WO2011122811A2 - 지중전력구 3상 배전케이블 동시 풀링 장치 및 이를 이용한 풀링 자동화 공법 - Google Patents

지중전력구 3상 배전케이블 동시 풀링 장치 및 이를 이용한 풀링 자동화 공법 Download PDF

Info

Publication number
WO2011122811A2
WO2011122811A2 PCT/KR2011/002109 KR2011002109W WO2011122811A2 WO 2011122811 A2 WO2011122811 A2 WO 2011122811A2 KR 2011002109 W KR2011002109 W KR 2011002109W WO 2011122811 A2 WO2011122811 A2 WO 2011122811A2
Authority
WO
WIPO (PCT)
Prior art keywords
distribution cable
pulling
underground power
pooling
phase distribution
Prior art date
Application number
PCT/KR2011/002109
Other languages
English (en)
French (fr)
Other versions
WO2011122811A3 (ko
Inventor
백정선
김동귀
김용재
Original Assignee
(주)클립이엔지
대덕전력 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)클립이엔지, 대덕전력 주식회사 filed Critical (주)클립이엔지
Publication of WO2011122811A2 publication Critical patent/WO2011122811A2/ko
Publication of WO2011122811A3 publication Critical patent/WO2011122811A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G9/00Installations of electric cables or lines in or on the ground or water
    • H02G9/06Installations of electric cables or lines in or on the ground or water in underground tubes or conduits; Tubes or conduits therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/06Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle
    • H02G1/08Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle through tubing or conduit, e.g. rod or draw wire for pushing or pulling
    • H02G1/081Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle through tubing or conduit, e.g. rod or draw wire for pushing or pulling using pulling means at cable ends, e.g. pulling eyes or anchors

