM_145061), PLK4 (NM_014264), ORC6L (NM_014321), CDCA8 (NM_018101), DEPDC1 (NM_001114120), PTTG1 (NM_00
- genes having a nucleotide sequence of SEQ ID NOs: 51 to 100 show differentially increased expression levels in a group of patients whose breast cancer does not recur within 2 years after breast cancer treatment.
- TLR4 (NR_024168), MPEG1 (NM_001039396), LRMP (NM_006152), MS4A6A (NM_152852), GIMAP4 (NM_018326), DOCK2 (NM_004946), AMICA1 (NM_001098526), ARHGAPN (N_085018) ), PIK3CG (NM_002649), AOAH (NM_001637), C17orf87 (AY358809), FAM65B (NM_014722), ITGAL (NM_002209), EVI2B (NM_006495), HCLS1 (NM_005335), PTPRC (NM_002838), ), CD4 (NM_000616), CD53 (NM_000560), LCP2 (NM_005565), IGSF6 (NM_005849), GPNMB (NM_001005340), CYBB (NM_000397), CD96 (NM_198196), IL10RA (NM
- Genes selected as markers for predicting the prognosis of breast cancer according to the present invention are differentially expressed genes (DEGs) showing differences in expression levels between breast cancer relapsed and non-relapsed groups. That is, the present invention is differential in the non-breast cancer group having genes with increased expression differentially in breast cancer recurrence group, and having a nucleotide sequence of SEQ ID NO: 1 to 50, and the base sequence of SEQ ID NO: 51 to 100 Genes with increased expression were identified as marker genes for predicting the prognosis of breast cancer, and it was confirmed that the prognosis of breast cancer could be predicted more accurately by measuring their expression levels.
- DEGs differentially expressed genes showing differences in expression levels between breast cancer relapsed and non-relapsed groups. That is, the present invention is differential in the non-breast cancer group having genes with increased expression differentially in breast cancer recurrence group, and having a nucleotide sequence of SEQ ID NO: 1 to 50, and the base sequence of
- the present invention measures the expression level of five or more genes selected from genes having a nucleotide sequence of SEQ ID NOs: 1 to 50 in a subject, and then checks whether the sequence is increased or decreased.
- the prognosis of breast cancer can be accurately predicted by measuring the expression level of five or more genes selected from genes having a nucleotide sequence of 51 to 100.
- composition of the present invention may include an agent for measuring the expression level of the mRNA of the genes having a nucleotide sequence of SEQ ID NO: 1 to 100 or the protein encoded by these genes in order to predict the prognosis of breast cancer.
- DEGs differentiated genes
- a disease in particular cancer, eg, breast cancer
- a disease in particular cancer, eg, breast cancer
- a disease in particular cancer, eg, breast cancer
- a disease in particular cancer, eg, breast cancer
- genes that are activated at low levels The term also includes genes whose expression is activated at higher or lower levels in different stages of the same disease.
- differentially expressed genes may be activated or inhibited at the nucleic acid level or the protein level, or may produce different polypeptide products through alternating splicing. Such differences can be demonstrated, for example, by changes in mRNA levels, surface expression, secretion or other distribution of the polypeptide.
- Differential gene expression is a comparison of expression between two or more genes or their gene products, or a comparison of expression rates between two or more genes or their gene products, or a comparison of two differently processed products of the same gene (these are normal Subject and disease, specifically between subjects with breast cancer or between different stages of the same disease).
- Differential expression can, for example, distinguish between quantitative and qualitative differences in transient or cell expression patterns in genes or expression products thereof between normal cells and diseased cells, or between cells undergoing different disease events or disease stages. It includes everything.
- “differential gene expression” is at least about 2 times, preferably at least about 4 times between the expression of a given gene in normal and diseased subjects or at various stages of disease development in a diseased subject. More preferably at least about 6 times and most preferably at least about 10 times.
- breast cancer refers to a mass composed of cancer cells in the breast, and generally refers to a cancer occurring in the milk ducts and lobules of the breast.
- breast cancer is classified as a malignant pathology by biopsy, and the clinical technique of breast cancer diagnosis is well known in the medical field.
- breast cancer refers to all malignancies of breast tissue, including, for example, malignant tumors and sarcomas.
- breast cancer includes ductal carcinoma in situ (DCIS), lobular carcinoma in situ (LCIS), mucinous carcinoma, infiltrating ductal carcinoma (IDC), invasive Lobular carcinoma (ILC) and the like.
- the target subject is a human patient who has been diagnosed with actual breast cancer and undergoes surgery or chemotherapy.
- prognosis refers to the progress and cure of a disease, such as breast cancer, such as recurrence, metastatic spread, and the likelihood of breast cancer-causing death or progression, including drug resistance.
- prognosis refers to the possibility of systemic or local recurrence after breast cancer treatment, and preferably to predict whether systemic or local recurrence will occur within 2 years after surgery or chemotherapy of breast cancer.
- the term "good prognosis” refers to the possibility that the disease of a cancer patient, in particular breast cancer patients, will be cured, and "unfavorable prognosis” refers to the relapse or recurrence, metastasis of the cancer or tumor being treated. Or death. Cancer patients classified as having good results are in the absence of cancer or tumors in their struggle. In contrast, cancer patients with poor outcomes lead to disease regeneration, tumor recurrence, metastasis or death. "Good prognosis” means that a breast cancer patient may remain free of at least two years, more specifically, at least five years of the disease or tumor on which they are fighting. In another aspect of the invention, "unfavorable prognosis” means that a breast cancer patient may experience disease regeneration, tumor recurrence, metastasis or death within less than 5 years, more specifically less than 2 years.
- the term "prediction" means that the patient responds favorably or unfavorably to a therapy, such as chemotherapy or radiation therapy, such that the patient is removed by treatment, e.g., surgical treatment of a particular therapeutic agent, and / or primary tumor, And / or survival and / or likelihood after treatment with chemotherapy for a certain period of time without recurrence of cancer.
- the prediction method of the present invention can be used clinically by selecting and applying the most appropriate treatment regimen for any particular patient.
- Prediction methods of the present invention determine whether a patient responds favorably to a treatment such as a prescribed treatment regimen, including, for example, administration of a predetermined treatment or combination, surgical intervention, chemotherapy, or the like, or after a treatment regimen. Long term survival or systemic or local recurrence is predictable. It can also be planned to minimize unnecessary adjuvant chemotherapy or to use adjuvant chemotherapy for patients who are expected to have systemic or local recurrence.
- composition for predicting prognosis refers to a substance capable of predicting recurrence by distinguishing between a patient with a poor prognosis and a patient with a poor prognosis after treatment for breast cancer, and is expressed in a breast cancer relapse group and a non-relapse group as compared to a normal control group.
- Polypeptides or nucleic acids eg, mRNA, etc.
- organic biomolecules such as lipids, glycolipids, glycoproteins, and the like, which exhibit increased or decreased levels, are included as prognostic markers.
- the term "prognostic marker”, “prognostic marker” or “prognosis marker” is to distinguish the breast cancer cells from normal cells can predict the prognosis including the recurrence after breast cancer treatment It is a substance.
- prognostic predictive markers of breast cancer are genes whose expression always increases or decreases, either directly or indirectly, with systemic or local recurrence of breast cancer, showing the same result in repeated experiments. In addition, they are highly reliable markers with very large differences in expression levels compared to controls, with little chance of producing false results.
- the algorithm with the highest predictive accuracy was selected through repeated execution of various algorithms, and as a result, SEQ ID NOs: 1 to 100 as genes differentially expressed in the recurrence group and the non-recurrence group of breast cancer.
- the genes with the base sequence of were selected as the most reliable. Therefore, the prognostic predicted result is reasonably reliable based on the result obtained by measuring the expression level of the significant prognostic predictive marker of the present invention.
- the association between the genes selected as prognostic markers for breast cancer and breast cancer or recurrence thereof and the specific function of the genes in breast cancer have not been reported to date.
- the present inventors have identified that the genes can be markers for predicting the prognosis of breast cancer through the following process.
- the present inventors extracted mRNA of each patient group from patients with general or local recurrence within 2 years after breast cancer surgery and analyzed with mRNA microarray. Hub genes are selected through gene network analysis, genes that have a significant correlation with breast cancer recurrence among the selected hub genes are predicted according to the leave-one-out cross-validation method. The algorithm was applied. As a result, when the k-Nearest Neighbor (k-NN), Stabilized Linear Discriminant Analysis and Support Vector Machines (SVM) algorithms are applied, the overall prediction rate is 89.1%. In this case, the recurrence prediction rate was 97.1% and the non-recurrence prediction rate was 63.6%.
- k-NN k-Nearest Neighbor
- SVM Support Vector Machines
- mRNA expression level measurement is a process of confirming the presence and expression of mRNA of the marker gene in a biological sample in order to predict the prognosis of breast cancer, it can be seen by measuring the amount of mRNA.
- RT-PCR competitive RT-PCR
- RNase protection assay RPA
- northern blotting noden blotting
- DNA microarray chips and the like, but are not limited thereto.
- the agent for measuring the mRNA level of the prognostic marker gene of breast cancer according to the present invention is preferably an antisense oligonucleotide, primer pair or probe, which specifically amplifies specific regions of these genes based on the nucleotide sequence of the marker gene.
- Primers or probes can be designed. Since the base sequence of the prognostic marker gene of breast cancer according to the present invention is registered in the GenBank and known in the art, those skilled in the art can specifically amplify specific regions of these genes based on the base sequence. Primers or probes can be designed.
- antisense refers to a backbone between nucleotide sequences and subunits in which antisense oligomers can hybridize with target sequences in RNA by Watson-Crick base pairing to form heterodimers with mRNA typically within the target sequence.
- oligomer having The oligomer may have precise sequence complementarity or similar complementarity to the target sequence.
- primer refers to template-directed DNA synthesis under appropriate conditions (eg, four different nucleoside triphosphates and polymerizers such as DNA, RNA polymerase or reverse transcriptase) and appropriate temperatures.
- Appropriate length of the primer may vary depending on the purpose of use, but is typically 15 to 30 nucleotides. Short primer molecules generally require lower temperatures to form stable hybrids with the template.
- the primer sequence need not be completely complementary to the template, but should be sufficiently complementary to hybridize with the template.
- the possibility of recurrence of brain tumors and the 2-year survival prognosis can be predicted through the amplification of PCR products.
- probe refers to a nucleic acid fragment such as RNA or DNA corresponding to short bases of several hundred bases and hundreds of bases capable of specific binding with mRNA. Probes can be made in the form of oligonucleotide probes, single stranded DNA probes, double stranded DNA probes, RNA probes and the like. In the present invention, after hybridization is performed using a probe complementary to the marker gene according to the present invention, the prognosis including the recurrence of breast cancer may be predicted through hybridization. Selection of suitable probes and hybridization conditions can be modified based on what is known in the art.
- Antisense oligonucleotides, primers or probes according to the present invention can be chemically synthesized using methods well known in the art, including phosphoramidite solid support methods. Such nucleic acid sequences can also be modified using many means known in the art. Non-limiting examples of such modifications include methylation, capping, substitution with one or more homologs of natural nucleotides, and modifications between nucleotides, eg, uncharged linkages such as methylphosphonate, phosphoester, phosphoro Amidate, carbamate, and the like) or charged linkers (eg, phosphorothioate, phosphorodithioate, etc.).
- the term "measurement of expression level of protein” refers to a process of confirming the presence and expression level of a protein encoded from a marker gene in a biological sample in order to predict prognosis of breast cancer recurrence, and specifically binds to the protein. Check the amount of protein using an antibody. Western blotting, ELISA (enzyme linked immunosorbent assay), radioimmunoassay, radioimmunodiffusion, Ouchterlony immunodiffusion, and rocket immunity Electrophoresis, immunohistochemical staining, immunoprecipitation assay, complement fixation assay, FACS, protein chip, and the like, but are not limited thereto.
- an antibody is a term known in the art and means a specific protein molecule directed to an antigenic site.
- an antibody refers to an antibody that specifically binds to a protein encoded from a marker gene of the present invention, and the antibody is cloned into an expression vector according to a conventional method, and then, by the marker gene. After obtaining the protein to be encoded, it can be prepared by conventional methods from the obtained protein. It also includes peptide fragments that can be made from such proteins, and peptide fragments of the present invention include at least 7 amino acids, preferably 9 amino acids, more preferably 12 or more amino acids.
- the antibody of the present invention is not particularly limited in form, and a part thereof is included in the antibody of the present invention as long as it is a polyclonal antibody, a monoclonal antibody or an antigen-binding agent, and all immunoglobulin antibodies are included.
- polyclonal antibodies can be produced by methods well known in the art for injecting protein antigens encoded from the prognostic predictive marker genes of breast cancer described above into animals and collecting blood from the animals to obtain serum comprising the antibody.
- Such polyclonal antibodies can be prepared from any animal species host such as goat, rabbit, sheep, monkey, horse, pig, bovine dog.
- Monoclonal antibodies are well known in the art by the hybridoma method (Kohler and Milstein, European Jounral of Immunology, 6: 511-519, 1976), or phage antibody libraries (Clackson et al, Nature, 352: 624). -628, 1991; Marks et al, J. Mol. Biol., 222 (58): 1-597, 1991).
- Antibodies prepared by the above method can be isolated and purified using methods such as gel electrophoresis, dialysis, salt precipitation, ion exchange chromatography, affinity chromatography, and the like.
- the antibody of this invention also contains recombinant antibodies, such as a humanized antibody.
- Antibodies used in the present invention include functional fragments of antibody molecules as well as complete forms having two full length light chains and two full length heavy chains.
- a functional fragment of an antibody molecule means a fragment having at least antigen binding function, and includes Fab, F (ab '), F (ab') 2 , Fv, and the like.
- the present invention relates to a kit for predicting prognosis of breast cancer, comprising the composition for predicting prognosis of breast cancer.
- the kit of the present invention confirms whether the marker gene is overexpressed in a test subject by confirming mRNA expression level or protein expression level of a marker gene having differentially increased expression in a breast cancer relapse group, and expressing the expression in a non-recurring breast cancer group.
- the prognostic probability of recurrence of breast cancer can be predicted by confirming whether the marker gene is overexpressed in the test subject.
- the kit of the present invention can predict the prognosis of breast cancer recurrence by detecting the marker by detecting the mRNA expression level or the protein expression level of the marker gene.
- the marker detection kit of the present invention includes one primer suitable for analysis as well as a primer, a probe for measuring the expression level of a marker gene that can predict the recurrence of breast cancer, or an antibody that selectively recognizes a protein encoded from the marker gene.
- Other component compositions, solutions or devices may be included.
- the kit for measuring the mRNA expression level of the marker genes in the present invention may be a kit containing the essential elements required to perform RT-PCR.
- the RT-PCR kit includes test tubes or other appropriate containers, reaction buffers, enzymes such as deoxynucleotides (dNTPs), Taq-polymerase and reverse transcriptase, DNase, RNase inhibitors, DEPC- It may include water (DEPC-water), sterile water and the like.
- the kit of the present invention may be in the form of a microarray for prognostic predicting the possibility of recurrence of breast cancer comprising one or more of the marker genes according to the present invention.
- the microarray may comprise a DNA or RNA polynucleotide probe.
- the microarray includes a conventional microarray configuration except that it includes a probe specific for the nucleotide sequence of the prognostic marker gene of breast cancer according to the present invention.
- the microarray of the present invention may provide information useful for predicting prognosis of breast cancer by detecting overexpression of the prognostic marker gene of breast cancer according to the present invention.