Definitions

  • the present invention relates to a vehicle-mounted pooling device that simultaneously installs a three-phase distribution cable in an underground power sphere, and a pooling automation method using the same. More specifically, the present invention works by performing a cable pulling operation using an automation facility. It is to provide an automatic method of simultaneously pulling underground power sphere three-phase distribution cables that can reduce manpower and work time.
  • Underground distribution facilities are superior to processing facilities in terms of social and economic aspects such as stable supply of electric power, improved reliability of supply and beautification of urban environment, and underground distribution facilities are continuously increasing every year.
  • Underground power spheres are underground structures that are connected by vertical spheres to communicate with the ground. In order to install the distribution cable inside the underground power sphere, it is necessary to move the distribution cable through the vertical sphere from the ground and move it into the underground power sphere. This task is called pulling.
  • the distribution cable is supplied while being wound on the drum, and the length of the distribution cable that is usually installed at a time is about 300 m. It would not be difficult if the drum was moved inside the MRT and the distribution cables were released from the inside. However, due to the large size of the drum and the volume of the distribution cable, it is not possible to carry the distribution cable in the drum state through the vertical sphere.
  • the drum was carrying out a pulling operation to pull the power distribution cable while pulling the distribution cable in the ground state, but in the past, such work was made by pure manpower, which caused a lot of labor and work time.
  • the work method was to put the power distribution cable first on the floor of the power outlet, and then lift it back to the hanger, which is an unavoidable choice for securing the worker's moving space or lifting the power distribution cable to the hanger for several hundred meters. It was necessary to lift the distribution cables to reach a lot of safety accidents had problems.
  • An object of the present invention is to provide a three-phase distribution cable pulling device that can control the pulling speed of the distribution cable falling down the vertical power sphere.
  • Another object of the present invention is to provide a vehicle-mounted three-phase distribution cable simultaneous pulling device that can reduce the work space and reduce the work force by mounting the pooling device to the vehicle.
  • Another object of the present invention is to perform the cable pulling work by the driving force of the winch and the conveying device, and cable pulling method that can reduce the working time and work force by allowing the distribution cable to be placed directly on the hanger It is to provide.
  • Another object of the present invention is to provide a cable pulling method that can reduce the damage of the cable sheath occurring during the cable pulling operation.
  • Another object of the present invention is to provide a cable pulling method that can simultaneously pull a three-phase cable.
  • Still another object of the present invention is to provide a method for real-time remote control by automatically controlling the entire process.
  • the present invention for achieving this object is the first, second, third drum loading portion for rotatably fixing three cable drums respectively; Transmission means for connecting the first, second, and third drum loading portions to rotate at the same speed and in the same direction; Deceleration means connected to any one of the first, second and third drum loading portions to reduce the rotational speed of the drum loading portion connected by frictional force; And a frame for fixing the first, second and third drum loading portions.
  • the first, second and third drum loading portions include a rotating shaft which is formed to be divided in both sides and is movable in the longitudinal direction, and a flange portion which is formed to face each other at the divided end of the rotating shaft.
  • the flange portion is more preferably provided with a receiving groove for receiving the fastening means protruding on the side of the cable drum.
  • the transmission means may be composed of a chain and a sprocket
  • the deceleration means may be composed of a hydraulic brake in which the friction force is adjusted according to the pressure of the fluid.
  • the deceleration means preferably further comprises a control unit for controlling the deceleration force by receiving the rotational speed of the drum loading portion.
  • the frame of the pulling device detachably to the loading portion of the vehicle.
  • the present invention is connected to the front end of the three distribution cables wound in the above-mentioned pooling device to the horn-shaped induction port, the inlet tube has a funnel shape in the manhole inlet and the corrugated pipe extending into the vertical sphere Installing, installing a guide roller on a hanger inside the power hole, installing a winch on the underground power hole, and preparing a step of connecting the winch and the guide hole with guide wires;
  • It provides a grounding power three-phase power distribution cable simultaneous pooling method comprising a ;; continuously operating the winch through the guide rollers installed in the hanger, the horizontal pulling step of transferring the distribution cable to the hanger.
  • the guide roller used in the pulling method according to the present invention is preferably one side can be opened and closed.
  • the horizontal pulling step it is preferable to control the winch and the transfer device to have the same linear velocity
  • the induction port is provided with a camera, in the horizontal pulling step and the vertical pulling step, it is preferable that the image taken by the camera of the induction port is transmitted to the operator or supervisor in real time.
  • the signal transmitted from the camera is transmitted wirelessly, and having a wireless server and a wireless repeater inside the underground power sphere, the signal transmitted from the camera is transmitted to the wireless server, the wireless server transmits It is desirable to configure the signal to be transmitted to the operator's or supervisor's mobile phone.
  • the three-phase distribution cable drawn from the vehicle-mounted drum located on the ground is pulled by the driving force of the winch and the conveying device to the inside of the underground power port, thereby reducing the work space required for the pulling work and the work force. It brings the effect of saving time and work time.
  • the present invention has the effect of reducing the damage to the shell of the distribution cable by arranging the guide rollers so that the three-phase distribution cable does not rub against the structures or walls inside the underground power sphere.
  • the pooling work can be carried out with 8 or fewer workers and the working time is remarkable, compared to the 20 or more workers required in the conventional work-dependent work The effect can be shortened. Therefore, the construction cost can be reduced by more than 25%.
  • 1 is a structural diagram schematically showing the structure of the underground power sphere
  • FIG. 2 is a view schematically showing the structure of a three-phase distribution cable pulling device according to an embodiment of the present invention
  • FIG. 3 is a perspective view showing the structure of the cable drum
  • FIG. 5 is a view showing a state of completing the preparation step of the three-phase distribution cable pooling method according to the present invention
  • FIG. 6 is a view showing the structure of the induction hole used in the three-phase distribution cable pooling method according to the present invention.
  • FIG. 7 is a view showing the structure of the induction pipe used in the three-phase distribution cable pooling method according to the present invention.
  • FIG. 8 is a view showing the structure of a guide roller used in the three-phase distribution cable pooling method according to the invention.
  • FIG. 9 is a view showing a state of completing the vertical pulling step of the three-phase distribution cable pooling method according to the present invention.
  • FIG. 10 is a view showing a state of completing the horizontal pulling step of the three-phase distribution cable pooling method according to the present invention
  • 11 is a side view showing the structure of a distribution cable feeder used in the three-phase distribution cable pulling method of the present invention.
  • FIG. 12 is a cross-sectional view showing a contact state between the endless track and the distribution cable.
  • Underground power port is a structure installed at a depth of 30 ⁇ 40m underground, and transmission cable, distribution cable, and communication cable are installed inside.
  • FIG. 1 is a structural diagram schematically showing the structure of an underground power sphere.
  • one side of the ground power sphere 10 is formed with a vertical sphere 20 for connecting the ground and the ground power sphere.
  • a steel structure 22 Inside the vertical sphere is formed a steel structure 22 that the worker can use like a ladder when entering.
  • a multi-layer hanger 12 is provided inside the underground power tool 10 so as to distinguish and install various types of cables (transmission cables, distribution cables, communication cables, and the like).
  • the hanger 12 is formed in a three-layer structure, a transmission cable is installed on the first floor, a distribution cable is installed on the second floor, and a communication cable is installed on the third floor.
  • the length of one section of the underground power strip ranges from tens of meters to hundreds of meters.
  • the distribution cable is supplied in a wound state on the drum, because the size of the drum is larger than the diameter of the vertical sphere, it is not possible to enter the underground power sphere in the drum state.
  • hundreds of meters of power distribution cables, by themselves, are bulky and cannot be transported through a vertical sphere in a wound state.
  • the distribution cable is released to perform the operation of entering the underground power sphere 10 through the vertical sphere 20. In the past, this operation is mostly performed. It was done by manpower.
  • the work force is arranged on the drum side, and each drum must be released by manually grasping the drum.
  • the cable is inserted into the vertical sphere 20 by releasing the power distribution cable by purely manpower, the large weight of the power distribution cable can be obtained.
  • the manpower is arranged in each fastball floor and the distribution cable is lowered to the bottom of the underground power sphere 10 by the force of the manpower, and the worker is placed inside the underground power sphere to carry out the work by moving the cables.
  • the conventional cable pooling work had to be performed one by one cable, and in the case of three-phase distribution cable work, the same work was repeated three times to perform the three-phase cable pooling work.
  • the present invention relates to a pulling device capable of simultaneously pulling a three-phase distribution cable and a pulling method using the same.
  • the present invention uses a simultaneous pulling device including a drum rotatably mounted in a vehicle and having a brake to control a pulling speed.
  • FIG. 2 is a view schematically showing the structure of a three-phase distribution cable pulling device according to an embodiment of the present invention.
  • Pulling device is configured to rotatably load three cable drums, and to reduce the rotational speed of the drum.
  • the present invention for this purpose is provided with a first, second, third drum loading portion (110, 120, 130) for rotatably fixing the drum.
  • the drum loading portion 110 is rotatably installed on the frame 102 and is divided into two rotation shafts 112a and 112b, and a flange portion formed to face each other at the divided ends of the rotation shafts 112a and 112b. (114a, 114b).
  • the frame 102 is fixed to other parts to be described later, including the drum mounting parts 110, 120, and 130, and is preferably formed to be detachable from the loading box of the vehicle.
  • the rotating shafts 112a and 112b are not only rotatable with respect to the frame 102, but are formed to be movable in the longitudinal direction of the rotating shaft so as to adjust the gap between the flange portions 114a and 114b.
  • the first drum loading portion 110 is in a state of being fixed to the drum 50 by being in close contact with the flange portions 114a and 114b on both sides, and the second drum loading portion 120 and the third drum loading portion ( In the case of 130, the flanges 124a, 124b, 134a, and 134b are spaced apart from the drum 50 so that the drum 50 is not fixed.
  • FIG. 3 is a perspective view showing the structure of the cable drum.
  • the cable drum 50 includes a circular both side plate 52 and a central shaft 54 connecting the two side plates 52, and the central shaft 54 has a through hole 55 therein.
  • a plurality of fastening means 53 is exposed on both side plates 54.
  • the fastening means 53 is for firmly fixing the cable drum, and one end of the bolt 52 is exposed to one end of the bolt 52 on one side of the two side plates 52 and the nut is exposed.
  • the flange portion 114b fixed to the rotating shaft 112b is provided with a receiving groove 115b at a position corresponding to the fastening means 53. Therefore, when the flange portion 114b is in close contact with the cable drum 50, the fastening means 53 is inserted into the receiving groove 115b so that the flange portion 114b and the cable drum 50 rotate integrally.
  • the drum In the installation of the cable drum 50, after setting the distance between the flange portions 114a and 114b to be wider than the width of the drum, the drum is loaded between the flange portions 114a and 114b and the flange portions 114a and 114b. By narrowing the interval of the flange portion (114a, 114b) to be pressed on both sides of the cable drum 50, at this time, the above-mentioned fastening means 53 is seated in the receiving groove (115a, 115b), the drum 50 To the rotating shafts 112a and 112b.
  • each drum rotates integrally with the respective rotation shaft.
  • the invention further comprises a transmission means 140 for connecting the three drums to rotate in the same direction and the same speed.
  • the transmission means is composed of a chain 144 and the sprocket 142 or a belt and a pulley, and serves to connect the three rotary shafts to rotate in the same direction and speed.
  • the transmission means is preferably formed so as to be ON / OFF. ON of the transmission means is constrained so that the rotation direction and the rotation speed of the three rotation shafts are the same, and OFF of the transmission means releases the restriction of the three rotation shafts so that each rotation shaft can rotate individually. To ensure that This is to make it possible to correct an error due to the difference in radius of the drum when pulling the cable.
  • first rotating shaft 112a and the second rotating shaft 122a are connected to the chain 144 and the sprocket 142, and the second rotating shaft 122a and the third rotating shaft 132a are again connected to the chain 144.
  • This connection structure allows three distribution cables, each wound on three drums, to be pulled at the same rotational speed.
  • the present invention further includes a deceleration means 150 connected to the rotating shaft of the drum loading portion.
  • Reduction means 150 is to reduce the rotational speed by providing a resistance to rotation by the friction force, it uses a form that can adjust the strength of the friction force.
  • a hydraulic disc brake or a hydraulic drum brake can be used. This hydraulic brake is to control the pressure of the fluid to adjust the deceleration force.
  • the deceleration means 150 serves to slow down the drop speed when the distribution cable drops the vertical sphere.
  • the present invention allows the distribution cable to be moved to the vertical sphere at a constant speed by using the above-described deceleration means 150.
  • the friction force of the deceleration means 150 may be manually adjusted by the operator, and provided with a sensor for detecting the feed rate of the distribution cable, and receives the signal input from the sensor automatically of the deceleration means 150
  • a control unit for controlling the frictional force may be provided so as to be made automatically.
  • the sensor may be an angular velocity sensor provided on the rotating shaft of the drum loading portion, but is not limited thereto.
  • FIG. 4 is a process flowchart of a three-phase distribution cable pooling method according to the present invention
  • Figure 5 is a view showing a state of completing the preparation step of the three-phase distribution cable pooling method according to the present invention.
  • the three-phase distribution cable pulling method according to the present invention is connected to the front end of the three distribution cables wound in the above-mentioned pulling device 100 to the horn-shaped induction port 200, the inlet portion has a funnel shape at the inlet hole
  • Install the induction pipe 300 is formed to extend the corrugated pipe inside the fastball
  • the guide roller 500 is installed on the hanger inside the power sphere
  • the winch 600 is installed in the underground power sphere 10
  • the winch 600 is operated to enter the horn-shaped induction port 200 to which the distribution cable C is connected to the induction pipe 300, and operates the deceleration means of the pulling device 100 to distribute the distribution cable ( Vertical pulling step (S-42) for transferring the induction hole 200 to the bottom of the vertical sphere while maintaining the moving speed of C) in a certain range,
  • the induction hole 200 passes through the guide roller 500 installed in the hanger 21 and the horizontal pulling step of transferring the distribution cable (C) over the hanger 12 (S-43) ).
  • hangers are connected between the hangers provided with the guide roller 500 to prevent deformation of the hanger. It is desirable to.
  • the free end of the hanger (the opposite side of the side) is fixed by the end buckles, and the gap between the hangers is maintained by the end buckles, thereby preventing the hanger from being deformed.
  • FIG. 6 is a view showing the structure of the induction hole used in the three-phase distribution cable pooling method according to the present invention.
  • the induction port 200 has a head portion 210 having a horn shape that the cross section becomes smaller toward the front, the body portion 220 is connected to the head portion 210 and has a rectangular cross section, It is formed in the body portion includes a cable groove 221 for receiving and fixing three distribution cables.
  • the tip of the head 210 is connected to the winch 600 through the guide wire (W).
  • the induction hole 200 serves to prevent the three distribution cables from being twisted, and has a horn shape in order to allow the guide roller 500 to pass smoothly.
  • the induction port 200 may be provided with a camera for photographing and transmitting an image of the front in real time, and the image photographed by the camera is preferably transmitted to a worker or a supervisor in real time.
  • the camera preferably transmits the signal wirelessly.
  • a wireless server and a wireless repeater inside the underground power sphere.
  • the signal transmitted from the camera is transmitted to the wireless server through the wireless repeater, and the wireless server is connected to the ground to transmit the signal transmitted from the camera to the mobile phone of the operator or supervisor.
  • the induction hole 200 is provided with a G-sensor capable of measuring the moving direction and the moving speed of the induction hole 200, and the traction speed of the winch and the movement of the induction hole 200 in the horizontal pulling step or the vertical pulling step. It is desirable to be able to compare speeds.
  • FIG. 7 is a view showing the structure of the induction pipe used in the three-phase distribution cable pooling method according to the present invention.
  • Induction pipe 300 includes a fixed plate 310, inlet pipe 320, corrugated pipe 330.
  • Fixing plate 310 is coupled to the manhole inlet (vertical mouth inlet) to secure the inlet pipe 320, is formed in a size corresponding to the manhole cover, the coupling hole 312 through which the distribution cable can pass It is provided. In the case of inducing a 6 cm diameter distribution cable, the diameter of the coupling hole 312 is formed to about 20 cm. This is to allow three distribution cables to pass through at once.
  • the fixing plate 310 is preferably provided with a communication hole 314 on the other side where the coupling hole 312 is formed.
  • the communication hole 314 also serves as a passage through which workers inside and outside can exchange work tools without separating the fixing plate 310 from the manhole entrance.
  • the corrugated pipe 330 guides the path of the distribution cable inside the vertical sphere and serves to guide the distribution cable not to contact the wall or structure of the vertical sphere.
  • Corrugated pipe 330 is coupled to the neck of the inlet pipe 120 exposed to the lower portion of the coupling hole 312 in the lower surface of the fixing plate 310, and has a spiral groove continuous to the inner peripheral surface and the outer peripheral surface.
  • the corrugated pipe 330 may have flexibility, and the friction area with the power distribution cable transferred to the inside may be reduced.
  • the outer diameter of the neck of the inlet pipe 320 is formed to correspond to the inner diameter of the corrugated pipe 330, and the neck is coupled to the corrugated pipe 330.
  • This type of connector can also be used to pass through walls inside underground power stations.
  • the fixing plate 110 is not required for the connection pipe used for the wall, only the inlet pipe 320 and the corrugated pipe 330 are configured.
  • FIG. 8 is a view showing the structure of the guide roller used in the three-phase distribution cable pulling method according to the invention.
  • the guide roller 500 is fixed to the underground power port hanger 12 to facilitate the movement of the distribution cable during the pulling operation, and serves to prevent damage to the outer shell.
  • hangers There are two types of hangers that are installed inside the electric power bulbs: the type having a '-' cross section and the type having a 'a' cross section.
  • the guide roller 500 used in the construction method according to the present invention includes a frame 510 fixed to a hanger and three rollers rotatably installed on the frame 510, and a vertical groove on the frame 510. 511a and the horizontal groove 511b may be applied to both types of hangers.
  • the frame 510 is formed in a horizontal direction and has a horizontal plate portion 512 having an extension portion 512a on one side thereof, and is disposed in parallel with the extension portion to form the horizontal groove 511b between the extension portion.
  • the horizontal auxiliary plate portion 513 and a pair of vertical auxiliary plate portions 514 and 515 which are formed in a vertical direction on the lower surface of the horizontal plate portion to form the vertical grooves 511a therebetween.
  • the three rollers are horizontal rollers 520, vertical rollers 530, and opening and closing rollers 540.
  • Each of the rollers has support shafts 522, 532, and 542, and cylindrical roller bodies 524, 534, and 544. And a bearing (not shown) interposed between the roller bodies 524, 534, 544 and the support shafts 522, 532, 542 to facilitate rotation.
  • the horizontal roller 520 is installed in the horizontal direction in the frame 510
  • the vertical roller 530 is installed in a vertical direction on one side of the horizontal roller 520
  • the opening and closing roller 540 is on the other side of the horizontal roller It is installed in the vertical direction.
  • the support shafts 522, 532, and 542 are fixed to the frame 510, and in particular, the support shaft 542 of the opening and closing roller 540 is rotatably fixed to the frame 510.
  • Support shaft 542 of the opening and closing roller 540 is preferably rotatably coupled to the front or rear of the frame 510 (where the front means the movement direction of the distribution cable, the rear means the opposite direction). Do. This is because when the opening and closing roller 540 is opened and closed laterally, it interferes with the hanger in which the frame 510 is installed.
  • the opening and closing rollers 540 are formed to be openable and closed, so that the distribution cable accommodated in the guide roller 100 can be easily pushed and moved to the hanger.
  • the support shaft 542 of the opening and closing roller 540 is connected to the frame 510 by a hinge shaft 545, and is formed to be rotatable forward or backward.
  • a groove (not shown) is formed at an upper portion of the support shaft 542 coupled with the hinge shaft 545, and a frame 510 can be inserted into the groove in a state in which the support shaft 542 is set up. 547 is provided
  • the opening and closing roller 540 After setting the support shaft 542 of the opening and closing roller 540, and tightening the fastening bolt 547 to be inserted into the groove, the opening and closing roller 540 is fixed in a standing state, by loosening the fastening bolt 547 fastening bolt ( When the 547 is to be separated from the groove, the support shaft 542 can be rotated again.
  • the opening and closing roller 540 fixed structure is to form a low height of the entire guide roller 500 by allowing to control the opening and closing of the opening and closing roller 540 only by the frame 510 formed at the bottom without a separate structure at the top.
  • the height of the guide roller 500 should be lower than this, and the lower the height of the entire guide roller 500, the easier the detachable operation. It becomes
  • Figure 10 is a view showing a state of completing the horizontal pulling step of the three-phase distribution cable pooling method according to the present invention.
  • the distribution cable (C) passes through the interior of the pipe 300 is lowered by gravity, so that the deceleration means provided in the pulling device 100 To control the falling speed of the induction port 200 by operating.
  • the guide hole 200 moves along the guide roller 500.
  • the distribution cable C is pulled only by the pulling force of the winch 600. Since the induction port 200 has a horn shape having a pointed tip, the induction port 200 is stably moved on the guide roller 500, so that the twisting of the distribution cable C does not occur, and damage to the outer skin is also caused. Can be reduced.
  • FIG. 11 is a side view illustrating a structure of a distribution cable feeder used in a three-phase distribution cable pulling method of the present invention
  • FIG. 12 is a cross-sectional view showing a contact state between an endless track and a distribution cable.
  • the conveying device 400 is to assist the traction of the winch 600, it may be installed on a hanger.
  • the distribution cable transfer apparatus used in the method of the present invention is formed to push the cable on the upper and lower surfaces in a caterpillar manner.
  • the endless track 410 of the feeder 400 serves to fix and push the power distribution cable C with frictional force
  • the surface of the endless tracks 410 and 420 corresponds to the outer diameter of the power distribution cable C.
  • Grooves 412 and 422 are provided. It is preferable that three grooves are formed to simultaneously transport three distribution cables.
  • the surfaces of the endless tracks 410 and 420 may be formed of a flexible or elastic material having high frictional force.
  • the feeder 400 is composed of a pair of upper and lower endless tracks 410, 420, the upper and lower endless tracks 410, 420 are rotated at the same speed by a drive motor (not shown) capable of speed control. At this time, the upper and lower endless tracks (410, 420) rotate in opposite directions to each other.
  • the upper endless track 410 rotates in a counterclockwise direction
  • the lower endless track 420 rotates in a clockwise direction to push the distribution cable from left to right.
  • the interval between the upper and lower endless tracks (410, 420) is adjustable.
  • the transfer device 400 is preferably controlled at the same time as the winch 600 described above to be able to tow the entire distribution cable at a constant speed.
  • the transfer device 400 may be installed to reinforce the traction force every predetermined section of the underground power sphere, and in this case, the transfer device 400 reinforces the traction force whenever the induction hole 200 passes through the transfer device 400. It is possible to stably distribute the distribution cable (C) to the end of the underground power sphere (where the winch is installed).
  • the winch 600 and the conveying device 400 are preferably all controlled to have the same linear velocity.
  • the speed of winding the guide wire is a linear speed
  • the feed speed of the endless track is the linear speed. If the linear velocity of the feeder 400 and the linear velocity of the winch 500 are different or the linear velocity between the conveyer 400 is different, an excessive tension is applied to the guide wire W, so that the guide wire W is cut or damaged. Slip may occur between the cable sheath and the caterpillar of the feeder due to differences in traction.
  • the guide wire (W) ) Is separated from the distribution cable (C)
  • the guide roller 500 is opened, and then fixed to the distribution cable (C) hanger to finish the work.
  • the three-phase distribution cable drawn from the vehicle-mounted drum located on the ground is pulled by the driving force of the winch and the conveying device to the inside of the underground power port, thereby reducing the work space required for the pulling work and the work force. It brings the effect of saving time and work time.