- DNA microarrays include, but are not limited to, the method according to the present invention by a method using a micropipetting or pin type spotter using a piezoelectric method.
- Probes for marker genes can be immobilized on a substrate.
- the substrate of the microarray of the present invention is preferably coated with an active group selected from the group consisting of amino-silane, poly-L-lysine and aldehyde, but not limited thereto. It doesn't happen.
- the substrate is preferably selected from the group consisting of slide glass, plastic, metal, silicon, nylon membrane and nitrocellulose membrane, but is not limited thereto.
- hybridization of nucleic acids on microarrays and detection of hybridization results are well known in the art.
- the detection involves labeling a nucleic acid sample with a labeling substance capable of generating a detectable signal comprising a fluorescent substance, such as a substance such as Cy3 and Cy5, and then hybridizing onto a microarray and generating a signal from the labeling substance.
- the hybridization result can be detected by detecting.
- the kit for measuring the expression level of the protein encoded from the marker genes in the present invention is a substrate, a suitable buffer, a secondary antibody labeled with a chromophore or fluorescent substance, chromophores, etc. for immunological detection of the antibody It may include.
- a substrate a nitrocellulose membrane, a 96-well plate synthesized with a polyvinyl resin, a 96-well plate synthesized with a polystyrene resin, a slide glass made of glass, etc. may be used, and a peroxidase (peroxidase) may be used. ), Alkaline phosphatase and the like can be used.
- ABTS 2,2'-azino-bis- (3-ethylbenzothiazoline-6-sulfonic acid)
- OPD o-phenyl
- Rendiamine TMB (tetramethyl benzidine) and the like can be used.
- the present invention provides an mRNA of at least five genes each selected from the group consisting of genes with differentially increased expression in a breast cancer relapse group and genes with differentially increased expression in a non-breast cancer cancer group or A method of providing information necessary for predicting the prognosis of breast cancer, comprising measuring the expression level of proteins encoded by these genes.
- steps 1) to 4) may be performed in the order as described above, and may be performed simultaneously with steps 1) and 3) followed by steps 2) and 4) simultaneously.
- sample of an individual includes a sample such as tissue, cells, whole blood, serum, plasma, saliva, sputum, cerebrospinal fluid, or urine isolated from an individual who has undergone surgery and / or chemotherapy for breast cancer. However, it is not limited to these.
- Assays for measuring mRNA expression levels include, but are not limited to, reverse transcriptase polymerase reaction, competitive reverse transcriptase polymerase reaction, real time reverse transcriptase polymerase reaction, RNase protection assay, northern blotting, and DNA microarray chip. It doesn't happen.
- the analysis method it is possible to compare the mRNA expression level of the normal control sample and the mRNA expression level in the suspected breast cancer recurrence, and to determine whether the expression level of the marker gene to mRNA is significantly increased or decreased.
- the prognosis can be predicted by recurrence.
- the mRNA expression level can be measured using a DNA microarray chip, preferably using a reverse transcriptase polymerization reaction using a primer specific for the gene used as a marker or a probe specific to the gene used as the marker.
- the present invention by performing a reverse transcriptase polymerization reaction using a primer specific for the marker gene, electrophoresis of the product to confirm the band pattern and the thickness of the band to determine the prognostic marker of the breast cancer.
- electrophoresis of the product By measuring the mRNA expression level and comparing it with the expression level of the normal control it is possible to easily predict the probability of recurrence of breast cancer.
- the expression level of five or more genes among the genes of SEQ ID NOs: 1 to 50 is increased, whereas the expression level of five or more genes among the genes of SEQ ID NOs: 51 to 100 is high, and thus the probability of recurrence of breast cancer is high.
- the prognosis can be predicted.
- the DNA microarray chip is a DNA chip in which the nucleic acid corresponding to the marker gene or fragment thereof is attached to a glass-like substrate with high density, and isolates the mRNA from the sample, and the fluorescent material is labeled at the end or the inside thereof.
- cDNA probes can be prepared, hybridized to DNA chips, and predicted for prognostic probability of breast cancer recurrence.
- the analysis method using the DNA microarray chip may include the following steps.
- the method can be performed by breast cancer when the mRNA expression level of at least 5 genes of the genes of SEQ ID NOs: 1-50 is increased while the mRNA expression level of at least 5 genes of the genes of SEQ ID NOs: 51 to 100 is decreased.
- the prognosis can be predicted to be high in recurrence.
- Cy3, Cy5, FITC (poly L-lysine-fluorescein isothiocyanate), RITC (rhodamine-B-isothiocyanate), rhodamine (rhodamine) and the like can be used, but are not limited thereto.
- the DNA microarray chip may use a 36k Human V4.0 OpArray oligomicroarray (Operon, Germany) or a whole human genome oligo microarray (Agilent, USA), but is not limited thereto. It is not.
- the amount of antigen-antibody complex formation in the normal control group and the amount of antigen-antibody complex formation in the suspected breast cancer recurrence can be compared, and whether there is a significant increase in the expression level of the marker gene to the protein.
- the prognosis may be predicted for the possibility of actual breast cancer recurrence of the suspected breast cancer recurrence.
- antigen-antibody complex means a combination of a marker protein and an antibody specific thereto, and the amount of antigen-antibody complex formed can be quantitatively determined through the intensity of a signal of a detection label. Do.
- Protein expression levels can be measured using, for example, ELISA.
- ELISA is a direct ELISA using a labeled antibody that recognizes an antigen attached to a solid support, an indirect ELISA using a labeled antibody that recognizes a capture antibody in a complex of antibodies that recognize an antigen attached to a solid support, attached to a solid support
- Direct sandwich ELISA using another labeled antibody that recognizes the antigen in the antibody-antigen complex a labeled antibody that recognizes the antibody after reacting with another antibody that recognizes the antigen in the complex of the antigen with the antibody attached to the solid support
- Various ELISA methods include indirect sandwich ELISA using secondary antibodies.
- the detection method comprises a method of examining the expression level of the marker protein in the non-recurring breast cancer group and the expression level of the marker protein in the suspected breast cancer recurrence group.
- mRNA or protein levels can be expressed as absolute (eg ⁇ g / ml) or relative (eg relative intensity of signals) differences of the marker proteins described above.
- Paraffin embedding blocks are prepared by methods well known in the art after immobilization of tissues from suspected breast cancer recurrence. After making them into slices of several ⁇ m thickness and attaching them to glass slides to prepare tissue slice slides, the antibodies specific for the marker proteins according to the present invention are reacted according to a known method. Subsequently, the unreacted antibody can be washed out, reacted with a color reagent to observe the immune response, and the expression level of the marker protein can be observed under a microscope.
- a protein chip in which one or more antibodies against the marker are arranged at a predetermined position on the substrate and immobilized at high density may be used.
- the protein is separated from the sample, and the separated protein is hybridized with the protein chip to form an antigen-antibody complex, which is read to confirm the presence or expression level of the breast cancer. Prognosis can be predicted by the likelihood of relapse.
- the present invention is directed to a protein encoded by a gene each selected from the group consisting of genes with differentially increased expression in a breast cancer relapse group and genes with differentially increased expression in a non-breast cancer cancer group.
- the present invention relates to a method for screening a test substance that treats a substance to promote or inhibit the activity of a protein as a relapse inhibitor of breast cancer.
- test substance that activates the expression of a gene selected from SEQ ID NOS: 51 to 100 while inhibiting the expression of a gene selected from SEQ ID NOs: 1 to 50 by comparing the expression level of the test substance treated cells with that of an untreated cell. It may include the step.
- test agent includes any substance, molecule, element, compound, entity, or combination thereof. Examples include, but are not limited to, proteins, polypeptides, small organic molecules, polysaccharides, polynucleotides, and the like. It may also be a natural product, synthetic compound or chemical compound or a combination of two or more substances. Unless otherwise indicated, agents, materials, and compounds may be used interchangeably.
- Test substances that can be screened or identified by the methods of the present invention include polypeptides, beta-turnmimetics, polysaccharides, phospholipids, hormones, prostaglandins, steroids, aromatic compounds, heterocyclic compounds, benzodiazepines, Oligomeric N-substituted glycines, oligocarbamates, saccharides, fatty acids, purines, pyrimidines or derivatives thereof, structural analogs or combinations thereof.
- the test substance can be obtained from a wide variety of sources, including libraries of synthetic or natural compounds.
- the test substance may be a peptide such as a peptide having about 5 to 30 amino acids, preferably about 5 to 20 amino acids, more preferably about 7 to 15 amino acids.
- the peptide may be a cleavage of a naturally occurring protein, random peptide or “biased” random peptide.
- the test substance may also be "nucleic acid.”
- Nucleic acid test agents may be naturally occurring nucleic acids, random nucleic acids, or “biased” random nucleic acids. For example, cleavage of the prokaryotic or eukaryotic genome can be used similarly as described above.
- the test substance may also be a "small molecule” (eg, a molecule having a molecular weight of about 1,000 or less).
- the method for screening small molecules may preferably be subjected to a high throughput assay.
- the expression level of the gene of interest is the method described above at the mRNA and / or protein level, such as mRNA expression level reverse transcriptase polymerase reaction, competitive reverse transcriptase polymerase reaction, real-time reverse transcriptase polymerase reaction, RNase protection assay ( RPA), Northern blotting, DNA microarray chip, etc.
- protein expression levels were Western blotting, ELISA, radioimmunoassay, radioimmunoassay, Ouchterlony immunodiffusion, rocket immunoelectrophoresis, immunohistochemical staining , Immunoprecipitation assay, complement fixation assay, FACS, protein chip and the like.
- Prognostic prediction of breast cancer recurrence accurately predicts the possibility of breast cancer recurring within 2 years in patients undergoing surgery or chemotherapy by using differentially expressed genes as predictive markers in non-recurring and recurrent breast cancer groups. But you can predict quickly. Accordingly, the present invention can specifically identify patients with poor prognosis and patients with good prognosis, thereby enabling early selection of breast cancer recurrence and enabling selection and application of appropriate treatments to increase survival of breast cancer patients. have.
- FIG. 1 shows a heatmap and hierarchical clustering of breast cancer prognostic predictive marker genes, which are found to be differentially increased in breast cancer recurrent and non-recurrent groups.
- FIG. 2 shows the statistical significance of hierarchical clustering according to FIG. 1.
- GeneChip Human Gene 1.0 ST Array (Affymetrix) was used to detect differentially expressed genes (DEGs) from breast cancer relapse group and non-relapse group. 100 ng of total RNA was amplified by RT-PCR from tumor tissue samples isolated from each group of breast cancer recurrent and non-recurrent populations and then amplified by the manufacturer's protocol (Affymetrix Whole-Transcript (WT) Sense Target Labeling Protocol). According to the biotin (biotin) was labeled. 5.5 ⁇ g of biotin-labeled sense DNA was hybridized to the gene chip human genome 1.0 ST array, followed by streptavidin-phycoerythrin and biotinylated anti-streptavidin antibody according to the protocol. -streptavidin antibody) was used for staining and scanning.
- DEGs differentially expressed genes
- Marker transcripts to be used to predict recurrence of breast cancer were determined using the following two methods.
- transcripts are selected from the total 28,000 transcripts obtained in the microarray analysis of Example ⁇ 1-2> in the order of high variation, and then a transcript network analysis is performed to determine the hub transcripts. Selected. Subsequently, the subjects were divided into breast cancer relapse group and non-relapse group by using a modified t-test and examined whether there was a difference in mRNA expression levels in the two groups. The transcripts were ranked in descending order of the p-values (ie, in significant order) from the t-test results.
- the transcript with low expression i.e., log 2 (intensity) is less than 6 in all patient samples
- the transcript with no difference in expression between samples the standard deviation is shorth of the entire transcript before applying the t-test. Less than).
- the transcripts that were highly correlated with relapse among the transcripts selected as the hub transcripts that is, the difference in the amount of expression (multiple changes) between the relapsed group and the non-relapsed group, with a low p value as a result of the t-test.
- the cadaver was selected as a marker transcript to be used to predict the likelihood of recurrence of breast cancer.
- the selected transcripts were divided into transcripts with differentially increased expression in the recurrent breast cancer group and transcripts with differentially increased expression in the non-mammary cancer relapse group, and ranked in the order of low p value in each group. Subsequently, the highest ranked transcript was verified by using LOO one out cross-validation, increasing the number of transcripts by the number of transcripts in each group.
- the LOO cross-validation method is as follows.
- One of the 46 patients was selected and set as the test set, and the remaining 45 were set as the training set.
- the prognosis of the experimental set was predicted. This process can be repeated 46 times to obtain prognostic results for each patient.
- the results were integrated to calculate the predictive rate of recurrence of breast cancer.
- the algorithm with the highest prediction accuracy was selected by applying various supervised machine learning algorithms. The algorithm used in this example is as follows:
- LDA Linear Discriminant Analysis
- SVM Support Vector Machines
- GLM Generalized Linear Models
- Recursive Partitioning and Regression Trees Learning Vector Quantization
- Table 2 shows the results of applying the prediction algorithm according to the LOO method by selecting the number of ranked transcripts after applying the hub transcript search and the intermediate t-test using the data of 46 subjects.
- FIG. 1 shows the transcripts found to be differentially increased in the breast cancer recurrence group
- Table 4 shows the transcripts that were differentially increased in the non-breast cancer cancer group.
- FIG. 2 shows the statistical significance of the hierarchical clustering shown in FIG. 1, and shows the AU (approximately unbiased test) and BP (bootstrapping) values together with the drawings.
- Prognostic prediction of breast cancer recurrence can accurately and quickly predict the likelihood of breast cancer recurring within two years in patients undergoing surgery or chemotherapy.
- the present invention can specifically identify patients with poor prognosis and patients with good prognosis, thereby enabling early selection of breast cancer recurrence and enabling selection and application of appropriate treatments to increase survival of breast cancer patients. have.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Pathology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Organic Chemistry (AREA)
- Urology & Nephrology (AREA)
- Biotechnology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Genetics & Genomics (AREA)
- Oncology (AREA)
- Hospice & Palliative Care (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Cell Biology (AREA)
- Food Science & Technology (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
본 발명은 유방암의 예후 예측을 위한 마커 유전자의 발현수준을 측정하는 제제를 포함하는 유방암의 예후 예측용 조성물, 상기 조성물을 포함하는 유방암의 예후 예측용 키트, 상기 유방암의 예후 예측 마커를 이용하여 유방암의 재발 가능성을 비롯한 예후 예측에 필요한 정보를 제공하는 방법에 관한 것이다. 본 발명에 따른 유방암 재발의 예후 예측은 유방암 비재발군과 재발군에서 차등적으로 발현된 유전자들을 예후 예측 마커로 사용함으로써 수술 또는 항암 화학요법을 시술 받은 환자에게서 2년 이내에 유방암이 재발할 가능성을 정확하면서도 신속하게 예측할 수 있고, 그로 인해 재발 가능성이 높은 환자를 위한 적절한 치료법의 선발을 가능케 할 뿐만 아니라 환자의 생존율을 높이는데 크게 기여할 수 있다.
Description
본 발명은 유방암의 예후를 예측하기 위한 마커 유전자의 발현수준을 측정하는 제제를 포함하는 유방암의 예후 예측용 조성물, 상기 조성물을 포함하는 유방암의 예후 예측용 키트, 상기 마커 유전자의 발현수준을 측정하여 유방암의 예후를 예측하는데 필요한 정보를 제공하는 방법, 및 상기 마커 유전자에 의해 코딩되는 단백질에 시험물질을 처리하여 단백질의 활성을 촉진 또는 억제하는 시험물질을 유방암의 재발 억제제로 스크리닝하는 방법에 관한 것이다.