Landscapes

  • Electric Cable Installation (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)

Abstract

지중전력구에 3상 배전케이블을 동시에 포설하는 풀링 장치 및 이를 이용한 풀링 자동화 공법에 관한 것으로, 보다 상세하게는 자동화 설비를 이용하여 케이블 풀링(Cable pulling) 작업을 수행함으로써 작업에 소요되는 인력과 작업시간을 단축시킬 수 있는 지중전력구 3상 배전케이블 동시 풀링 공법을 제공하기 위한 것이다. 본 발명은 3개의 케이블드럼을 회전가능하게 각각 고정하는 제1, 제2, 제3 드럼적재부; 상기 제1, 제2, 제3 드럼적재부가 동일한 방향과 동일한 속도로 회전하도록 연결하는 전동수단; 상기 제1, 제2, 제3 드럼적재부 중 어느 하나에 연결되어 마찰력으로 연결된 드럼적재부의 회전속도를 감속시키는 감속수단; 및 상기 제1, 제2, 제3 드럼적재부를 고정하는 프레임;을 포함하는 3상 배전케이블 동시 풀링 장치와 이를 이용한 풀링 자동화 공법을 제공한다.

Description

지중전력구 3상 배전케이블 동시 풀링 장치 및 이를 이용한 풀링 자동화 공법
본 발명은 지중전력구에 3상 배전케이블을 동시에 포설하는 차량 탑재형 풀링 장치 및 이를 이용한 풀링 자동화 공법에 관한 것으로, 보다 상세하게는 자동화 설비를 이용하여 케이블 풀링(Cable pulling) 작업을 수행함으로써 작업에 소요되는 인력과 작업시간을 단축시킬 수 있는 지중전력구 3상 배전케이블 동시 풀링 자동화 공법을 제공하기 위한 것이다.
지중배전설비는 가공설비에 비해 전력의 안정공급 및 공급신뢰도 향상, 도시환경미화 등의 사회적, 경제적 측면에서 우수하여, 매년 지중배전설비가 지속적으로 증가하는 추세이다.
지중전력구는 지하에 설치되는 구조물로, 지상과 소통할 수 있는 수직구로 연결되어 있다. 지중전력구의 내부에 배전케이블을 설치하기 위해서는 지상에서 배전케이블을 수직구를 통해 진입시켜 지중전력구 내부로 이동시키는 작업이 필요하다. 이 작업을 풀링(PULLING) 작업이라고 한다.
배전케이블은 드럼에 권취된 상태로 공급되고, 통상 한번에 시공되는 배전케이블의 길이는 300m 정도이다. 드럼 상태로 지중전력구 내부로 이동시켜 내부에서 배전케이블을 풀어서 설치한다면 작업이 어렵지 않을 것이다. 그러나 드럼의 크기와 배전케이블의 부피가 커서 수직구를 통해 드럼 상태로 배전케이블을 운반할 수는 없다.
따라서, 드럼은 지상에 놓여진 상태에서 배전케이블을 풀면서 지중전력구로 끌어당기는 풀링 작업을 실시하고 있었는데, 종래에는 이러한 작업이 순수 인력에 의해서 이루어졌기 때문에 많은 노동력과 작업시간이 소요되는 문제가 있었다.
또한, 작업 방식이 배전케이블을 먼저 전력구 바닥에 놓은 후, 다시 행거로 들어올리는 작업을 수행하고 있었는데, 이는 작업자의 이동 공간 확보를 위한 불가피한 선택이나 배전케이블을 행거로 들어올리는 작업은 수백m에 달하는 배전케이블을 들어올려야 하는 것으로 안전사고 발생이 많은 문제점도 가지고 있었다.
특히, 3상 배전케이블의 경우 3개의 케이블을 동시에 작업할 수 없어서 1개의 케이블마다 풀링 작업을 수행하고 있어서 이의 개선이 필요한 실정이다.
본 발명의 목적은 수직전력구를 낙하하는 배전케이블의 풀링 속도를 제어할 수 있는 3상 배전케이블 풀링 장치를 제공하기 위한 것이다.
본 발명의 다른 목적은 풀링장치를 차량에 탑재함으로써 작업공간 축소와 작업인력을 감축시킬 수 있는 차량 탑재형 3상 배전케이블 동시 풀링 장치를 제공하기 위한 것이다.
본 발명의 또 다른 목적은 케이블의 풀링 작업을 윈치(winch)와 이송장치의 구동력으로 실시하도록 하고, 배전케이블을 직접 행거에 위치할 수 있도록 함으로써 작업시간과 작업인력을 감축시킬 수 있는 케이블 풀링 공법을 제공하기 위한 것이다.
본 발명의 다른 목적은 케이블 풀링 작업시 발생하는 케이블 외피의 손상을 감소시킬 수 있는 케이블 풀링 공법을 제공하기 위한 것이다.
본 발명의 또 다른 목적은 3상 케이블을 동시에 풀링할 수 있는 케이블 풀링 공법을 제공하기 위한 것이다.
본 발명의 또 다른 목적은 전체 공정을 자동제어함으로써 실시간 원격제어하는 공법을 제공하기 위한 것이다.
이러한 목적을 달성하기 위한 본 발명은 3개의 케이블드럼을 회전가능하게 각각 고정하는 제1, 제2, 제3 드럼적재부; 상기 제1, 제2, 제3 드럼적재부가 동일한 방향과 동일한 속도로 회전하도록 연결하는 전동수단; 상기 제1, 제2, 제3 드럼적재부 중 어느 하나에 연결되어 마찰력으로 연결된 드럼적재부의 회전속도를 감속시키는 감속수단; 및 상기 제1, 제2, 제3 드럼적재부를 고정하는 프레임;을 포함하는 3상 배전케이블 풀링 장치를 제공한다.
상기 제1, 제2, 제3 드럼적재부는 양측으로 분할 형성되며 길이방향으로 이동가능하게 형성되는 회전축과, 상기 회전축의 분할 단부에 서로 마주하게 형성되는 플랜지부를 포함하는 것이 바람직하다.
이 때, 상기 플랜지부는 케이블드럼의 측면에 돌출형성된 체결수단을 수용하는 수용홈을 구비하면 더욱 바람직하다.
한편, 상기 전동수단은 체인과 스프로킷으로 구성될 수 있으며, 상기 감속수단은 유체의 압력에 따라 마찰력이 조절되는 유압식 브레이크로 구성될 수 있다.
아울러, 상기 감속수단은 상기 드럼적재부의 회전속도를 입력받아 감속력을 제어하는 제어부를 더 포함하는 것이 바람직하다.
작업의 편리성 향상을 위해서는 풀링장치의 프레임을 차량의 적재부에 탈부착 가능하게 형성하는 것이 바람직하다.
그리고 본 발명은, 상술한 풀링장치에 권취된 3개의 배전케이블의 선단을 뿔형상의 유도구에 연결하고, 맨홀입구에 입구부가 깔대기 형상을 가지며 수직구 내부로 주름관이 연장형성되어 있는 유도관을 설치하며, 전력구 내부의 행거에 가이드롤러를 설치하고 지중전력구에 윈치를 설치하며, 상기 윈치와 상기 유도구를 안내와이어로 연결하는 준비작업 단계;
상기 윈치를 작동시켜 상기 배전케이블이 연결된 뿔형상의 유도구를 상기 유도관으로 진입시키되, 상기 풀링장치의 감속수단을 동작하여 배전케이블의 이동속도를 일정범위로 유지하며 상기 유도구를 수직구의 바닥까지 이송시키는 수직 풀링 단계; 및
상기 윈치를 지속적으로 작동시켜 유도구가 행거에 설치된 가이드롤러를 통과하며 배전케이블을 행거 위로 이송시키는 수평 풀링 단계;를 포함하는 지중전력구 3상 배전케이블 동시 풀링 공법을 제공한다.
본 발명에 따른 풀링 공법에 사용되는 가이드롤러는 일측이 개폐 가능한 형태인 것이 바람직하다.
또한, 상기 준비 작업 단계에서, 상기 행거에 윈치의 견인력을 보조할 수 있는 이송장치를 추가로 설치하고, 상기 수평 풀링 단계에서, 상기 윈치와 함께 상기 이송장치를 함께 작동시키는 것이 바람직하다.
아울러, 상기 수평 풀링 단계는, 상기 윈치와 상기 이송장치가 동일한 선속도를 가지도록 제어하는 것이 바람직하며,
지중전력구 구간에 관통해야 하는 벽체가 존재하는 경우, 상기 준비 작업 단계에서, 상기 벽체에 깔대기 형상의 유도관을 설치하는 것이 바람직하다.
아울러, 상기 유도구에 카메라를 구비하며, 상기 수평 풀링 단계 및 상기 수직 풀링 단계에서, 상기 유도구의 카메라에서 촬영된 영상이 실시간으로 작업자 또는 감독자에게 전송되도록 하는 것이 바람직하다.
이를 위해서, 상기 카메라에서 전송되는 신호는 무선으로 전송되고, 상기 지중전력구 내부에 무선서버와, 무선중계기를 구비하여, 상기 카메라에서 전송된 신호가 상기 무선서버로 전달되고, 상기 무선서버는 전송된 신호를 작업자 또는 감독자의 핸드폰으로 전송하도록 구성하는 것이 바람직하다.
본 발명에 따른 케이블 풀링 자동화 공법은 지상에 위치한 차량 탑재형 드럼으로부터 인출된 3상 배전케이블을 지중전력구 내부까지 윈치와 이송장치의 구동력으로 견인하도록 함으로써 풀링 작업에 소요되는 작업 공간 축소, 작업 인력 절감 및, 작업시간 단축의 효과를 가져온다.
또한, 본 발명은 3상 배전케이블이 지중전력구 내부의 구조물이나 벽체와 마찰하지 않도록 가이드롤러를 배치함으로써 배전케이블의 외피 손상을 저감하는 효과를 가져온다.
본 발명에 따른 3상 배전케이블 풀링 공법을 사용하면, 종래의 인력에 의존한 작업에서 20명 이상의 작업자가 필요했던 것에 비하여, 8명 이하의 작업인원으로 풀링 공사를 수행할 수 있고 작업시간을 현저하게 단축시킬 수 있는 효과를 가져온다. 따라서 시공비용을 25% 이상 절감할 수 있는 효과를 가져온다.
도 1은 지중전력구의 구조를 개략적을 나타낸 구조도
도 2는 본 발명의 실시예에 따른 3상 배전케이블 풀링 장치의 구조를 개략적으로 나타낸 도면,
도 3은 케이블드럼의 구조를 나타낸 사시도,
도 4는 본 발명에 따른 3상 배전케이블 풀링 공법의 공정 순서도,
도 5는 본 발명에 따른 3상 배전케이블 풀링 공법의 준비작업 단계를 마친상태를 나타낸 도면,
도 6은 본 발명에 따른 3상 배전케이블 풀링 공법에 사용되는 유도구의 구조를 나타낸 도면,
도 7은 본 발명에 따른 3상 배전케이블 풀링 공법에 사용되는 유도관의 구조를 나타낸 도면,
도 8은 발명에 따른 3상 배전케이블 풀링 공법에 사용되는 가이드롤러의 구조를 나타낸 도면,
도 9는 본 발명에 따른 3상 배전케이블 풀링 공법의 수직 풀링 단계를 마친상태를 나타낸 도면,
도 10은 본 발명에 따른 3상 배전케이블 풀링 공법의 수평 풀링 단계를 마친상태를 나타낸 도면,
도 11은 본 발명의 3상 배전케이블 풀링 공법에 사용되는 배전케이블 이송장치의 구조를 나타낸 측면도,
도 12는 무한궤도와 배전케이블의 접촉상태를 나타낸 단면도임.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 지중전력구 3상 배전케이블 풀링 장치 및 이를 이용한 풀링 공법의 실시예를 설명한다.
이러한 과정에서 도면에 도시된 선들의 두께나 구성요소의 크기 등은 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있다.
또한, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로써 이는 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다.
그러므로, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
먼저 지중전력구의 구조에 관하여 살펴본다.
지중전력구는 지하 30~40m 깊이에 설치되는 구조물로, 내부에 송전 케이블, 배전 케이블, 통신 케이블이 설치된다.
도 1은 지중전력구의 구조를 개략적을 나타낸 구조도이다.
도시된 바와 같이, 지중전력구(10)의 일측에는 지상과 지중전력구를 연결하는 수직구(20)가 형성되어 있다. 수직구의 내부에는 작업자가 출입시 사다리 처럼 이용할 수 있는 철구조물(22)이 형성되어 있다.
그리고 지중전력구(10)의 내부에는 다양한 종류의 케이블(송전 케이블, 배전 케이블, 통신 케이블 등)을 구별하여 설치할 수 있도록 복층의 행거(Hanger)(12)가 구비된다. 예를 들면 행거(12)를 3층 구조로 형성하여 1층에는 송전 케이블을 설치하고, 2층에는 배전케이블을 설치하고, 3층에는 통신케이블을 설치하는 식이다.