현재 한국의 여성들은 고칼로리 영양식, 저출산, 초산 연령, 모유 수유 기피 등으로 인해 유방암 재발률이 높아지고 있다. 우리나라 유방암 재발률은 40대에 40%로 최고에 달하며, 이후 50대, 30대, 60대, 70대, 20대 순으로 연령에 관계없이 발생한다. 하지만 개선된 검출방법, 집단 스크리닝(mass screening) 및 과거 십 년간에 걸친 치료방법의 발달로 유방암으로 진단된 여성의 생존률이 현저하게 증가하고 있다. 오늘날, 유방암 환자들 중 약 80%는 생존율이 가장 높은 질병의 초기 단계에 진단되고 있으며, 그 결과 유방암 환자의 약 85%는 진단 후 적어도 5년 이상 생존하는 것으로 나타났다.
이러한 진단기술의 발전에도 불구하고, 초기 단계에서 유방암으로 진단된 여성의 약 20%는 10년 후 예후가 나빠, 재발, 전이되거나 또는 이 기간 내에 사망하기도 한다. 그러나, 나머지 80%의 유방암 환자는 10년 후 예후가 우수하여, 추가적인 적극적 보조요법(예, 화학치료)을 요구하지 않는다. 즉, 초기 단계의 임파선-음성(node-negative) 유방암 환자들 중 적어도 일부는 보조적인 화학치료를 받아야 하지만, 환자에 대한 보다 적합한 치료를 위해서는 이들을 위험군별로 분류하여 치료하는 것이 요구된다.
실제로 초기 단계의 암환자 대다수는 수술 및/또는 방사선 치료 이후에 추가적인 치료가 없이도 장기간 생존하므로, 이러한 환자들 모두에게 적극적 보조요법을 추천하는 것은, 암의 화학치료와 관련된 상당한 부작용을 고려할 때 부적절한 것임에 틀림없다. 또한, 초기 단계의 유방암 환자 집단을 초기 진단으로 예후가 양호한 그룹과 양호하지 않은 그룹으로 구분하는 것은 임상학자들이 적합한 치료방법을 선정하는데 유용할 것이다. 따라서, 유방암, 특히 초기 단계의 유방암 환자의 예후를 평가하는 방법의 개발이 절실히 필요한 실정이다.
현재까지 상당수 연구는 유방암 예후를 분석하고 치료반응을 예측하기 위한 방법 및 인자의 동정에 집중되어 있다. 예후 표시자(indicator)는 종양 크기, 림프절 상태 및 조직학적 등급뿐만 아니라 예후에 대한 일부 정보를 제공하며 특정 치료제에 반응할 것 같은 분자 마커와 같은, 통상적인 많은 인자를 포함한다. 예컨대, 에스트로겐(ER) 및 프로게스테론(PR)의 스테로이드 호르몬 수용체 상태 측정법은 유방암 환자의 평가에 통상적으로 수행되는 과정이다(Fitzgibbons et al., Arch. Pathol. Lab. Med., 124: 966-978, 2000). 호르몬 수용체 양성인 종양은 호르몬 요법에 반응할 것임이 틀림없으며, 또한 전형적으로 보다 덜 적극적으로 증식하므로, ER+/PR+ 종양이 있는 환자의 예후는 보다 양호한 편이다.
또한, 인간 상피세포 성장인자 수용체 2(HER-2/neu)의 과다 발현은 양호하지 않은 유방암 예후와 관련성이 있다고 알려져 있다. 현재, 유방 종양에서의 Her2/neu 발현수준을 이용하여 항-Her-2/neu 항체 치료제인 트라스투주맙(trastuzumab)(Herceptin; Genentech)에 대한 반응을 예측하는 방법이 개발되어 있다. 또한, 유방암의 약 1/3은 종양 억제유전자 p53에 돌연변이가 있으며, 이러한 돌연변이는 질병의 공격성 증가 및 양호하지 않은 예후와 연관되어 있다고 알려져 있다. 또한, 비-히스톤성 핵 단백질로 세포 증식 마커인 Ki-67의 과다 발현은 유방암의 양호하지 않은 예후와 상관성이 있음이 입증되었다.
상기와 같은 예후 기준 및 분자 마커는 환자의 운명을 예측하고 적절한 치료방법을 선정하는데 일부 지침을 제공하지만, 유방암의 재발 및 예후, 특히 초기 단계의 유방암 환자를 평가하는 특이적이며 민감한 방법으로서는 부족하여 새로운 방법의 개발이 매우 필요한 실정이다. 이러한 방법은 예후가 양호한 유방암 환자와 예후가 양호하지 않은 유방암 환자를 특이적으로 식별할 수 있어야 하며, 적극적인 보조요법이 요구되는 초기 단계의 고위험도 유방암 환자를 식별할 수 있어야 한다. 하지만 현재까지 유방암에 대해 높은 예후를 정확하게 예측할 수 있는 마커나 방법은 개발되지 않았다.
이러한 배경 하에서, 본 발명자들은 유방암의 예후 예측, 특히 유방암 치료 후 재발 가능성 및 2년 생존 예후를 예측할 수 있는 마커를 개발하기 위해 예의 노력한 결과, 유방암 재발군과 비재발군에서 차등적으로 발현된 유전자를 탐색하고 이들 유전자의 변화 양상을 관찰하여 변화가 가장 많은 유전자를 마커 유전자로 발굴하였고, 이들 마커 유전자를 이용하면 외과적 수술 및/또는 항암 화학요법을 시술 받은 유방암 환자에서 2년 이내에 전신 또는 국소 재발에 대한 예후를 정확하게 판단할 수 있음을 확인하고 본 발명을 완성하였다.
본 발명의 목적은 유방암 재발군 및 비재발군에서 차등적으로 발현된 유전자들로 구성된 군으로부터 선택된 각각 5개 이상의 유전자의 mRNA 또는 이들 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 제제를 포함하는, 유방암의 예후 예측용 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기 조성물을 포함하는 유방암의 예후 예측용 키트를 제공하는 것이다.
본 발명의 또 다른 목적은 유방암 재발군 및 비재발군에서 차등적으로 발현된 유전자들로 구성된 군으로부터 선택된 각각 5개 이상의 유전자의 mRNA 또는 이들 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 단계를 포함하는, 유방암의 예후를 예측하는데 필요한 정보를 제공하는 방법을 제공하는 것이다.
본 발명의 다른 목적은 유방암 재발군 및 비재발군에서 차등적으로 발현된 유전자들로 구성된 군으로부터 선택된 각각의 유전자에 의해 코딩되는 단백질에 시험물질을 처리하여 단백질의 활성을 촉진 또는 억제하는 시험물질을 유방암의 재발 억제제로 스크리닝하는 방법에 관한 것이다.
하나의 양태로서, 본 발명은 유방암 재발군에서 차등적으로 발현이 증가된 서열번호: 1 내지 50의 염기서열을 갖는 유전자들 및 유방암 비재발군에서 차등적으로 발현이 증가된 서열번호: 51 내지 100의 염기서열을 갖는 유전자들로 구성된 군으로부터 선택된 각각 5개 이상의 유전자의 mRNA 또는 이들의 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 제제를 포함하는, 유방암의 예후 예측용 조성물에 관한 것이다.
바람직한 일 실시태양으로, 본 발명에 따른 유방암의 예후 예측용 조성물은 유방암 재발군에서 차등적으로 발현이 증가된 서열번호: 1 내지 50의 염기서열을 갖는 유전자들로부터 선택된 5개 이상의 유전자, 바람직하게는 10개 이상의 유전자, 더욱 바람직하게는 20개 이상의 유전자를 예후 마커 유전자로 선택하고, 유방암 비재발군에서 차등적으로 발현이 증가된 서열번호: 51 내지 100의 염기서열을 갖는 유전자들로부터 선택된 5개 이상의 유전자, 바람직하게는 10개 이상의 유전자, 더욱 바람직하게는 20개 이상의 유전자를 예후 마커 유전자로 선택하여, 상기 선택된 마커 유전자들의 mRNA 또는 이들 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 제제를 포함할 수 있다. 본 발명의 일 구현예에 따르면, 유방암 재발군 및 비재발군에서 차등적으로 발현이 증가된 각각의 유전자군으로부터 5개씩 단위로 개수를 증가시키면서 유전자를 선택한 후 다양한 알고리즘을 적용하여 예측율을 계산하였다.
본 발명에 따른 조성물에서 유방암의 예후 예측을 위한 마커 유전자로서, 서열번호: 1 내지 50의 염기서열을 갖는 유전자들은 유방암 치료 후 2년 이내에 유방암이 재발한 환자군에서 차등적으로 증가된 발현수준을 나타낸 유전자들로, 이들은 각각 SUV39H2(NM_024670), CDC20(NM_001255), CDC45L(NM_003504), CDCA5(NM_080668), CIT(NM_007174), ASF1B(NM_018154), FAM83D(NM_030919), MAD2L1(NM_002358), HJURP(NM_018410), NUP205(NM_015135), TRIP13(NM_004237), EZH2(NM_004456), TOP2A(NM_001067), UBE2C(NM_181802), NCAPH(NM_015341), BUB1B(NM_001211), CENPA(NM_001809), AURKA(NM_198433), NCAPG2(NM_017760), NEK2(NM_002497), C13orf3(NM_145061), PLK4(NM_014264), ORC6L(NM_014321), CDCA8(NM_018101), DEPDC1(NM_001114120), PTTG1(NM_004219), FOXM1(NM_202002), KIF2C(NM_006845), TTK(NM_003318), RRM2(NM_001034), GTSE1(NM_016426), IQGAP3(NM_178229), EXO1(NM_130398), CCNB2(NM_004701), RACGAP1(NM_013277), CHEK1(NM_001274), STIL(NM_001048166), KPNA2(NM_002266), CDC2(NM_001786), DLGAP5(NM_014750), CTPS(NM_001905), TMEM48(NM_018087), CCNA2(NM_001237), FEN1(NM_004111), CKS2(NM_001827), XRCC2(NM_005431), BUB1(NM_004336), MCM10(NM_182751), PLK1(NM_005030) 및 TPX2(NM_012112)이다. 상기 유전자들 중 5개 이상의 유전자의 mRNA 또는 이들 유전자에 의해 코딩되는 단백질의 발현수준이 정상 대조군에 비해 증가하는 경우에는, 유방암의 재발 가능성이 높고 생존 예후가 양호하지 않은 것으로 판단할 수 있다.
본 발명에 따른 조성물에서 유방암의 예후 예측을 위한 마커 유전자로서, 서열번호: 51 내지 100의 염기서열을 갖는 유전자들은 유방암 치료 후 2년 이내에 유방암이 재발하지 않은 환자군에서 차등적으로 증가된 발현수준을 나타낸 유전자들로, 이들은 각각 TLR4(NR_024168), MPEG1(NM_001039396), LRMP(NM_006152), MS4A6A(NM_152852), GIMAP4(NM_018326), DOCK2(NM_004946), AMICA1(NM_001098526), ARHGAP15(NM_018460), ITGA4(NM_000885), PIK3CG(NM_002649), AOAH(NM_001637), C17orf87(AY358809), FAM65B(NM_014722), ITGAL(NM_002209), EVI2B(NM_006495), HCLS1(NM_005335), PTPRC(NM_002838), CD3E(NM_000733), TLR7(NM_016562), CD4(NM_000616), CD53(NM_000560), LCP2(NM_005565), IGSF6(NM_005849), GPNMB(NM_001005340), CYBB(NM_000397), CD96(NM_198196), IL10RA(NM_001558), ALOX5(NM_000698), ARHGAP25(NM_014882), GPR174(NM_032553), FYB(NM_001465), CYTIP(NM_004288), CMKLR1(NM_004072), NCKAP1L(NM_005337), CD84(NM_003874), IL7R(NM_002185), PDCD1LG2(NM_025239), BTK(NM_000061), PRKCB(NM_002738), BIN2(NM_016293), CPVL(NM_019029), ITK(NM_005546), CD86(NM_175862), CD69(NM_001781), GZMK(NM_002104), SH2D1A(NM_002351), LIPA(NM_001127605), ACP5(NM_001111035), CTSS(NM_004079) 및 CD3G(NM_000073)이다. 상기 유전자들 중 5개 이상의 유전자의 mRNA 또는 이들 유전자에 의해 코딩되는 단백질의 발현수준이 정상 대조군에 비해 증가하는 경우에는, 유방암의 재발 가능성이 낮고 생존 예후가 양호한 것으로 판단할 수 있다.
본 발명에 따른 유방암의 예후 예측을 위한 마커로서 선발된 유전자들은 유방암 재발군과 비재발군 사이에 발현수준의 차이를 보이는 차등적으로 발현된 유전자들(differentially expressed genes, DEGs)이다. 즉, 본 발명은 서열번호: 1 내지 50의 염기서열을 갖는, 유방암 재발군에서 차등적으로 발현이 증가된 유전자들, 및 서열번호: 51 내지 100의 염기서열을 갖는, 유방암 비재발군에서 차등적으로 발현이 증가된 유전자들을 유방암의 예후 예측을 위한 마커 유전자로 규명하고, 이들의 발현수준을 측정함으로써 보다 정확하게 유방암의 예후를 예측할 수 있음을 확인하였다.
바람직한 실시태양으로, 본 발명은 유방암의 예후를 예측하기 위하여, 대상에게서 서열번호: 1 내지 50의 염기서열을 갖는 유전자들로부터 선택된 5개 이상의 유전자의 발현수준을 측정하여 증감여부를 확인한 후, 서열번호: 51 내지 100의 염기서열을 갖는 유전자들로부터 선택된 5개 이상의 유전자의 발현수준을 측정하여 증감여부를 확인함으로써 유방암의 예후를 정확하게 예측할 수 있다.
본 발명에 따른 유방암의 예후 예측을 위한 마커 유전자로서 서열번호 1 내지 100의 염기서열을 갖는 유전자들의 특징을 하기 표 1에 정리하였다.