이러한 구조를 가진 지중전력구(10) 내부에 배전 케이블을 설치하기 위해서는 수직구(20)를 통해 배전케이블을 진입시키는 작업이 필요한데, 이 작업을 케이블 풀링(Cable pulling)이라 한다.
지중 전력구의 한 구간의 길이(여기서 한 구간이라 함은 인접한 수직구들 사이에 설치되는 지중 전력구의 길이를 의미한다.)는 수십m에서 수백m에 달한다.
한편, 배전 케이블은 드럼에 권취된 상태로 공급되는데 드럼의 크기가 수직구의 직경보다 크기 때문에, 드럼 상태로 지중 전력구에 진입할 수 없다. 또한 수백미터에 달하는 배전케이블은 그 자체만으로도 부피가 커서 권취된 상태로는 수직구를 통해 운반할 수 없다.
따라서, 드럼을 수직구(20)의 입구 근방에 위치시킨 상태에서 배전케이블을 풀어서 수직구(20)를 통해 지중전력구(10) 내부로 진입시키는 작업을 수행하게 되는데, 종래에는 이 작업이 대부분 인력에 의해서 이루어지고 있었다.
종래의 작업 방식은 드럼쪽에 작업 인력이 배치되어 드럼을 수동으로 각각 잡아주면서 풀어주어야 되었고, 이렇게 순수 인력에 의해서 배전케이블을 풀어주면서 수직구(20)로 집어 넣으면, 배전케이블의 커다란 자체 무게를 수직구 층별로 인력이 배치되어 인력의 힘으로 배전케이블이 지중전력구(10) 바닥면까지 내려가게 되고, 지중 전력구 내부에 작업자를 배치하여 작업자들이 케이블을 들고 이동하는 방식으로 작업을 수행하였다.
그런데, 이러한 과정에서 케이블이 수직구 입구 또는 지중 전력구 모서리에 접촉하여 외피가 손상되는 문제점이 있었으며, 케이블이 자중에 의하여 급속하게 낙하하는 경우 케이블을 잡고 있던 작업자가 부상당할 우려도 있었다.
또한, 지중 전력구 내부에서 케이블의 이동이 인력에 의하여 이루어지다 보니 작업 속도가 느리고, 많은 작업시간이 소요되는 문제점이 있었다.
그리고, 이러한 종래의 케이블 풀링 작업은 케이블 1개씩 작업이 이루어져야 했고, 3상 배전케이블 작업의 경우 3차례의 동일한 작업을 반복해야 3상 케이블의 풀링 작업을 수행하고 있었다.
본 발명은 3상 배전 케이블을 동시에 풀링 할 수 있는 풀링 장치 및 이를 이용한 풀링 공법에 관한 것으로, 드럼을 차량에 회전가능하게 탑재하고 풀링 속도를 제어할 수 있도록 브레이크를 구비하는 동시 풀링 장치를 이용하며, 전력구에 설치된 행거위에 가이드롤러를 설치하여 행거상에 3개의 배전케이블을 동시에 풀링 할 수 있도록 함으로써 작업시간을 단축하고 공사 소요 인력을 절감하고, 케이블이 손상되는 것을 방지 할 수 있도록 하기 위한 것이다.
도 2는 본 발명의 실시예에 따른 3상 배전케이블 풀링 장치의 구조를 개략적으로 나타낸 도면이다.
본 발명의 실시예에 따른 풀링 장치는 3개의 케이블드럼을 회전가능하게 적재하고, 드럼의 회전속도를 감속시킬 수 있도록 구성된다.
이를 위한 본 발명은 드럼을 회전가능하게 고정하는 제1, 제2, 제3 드럼적재부(110, 120, 130)을 구비한다.
이하에서, 3개의 드럼적재부(110, 120, 130)의 기본 원리는 동일하므로, 제1 드럼적재부를 기준으로 설명한다.
*드럼적재부(110)는 프레임(102)에 회전가능하게 설치되며 양측으로 분할 형성되어 있는 회전축(112a, 112b)과, 상기 회전축(112a, 112b)의 분할 단부에 서로 마주하게 형성되는 플랜지부(114a, 114b)를 포함한다.
프레임(102)은 드럼적재부(110, 120, 130)를 포함한 후술하는 다른 부분들이 고정되는 것으로, 차량의 적재함에 탈부착이 가능하도록 형성되는 것이 바람직하다.
회전축(112a, 112b)은 프레임(102)에 대하여 회전가능할 뿐 아니라, 회전축의 길이 방향으로 이동가능하게 형성되어 플랜지부(114a, 114b) 사이의 간격을 조절할 수 있도록 형성된다.
도시된 도면에서 제1 드럼적재부(110)는 양측의 플랜지부(114a, 114b)에 밀착되어 드럼(50)에 고정된 상태이고, 제2 드럼적재부(120)와 제3 드럼적재부(130)의 경우 플랜지부(124a, 124b, 134a, 134b)가 드럼(50)에 이격되어 있어서 드럼(50)이 고정되지 않은 상태이다.
드럼적재부(110, 120, 130)의 드럼(50) 고정구조를 살펴보기에 앞서 배전케이블을 권취하고 있는 드럼의 구조에 관하여 살펴본다.
도 3은 케이블드럼의 구조를 나타낸 사시도이다.
케이블드럼(50)은 원형의 양측판(52)과, 양측판(52)을 연결하는 중앙축(54)을 포함하며, 중앙축(54)은 내부에 관통공(55)을 형성하고 있다.
양측판(54)에는 복수개의 체결수단(53)이 노출되어 있다. 체결수단(53)은 케이블드럼을 견고하게 고정하기 위한 것으로, 양측판(52) 중 일측으로는 볼트 머리가 돌출되는 타측으로는 볼트의 끝단부와 너트가 노출되어 있다.
회전축(112b)에 고정된 플랜지부(114b)에는 상기 체결수단(53)에 대응하는 위치에 수용홈(115b)을 구비하고 있다. 따라서 플랜지부(114b)를 케이블드럼(50)에 밀착시키게 되면, 상기 체결수단(53)이 수용홈(115b)에 삽입되어 플랜지부(114b)와 케이블드럼(50)이 일체로 회전하게 된다.
케이블드럼(50)의 설치는, 플랜지부(114a, 114b) 사이의 간격을 드럼의 폭보다 넓게 설정한 후, 드럼을 플랜지부(114a, 114b) 사이에 적재하고, 플랜지부(114a, 114b)의 간격을 좁혀 플랜지부(114a, 114b)가 케이블드럼(50)의 양측면에 압착되도록 하되, 이 때 상술한 체결수단(53)이 수용홈(115a, 115b)에 안착되도록 함으로써, 드럼(50)을 회전축(112a, 112b)에 고정시키는 방식으로 이루어진다.
이러한 방식으로 3개의 드럼을 3개의 드럼적재부(110, 120, 130)에 고정하면 각각의 드럼은 각각의 회전축과 일체로 회전하게 된다.
본 발명은 3개의 드럼이 동일한 방향과 동일한 속도로 회전할 수 있도록 연결하는 전동수단(140)을 더 포함한다. 전동수단은 체인(144)과 스프로킷(142) 또는 벨트와 풀리 등으로 구성되어, 3개의 회전축이 동일한 방향과 속도로 회전하도록 연결하는 역할을 수행한다. 전동 수단은 온/오프(ON/OFF)가 가능하도록 형성되는 것이 바람직하다. 전동 수단의 온(ON)은 3개의 회전축의 회전방향과 회전속도가 동일해 지도록 구속하는 것이고, 전동 수단의 오프(OFF)는 3개의 회전축의 구속을 해제하여 각각의 회전축이 개별적으로 회전할 수 있도록 하는 것이다. 이는 케이블 풀링시 드럼의 반경 차이에 따른 오차를 보정할 수 있도록 하기 위한 것이다.
도시된 실시예의 경우 제1회전축(112a)과 제2회전축(122a)을 체인(144)과 스프로킷(142)으로 연결하고, 제2회전축(122a)과 제3회전축(132a)을 다시 체인(144)과 스프로킷(142)으로 연결하여 제1, 제2, 제3회전축이 일체로 회전할 수 있도록 연결한 것이다.
이러한 연결구조로 인하여 3개의 드럼에 각각 권취된 3개의 배전케이블이 동일한 회전속도로 풀링 될 수 있다.
본 발명은 드럼적재부의 회전축에 연결되는 감속수단(150)을 더 포함한다.
감속수단(150)은 마찰력에 의하여 회전에 대한 저항을 부여하여 회전속도를 감속시키는 것으로, 마찰력의 강도를 조절할 수 있는 형태를 사용한다.
예를 들어, 유압식 디스크 브레이크 또는 유압식 드럼 브레이크 등을 사용할 수 있다. 이러한 유압식 브레이크는 유체의 압력을 제어하여 감속력을 조절하게 된다.
감속수단(150)은 배전케이블이 수직구를 낙하할 때 낙하 속도를 감속시키는 역할을 수행하게 된다.
수직구 내부에서는 배전케이블이 중력에 의하여 낙하하기 때문에 감속시키지 않으면 배전케이블의 손상을 가져올 수 있으며 작업자의 안전을 위협할 수도 있다. 따라서, 본 발명은 상술한 감속수단(150)을 이용하여 일정한 속도로 배전케이블이 수직구로 이동될 수 있도록 한다.
이 때, 감속수단(150)의 마찰력은 작업자에 의하여 수동으로 조절될 수도 있으며, 배전케이블의 이송속도를 감지하는 센서를 구비하여 상기 센서에서 입력되는 신호를 입력받아 자동적으로 감속수단(150)의 마찰력을 제어하는 제어부를 구비하여 자동으로 이루어지도록 할 수도 있다. 이 때 센서는 드럼적재부의 회전축에 구비되는 각속도 센서일 수 있으나, 이에 한정되는 것은 아니다.
도 4는 본 발명에 따른 3상 배전케이블 풀링 공법의 공정 순서도이고, 도 5는 본 발명에 따른 3상 배전케이블 풀링 공법의 준비작업 단계를 마친상태를 나타낸 도면이다.
본 발명에 따른 3상 배전케이블 풀링 공법은 상술한 풀링장치(100)에 권취된 3개의 배전케이블의 선단을 뿔형상의 유도구(200)에 연결하고, 맨홀입구에 입구부가 깔대기 형상을 가지며 수직구 내부로 주름관이 연장형성되어 있는 유도관(300)을 설치하며, 전력구 내부의 행거에 가이드롤러(500)를 설치하고 지중전력구(10)에 윈치(600)를 설치하며, 상기 윈치(600)와 상기 유도구(200)를 안내와이어(W)로 연결하는 준비작업 단계(S-41)와,
상기 윈치(600)를 작동시켜 상기 배전케이블(C)이 연결된 뿔형상의 유도구(200)를 상기 유도관(300)으로 진입시키되, 상기 풀링장치(100)의 감속수단을 동작하여 배전케이블(C)의 이동속도를 일정범위로 유지하며 상기 유도구(200)를 수직구의 바닥까지 이송시키는 수직 풀링 단계(S-42)와,
상기 윈치(600)를 지속적으로 작동시켜 유도구(200)가 행거(21)에 설치된 가이드롤러(500)를 통과하며 배전케이블(C)을 행거(12) 위로 이송시키는 수평 풀링 단계(S-43)을 포함한다.
상기 준비작업 단계(S-41)에 있어서, 곡선구간 또는 경사구간 등 가이드롤러(500) 하중이 증가하는 구간에는 가이드롤러(500)가 설치된 행거들 사이를 단바클로 연결하여 행거의 변형을 방지하는 것이 바람직하다. 단바클을 설치하게 되면 행거의 외측(변면의 반대측) 자유단이 단바클에 의하여 고정되어, 행거들 사이의 간격이 단바클에 의하여 유지되므로, 행거의 변형을 방지할 수 있게 된다.
도 6은 본 발명에 따른 3상 배전케이블 풀링 공법에 사용되는 유도구의 구조를 나타낸 도면이다.
도시된 바와 같이, 유도구(200)는 앞쪽으로 갈수록 단면이 작아지는 뿔형상을 가지는 머리부(210)와, 상기 머리부(210)와 연결되며 직사각형의 단면을 가지는 몸체부(220)와, 상기 몸체부에 형성되어 3개의 배전이블을 수용 고정하는 케이블홈(221)을 포함한다.
머리부(210)의 선단이 안내와이어(W)를 통해 윈치(600)와 연결된다.
유도구(200)는 3개의 배전케이블이 꼬이지 않도록 하는 역할을 수행하며, 가이드롤러(500)를 원활하게 통과할 수 있도록 하기 위하여 앞부분이 뿔 형상을 가지고 있다.
유도구(200)에는 전방의 영상을 실시간으로 촬영하여 전송하는 카메라를 구비할 수 있으며, 카메라로 촬영된 영상은 실시간으로 작업자 또는 감독자에게 전송되는 것이 바람직하다.
카메라는 신호를 무선으로 전송하는 것이 바람직한데, 지중전력구 내부의 신호를 외부의 작업자 또는 감독자에게 전송하기 위해서는 지중전력구 내부에 무선서버와 무선중계기를 구비하는 것이 바람직하다.
카메라에서 전송된 신호가 무선 중계기를 통하여 무선서버로 전달되고, 무선서버는 지상과 연결되어 카메라에서 전송된 신호를 작업자 또는 감독자의 핸드폰으로 전송하게 된다.