표 1
유전자(NM) | 유전자명 | 위치 | logFC | P.Value | adj.P.Val | SEQ ID NO |
SUV39H2(NM_024670) | suppressor of variegation 3-9 homolog 2 (Drosophila) | 10p13 | 0.9 | 0.000109 | 0.013111 | 1 |
CDC20(NM_001255) | cell division cycle 20 homolog (S. cerevisiae) | 1p34.1 | 1.5 | 0.000122 | 0.013302 | 2 |
CDC45L(NM_003504) | CDC45 cell division cycle 45-like (S. cerevisiae) | 22q11.21 | 1.1 | 0.000137 | 0.013875 | 3 |
CDCA5(NM_080668) | cell division cycle associated 5 | 11q12.1 | 1.2 | 0.000139 | 0.013875 | 4 |
CIT(NM_007174) | citron (rho-interacting, serine/threonine kinase 21) | 12q24 | 1.1 | 0.000167 | 0.014793 | 5 |
ASF1B(NM_018154) | ASF1 anti-silencing function 1 homolog B (S. cerevisiae) | 19p13.12 | 1.3 | 0.000192 | 0.015734 | 6 |
FAM83D(NM_030919) | family with sequence similarity 83, member D | 20q11.22-q12 | 1 | 0.000227 | 0.016494 | 7 |
MAD2L1(NM_002358) | MAD2 mitotic arrest deficient-like 1 (yeast) | 4q27 | 1.3 | 0.000244 | 0.017097 | 8 |
HJURP(NM_018410) | Holliday junction recognition protein | 2q37.1 | 1.1 | 0.000258 | 0.017527 | 9 |
NUP205(NM_015135) | nucleoporin 205kDa | 7q33 | 0.8 | 0.000293 | 0.017933 | 10 |
TRIP13(NM_004237) | thyroid hormone receptor interactor 13 | 5p15.33 | 1.4 | 0.000294 | 0.017933 | 11 |
EZH2(NM_004456) | enhancer of zeste homolog 2 (Drosophila) | 7q35-q36 | 1.2 | 0.000295 | 0.017933 | 12 |
TOP2A(NM_001067) | topoisomerase (DNA) II alpha 170kDa | 17q21-q22 | 1.8 | 0.000322 | 0.017994 | 13 |
UBE2C(NM_181802) | ubiquitin-conjugating enzyme E2C | 20q13.12 | 1.3 | 0.000338 | 0.018163 | 14 |
NCAPH(NM_015341) | non-SMC condensin I complex, subunit H | 2q11.2 | 1.3 | 0.000357 | 0.018606 | 15 |
BUB1B(NM_001211) | budding uninhibited by benzimidazoles 1 homolog beta (yeast) | 15q15 | 1.4 | 0.000379 | 0.01908 | 16 |
CENPA(NM_001809) | centromere protein A | 2p24-p21 | 0.9 | 0.000383 | 0.019114 | 17 |
AURKA(NM_198433) | aurora kinase A | 20q13.2-q13.3 | 1.5 | 0.000405 | 0.019245 | 18 |
NCAPG2(NM_017760) | non-SMC condensin II complex, subunit G2 | 7q36.3 | 1 | 0.000412 | 0.019339 | 19 |
NEK2(NM_002497) | NIMA (never in mitosis gene a)-related kinase 2 | 1q32.2-q41 | 1.4 | 0.000448 | 0.019768 | 20 |
C13orf3(NM_145061) | chromosome 13 open reading frame 3 | 13q12.11 | 1.3 | 0.000471 | 0.019768 | 21 |
PLK4(NM_014264) | polo-like kinase 4 (Drosophila) | 4q28 | 1.2 | 0.000501 | 0.020249 | 22 |
ORC6L(NM_014321) | origin recognition complex, subunit 6 like (yeast) | 16q12 | 0.9 | 0.000569 | 0.021652 | 23 |
CDCA8(NM_018101) | cell division cycle associated 8 | 1p34.3 | 0.9 | 0.000572 | 0.021668 | 24 |
DEPDC1(NM_001114120) | DEP domain containing 1 | 1p31.2 | 1.7 | 0.000588 | 0.021753 | 25 |
PTTG1(NM_004219) | pituitary tumor-transforming 1 | 5q35.1 | 1.3 | 0.000649 | 0.02251 | 26 |
FOXM1(NM_202002) | forkhead box M1 | 12p13 | 1.6 | 0.000661 | 0.02251 | 27 |
KIF2C(NM_006845) | kinesin family member 2C | 1p34.1 | 1.5 | 0.000664 | 0.02251 | 28 |
TTK(NM_003318) | TTK protein kinase | 6q13-q21 | 1.7 | 0.000843 | 0.024926 | 29 |
RRM2(NM_001034) | ribonucleotide reductase M2 polypeptide | 2p25-p24 | 1.2 | 0.000879 | 0.025674 | 30 |
GTSE1(NM_016426) | G-2 and S-phase expressed 1 | 22q13.2-q13.3 | 0.8 | 0.000931 | 0.025995 | 31 |
IQGAP3(NM_178229) | IQ motif containing GTPase activating protein 3 | 1q22-q23.1 | 1.1 | 0.000979 | 0.026534 | 32 |
EXO1(NM_130398) | exonuclease 1 | 1q42-q43 | 1.6 | 0.000997 | 0.02676 | 33 |
CCNB2(NM_004701) | cyclin B2 | 15q22.2 | 1.6 | 0.001031 | 0.027181 | 34 |
RACGAP1(NM_013277) | Rac GTPase activating protein 1 | 12q13.13 | 0.9 | 0.001038 | 0.027181 | 35 |
CHEK1(NM_001274) | CHK1 checkpoint homolog (S. pombe) | 11q24-q24 | 1.3 | 0.00104 | 0.027181 | 36 |
STIL(NM_001048166) | SCL/TAL1 interrupting locus | 1q32|1p32 | 1.2 | 0.001075 | 0.027725 | 37 |
KPNA2(NM_002266) | karyopherin alpha 2 (RAG cohort 1, importin alpha 1) | 17q24.2 | 1.1 | 0.001109 | 0.028145 | 38 |
CDC2(NM_001786) | cell division cycle 2, G1 to S and G2 to M | 10q21.1 | 1.5 | 0.001144 | 0.028406 | 39 |
DLGAP5(NM_014750) | discs, large (Drosophila) homolog-associated protein 5 | 14q22.3 | 1.6 | 0.001203 | 0.028965 | 40 |
CTPS(NM_001905) | CTP synthase | 1p34.1 | 0.8 | 0.001216 | 0.02913 | 41 |
TMEM48(NM_018087) | transmembrane protein 48 | 1p32.3 | 0.7 | 0.001316 | 0.030052 | 42 |
CCNA2(NM_001237) | cyclin A2 | 4q25-q31 | 1.3 | 0.0014 | 0.030769 | 43 |
FEN1(NM_004111) | flap structure-specific endonuclease 1 | 11q12 | 0.7 | 0.001424 | 0.030867 | 44 |
CKS2(NM_001827) | CDC28 protein kinase regulatory subunit 2 | 9q22 | 1.4 | 0.001444 | 0.03105 | 45 |
XRCC2(NM_005431) | X-ray repair complementing defective repair in Chinese hamster cells 2 | 7q36.1 | 1.1 | 0.001474 | 0.031266 | 46 |
BUB1(NM_004336) | budding uninhibited by benzimidazoles 1 homolog (yeast) | 2q14 | 1.4 | 0.001498 | 0.031462 | 47 |
MCM10(NM_182751) | minichromosome maintenance complex component 10 | 10p13 | 1.4 | 0.001598 | 0.03249 | 48 |
PLK1(NM_005030) | polo-like kinase 1 (Drosophila) | 16p12.1 | 1.5 | 0.001599 | 0.03249 | 49 |
TPX2(NM_012112) | TPX2, microtubule-associated, homolog (Xenopus laevis) | 20q11.2 | 1.6 | 0.001738 | 0.0336 | 50 |
TLR4(NR_024168) | toll-like receptor 4 | 9q32-q33 | -1 | 0.000332 | 0.018092 | 51 |
MPEG1(NM_001039396) | macrophage expressed 1 | 11q12.1 | -1.2 | 0.00043 | 0.019656 | 52 |
LRMP(NM_006152) | lymphoid-restricted membrane protein | 12p12.1 | -0.9 | 0.000472 | 0.019768 | 53 |
MS4A6A(NM_152852) | membrane-spanning 4-domains, subfamily A, member 6A | 11q12.1 | -1 | 0.000475 | 0.019801 | 54 |
GIMAP4(NM_018326) | GTPase, IMAP family member 4 | 7q36.1 | -0.9 | 0.000629 | 0.022299 | 55 |
DOCK2(NM_004946) | dedicator of cytokinesis 2 | 5q35.1 | -1 | 0.000691 | 0.022952 | 56 |
AMICA1(NM_001098526) | adhesion molecule, interacts with CXADR antigen 1 | 11q23.3 | -1.3 | 0.000911 | 0.025901 | 57 |
ARHGAP15(NM_018460) | Rho GTPase activating protein 15 | 2q22.2 | -1 | 0.000946 | 0.026202 | 58 |
ITGA4(NM_000885) | integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor) | 2q31.3 | -0.8 | 0.001002 | 0.026826 | 59 |
PIK3CG(NM_002649) | phosphoinositide-3-kinase, catalytic, gamma polypeptide | 7q22.3 | -0.8 | 0.001157 | 0.028489 | 60 |
AOAH(NM_001637) | acyloxyacyl hydrolase (neutrophil) | 7p14-p12 | -1.2 | 0.001188 | 0.028773 | 61 |
C17orf87(AY358809) | chromosome 17 open reading frame 87 | 17p13.2 | -1.2 | 0.001247 | 0.029474 | 62 |
FAM65B(NM_014722) | family with sequence similarity 65, member B | 6p22.3-p21.32 | -0.9 | 0.00126 | 0.029598 | 63 |
ITGAL(NM_002209) | integrin, alpha L (antigen CD11A (p180), lymphocyte function-associated antigen 1; alpha polypeptide) | 16p11.2 | -1 | 0.001678 | 0.033234 | 64 |
EVI2B(NM_006495) | ecotropic viral integration site 2B | 17q11.2 | -1 | 0.00253 | 0.04097 | 65 |
HCLS1(NM_005335) | hematopoietic cell-specific Lyn substrate 1 | 3q13 | -0.8 | 0.002678 | 0.041993 | 66 |
PTPRC(NM_002838) | protein tyrosine phosphatase, receptor type, C | 1q31-q32 | -1.1 | 0.002698 | 0.042066 | 67 |
CD3E(NM_000733) | CD3e molecule, epsilon (CD3-TCR complex) | 11q23 | -0.9 | 0.003016 | 0.04418 | 68 |
TLR7(NM_016562) | toll-like receptor 7 | Xp22.3 | -0.8 | 0.003378 | 0.046538 | 69 |
CD4(NM_000616) | CD4 molecule | 12pter-p12 | -0.9 | 0.003699 | 0.048633 | 70 |
CD53(NM_000560) | CD53 molecule | 1p13 | -0.9 | 0.004192 | 0.052033 | 71 |
LCP2(NM_005565) | lymphocyte cytosolic protein 2 (SH2 domain containing leukocyte protein of 76kDa) | 5q33.1-qter | -0.7 | 0.004244 | 0.052182 | 72 |
IGSF6(NM_005849) | immunoglobulin superfamily, member 6 | 16p12-p13 | -1 | 0.004266 | 0.052356 | 73 |
GPNMB(NM_001005340) | glycoprotein (transmembrane) nmb | 7p15 | -0.8 | 0.004293 | 0.052359 | 74 |
CYBB(NM_000397) | cytochrome b-245, beta polypeptide | Xp21.1 | -0.9 | 0.004379 | 0.052975 | 75 |
CD96(NM_198196) | CD96 molecule | 3q13.13-q13.2 | -1 | 0.004698 | 0.054705 | 76 |
IL10RA(NM_001558) | interleukin 10 receptor, alpha | 11q23 | -0.9 | 0.004769 | 0.055159 | 77 |
ALOX5(NM_000698) | arachidonate 5-lipoxygenase | 10q11.2 | -0.7 | 0.004876 | 0.055816 | 78 |
ARHGAP25(NM_014882) | Rho GTPase activating protein 25 | 2p14 | -0.8 | 0.004938 | 0.056224 | 79 |
GPR174(NM_032553) | G protein-coupled receptor 174 | Xq21.1 | -1.1 | 0.005814 | 0.060514 | 80 |
FYB(NM_001465) | FYN binding protein (FYB-120/130) | 5p13.1 | -0.9 | 0.006002 | 0.061532 | 81 |
CYTIP(NM_004288) | cytohesin 1 interacting protein | 2q11.2 | -1 | 0.006493 | 0.063824 | 82 |
CMKLR1(NM_004072) | chemokine-like receptor 1 | 12q24.1 | -0.9 | 0.006602 | 0.064473 | 83 |
NCKAP1L(NM_005337) | NCK-associated protein 1-like | 12q13.1 | -0.9 | 0.007003 | 0.06609 | 84 |
CD84(NM_003874) | CD84 molecule | 1q24 | -0.9 | 0.00724 | 0.067186 | 85 |
IL7R(NM_002185) | interleukin 7 receptor | 5p13 | -1.3 | 0.007253 | 0.067186 | 86 |
PDCD1LG2(NM_025239) | programmed cell death 1 ligand 2 | 9p24.2 | -0.8 | 0.008232 | 0.072233 | 87 |
BTK(NM_000061) | Bruton agammaglobulinemia tyrosine kinase | Xq21.33-q22 | -0.8 | 0.008351 | 0.072685 | 88 |
PRKCB(NM_002738) | protein kinase C, beta | 16p11.2 | -0.8 | 0.008561 | 0.07376 | 89 |
BIN2(NM_016293) | bridging integrator 2 | 12q13 | -0.8 | 0.008992 | 0.075464 | 90 |
CPVL(NM_019029) | carboxypeptidase, vitellogenic-like | 7p15-p14 | -0.8 | 0.009325 | 0.076915 | 91 |
ITK(NM_005546) | IL2-inducible T-cell kinase | 5q31-q32 | -1 | 0.010571 | 0.081367 | 92 |
CD86(NM_175862) | CD86 molecule | 3q21 | -0.8 | 0.010905 | 0.082802 | 93 |
CD69(NM_001781) | CD69 molecule | 12p13-p12 | -1 | 0.01389 | 0.094682 | 94 |
GZMK(NM_002104) | granzyme K (granzyme 3; tryptase II) | 5q11-q12 | -1.3 | 0.013975 | 0.094887 | 95 |
SH2D1A(NM_002351) | SH2 domain protein 1A | Xq25-q26 | -0.9 | 0.016442 | 0.103285 | 96 |
LIPA(NM_001127605) | lipase A, lysosomal acid, cholesterol esterase | 10q23.2-q23.3 | -0.8 | 0.01649 | 0.103459 | 97 |
ACP5(NM_001111035) | acid phosphatase 5, tartrate resistant | 19p13.3-p13.2 | -0.9 | 0.017312 | 0.105921 | 98 |
CTSS(NM_004079) | cathepsin S | 1q21 | -0.8 | 0.017605 | 0.107052 | 99 |
CD3G(NM_000073) | CD3g molecule, gamma (CD3-TCR complex) | 11q23 | -0.9 | 0.018233 | 0.10899 | 100 |
따라서, 본 발명의 조성물은 유방암의 예후를 예측하기 위해, 서열번호: 1 내지 100의 염기서열을 갖는 유전자들의 mRNA 또는 이들 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 제제를 포함할 수 있다.
본 발명에서 용어, "차등적으로 발현된 유전자(differentially expressed genes, DEGs)"는 정상 또는 대조군 시료에서의 발현에 비하여, 질병, 구체적으로 암, 예를 들어 유방암 환자에서 그의 발현이 보다 높거나 보다 낮은 수준으로 활성화되는 유전자를 말한다. 이 용어는 또한 그의 발현이 동일한 질병의 상이한 병기에서 보다 높거나 보다 낮은 수준으로 활성화되는 유전자를 포함한다. 차등적으로 발현되는 유전자는 핵산 수준 또는 단백질 수준에서 활성화되거나 또는 억제될 수 있거나, 교대 스플라이싱을 통해 상이한 폴리펩티드 산물을 생성시킬 수 있음을 또한 알 수 있다. 이러한 차이는, 예를 들면 폴리펩티드의 mRNA 수준, 표면 발현, 분비 또는 다른 분배에 있어서의 변화에 의해 입증될 수 있다. 차등적인 유전자 발현은 2개 이상의 유전자 또는 이들의 유전자 산물간의 발현 비교, 또는 2개 이상의 유전자 또는 이들의 유전자 산물간의 발현 비율의 비교, 또는 동일한 유전자의 2개의 상이하게 처리된 산물의 비교(이들은 정상 대상과 질병, 구체적으로 유방암을 앓는 대상 사이에서 또는 동일한 질병의 다양한 병기 사이에서 다름)를 포함할 수 있다. 차등적인 발현은, 예를 들면 정상 세포와 질병에 걸린 세포들 사이에서, 또는 상이한 질병 사건 또는 질병 병기를 거치는 세포들 사이에서 유전자 또는 그의 발현 산물에서 일시적인 또는 세포 발현 양상의 정량적 및 정성적 차이를 모두 포함한다. 본 발명의 목적상, "차등적인 유전자 발현"은 정상 및 질병에 걸린 대상에서 또는 질병에 걸린 대상의 질병 발생의 다양한 병기에서 주어진 유전자의 발현 사이에 적어도 약 2배, 바람직하게는 적어도 약 4배, 보다 바람직하게는 적어도 약 6배, 가장 바람직하게는 적어도 약 10배의 차이가 있을 때 존재하는 것으로 간주된다.
본 발명에서 용어, "유방암"은 유방에 생긴 암세포로 이루어진 종괴를 의미하며, 일반적으로는 유방의 유관과 소엽에서 발생한 암을 의미한다. 예컨대, 유방암은 생검(biopsy)에 의해 악성 병리상태로 분류되는 상태로, 유방암 진단의 임상적인 기술은 의학 분야에 잘 알려져 있다. 당업자라면 유방암이, 예컨대 악성 종양 및 육종을 포함한, 유방 조직의 모든 악성을 나타냄을 이해할 것이다. 예시적으로, 유방암은 유방내암(ductal carcinoma in situ, DCIS), 상피내 소엽성 암종(lobular carcinoma in situ, LCIS), 점액성 유방암(mucinous carcinoma), 침윤성 관상피암(infiltrating ductal carcinoma, IDC), 침윤성 소엽내암(infiltrating lobular carcinoma, ILC) 등을 포함한다. 본 발명의 바람직한 실시예에 있어서, 목적 대상자는 실제 유방암으로 진단받아 수술 또는 항암 화학요법 등의 시술을 받은 인간 환자이다.
본 발명에서 용어, "예후"는 유방암과 같은 질환의, 예를 들어 재발, 전이성 확산, 및 약물 내성을 비롯한 유방암-기인성 사망 또는 진행의 가능성 등의 병의 경과 및 완치 여부를 의미한다. 본 발명의 목적상 예후는 유방암 치료 후 전신 또는 국소 재발 가능성을 의미하며, 바람직하게는 유방암의 수술 또는 항암 화학요법을 시술 받은 후 2년 이내에 전신 또는 국소 재발할 지의 여부를 예측하는 것을 의미한다.
본 발명에서 용어, "양호한 예후"는 암 환자, 특히 유방암 환자의 질병이 완치될 가능성을 의미하고, "양호하지 않은 예후"는 투병 중인 암 또는 종양의 재생(relapse) 또는 재발(recurrence), 전이 또는 사망할 가능성이 있음을 의미한다. 양호한 결과를 갖는 것으로 분류된 암 환자는 투병 중인 암 또는 종양이 없는 상태이다. 이와는 반대로, 양호하지 않은 결과의 암 환자는 질병의 재생, 종양 재발, 전이 또는 사망에 이른다. "양호한 예후"는 유방암 환자가 투병 중인 암 또는 종양이 적어도 2년, 보다 구체적으로는 적어도 5년 이상 동안 없는 상태로 있을 수 있음을 의미한다. 본 발명의 다른 측면에서, "양호하지 않은 예후"는 유방암 환자가 5년 미만, 보다 구체적으로는 2년 미만 이내에 질병 재생, 종양 재발, 전이 또는 사망을 경험할 수 있음을 의미한다.
본 발명에서 용어, "예측"이란 환자가 화학요법 또는 방사선 치료 등의 치료법에 대해 선호적으로 또는 비선호적으로 반응하여 환자가 치료, 예를 들어 특정 치료제, 및/또는 원발성 종양의 수술로 제거, 및/또는 암의 재발없이 특정 시기 동안 화학요법으로 치료된 후의 생존 여부 및/또는 가능성과 관련된다. 본 발명의 예측방법은 임의의 특정 환자에 대한 가장 적절한 치료방식을 선택하여 적용함으로써 임상적으로 사용될 수 있다. 본 발명의 예측방법은 환자가, 예를 들어 소정의 치료제 또는 조합물, 외과적 개입, 화학요법 등의 투여를 비롯한 소정의 치료 처방과 같은 치료법에 선호적으로 반응하는지를 확인하거나, 치료 처방 후 환자의 장기 생존 또는 전신 또는 국소 재발이 가능한지를 예측할 수 있다. 또한 이를 통하여 불필요한 보조 항암요법을 최소화하거나 전신 또는 국소 재발이 예측되는 환자에게는 더욱 효과적인 보조 항암요법을 사용할 수 있도록 계획할 수 있다.
본 발명에서 용어, "예후 예측용 조성물"은 유방암에 대한 치료 후 예후가 양호한 환자와 양호하지 않은 환자를 구별하여 재발 가능성을 예측할 수 있는 물질로, 정상 대조군에 비해 유방암 재발군 및 비재발군에서 발현수준의 증가 또는 감소를 보이는 폴리펩타이드 또는 핵산(예: mRNA 등), 지질, 당지질, 당단백 등과 같은 유기 생체분자 등을 예후 예측용 마커로서 포함한다.
본 발명에서 용어, "예후 예측용 마커", "예후 예측을 위한 마커" 또는 "예후 예측 마커(prognosis marker)"란 유방암 세포를 정상 세포와 구분하여 유방암 치료 후 재발 여부를 비롯한 예후를 예측할 수 있는 물질이다. 본 발명의 목적상 유방암 진단 후 수술 또는 화학요법을 시술받고 2년 이내에 전신 또는 국소 재발 여부를 결정하여 예후가 양호한 환자와 양호하지 않은 환자를 구별할 수 있는 마커를 의미한다.
유의성 있는 예후 예측 마커의 선택과 적용은 예후 예측 결과의 신뢰도를 결정짓는다. "유의성 있는 예후 예측 마커"란, 예후 예측하여 얻은 결과가 정확하여 타당도(validity)가 높고 반복 측정 시에도 일관된 결과를 나타내도록 신뢰도(reliability)가 높은 마커를 의미한다. 본 발명에 따른 유방암의 예후 예측 마커는, 유방암의 전신 또는 국소 재발과 함께 직접적 또는 간접적 요인으로 발현이 항상 증가하거나 감소하는 유전자들로서, 반복된 실험에도 동일한 결과를 나타낸다. 또한, 이들은 발현수준의 차이가 대조군과 비교할 때 매우 커서 잘못된 결과를 내린 확률이 거의 없는 신뢰도가 높은 마커들이다. 본 발명의 바람직한 실시예에 따르면, 다양한 알고리즘의 반복 실시를 통해 예견 정확성이 가장 높은 알고리즘을 선택하여 실시하였으며, 그 결과 유방암 재발군과 비재발군에서 차등적으로 발현된 유전자들로서 서열번호: 1 내지 100의 염기서열을 갖는 유전자들이 가장 신뢰도가 높은 것으로 선택되었다. 따라서, 본 발명의 유의성 있는 예후 예측 마커의 발현정도를 측정하여 얻은 결과를 토대로 예후 예측된 결과는 타당하게 신뢰할 수 있다.
본 발명에서 유방암의 예후 예측 마커로 선택된 상기 유전자들과 유방암 또는 이의 재발과의 관련성 및 유방암에 있어서 상기 유전자들의 구체적인 기능에 대해서는 현재까지 보고된 바 없다. 본 발명자들은 다음과 같은 과정을 통하여 상기 유전자들이 유방암의 예후 예측용 마커가 될 수 있음을 규명하였다.
본 발명자들은 유방암 수술 후 2년 이내에 전신 또는 국소 재발이 발생한 환자군과 발생하지 않은 환자군을 대상으로 각 환자군의 mRNA를 추출한 후 이를 mRNA 마이크로어레이(microarray)로 분석하였다. 유전자 네트워크 분석(network analysis)을 통해 허브 유전자(hub gene)를 선정하고, 선정된 허브 유전자 중 유방암 재발과 유의한 상관성을 보이는 유전자를 선택한 후 LOO(Leave-one-out) 교차 검증 방법에 따라 예측 알고리즘을 적용하였다. 그 결과, k-최근접 이웃(k-Nearest Neighbor, k-NN), 안정화 선형 판별 분석(Stabilized Linear Discriminant Analysis) 및 지지 벡터 머신(Support Vector Machines, SVM) 알고리즘을 적용하였을 때 전체 예측율이 89.1%로 가장 높게 나타났으며, 이 경우 재발 예측율은 97.1%로, 비재발 예측율 63.6%로 나타났다. 또한, 예측에 사용된 전사체 수를 10 내지 100개로 증가시켜도 k-최근접 이웃 알고리즘이나 지지 벡터 머신 알고리즘을 사용한 경우에는 예측율이 크게 달라지지 않는 것으로 나타났다(표 2 참고). 상기의 결과들을 종합하여, 유방암 재발군과 비재발군에서 차등적으로 발현된 유전자로서, 유방암의 재발 가능성을 예측할 수 있는 예후 마커 유전자로서 서열번호: 1 내지 100의 염기서열을 갖는 100개 유전자를 선발하였다(표 3 및 4 참고).
본 발명에서 용어, "유전자 또는 전사체(transcript)"는 혼용하여 사용될 수 있다.
본 발명에서 용어, "mRNA 발현수준 측정"은 유방암의 예후를 예측하기 위하여 생물학적 시료에서 마커 유전자의 mRNA 존재 여부와 발현정도를 확인하는 과정으로, mRNA의 양을 측정함으로써 알 수 있다. 이를 위한 분석방법으로는 RT-PCR, 경쟁적 RT-PCR(competitive RT-PCR), 실시간 RT-PCR(Real-time RT-PCR), RNase 보호 분석법(RPA; RNase protection assay), 노던 블랏팅(northern blotting), DNA 마이크로어레이 칩 등이 있으나, 이들로 한정되는 것은 아니다.
본 발명에 따른 유방암의 예후 마커 유전자의 mRNA 수준을 측정하는 제제는 바람직하게는 안티센스 올리고뉴클레오티드, 프라이머 쌍 또는 프로브이며, 상기 마커 유전자의 염기서열을 바탕으로 이들 유전자의 특정 영역을 특이적으로 증폭하는 프라이머 또는 프로브를 고안할 수 있다. 본 발명에 따른 유방암의 예후 마커 유전자의 염기서열은 유전자뱅크(GenBank)에 등록되어 당해분야에 공지된 상태이므로, 당업자는 상기 염기서열을 바탕으로 이들 유전자의 특정 영역을 특이적으로 증폭할 수 있는 프라이머 또는 프로브를 디자인할 수 있다.
본 발명에서 용어, "안티센스"는 안티센스 올리고머가 왓슨-크릭 염기쌍 형성에 의해 RNA 내의 표적 서열과 혼성화되어 표적 서열 내에서 전형적으로 mRNA와 헤테로이중체를 형성할 수 있는 뉴클레오티드 염기서열 및 서브유닛간 백본을 갖는 올리고머를 지칭한다. 올리고머는 표적 서열에 대한 정확한 서열 상보성 또는 유사 상보성을 가질 수 있다. 이 안티센스 올리고머는 mRNA의 번역을 차단 또는 저해하고 mRNA의 스플라이스 변이체를 생산하는 mRNA의 프로세싱 과정을 변화시킬 수 있다.
본 발명에서 용어, "프라이머"는 적절한 완충액 중의 적절한 조건(예를 들면, 4개의 다른 뉴클레오시드 트리포스페이트 및 DNA, RNA 폴리머라제 또는 역전사 효소와 같은 중합제) 및 적절한 온도 하에서 주형-지시 DNA 합성의 시작점으로서 작용할 수 있는 단일가닥 올리고뉴클레오티드를 말한다. 상기 프라이머의 적절한 길이는 사용 목적에 따라 달라질 수 있으나, 통상 15 내지 30개 뉴클레오티드이다. 짧은 프라이머 분자는 일반적으로 주형과 안정한 혼성체를 형성하기 위해서 더 낮은 온도를 필요로 한다. 프라이머 서열은 주형과 완전하게 상보적일 필요는 없으나, 주형과 혼성화할 정도로 충분히 상보적이어야 한다. 본 발명에서는 본 발명에 따른 유방암의 예후 마커 유전자에 대한 정방향 및 역방향 프라이머를 사용하여 PCR 증폭을 수행한 후 PCR 생성물의 증폭 여부를 통해 뇌종양의 재발 가능성 및 2년 생존 예후를 예측할 수 있다.
본 발명에서 용어, "프로브"는 mRNA와 특이적 결합을 이룰 수 있는 짧게는 수개 염기 내지 길게는 수백 개 염기에 해당하는 RNA 또는 DNA 등의 핵산 단편을 의미한다. 프로브는 올리고 뉴클레오티드 프로브, 단일가닥 DNA 프로브, 이중가닥 DNA 프로브, RNA 프로브 등의 형태로 제작될 수 있다. 본 발명에서는 본 발명에 따른 마커 유전자에 대해 상보적인 프로브를 이용하여 혼성화를 실시한 후, 혼성화 여부를 통해 유방암의 재발 여부를 비롯한 예후를 예측할 수 있다. 적당한 프로브의 선택 및 혼성화 조건은 당해분야에 공지된 것을 기초로 변형할 수 있다.
본 발명에 따른 안티센스 올리고뉴클레오티드, 프라이머 또는 프로브는 포스포르아미다이트 고체 지지체 방법을 비롯한 당해분야에 널리 공지된 방법을 사용하여 화학적으로 합성할 수 있다. 이러한 핵산 서열은 또한 당해분야에 공지된 많은 수단을 이용하여 변형시킬 수 있다. 이러한 변형의 비-제한적인 예로는 메틸화, 캡핑, 천연 뉴클레오티드 하나 이상의 동족체로의 치환, 및 뉴클레오티드간의 변형, 예를 들면, 하전되지 않은 연결체(예: 메틸포스포네이트, 포스포트리에스테르, 포스포로아미데이트, 카바메이트 등) 또는 하전된 연결체(예: 포스포로티오에이트, 포스포로디티오에이트 등)로의 변형이 있다.
본 발명에서 용어, "단백질의 발현수준 측정"은 유방암 재발 가능성을 예후 예측하기 위하여 생물학적 시료에서 마커 유전자로부터 코딩된 단백질의 존재 여부와 발현수준을 확인하는 과정으로, 상기 단백질에 대하여 특이적으로 결합하는 항체를 이용해 단백질의 양을 확인한다. 이를 위한 분석방법으로는 웨스턴 블랏팅(western blotting), ELISA(enzyme linked immunosorbent assay), 방사선면역분석법(radioimmunoassay), 방사면역확산법(radioimmunodiffusion), 오우크레로니(Ouchterlony) 면역확산법, 로케트(Rocket) 면역전기영동, 면역조직화학염색, 면역침전분석(immunoprecipitation assay), 보체고정분석(complete fixation assay), FACS, 단백질 칩(protein chip) 등이 있으나, 이들로 한정되는 것은 아니다.