그리고, 유도구(200)에는 유도구(200)의 이동방향과 이동속도를 측정할 수 있는 G센서를 구비하여, 수평 풀링 단계 또는 수직 풀링 단계에서 윈치의 견인속도와 유도구(200)의 이동속도를 비교할 수 있도록 하는 것이 바람직하다.
이러한 비교를 통하여, 속도의 차이가 일정범위를 넘어서는 경우 윈치의 작동을 정지시키도록 제어할 수 있다. 속도의 차이가 일정범위를 벗어나게되면 배전케이블에 과도한 장력이 부여되는 것이므로 행거의 파손이나 배전케이블의 손상을 가져올 수 있기 때문이다.
도 7은 본 발명에 따른 3상 배전케이블 풀링 공법에 사용되는 유도관의 구조를 나타낸 도면이다.
유도관(300)은 고정판(310), 입구관(320), 주름관(330)을 포함한다.
고정판(310)은 맨홀 입구(수직구 입구)에 결합되어 입구관(320)을 고정하는 부분으로, 맨홀 뚜껑에 대응하는 크기로 형성되며, 일측에 배전케이블이 통과할 수 있는 결합공(312)이 구비되어 있다. 6cm 직경의 배전케이블의 유도하는 경우에 결합공(312)의 직경은 20cm 내외로 형성한다. 3개의 배전케이블이 한꺼번에 통과할 수 있도록 하기 위한 것이다.
고정판(310)에는 결합공(312)이 형성된 타측에 소통공(314)을 구비하는 것이 바람직하다. 소통공(314)은 고정판(310)을 맨홀 입구에서 분리하지 않고 내외부의 작업자가 작업공구를 주고 받을 수 있는 통로의 역할도 수행한다.
주름관(330)은 수직구 내부에서 배전케이블의 경로를 안내함과 동시에, 배전케이블이 수직구의 벽면이나 구조물에 접촉하지 않도록 안내하는 역할을 수행한다.
주름관(330)은 고정판(310)의 하면에서 결합공(312)의 하부로 노출된 입구관(120)의 목부와 결합되는 것으로, 내주면과 외주면에 연속되는 나선홈을 구비한다. 나선홈을 구비하게 되면 주름관(330)이 유연성을 가지게 되며, 내부로 이송되는 배전케이블과의 마찰면적을 감소시킬 수 있게 된다.
입구관(320)과 주름관(330)의 결합관계에 관하여 살펴본다. 입구관(320) 목부의 외경은 주름관(330)의 내경에 대응하도록 형성되어, 목부가 주름관(330)에 삽입되는 형태로 결합된다.
그런데, 주름관(330)의 길이가 길어질 경우 주름관(330)의 전체 중량이 증가하게 되므로, 이러한 경우 별도의 고정와이어(340)를 이용하여 주름관(330)을 고정판(310)에 매다는 방식으로 고정하는 것이 바람직하다.
이러한 형태의 연결관은 지중전력구 내부에 벽체를 통과할 때도 사용될 수 있다. 다만, 벽체에 사용되는 연결관에는 고정판(110)이 필요치 않으므로 입구관(320)과 주름관(330)만으로 구성된다.
도 8은 발명에 따른 3상 배전케이블 풀링 공법에 사용되는 가이드롤러의 구조를 나타낸 도면이다.
가이드롤러(500)는 지중전력구 행거(12)에 고정되어 풀링 작업시 배전케이블의 이동을 원활하게 하고, 외피의 손상을 방지하는 역할을 수행한다.
전력구 내부에 설치되는 행거는 '│'자형 단면을 가지는 타입과 'ㄱ'자형 단면을 가지는 타입의 2가지 종류가 있다.
본 발명에 따른 공법에 사용되는 가이드롤러(500)는 행거에 고정되는 프레임(510)과, 상기 프레임(510)에 회동가능하게 설치되는 3개의 롤러를 포함하며, 상기 프레임(510)에 수직홈(511a)과 수평홈(511b)를 구비하여 두가지 타입의 행거에 모두 적용될 수 있다.
프레임(510)은 수평방향으로 형성되며 일측에 연장부(512a)를 구비하는 수평판부(512)와, 상기 연장부와 평행하게 배치되어 상기 연장부와의 사이에 상기 수평홈(511b)을 형성하는 수평보조판부(513)와, 상기 수평판부의 하면에 수직방향으로 형성되어 사이에 상기 수직홈(511a)을 형성하는 한쌍의 수직보조판부(514, 515)를 포함한다.
3개의 롤러는 수평롤러(520), 수직롤러(530), 개폐롤러(540)인데, 각각의 롤러는 모두 지지축(522, 532, 542)과, 원통형상의 롤러체(524, 534, 544)와, 상기 롤러체(524, 534, 544)와 지지축(522, 532, 542)의 사이에 개지되어 회전을 용이하게 베어링(미도시)을 포함한다.
수평롤러(520)는 프레임(510)에 수평방향으로 설치되고, 수직롤러(530)는 상기 수평롤러(520)의 일측에 수직방향으로 설치되며, 개폐롤러(540)는 상기 수평롤러의 타측에 수직방향으로 설치된다.
상기 지지축(522, 532, 542)들은 프레임(510)에 고정되며, 특히 개폐롤러(540)의 지지축(542)은 프레임(510)에 대하여 회동가능하게 고정되는 것에 특징이 있다. 개폐롤러(540)의 지지축(542)는 프레임(510)의 전방 또는 후방(여기서 전방은 배전케이블의 이동방향을 의미하며, 후방은 그 반대방향을 의미한다)으로 회동가능하게 결합되는 것이 바람직하다. 개폐롤러(540)가 측방으로 개폐되면 프레임(510)이 설치되는 행거와 간섭하게 되기 때문이다.
개폐롤러(540)를 개폐가능하게 형성하는 것은, 가이드롤러(100)에 수용된 배전케이블을 행거로 용이하게 밀어 이동시킬 수 있도록 하기 위한 것이다.
개폐롤러(540)의 고정구조에 관하여 살펴본다. 개폐롤러(540)의 지지축(542)은 프레임(510)에 힌지축(545)으로 연결되어, 전방 또는 후방으로 회동가능하게 형성된다.
힌지축(545)과 결합된 지지축(542)의 상부에는 요홈(미도시)이 형성되어 있으며, 프레임(510)이 상기 지지축(542)이 세워진 상태에서 상기 요홈에 삽입될 수 있는 체결볼트(547)가 구비된다
개폐롤러(540)의 지지축(542)을 세운 후, 체결볼트(547)가 상기 요홈에 삽입되도록 조이면, 개폐롤러(540)는 세워진 상태로 고정되고, 체결볼트(547)를 풀어 체결볼트(547)가 상기 요홈에서 분리되도록 하면, 지지축(542)은 다시 회동가능하게 되는 구조이다.
이러한 개폐롤러(540) 고정구조는 위쪽에 별도의 구조물 없이 하부에 형성된 프레임(510)만으로 개폐롤러(540)의 열림, 닫힘을 조절할 수 있도록 해줌으로써 전체 가이드롤러(500)의 높이를 낮게 형성할 수 있는 장점이 있다.
지중전력구 내부에 복층으로 형성되는 행거(12)는 각 단의 높이차가 20cm 이므로, 가이드롤러(500)의 높이는 이 보다 더 낮아야하고, 가이드롤러(500) 전체의 높이가 낮을수록 탈부착 작업이 용이해 진다.
도 9는 본 발명에 따른 3상 배전케이블 풀링 공법의 수직 풀링 단계를 마친상태를 나타낸 도면이고, 도 10은 본 발명에 따른 3상 배전케이블 풀링 공법의 수평 풀링 단계를 마친상태를 나타낸 도면이다.
도 9에 도시된 바와 같이, 수직 풀링 단계(S-42)에서는 배전케이블(C)이 연결관(300)의 내부를 통과하여 중력에 의하여 하강하게 되므로, 풀링장치(100)에 구비된 감속수단을 동작하여 유도구(200)의 낙하 속도를 조절해야 한다.
도 10에 도시된 바와 같이, 수평 풀링 단계(S-43)에서는 유도구(200)가 가이드롤러(500)를 따라 이동하게 된다. 이 때에는 윈치(600)의 견인력만으로 배전케이블(C)이 당겨진다. 유도구(200)가 선단이 뾰족한 뿔 형상을 가지고 있어서 유도구(200)가 안정적으로 가이드롤러(500)를 타고 이동하게 되므로, 배전케이블(C)의 꼬임이 발생하지 않게 되고, 외피의 손상도 감소시킬 수 있게 된다.
도 11은 본 발명의 3상 배전케이블 풀링 공법에 사용되는 배전케이블 이송장치의 구조를 나타낸 측면도이고, 도 12는 무한궤도와 배전케이블의 접촉상태를 나타낸 단면도이다.
이송장치(400)는 윈치(600)의 견인력을 보조하기 위한 것으로, 행거에 설치될 수 있다. 도시된 바와 같이, 본 발명의 공법에 사용되는 배전케이블 이송장치는 무한궤도 방식으로 상하면에서 케이블을 밀어주도록 형성되어 있다.
이송장치(400)의 무한궤도(410)는 배전케이블(C)을 마찰력으로 고정하여 밀어주는 역할을 수행하는 것으로, 무한궤도(410, 420)의 표면에는 배전케이블(C)의 외경에 대응하는 홈(412, 422)이 구비된다. 3개의 배전케이블을 동시에 이송시킬 수 있도록 3개의 홈이 형성되는 것이 바람직하다. 또한, 무한궤도(410, 420)와 배전케이블(C) 간의 슬립(slip)을 방지하기 위하여, 무한궤도(410, 420)의 표면은 마찰력이 높은 연성 또는 탄성재질로 형성됨이 바람직하다.
이송장치(400)는 상하 한 쌍의 무한궤도(410, 420)로 구성되며, 상하의 무한궤도(410, 420)는 속도 제어가 가능한 구동모터(미도시)에 의하여 동일한 속도로 회전하게 된다. 이 때, 상하의 무한궤도(410, 420)는 서로 반대방향으로 회전한다. 위쪽의 무한궤도(410)는 반시계 방향으로 회전하며, 아래쪽의 무한궤도(420)는 시계방향으로 회전하여 배전케이블을 좌측에서 우측으로 밀어주게 되는 것이다.
그리고, 배전케이블(C)의 분리가 용이하도록 하기 위해서는 상하 무한궤도(410, 420)의 간격은 조절 가능하게 형성되는 것이 바람직하다.
이러한 이송장치(400)는 상술한 윈치(600)와 동시에 제어되어 전체 배전케이블을 일정한 속도로 견인할 수 있도록 하는 것이 바람직하다.
지중전력구의 소정 구간마다 견인력을 보강해주는 이송장치(400)가 설치될 수 있으며, 이러한 경우 유도구(200)가 이송장치(400)를 통과할 때마다 이송장치(400)가 견인력을 보강해주게 되므로 지중전력구의 끝(윈치가 설치된 곳)까지 안정적으로 배전케이블(C) 풀링 작업을 수행할 수 있게 된다.
이 때. 윈치(600)와 이송장치(400)는 모두 동일한 선속도를 가지도록 제어되는 것이 바람직하다. 여기서, 윈치(600)의 경우 안내와이어을 감는 속도가 선속도가 되고, 이송장치(400)의 경우 무한궤도의 이송속도가 선속도가 된다. 이송장치(400)의 선속도와 윈치(500)의 선속도가 상이하거나 이송장치(400)간의 선속도가 상이한 경우 안내와이어(W)에 무리한 장력이 걸리게 되어 안내와이어(W)이 절단 또는 손상될 수도 있고 견인력의 차이로 인하여 케이블 외피와 이송장치의 무한궤도 사이에서 슬립이 발생할 수도 있다.
본 발명에 따른 풀링 공법의 지상의 풀링장치(100)에 연결된 드럼(50)에 권취되어 있는 배전케이블(C)을 견인하여 지중전력구(20) 내부로 이송을 완료 한 후, 안내와이어(W)을 배전케이블(C)로부터 분리하고, 가이드롤러(500)를 개방한 후 배전케이블(C) 행거에 고정하여 작업을 마무리한다.
이상 살펴본 바와 같이, 본 발명에 따른 풀링 공법을 사용하면 3개의 배전케이블을 동시에 지중전력구의 행거위로 이송시켜 간편하게 설치할 수 있게 된다. 따라서 풀링작업에 투여되는 작업인력과 작업시간을 단축할 수 있어, 시공비용을 25% 이상 절감할 수 있는 효과를 가져온다.
첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였으나, 본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 변형될 수 있으며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본 발명에 따른 케이블 풀링 자동화 공법은 지상에 위치한 차량 탑재형 드럼으로부터 인출된 3상 배전케이블을 지중전력구 내부까지 윈치와 이송장치의 구동력으로 견인하도록 함으로써 풀링 작업에 소요되는 작업 공간 축소, 작업 인력 절감 및, 작업시간 단축의 효과를 가져온다.