본 발명에서 용어, "항체"는 당해분야에 공지된 용어로서, 항원성 부위에 대해서 지시되는 특이적인 단백질 분자를 의미한다. 본 발명의 목적상, 항체는 본 발명의 마커 유전자로부터 코딩된 단백질에 대해 특이적으로 결합하는 항체를 의미하며, 이러한 항체는 각 유전자를 통상적인 방법에 따라 발현벡터에 클로닝하여 상기 마커 유전자에 의해 코딩되는 단백질을 얻은 후, 얻어진 단백질로부터 통상적인 방법에 의해 제조될 수 있다. 여기에는 상기 단백질에서 만들어질 수 있는 펩티드 단편도 포함되며, 본 발명의 펩티드 단편으로는, 최소한 7개 아미노산, 바람직하게는 9개 아미노산, 더욱 바람직하게는 12개 이상의 아미노산을 포함한다. 본 발명의 항체는 그 형태가 특별히 제한되지 않으며, 다중클론 항체, 단일클론 항체 또는 항원 결합성을 갖는 것이라면 그것의 일부도 본 발명의 항체에 포함되고, 모든 면역글로불린 항체가 포함된다.
상기한 바와 같이 유방암의 예후 예측 마커 유전자가 규명되었으므로, 이를 이용하여 항체를 생성하는 것은 당업계에 널리 공지된 기술을 이용하여 용이하게 제조할 수 있다. 다중클론 항체는 상기한 유방암의 예후 예측 마커 유전자로부터 코딩되는 단백질 항원을 동물에 주사하고 동물로부터 채혈하여 항체를 포함하는 혈청을 수득하는 당해분야에 널리 공지된 방법에 의해 생산할 수 있다. 이러한 다중클론 항체는 염소, 토끼, 양, 원숭이, 말, 돼지, 소 개 등의 임의의 동물 종 숙주로부터 제조 가능하다. 단클론 항체는 당해분야에 널리 공지된 하이브리도마 방법(hybridoma method)(Kohler 및 Milstein, European Jounral of Immunology, 6: 511-519, 1976), 또는 파지 항체 라이브러리(Clackson et al, Nature, 352: 624-628, 1991; Marks et al, J. Mol. Biol., 222(58): 1-597, 1991) 기술을 이용하여 제조될 수 있다. 상기 방법으로 제조된 항체는 겔 전기영동, 투석, 염 침전, 이온교환 크로마토그래피, 친화성 크로마토그래피 등의 방법을 이용하여 분리, 정제할 수 있다.
나아가, 본 발명의 항체에는 인간화 항체 등의 재조합 항체도 포함된다. 본 발명에 사용되는 항체는 2개의 전체 길이의 경쇄 및 2개의 전체 길이의 중쇄를 가지는 완전한 형태뿐만 아니라 항체 분자의 기능적인 단편을 포함한다. 항체 분자의 기능적인 단편이란 적어도 항원 결합기능을 보유하고 있는 단편을 뜻하며, Fab, F(ab'), F(ab')2, Fv 등이 있다.
또 하나의 양태로서, 본 발명은 상기 유방암의 예후 예측용 조성물을 포함하는, 유방암의 예후 예측용 키트에 관한 것이다.
본 발명의 키트는 유방암 재발군에서 차등적으로 발현이 증가된 마커 유전자의 mRNA 발현수준 또는 단백질의 발현수준을 확인하여 검사 대상에게서 상기 마커 유전자의 과다 발현 여부를 확인하고, 유방암 비재발군에서 발현이 증가된 마커 유전자의 mRNA 발현수준 또는 단백질의 발현수준을 확인하여 검사 대상에게서 상기 마커 유전자의 과다 발현 여부를 확인함으로써 유방암의 재발 가능성을 예후 예측할 수 있다. 본 발명의 키트는 마커 유전자의 mRNA 발현수준 또는 단백질의 발현수준을 확인하여 마커를 검출함으로써 유방암 재발 가능성을 예후 예측할 수 있다. 본 발명의 마커 검출용 키트에는 유방암 재발 여부를 예후 예측할 수 있는 마커 유전자의 발현수준을 측정하기 위한 프라이머, 프로브, 또는 상기 마커 유전자로부터 코딩된 단백질을 선택적으로 인지하는 항체뿐만 아니라 분석에 적합한 1종 이상의 다른 구성성분 조성물, 용액 또는 장치가 포함될 수 있다.
구체적인 일례로서, 본 발명에서 상기 마커 유전자들의 mRNA 발현수준을 측정하기 위한 키트는 RT-PCR을 수행하는데 요구되는 필수요소를 포함하는 키트일 수 있다. RT-PCR 키트는 마커 유전자에 특이적인 각각의 프라이머 쌍 외에도 테스트 튜브 또는 다른 적절한 컨테이너, 반응 완충액, 데옥시뉴클레오티드(dNTPs), Taq-중합효소 및 역전사효소와 같은 효소, DNase, RNase 억제제, DEPC-물(DEPC-water), 멸균수 등을 포함할 수 있다.
또한, 본 발명의 키트는 본 발명에 따른 마커 유전자들 중의 하나 이상을 포함하는 유방암의 재발 가능성을 예후 예측하기 위한 마이크로어레이 형태일 수 있다. 상기 마이크로어레이는 DNA 또는 RNA 폴리뉴클레오티드 프로브를 포함하는 것일 수 있다. 상기 마이크로어레이는 본 발명에 따른 유방암의 예후 마커 유전자의 염기서열에 특이적인 프로브를 포함하는 것을 제외하고는 통상적인 마이크로어레이의 구성을 포함한다. 본 발명의 마이크로어레이는 본 발명에 따른 유방암의 예후 마커 유전자의 과다 발현을 검출하여 유방암의 재발 여부를 예후 예측하는데 유용한 정보를 제공할 수 있다.
본 발명에 따른 유방암의 예후 마커 유전자에 대한 프로브를 기판 상에 고정화하여 마이크로어레이를 제조하는 방법은 당해분야에 잘 알려져 있다. 예컨대, DNA 마이크로어레이는, 이들로 한정되는 것은 아니지만, 파이조일렉트릭(piezoelectric) 방식을 이용한 마이크로피펫팅(micropipetting) 또는 핀(pin) 형태의 스폿터(spotter)를 이용한 방법에 의해 본 발명에 따른 마커 유전자에 대한 프로브를 기판 상에 고정화시킬 수 있다. 본 발명의 마이크로어레이의 기판은 아미노-실란(amino-silane), 폴리-L-라이신(poly-L-lysine) 및 알데히드(aldehyde)로 이루어진 군에서 선택되는 활성기가 코팅된 것이 바람직하나, 이에 한정되는 것은 아니다. 또한 상기 기판은 슬라이드 글래스, 플라스틱, 금속, 실리콘, 나일론 막 및 니트로셀룰로스 막(nitrocellulose membrane)으로 이루어진 군에서 선택되는 것이 바람직하나, 이들로 한정되는 것은 아니다.
또한, 마이크로어레이 상에서의 핵산의 혼성화 및 혼성화 결과의 검출은 당해분야에 잘 알려져 있다. 상기 검출은 핵산 시료를 형광물질, 예를 들면, Cy3 및 Cy5와 같은 물질을 포함하는 검출가능한 신호를 발생시킬 수 있는 표지물질로 표지한 다음, 마이크로어레이 상에 혼성화하고 상기 표지물질로부터 발생하는 신호를 검출함으로써 혼성화 결과를 검출할 수 있다.
또한, 본 발명에서 상기 마커 유전자들로부터 코딩된 단백질의 발현수준을 측정하기 위한 키트는 항체의 면역학적 검출을 위하여 기재, 적당한 완충용액, 발색효소 또는 형광물질로 표지된 2차 항체, 발색기질 등을 포함할 수 있다. 상기에서 기재로는 니트로셀룰로오스 막, 폴리비닐 수지로 합성된 96-웰 플레이트, 폴리스틸렌 수지로 합성된 96-웰 플레이트, 유리로 된 슬라이드 글라스 등이 이용될 수 있고, 발색효소로는 퍼옥시다아제(peroxidase), 알칼라인 포스파타아제(alkaline phosphatase) 등이 사용될 수 있다. 또한, 형광물질로는 FITC, RITC 등이 사용될 수 있고, 발색기질로는 ABTS(2,2'-아지노-비스-(3-에틸벤조티아졸린-6-설폰산)), OPD(o-페닐렌디아민), TMB(테트라메틸 벤지딘) 등이 사용될 수 있다.
또 다른 하나의 양태로서, 본 발명은 유방암 재발군에서 차등적으로 발현이 증가된 유전자들 및 유방암 비재발군에서 차등적으로 발현이 증가된 유전자들로 구성된 군으로부터 선택된 각각 5개 이상의 유전자의 mRNA 또는 이들 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 단계를 포함하는, 유방암의 예후를 예측하는데 필요한 정보를 제공하는 방법에 관한 것이다.
본 발명에 따른 방법은,
1) 개체의 시료로부터 서열번호: 1 내지 50으로 구성된 군에서 선택된 5개 이상의 유전자의 mRNA 발현수준 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 단계;
2) 상기 유전자의 mRNA 발현수준 또는 단백질의 발현수준을 정상 대조군 시료의 발현수준과 비교하는 단계;
3) 정상 대조군 시료보다 증가된 발현수준을 나타내는 개체의 시료로부터 서열번호: 51 내지 100으로 구성된 군에서 선택된 5개 이상의 유전자의 mRNA 발현수준 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 단계;
4) 상기 유전자의 mRNA 발현수준 또는 단백질의 발현수준을 정상 대조군 시료의 발현수준과 비교하는 단계; 및
5) 정상 대조군 시료보다 감소된 발현수준을 나타내는 개체의 시료를 유방암의 재발 가능성이 높은 것으로 판정하는 단계를 포함할 수 있다.
상기 방법에서 단계 1) 내지 단계 4)은 상기에 기재된 바와 같은 순서대로 수행할 수도 있고, 단계 1) 및 3)을 동시에 수행한 후 이어서 단계 2) 및 4)를 동시에 수행할 수도 있다.
본 발명에서 용어, "개체의 시료"란 유방암에 대한 수술 및/또는 화학요법을 시술 받은 개체로부터 분리된 조직, 세포, 전혈, 혈청, 혈장, 타액, 객담, 뇌척수액 또는 뇨와 같은 시료 등을 포함하나, 이들로 한정되는 것은 아니다.
mRNA 발현수준을 측정하기 위한 분석방법으로는 역전사효소 중합효소반응, 경쟁적 역전사효소 중합효소반응, 실시간 역전사효소 중합효소반응, RNase 보호 분석법, 노던 블랏팅, DNA 마이크로어레이 칩 등이 있으나, 이들로 한정되는 것은 아니다.
상기 분석방법을 통하여, 정상 대조군 시료의 mRNA 발현수준과 유방암 재발 의심 개체에서의 mRNA 발현수준을 비교할 수 있고, 마커 유전자에서 mRNA로의 발현수준의 유의한 증감여부를 판단하여 유방암 재발 의심 개체의 실제 유방암 재발 여부를 예후 예측할 수 있다. mRNA 발현수준은, 바람직하게는 마커로 사용되는 유전자에 특이적인 프라이머를 이용하는 역전사효소 중합반응 또는 마커로 사용되는 유전자에 특이적인 프로브를 이용하는 DNA 마이크로어레이 칩을 이용하여 측정할 수 있다.
본 발명의 바람직한 실시예에 따르면, 마커 유전자에 특이적인 프라이머를 사용하여 역전사효소 중합반응을 수행한 후 생성물을 전기영동하여 밴드 패턴과 밴드의 두께를 확인함으로써 유방암의 예후 예측 마커로 사용되는 유전자의 mRNA 발현수준을 측정한 후 이를 정상 대조군의 발현수준과 비교함으로써 유방암의 재발 가능성을 간편하게 예후 예측할 수 있다. 이때, 서열번호: 1 내지 50의 유전자들 중 5개 이상의 유전자의 발현수준은 증가한 반면, 서열번호: 51 내지 100의 유전자들 중 5개 이상의 유전자의 발현수준은 감소한 경우에 유방암의 재발 가능성이 높은 것으로 예후 예측할 수 있다.
한편, DNA 마이크로어레이 칩은 상기 마커 유전자 또는 그 단편에 해당하는 핵산이 유리 같은 기판에 고밀도로 부착되어 있는 DNA 칩을 이용하는 것으로서, 시료에서 mRNA를 분리하고, 그 말단 또는 내부에 형광물질이 표지된 cDNA 프로브를 조제하여, DNA 칩에 혼성화시킨 다음 유방암 재발 가능성을 예후 예측할 수 있다.
구체적으로, DNA 마이크로어레이 칩을 이용한 분석방법은 하기의 단계를 포함할 수 있다.
1) 개체의 시료로부터 서열번호: 1 내지 50의 유전자들 중 5개 이상의 유전자 및 서열번호: 51 내지 100의 유전자들 중 5개 이상의 유전자 각각의 mRNA를 분리하는 단계;
2) 상기 개체의 시료에서 분리한 각각의 mRNA와 정상 대조군의 mRNA를 cDNA로 합성하면서 이들 각각을 다른 형광물질로 표지하는 단계;
3) 상기에서 다른 형광물질로 표지된 각각의 cDNA를 마커 유전자에 대한 프로브가 고정된 DNA 마이크로어레이 칩과 혼성화하는 단계; 및
4) 상기 혼성화된 DNA 마이크로어레이 칩을 분석하여 개체 시료에서의 마커 유전자의 발현수준을 정상 대조군의 발현수준과 비교하는 단계.
상기 방법은, 서열번호: 1 내지 50의 유전자들 중 5개 이상의 유전자의 mRNA 발현수준은 증가한 반면, 서열번호: 51 내지 100의 유전자들 중 5개 이상의 유전자의 mRNA 발현수준은 감소한 경우에, 유방암의 재발 가능성이 높은 것으로 예후 예측할 수 있다.
본 발명에 적합한 형광물질로 Cy3, Cy5, FITC(poly L-lysine-fluorescein isothiocyanate), RITC(rhodamine-B-isothiocyanate), 로다민(rhodamine) 등을 사용할 수 있으나, 이들로 한정되는 것은 아니다. 또한, DNA 마이크로어레이 칩은 36 k Human V4.0 OpArray 올리고마이크로어레이(Operon, Germany) 또는 전체 인간 게놈 올리고마이크로어레이(Whole human genome oligo microarray, Agilent, USA) 등을 사용할 수 있으나, 이들로 한정되는 것은 아니다.
단백질 발현수준을 측정하기 위한 분석방법으로는, 웨스턴 블랏팅, ELISA, 방사선면역분석법, 방사면역확산법, 오우크레로니(Ouchterlony) 면역확산법, 로케트 면역전기영동, 면역조직화학염색, 면역침전분석, 보체고정분석, FACS, 단백질 칩 등이 있으나, 이들로 한정되는 것은 아니다.
상기 분석방법을 통하여, 정상 대조군에서의 항원-항체 복합체의 형성량과 유방암 재발 의심 개체에서의 항원-항체 복합체의 형성량을 비교할 수 있고, 마커 유전자에서 단백질로의 발현수준의 유의한 증가여부를 판단하여, 유방암 재발 의심 개체의 실제 유방암 재발 가능성을 예후 예측할 수 있다.
본 발명에서 용어, "항원-항체 복합체"란 마커 단백질과 이에 특이적인 항체의 결합물을 의미하고, 항원-항체 복합체의 형성량은 검출 라벨(detection label)의 시그널의 강도를 통해서 정량적으로 측정 가능하다.
단백질 발현수준은, 예컨대 ELISA를 이용하여 측정할 수 있다. ELISA는 고체 지지체에 부착된 항원을 인지하는 표지된 항체를 이용하는 직접적 ELISA, 고체 지지체에 부착된 항원을 인지하는 항체의 복합체에서 포획 항체를 인지하는 표지된 항체를 이용하는 간접적 ELISA, 고체 지지체에 부착된 항체와 항원의 복합체에서 항원을 인지하는 표지된 또 다른 항체를 이용하는 직접적 샌드위치 ELISA, 고체 지지체에 부착된 항체와 항원의 복합체에서 항원을 인지하는 또 다른 항체와 반응시킨 후 이 항체를 인지하는 표지된 2차 항체를 이용하는 간접적 샌드위치 ELISA 등 다양한 ELISA 방법을 포함한다.
또한, 상기 마커에 대한 하나 이상의 항체를 이용한 웨스턴 블랏팅을 이용할 수 있다. 시료에서 전체 단백질을 분리하고, 이를 전기영동하여 단백질을 크기에 따라 분리한 다음, 니트로셀룰로즈 막으로 이동시켜 항체와 반응시킨다. 생성된 항원-항체 복합체의 양을 표지된 항체를 이용하여 확인하는 방법으로 유전자의 발현에 의해 생성된 단백질의 양을 확인하여 유방암의 재발 가능성을 예후 예측할 수 있다. 상기 검출방법은 유방암 비재발군에서의 마커 단백질의 발현수준과 유방암 재발 의심군에서의 마커 단백질의 발현수준을 조사하는 방법으로 이루어진다. mRNA 또는 단백질 수준은 상기한 마커 단백질의 절대적(예: ㎍/㎖) 또는 상대적(예: 시그널의 상대 강도) 차이로 나타낼 수 있다.
또한, 상기 마커에 대한 하나 이상의 항체를 이용한 면역조직화학염색을 실시할 수 있다. 유방암 재발 의심군으로부터 채취한 조직을 고정한 후 당해분야에 널리 공지된 방법으로 파라핀 포매 블록을 제조한다. 이들을 수 μm 두께의 절편으로 만들어 유리 슬라이드에 붙여 조직 절편 슬라이드를 제작한 후, 여기에 본 발명에 따른 마커 단백질에 특이적인 항체를 공지의 방법에 따라 반응시킨다. 이후, 반응하지 못한 항체는 세척하여 제거하고, 면역반응을 관찰하기 위한 발색시약으로 반응시켜 마커 단백질의 발현수준을 현미경 하에서 관찰할 수 있다.
또한, 상기 마커에 대한 하나 이상의 항체가 기판 위의 정해진 위치에 배열되어 고밀도로 고정화되어 있는 단백질 칩을 이용할 수 있다. 단백질 칩을 이용하여 시료를 분석하는 방법은, 시료에서 단백질을 분리하고, 분리한 단백질을 단백질 칩과 혼성화하여 항원-항체 복합체를 형성하고, 이를 판독하여 단백질의 존재 또는 발현수준을 확인함으로써 유방암의 재발 가능성을 예후 예측할 수 있다.
또 하나의 양태로서, 본 발명은 유방암 재발군에서 차등적으로 발현이 증가된 유전자들 및 유방암 비재발군에서 차등적으로 발현이 증가된 유전자들로 구성된 군으로부터 각각 선택된 유전자에 의해 코딩되는 단백질에 시험물질을 처리하여 단백질의 활성을 촉진 또는 억제하는 시험물질을 유방암의 재발 억제제로 스크리닝하는 방법에 관한 것이다.
구체적으로, 본 발명의 스크리닝 방법은,
1) 서열번호: 1 내지 50의 유전자들 중 하나 이상의 발현이 증가되고 서열번호: 51 내지 100의 유전자들 중 하나 이상의 발현이 감소된 세포와 시험물질을 접촉시키는 단계;
2) 상기 유전자의 mRNA 발현수준 또는 상기 유전자로부터 코딩되는 단백질의 발현수준을 측정하는 단계; 및
3) 시험물질 처리 세포의 발현수준을 미처리 세포의 발현수준과 비교하여 서열번호: 1 내지 50으로부터 선택된 유전자의 발현은 억제하면서 서열번호: 51 내지 100으로부터 선택된 유전자의 발현을 활성화시키는 시험물질을 스크리닝하는 단계를 포함할 수 있다.
상기에서 "시험물질(test agent)"은 임의의 물질(substance), 분자(molecule), 원소(element), 화합물(compound), 실재물(entity) 또는 이들의 조합을 포함한다. 예컨대, 이들로 한정되지는 않으나, 단백질, 폴리펩티드, 소 유기분자(small organic molecule), 다당류(polysaccharide), 폴리뉴클레오티드 등을 포함한다. 또한, 천연 산물(natural product), 합성 화합물 또는 화학 화합물 또는 2개 이상의 물질의 조합일 수도 있다. 달리 지시되지 않는 한, 제제, 물질 및 화합물은 호환성 있게(interchangeably) 사용할 수 있다.
본 발명의 방법으로 스크리닝되거나 동정될 수 있는 시험물질은 폴리펩티드, 베타-턴 미메틱(beta-turnmimetics), 다당류, 인지질, 호르몬, 프로스타글란딘, 스테로이드, 방향족 화합물, 헤테로사이클릭 화합물, 벤조디아제핀(benzodiazepines), 올리고머릭 N-치환 글리신(oligomeric N-substituted glycines), 올리고카르바메이트(oligocarbamates), 당류(saccharides), 지방산, 퓨린, 피리미딘 또는 이들의 유도체, 구조적 유사체 또는 조합을 포함한다. 상기 시험물질은 합성 또는 천연 화합물의 라이브러리를 포함하는 광범위하고 다양한 출처로부터 얻어질 수 있다. 바람직하게는, 상기 시험물질은 펩티드, 예컨대, 약 5 내지 30개, 바람직하게는 약 5 내지 20개, 보다 바람직하게는 약 7 내지 15개의 아미노산을 가지는 펩티드일 수 있다. 상기 펩티드는 천연적으로 생성되는 단백질, 랜덤 펩티드 또는 "바이어스화(biased)" 랜덤 펩티드의 절단물일 수 있다.
또한 상기 시험물질은 "핵산"일 수 있다. 핵산 시험물질은 천연적으로 생성되는 핵산, 랜덤 핵산, 또는 "바이어스화" 랜덤 핵산일 수 있다. 예컨대, 원핵 또는 진핵 게놈의 절단물을 위에서 기재한 바와 유사하게 사용될 수 있다.
또한 상기 시험물질은 "소분자"(예: 약 1,000 이하의 분자량을 갖는 분자)일 수 있다. 소분자를 스크리닝하기 위한 방법에는 바람직하게는 고속 분석 어세이(high throughput assay)가 적용될 수 있다.
상기에서 대상 유전자의 발현수준은 mRNA 및/또는 단백질 수준에서 상술한 바와 같은 방법, 예컨대 mRNA 발현수준은 역전사효소 중합효소반응, 경쟁적 역전사효소 중합효소반응, 실시간 역전사효소 중합효소반응, RNase 보호 분석법(RPA), 노던 블랏팅, DNA 마이크로어레이 칩 등에 의해, 단백질 발현수준은 웨스턴 블랏팅, ELISA, 방사선면역분석법, 방사면역확산법, 오우크레로니(Ouchterlony) 면역확산법, 로케트 면역전기영동, 면역조직화학염색, 면역침전분석, 보체고정분석, FACS, 단백질 칩 등에 의해 측정될 수 있다.
본 발명에 따른 유방암 재발의 예후 예측은 유방암 비재발군과 재발군에서 차등적으로 발현된 유전자들을 예후 예측 마커로 사용함으로써 수술 또는 항암 화학요법을 시술 받은 환자에게서 2년 이내에 유방암이 재발할 가능성을 정확하면서도 신속하게 예측할 수 있다. 따라서, 본 발명은 예후가 양호하지 않은 환자와 양호한 환자를 특이적으로 식별할 수 있고, 이를 통해 유방암의 재발 여부를 조기에 판단하여 적절한 치료법의 선발 및 적용을 가능케 함으로써 유방암 환자의 생존율을 높일 수 있다.
도 1은 본 발명에서 유방암 재발군과 비재발군에서 차등적으로 발현이 증가된 것으로 확인된 유방암 예후 예측 마커 유전자들의 히트맵(Heatmap)과 계층적 군집화(hierarchical clustering)를 나타낸 것이다.
도 2는 도 1에 따른 계층적 군집화의 통계적 유의성을 나타낸 것이다.
이하, 본 발명을 하기의 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.
실시예 1: 유방암의 예후 예측을 위한 마커 유전자의 선발
1-1. 유방암 조직 및 임상자료 준비
서울대학교병원으로부터 유방암 수술 후 2년 이내에 전신 또는 국소 재발이 확정된 11명을 유방암 재발군으로 선정하고, 전신 또는 국소 재발이 발생하지 않은 35명을 유방암 비재발군으로 선정하여, 총 46명의 개체로부터 종양조직을 확보하였다. 이들의 임상자료는 서울대학교병원 기관심사위원회의 승인 하에 수집되고 분석하였다.
1-2. mRNA 분리 및 mRNA 마이크로어레이 분석
유방암 재발군과 비재발군으로부터 차등적으로 발현된 유전자(DEGs)를 검출하기 위하여, 유전자칩 인간 게놈 1.0 ST 어레이(GeneChip Human Gene 1.0 ST Array, Affymetrix)를 사용하였다. 유방암 재발군과 비재발군의 각 개체로부터 분리된 종양조직 시료에서 RT-PCR로 전체 RNA를 증폭한 후 증폭된 100 ng의 전체 RNA를 제조사의 프로토콜(Affymetrix Whole-Transcript(WT) Sense Target Labeling Protocol)에 따라 바이오틴(biotin)으로 표지하였다. 바이오틴으로 표지된 센스 DNA 5.5 ㎍을 유전자칩 인간 게놈 1.0 ST 어레이에 혼성화(hybridization)한 후 프로토콜에 따라 스트렙타비딘-피코에리트린(Streptavidin-phycoerythrin)과 바이오틴화 항-스트렙타비딘 항체(biotinylated anti-streptavidin antibody)를 사용하여 염색하고 스캐닝하였다.
1-3. 차등적으로 발현된 유전자의 알고리즘 분석
유방암의 재발 가능성 예측에 사용될 마커 전사체는 하기 2가지 방법을 사용하여 결정하였다.
먼저, 상기 실시예 <1-2>의 마이크로어레이 분석에서 얻어진 총 28,000여 개의 전사체 중에서 변이(variation)가 높은 순서대로 4,500여 개의 전사체를 선택한 후 전사체 네트워크 분석을 실시하여 허브 전사체를 선정하였다. 이어서, 중도 t-검정(moderated t-test)을 이용하여 대상 개체를 유방암 재발군과 비재발군으로 나누고 두 군에서 mRNA 발현수준에 차이가 있는지를 조사하였다. t-검정 결과에서 나온 p 값이 작은 순서대로(즉, 유의한 정도가 큰 순서대로) 전사체의 순위를 결정하였다. 이때, t-검정을 적용하기 전에 발현이 낮은 전사체(즉, 모든 환자 샘플에서 log2(intensity)가 6 미만인 경우)와 샘플간 발현의 차이가 없는 전사체(표준편차가 전체 전사체의 shorth 보다 작은 경우)는 제외하였다. 두 결과를 종합하여 허브 전사체로 선정된 전사체 중에서 재발과 높은 상관성을 보이는 전사체, 즉 t-검정 결과 p 값이 낮으면서 재발군과 비재발군 사이에 발현양의 차이(배수 변화)가 큰 전사체를 유방암의 재발 가능성 예측에 사용될 마커 전사체로 선택하였다.
선정된 전사체를 유방암 재발군에서 차등적으로 발현이 증가된 전사체와 유방암 비재발군에서 차등적으로 발현이 증가된 전사체로 나누고, 각 집단에서 p 값이 낮은 순서대로 순위를 결정하였다. 이어서, 가장 순위가 높은 전사체를 각 집단에서 5개의 전사체를 시작으로 해당 개수만큼 전사체를 증가시키며 LOO 교차 검증법(Leave one out cross-validation)을 사용하여 검증하였다. LOO 교차 검증법은 다음과 같다.
전체 환자 46명 중 1명을 선택하여 실험집합(test set)으로 설정하고 나머지 45명을 학습집합(training set)으로 설정하였다. 학습집합만을 대상으로 선택된 해당 개수의 전사체를 이용하여 기계 학습 알고리즘을 학습시킨 후 실험집합의 예후를 예측하였다. 이 과정을 돌아가며 46회 반복하면 각 환자의 예후 예측 결과를 얻을 수 있다. 이 결과를 통합하여 유방암의 재발 가능성에 대한 예측율을 계산하였다. 교차 검증은 다양한 감독하 기계 학습 알고리즘(supervised machine learning algorithm)을 적용하여 예견 정확성(prediction accuracy)이 가장 높은 알고리즘을 선택하였다. 본 실시예에 사용된 알고리즘은 다음과 같다:
k-최인접 이웃(k-Nearest Neighbor), 선형 판별 분석(Linear Discriminant Analysis, LDA), 대각선 선형 판별 분석(Diagonal Linear Discriminant Analysis), 랜덤 포레스트(Random Forest), 나이브 베이즈(naive Bayes), 신경망 분석(Neural Networks), 안정화 선형 판별 분석(Stabilized Linear Discriminant Analysis), 지지 벡터 머신(Support Vector Machines, SVM), 일반화 선형 모델(Generalized Linear Models, GLM), 반복 분할 및 회귀 트리(Recursive Partitioning and Regression Trees), 학습 벡터 양자화(Learning Vector Quantization), 및 부트스트랩 군집(Bootstrap aggregating)
1-4. 유방암 재발 예후 예측을 위한 마커 유전자의 선발
하기 표 2는 전체 대상 개체 46명의 자료를 이용하여 허브 전사체 탐색 및 중도 t-검정을 적용한 후 순위가 결정된 전사체를 해당되는 수만큼 선택하여 LOO 방법에 따라 예측 알고리즘을 적용한 결과이다.
상기 표 2에 나타난 바와 같이, k-최인접 이웃, 안정화 선형 판별 분석 및 지지 벡터 머신(SVM) 알고리즘을 적용하였을 때 89.1%로 가장 높은 전체 예측율이 나타났으며, 이 경우 재발 예측율은 97.1%, 비재발 예측율은 63.6%로 나타났다. 상기 결과는 예측에 사용된 전사체의 개수에 따라 예측율이 크게 달라지지 않음을 알 수 있다.
알고리즘 분석 결과, 유방암 재발군에서 차등적으로 발현이 증가된 것으로 확인된 전사체를 하기 표 3에, 유방암 비재발군에서 차등적으로 발현이 증가된 것으로 확인된 전사체를 하기 표 4에 나타내었고, 이들의 히트맵(heatmap) 및 계층적 군집화를 도 1에 나타내었다. 도 2는 도 1에 나타낸 계층적 군집화의 통계적 유의성을 나타낸 것으로서, AU(approximately unbiased test) 및 BP(bootstrapping) 값을 도면과 함께 제시한 것이다.