Claims (17)

  1. 3개의 케이블드럼을 회전가능하게 각각 고정하는 제1, 제2, 제3 드럼적재부;
    상기 제1, 제2, 제3 드럼적재부가 동일한 방향과 동일한 속도로 회전하도록 연결하는 전동수단;
    상기 제1, 제2, 제3 드럼적재부 중 어느 하나에 연결되어 마찰력으로 연결된 드럼적재부의 회전속도를 감속시키는 감속수단; 및
    상기 제1, 제2, 제3 드럼적재부를 고정하는 프레임;을 포함하는 3상 배전케이블 동시 풀링 장치.
  2. 제 1 항에 있어서,
    상기 제1, 제2, 제3 드럼적재부는 양측으로 분할 형성되며 길이방향으로 이동가능하게 형성되는 회전축과,
    상기 회전축의 분할 단부에 서로 마주하게 형성되는 플랜지부를 포함하는 것을 특징으로 하는 3상 배전케이블 동시 풀링 장치.
  3. 제 2 항에 있어서,
    상기 플랜지부는 케이블드럼의 측면에 돌출형성된 체결수단을 수용하는 수용홈을 구비하는 것을 특징으로 하는 3상 배전케이블 동시 풀링 장치.
  4. 제 1 항에 있어서,
    상기 전동수단은 체인과 스프로킷을 포함하며, 체인과 스프로킷의 연결을 온/오프(ON/OFF) 제어할 수 있는 것을 특징으로 하는 3상 배전케이블 동시 풀링 장치.
  5. 제 1 항에 있어서,
    상기 감속수단은 유체의 압력에 따라 마찰력이 조절되는 유압식 브레이크인 것을 특징으로 하는 3상 배전케이블 동시 풀링 장치.
  6. 제 5 항에 있어서,
    상기 감속수단은 상기 드럼적재부의 회전속도를 입력받아 감속력을 제어하는 제어부를 더 포함하는 것을 특징으로 하는 3상 배전케이블 동시 풀링 장치.
  7. 제 1 항에 있어서,
    상기 프레임은 차량의 적재부에 탈부착 가능하게 형성되는 것을 특징으로 하는 3상 배전케이블 동시 풀링 장치.
  8. 제 1 항의 차량 탑재형 풀링장치에 권취된 3개의 배전케이블의 선단을 뿔형상의 유도구에 연결하고, 맨홀입구에 입구부가 깔대기 형상을 가지며 수직구 내부로 주름관이 연장형성되어 있는 유도관을 설치하며, 전력구 내부의 행거에 가이드롤러를 설치하고 지중전력구에 윈치를 설치하며, 상기 윈치와 상기 유도구를 안내와이어로 연결하는 준비작업 단계;
    상기 윈치를 작동시켜 상기 배전케이블이 연결된 뿔형상의 유도구를 상기 유도관으로 진입시키되, 상기 풀링장치의 감속수단을 동작하여 배전케이블의 이동속도를 일정범위로 유지하며 상기 유도구를 수직구의 바닥까지 이송시키는 수직 풀링 단계; 및
    상기 윈치를 지속적으로 작동시켜 유도구가 행거에 설치된 가이드롤러를 통과하며 배전케이블을 행거 위로 이송시키는 수평 풀링 단계;를 포함하는 지중전력구 3상 배전케이블 동시 풀링 자동화 공법.
  9. 제 8 항에 있어서,
    상기 가이드롤러는 일측이 개폐 가능한 형태인 것을 특징으로 하는 지중전력구 3상 배전케이블 동시 풀링 자동화 공법.
  10. 제 9 항에 있어서,
    상기 지중전력구 풀링 단계 이후에,
    상기 가이드롤러를 개방하고, 배전케이블을 상기 가이드롤러 외부로 밀어 이동시킨 후, 상기 행거에 고정하는 것을 특징으로 하는 지중전력구 3상 배전케이블 동시 풀링 자동화 공법.
  11. 제 8 항에 있어서,
    상기 준비 작업 단계에서,
    상기 행거에 윈치의 견인력을 보조할 수 있는 이송장치를 추가로 설치하고,
    상기 수평 풀링 단계에서,
    상기 윈치와 함께 상기 이송장치를 함께 작동시키는 것을 특징으로 하는 지중전력구 3상 배전케이블 동시 풀링 자동화 공법.
  12. 제 11 항에 있어서,
    상기 수평 풀링 단계는,
    상기 윈치와 상기 이송장치가 동일한 선속도를 가지도록 제어하는 것을 특징으로 하는 지중전력구 3상 배전케이블 동시 풀링 자동화 공법.
  13. 제 8 항에 있어서,
    지중전력구 구간에 관통해야 하는 벽체가 존재하는 경우,
    상기 준비 작업 단계에서, 상기 벽체에 깔대기 형상의 유도관을 설치하는 것을 특징으로 하는 3상 배전케이블 동시 풀링 자동화 공법.
  14. 제 8 항에 있어서,
    상기 배전케이블 풀링 단계 이후에,
    상기 가이드롤러와 상기 이송장치로부터 배전케이블을 분리하고, 상기 행거에 설치하는 것을 특징으로 하는 지중전력구 3상 배전케이블 동시 풀링 자동화 공법.
  15. 제 8 항에 있어서,
    상기 유도구에 카메라를 구비하며,
    상기 수평 풀링 단계 및 상기 수직 풀링 단계에서,
    상기 유도구의 카메라에서 촬영된 영상이 실시간으로 작업자 또는 감독자에게 전송되는 것을 특징으로 하는 3상 배전케이블 동시 풀링 자동화 공법.
  16. 제 15 항에 있어서,
    상기 카메라에서 전송되는 신호는 무선으로 전송되고,
    상기 지중전력구 내부에 무선서버와, 무선중계기를 구비하여, 상기 카메라에서 전송된 신호가 상기 무선서버로 전달되고,
    상기 무선서버는 전송된 신호를 작업자 또는 감독자의 핸드폰으로 전송하는 것을 특징으로 하는 3상 배전케이블 동시 풀링 자동화 공법.
  17. 제 8 항에 있어서,
    상기 유도구에 유도구의 이동방향과 이동속도를 측정할 수 있는 G센서를 구비하여,
    상기 수평 풀링 단계 또는 상기 수직 풀링 단계에서 윈치의 견인속도와 상기 유도구의 이동속도를 비교하여, 속도의 차이가 일정범위 이상인 경우 윈치의 작동을 정지하는 것을 특징으로 하는 3상 배전케이블 동시 풀링 자동화 공법.
PCT/KR2011/002109 2010-03-29 2011-03-28 지중전력구 3상 배전케이블 동시 풀링 장치 및 이를 이용한 풀링 자동화 공법 WO2011122811A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0028210 2010-03-29
KR1020100028210A KR100981710B1 (ko) 2010-03-29 2010-03-29 지중전력구 3상 배전케이블 동시 풀링 장치 및 이를 이용한 풀링 자동화 공법