본 발명에 따른 유방암 재발의 예후 예측은 수술 또는 항암 화학요법을 시술 받은 환자에게서 2년 이내에 유방암이 재발할 가능성을 정확하면서도 신속하게 예측할 수 있다. 또한, 본 발명은 예후가 양호하지 않은 환자와 양호한 환자를 특이적으로 식별할 수 있고, 이를 통해 유방암의 재발 여부를 조기에 판단하여 적절한 치료법의 선발 및 적용을 가능케 함으로써 유방암 환자의 생존율을 높일 수 있다.
Claims (22)
- 서열번호: 1 내지 50의 염기서열을 갖는 유전자들로부터 선택된 5개 이상의 유전자 및 서열번호: 51 내지 100의 염기서열을 갖는 유전자들로부터 선택된 5개 이상의 유전자의 mRNA 또는 이들의 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 제제를 포함하는, 유방암의 예후 예측용 조성물.
- 제1항에 있어서, 서열번호: 1 내지 50의 염기서열을 갖는 유전자들이 정상 대조군에 비해 유방암 재발군에서 차등적으로 발현이 증가된 유전자들인 것인, 유방암의 예후 예측용 조성물.
- 제1항에 있어서, 서열번호: 51 내지 100의 염기서열을 갖는 유전자들이 정상 대조군에 비해 유방암 비재발군에서 차등적으로 발현이 증가된 유전자들인 것인, 유방암의 예후 예측용 조성물.
- 제1항에 있어서, mRNA의 발현수준을 측정하는 제제가 선택된 유전자에 특이적으로 결합하는 안티센스 올리고뉴클레오티드, 프라이머 쌍 또는 프로브인 것인, 유방암의 예후 예측용 조성물.
- 제1항에 있어서, 단백질의 발현수준을 측정하는 제제가 선택된 유전자로부터 코딩되는 단백질에 특이적인 항체인 것인, 유방암의 예후 예측용 조성물.
- 제1항에 있어서, 상기 조성물이 유방암 치료 후 2년 이내에 유방암이 재발할 가능성을 예측하기 위한 것인, 유방암의 예후 예측용 조성물.
- 제1항 내지 제6항 중 어느 한 항의 조성물을 포함하는, 유방암의 예후 예측용 키트.
- 제7항에 있어서, 상기 키트가 RT-PCR 키트, 마이크로어레이 칩 키트 또는 단백질 칩 키트인 것인, 유방암의 예후 예측용 키트.
- 제8항에 있어서, 상기 RT-PCR 키트가 서열번호: 1 내지 50의 염기서열을 갖는 유전자들로부터 선택된 5개 이상의 유전자 및 서열번호: 51 내지 100의 염기서열을 갖는 유전자들로부터 선택된 5개 이상의 유전자에 특이적인 프라이머 쌍을 포함하는 것인, 유방암의 예후 예측용 키트.
- 제8항에 있어서, 상기 마이크로어레이 칩 키트가 서열번호: 1 내지 50의 염기서열을 갖는 유전자들로부터 선택된 5개 이상의 유전자 및 서열번호: 51 내지 100의 염기서열을 갖는 유전자들로부터 선택된 5개 이상의 유전자에 특이적인 프로브를 포함하는 것인, 유방암의 예후 예측용 키트.
- 제8항에 있어서, 상기 단백질 칩 키트가 서열번호: 1 내지 50의 염기서열을 갖는 유전자들로부터 선택된 5개 이상의 유전자 및 서열번호: 51 내지 100의 염기서열을 갖는 유전자들로부터 선택된 5개 이상의 유전자로부터 코딩되는 단백질에 특이적인 항체를 포함하는 것인, 유방암의 예후 예측용 키트.
- 1) 개체의 시료로부터 서열번호: 1 내지 50으로 구성된 군에서 선택된 5개 이상의 유전자의 mRNA 발현수준 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 단계;2) 상기 유전자의 mRNA 발현수준 또는 단백질의 발현수준을 정상 대조군 시료의 발현수준과 비교하는 단계;3) 정상 대조군 시료보다 증가된 발현수준을 나타내는 개체의 시료로부터 서열번호: 51 내지 100으로 구성된 군에서 선택된 5개 이상의 유전자의 mRNA 발현수준 또는 상기 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 단계;4) 상기 유전자의 mRNA 발현수준 또는 단백질의 발현수준을 정상 대조군 시료의 발현수준과 비교하는 단계; 및5) 정상 대조군 시료보다 감소된 발현수준을 나타내는 개체의 시료를 유방암의 재발 가능성이 높은 것으로 판정하는 단계를 포함하는, 유방암의 예후를 예측하는데 필요한 정보를 제공하는 방법.
- 제12항에 있어서, 상기 방법에서 단계 1) 내지 단계 4)를 순서대로 수행하거나, 단계 1) 및 3)을 동시에 수행한 후 이어서 단계 2) 및 4)를 동시에 수행하는 것인 방법.
- 제12항에 있어서, 상기 단계 2)에서 mRNA의 발현수준을 측정하는 제제가 선택된 유전자에 특이적으로 결합하는 안티센스 올리고뉴클레오티드, 프라이머 쌍 또는 프로브인 것인 방법.
- 제12항에 있어서, 상기 단계 2)에서 mRNA 발현수준이 역전사효소 중합효소반응, 경쟁적 역전사효소 중합효소반응, 실시간 역전사효소 중합효소반응, RNase 보호 분석법, 노던 블랏팅 및 DNA 마이크로어레이 칩으로 구성된 군으로부터 선택되는 분석법에 의해 측정되는 것인 방법.
- 제12항에 있어서, 상기 단계 4)에서 단백질의 발현수준을 측정하는 제제가 선택된 유전자로부터 코딩되는 단백질에 특이적인 항체인 것인 방법.
- 제12항에 있어서, 상기 단계 4)에서 단백질 발현수준이 웨스턴 블랏팅, ELISA, 방사선면역분석법, 방사면역확산법, 오우크레로니(Ouchterlony) 면역확산법, 로케트 면역전기영동, 면역조직화학염색, 면역침전분석, 보체고정분석, FACS 및 단백질 칩으로 구성된 군으로부터 선택되는 분석법에 의해 측정되는 것인 방법.
- 1) 서열번호: 1 내지 50의 유전자들 중 하나 이상의 발현이 증가하고 서열번호: 51 내지 100의 유전자들 중 하나 이상의 발현이 감소된 세포와 시험물질을 접촉시키는 단계;2) 상기 유전자의 mRNA 발현수준 또는 상기 유전자로부터 코딩되는 단백질의 발현수준을 측정하는 단계; 및3) 시험물질 처리 세포의 발현수준을 미처리 세포의 발현수준과 비교하여 서열번호: 1 내지 50으로부터 선택된 유전자의 발현은 억제하면서 서열번호: 51 내지 100으로부터 선택된 유전자의 발현을 활성화시키는 시험물질을 스크리닝하는 단계를 포함하는, 유방암의 재발 억제제를 스크리닝하는 방법.
- 제18항에 있어서, 상기 단계 2)에서 mRNA의 발현수준을 측정하는 제제가 선택된 유전자에 특이적으로 결합하는 안티센스 올리고뉴클레오티드, 프라이머 쌍 또는 프로브인 것인 방법.
- 제18에 있어서, 상기 단계 2)에서 mRNA 발현수준이 역전사효소 중합효소반응, 경쟁적 역전사효소 중합효소반응, 실시간 역전사효소 중합효소반응, RNase 보호 분석법, 노던 블랏팅 및 DNA 마이크로어레이 칩으로 구성된 군으로부터 선택되는 분석법에 의해 측정되는 것인 방법.
- 제18항에 있어서, 상기 단계 2)에서 단백질의 발현수준을 측정하는 제제가 선택된 유전자로부터 코딩되는 단백질에 특이적인 항체인 것인 방법.
- 제18항에 있어서, 상기 단계 4)에서 단백질 발현수준이 웨스턴 블랏팅, ELISA, 방사선면역분석법, 방사면역확산법, 오우크레로니(Ouchterlony) 면역확산법, 로케트 면역전기영동, 면역조직화학염색, 면역침전분석, 보체고정분석, FACS 및 단백질 칩으로 구성된 군으로부터 선택되는 분석법에 의해 측정되는 것인 방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2010-0028671 | 2010-03-30 | ||
KR20100028671 | 2010-03-30 |
Publications (3)
Publication Number | Publication Date |
---|---|
WO2011122857A2 WO2011122857A2 (ko) | 2011-10-06 |
WO2011122857A9 true WO2011122857A9 (ko) | 2012-03-15 |
WO2011122857A3 WO2011122857A3 (ko) | 2012-08-23 |
Family
ID=44720415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2011/002193 WO2011122857A2 (ko) | 2010-03-30 | 2011-03-30 | 유방암 예후 예측을 위한 조성물 및 이를 포함하는 키트 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101421326B1 (ko) |
WO (1) | WO2011122857A2 (ko) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101672531B1 (ko) * | 2013-04-18 | 2016-11-17 | 주식회사 젠큐릭스 | 조기 유방암 예후 예측 진단용 유전자 마커 및 이의 용도 |
KR101748867B1 (ko) * | 2013-04-19 | 2017-06-20 | 주식회사 젠큐릭스 | 조기 유방암 예후 예측 진단용 자동화 시스템 |
KR102541256B1 (ko) * | 2015-11-30 | 2023-06-12 | (주)아모레퍼시픽 | Lipa 억제를 통한 흑색종 예방 또는 치료제, 및 그 스크리닝 방법 |
KR101833983B1 (ko) * | 2016-02-23 | 2018-03-02 | 순천대학교 산학협력단 | DOCK10 유전자의 mRNA 또는 이들 유전자에 의해 코딩되는 단백질의 발현수준을 측정하는 제제를 포함하는, 암의 예후 예측용 조성물, 이를 포함하는 키트 및 이들의 이용 |
WO2018074865A2 (ko) * | 2016-10-21 | 2018-04-26 | 서울대학교병원 | 유방암 예후 예측용 조성물 및 방법 |
KR101896558B1 (ko) | 2016-11-21 | 2018-09-07 | 주식회사 젠큐릭스 | 유방암 환자의 예후 예측 방법 |
KR101950717B1 (ko) * | 2016-11-23 | 2019-02-21 | 주식회사 젠큐릭스 | 유방암 환자의 화학치료 유용성 예측 방법 |
WO2018155948A1 (ko) * | 2017-02-24 | 2018-08-30 | 사회복지법인 삼성생명공익재단 | 폐암 환자의 생존 예후 예측용 마커 |
KR101951289B1 (ko) * | 2017-02-24 | 2019-02-22 | 사회복지법인 삼성생명공익재단 | 폐암 환자의 생존 예후 예측용 마커 |
KR20190071393A (ko) | 2017-12-14 | 2019-06-24 | 충남대학교산학협력단 | 메탈로티오네인 2a를 포함하는 유방암 환자의 전이 및 예후 예측용 조성물 |
KR20230086458A (ko) | 2021-12-08 | 2023-06-15 | 사회복지법인 삼성생명공익재단 | 전이성 유방암의 항암제 치료 반응성 및 예후 예측용 신규한 바이오마커 및 이의 용도 |
KR20230086462A (ko) | 2021-12-08 | 2023-06-15 | 사회복지법인 삼성생명공익재단 | 전이성 유방암의 항암제 치료 반응성 및 예후 예측용 신규한 바이오마커 및 이의 용도 |
CN116377061B (zh) * | 2022-11-28 | 2024-01-16 | 中山大学孙逸仙纪念医院 | 乳腺癌新辅助化疗耐药标志物及其应用 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040018525A1 (en) * | 2002-05-21 | 2004-01-29 | Bayer Aktiengesellschaft | Methods and compositions for the prediction, diagnosis, prognosis, prevention and treatment of malignant neoplasma |
US7306910B2 (en) * | 2003-04-24 | 2007-12-11 | Veridex, Llc | Breast cancer prognostics |
JP2006526415A (ja) * | 2003-05-30 | 2006-11-24 | テンプル・ユニバーシティ−オブ・ザ・コモンウェルス・システム・オブ・ハイアー・エデュケイション | 乳癌の診断、予後診断及び治療方法 |
MX2007001640A (es) * | 2004-08-10 | 2007-07-25 | Univ Cardiff | Metodos y kit para el pronostico de cancer de mama. |
-
2011
- 2011-03-30 WO PCT/KR2011/002193 patent/WO2011122857A2/ko active Application Filing
- 2011-03-30 KR KR1020110029118A patent/KR101421326B1/ko active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
KR101421326B1 (ko) | 2014-07-21 |
KR20110110031A (ko) | 2011-10-06 |
WO2011122857A2 (ko) | 2011-10-06 |
WO2011122857A3 (ko) | 2012-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2011122857A9 (ko) | 유방암 예후 예측을 위한 조성물 및 이를 포함하는 키트 | |
US20200095642A1 (en) | Grading of breast cancer | |
EP2191272B1 (en) | Set of tumour-markers | |
KR101443214B1 (ko) | 폐암 환자 또는 폐암 치료를 받은 폐암 환자의 폐암 재발 위험을 진단하기 위한 조성물, 키트 및 마이크로어레이 | |
CA2993142A1 (en) | Gene signature for immune therapies in cancer | |
EP2081950B1 (en) | Expression profiles associated with irinotecan treatment | |
US20110166028A1 (en) | Methods for predicting treatment response based on the expression profiles of biomarker genes in notch mediated cancers | |
WO2011109637A1 (en) | Methods for classifying and treating breast cancers | |
MX2008011839A (es) | Propagacion de celulas primarias. | |
US20150072021A1 (en) | Methods and Kits for Predicting Outcome and Methods and Kits for Treating Breast Cancer with Radiation Therapy | |
EP2307570B1 (en) | Molecular signature of liver tumor grade and use to evaluate prognosis and therapeutic regimen | |
EP2744917A2 (en) | Methods and compositions for the treatment and diagnosis of breast cancer | |
WO2009007958A2 (en) | Compositions, methods and kits for the diagnosis of carriers of mutations in the brca1 and brca2 genes and early diagnosis of cancerous disorders associated with mutations in brca1 and brca2 genes | |
US20150344962A1 (en) | Methods for evaluating breast cancer prognosis | |
WO2021086014A1 (ko) | 폐암 환자의 면역치료 반응성 예측용 cxcl13 마커 및 이의 용도 | |
KR101801980B1 (ko) | 중추신경계 림프종 진단용 조성물 및 이를 이용한 중추신경계 림프종 진단 키트 | |
KR101182974B1 (ko) | 림프종 진단 또는 예후 마커로서 Pellino 1 | |
KR101847815B1 (ko) | 삼중음성유방암의 아형 분류 방법 | |
KR20110082669A (ko) | 대장암의 조기 진단을 위한 메틸화 바이오마커 및 이의 용도 | |
US20060234235A1 (en) | Methods and compositions for the diagnosis of neuroendocrine lung cancer | |
US20200370122A1 (en) | Immune index methods for predicting breast cancer outcome | |
US20170342502A1 (en) | Biomarkers for breast cancer and methods of use thereof | |
EP2138589A1 (en) | Molecular signature of liver tumor grade and use to evaluate prognosis and therapeutic regimen | |
KR20090025898A (ko) | 폐암 환자의 폐암 재발 위험을 예측하기 위한 마커, 키트,마이크로어레이 및 방법 | |
WO2024091020A1 (ko) | 유방암 진단 또는 재발 예측을 위한 세포외 소포체 유래 miRNA 유전자 바이오마커 및 이의 용도 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11763029 Country of ref document: EP Kind code of ref document: A2 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11763029 Country of ref document: EP Kind code of ref document: A2 |