Publications (2)

Publication Number Publication Date
WO2011122811A2 true WO2011122811A2 (ko) 2011-10-06
WO2011122811A3 WO2011122811A3 (ko) 2012-01-05

Family

ID=43010017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002109 WO2011122811A2 (ko) 2010-03-29 2011-03-28 지중전력구 3상 배전케이블 동시 풀링 장치 및 이를 이용한 풀링 자동화 공법

Country Status (2)

Country Link
KR (1) KR100981710B1 (ko)
WO (1) WO2011122811A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105680366A (zh) * 2014-11-19 2016-06-15 中国石油化工股份有限公司 液压式线缆收放装置
CN113161926A (zh) * 2021-05-12 2021-07-23 武汉华源电力设计院有限公司 基于电力系统施工双轮架式电缆敷设牵引装置
CN114322712A (zh) * 2021-12-23 2022-04-12 北京朝阳隆华电线电缆有限公司 一种线径测验装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101289465B1 (ko) * 2011-05-13 2013-07-26 (주)강화이엔씨 트레이의 케이블 포설장치 및 이를 이용한 케이블 포설방법
KR101159700B1 (ko) 2012-04-30 2012-06-26 주식회사 동해 케이블 4드럼 선출장치를 이용한 지중 저압 케이블 포설방법 및 케이블 4드럼 선출장치
KR101361065B1 (ko) 2013-12-04 2014-02-07 (유)삼우테크 신설 철도노반용 3열 전력 케이블 동시 포설방법
KR101549576B1 (ko) * 2015-02-25 2015-09-02 (주)부건종합건축사사무소 건축물에 설치되는 통신 케이블 보호 구조물
KR101622380B1 (ko) 2015-09-03 2016-05-18 미래이앤시주식회사 케이블 포설용 가이드 장치
KR101622381B1 (ko) 2015-09-03 2016-05-18 미래이앤시주식회사 케이블 포설용 가이드 장치를 이용한 케이블 포설설비 및 포설공법
KR101779811B1 (ko) * 2015-11-27 2017-09-19 주명석 지중 케이블 포설 공법
KR102616986B1 (ko) * 2016-09-28 2023-12-21 엘에스전선 주식회사 케이블 포설장치용 이동대차, 케이블 포설장치, 및 포설방법
KR102616987B1 (ko) * 2016-09-28 2023-12-21 엘에스전선 주식회사 케이블 포설장치용 이동대차, 케이블 포설장치, 및 포설방법
WO2020050692A1 (ko) * 2018-09-06 2020-03-12 주식회사 남북건설 송전용 지중케이블 와인딩장치 및 그를 포함하는 송전용 지중케이블 설치시스템
KR102040057B1 (ko) 2019-05-31 2019-11-05 주식회사 세종이앤지 맨홀 내 지중 케이블 포설 장치
KR102242473B1 (ko) * 2020-09-07 2021-04-19 이금용 케이블 포설장치 및 이를 이용하는 케이블 포설공법
KR102274799B1 (ko) 2021-01-18 2021-07-07 이승민 철도용 전력케이블 3열을 동시에 포설 가능한 포설장비
KR20230013893A (ko) 2021-07-20 2023-01-27 한국전력공사 맨홀 고정형 지중 케이블 풀링 및 윤활제 도포장치
KR102663313B1 (ko) * 2022-03-11 2024-05-03 주식회사 스마트조선엔지니어링 케이블 포설 장치
CN114825176B (zh) * 2022-04-11 2024-02-23 常熟理工学院 一种排缆作业用运行小车及其控制方法
KR102710049B1 (ko) * 2022-11-08 2024-09-24 김인호 동바리 방식의 지중선 포설장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200163244Y1 (ko) * 1999-07-01 2000-02-15 주식회사동해 전선의가선장치(架線裝置)
JP2000287323A (ja) * 1999-03-31 2000-10-13 Nishimatsu Constr Co Ltd メッセンジャーワイヤ延伸方法及びメッセンジャーワイヤ延伸装置
KR100590852B1 (ko) * 2005-10-28 2006-06-19 임용호 전선 권취장치
KR20090043055A (ko) * 2007-10-29 2009-05-06 주식회사 클립이엔지 지중관로용 케이블 인입 및 인출 장치
KR20090124184A (ko) * 2008-05-29 2009-12-03 주식회사 동해 케이블 3드럼 선출장치

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10215511A (ja) 1997-01-29 1998-08-11 Toshiba Eng & Constr Co Ltd ケーブル敷設方法およびその敷設用台車

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000287323A (ja) * 1999-03-31 2000-10-13 Nishimatsu Constr Co Ltd メッセンジャーワイヤ延伸方法及びメッセンジャーワイヤ延伸装置
KR200163244Y1 (ko) * 1999-07-01 2000-02-15 주식회사동해 전선의가선장치(架線裝置)
KR100590852B1 (ko) * 2005-10-28 2006-06-19 임용호 전선 권취장치
KR20090043055A (ko) * 2007-10-29 2009-05-06 주식회사 클립이엔지 지중관로용 케이블 인입 및 인출 장치
KR20090124184A (ko) * 2008-05-29 2009-12-03 주식회사 동해 케이블 3드럼 선출장치

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105680366A (zh) * 2014-11-19 2016-06-15 中国石油化工股份有限公司 液压式线缆收放装置
CN105680366B (zh) * 2014-11-19 2018-06-19 中国石油化工股份有限公司 液压式线缆收放装置
CN113161926A (zh) * 2021-05-12 2021-07-23 武汉华源电力设计院有限公司 基于电力系统施工双轮架式电缆敷设牵引装置
CN113161926B (zh) * 2021-05-12 2022-08-02 武汉华源电力设计院有限公司 基于电力系统施工双轮架式电缆敷设牵引装置
CN114322712A (zh) * 2021-12-23 2022-04-12 北京朝阳隆华电线电缆有限公司 一种线径测验装置
CN114322712B (zh) * 2021-12-23 2024-03-08 北京朝阳隆华电线电缆有限公司 一种线径测验装置

Also Published As

Publication number Publication date
WO2011122811A3 (ko) 2012-01-05
KR100981710B1 (ko) 2010-09-14

Similar Documents

Publication Publication Date Title
WO2011122811A2 (ko) 지중전력구 3상 배전케이블 동시 풀링 장치 및 이를 이용한 풀링 자동화 공법
WO2015147517A1 (ko) 지중 케이블의 기계화 포설장비 및 공법에 이용되는 케이블 포설장비
KR100978003B1 (ko) 차량 탑재형 배전케이블 자동 풀링 장치
WO2012005397A1 (ko) 자동 청소기
WO2019045402A1 (ko) 수질검사를 위한 채수 장치
WO2018038438A1 (ko) 무인 자동화 후크 체결 장치
WO2011013896A1 (ko) 자전거 주차장치
WO2020050692A1 (ko) 송전용 지중케이블 와인딩장치 및 그를 포함하는 송전용 지중케이블 설치시스템
WO2014025242A1 (ko) 차량형 파형관 포설장비
WO2011087318A2 (ko) 주차설비용 차량이송장치 및 이를 이용한 차량이송방법
WO2012060541A1 (ko) 이동 장치 및 이동 장치 간 도킹 방법
WO2018169218A1 (ko) 화물 적재 시스템
WO2014148773A1 (ko) 기어 감속형을 이용한 지능형 무인 반송 장치 및 벨트풀리를 이용한 반송장치
WO2024010253A1 (ko) 무인 배송 로봇
WO2015026037A1 (ko) 그리퍼 방식의 전선 포설장치
WO2020209398A1 (ko) 오버헤드타입 이송장치
WO2012030154A2 (ko) 판넬 이송장치
WO2014193064A1 (ko) 벨트 교환장치
CN214269691U (zh) 一种电缆敷设装置
WO2011129604A2 (ko) 제어장치를 구비하는 3상 배전케이블 자동 풀링 장치
WO2024014889A1 (ko) 스마트 컨베이어 시스템
WO2017176004A1 (ko) 드론에 장착되는 선로 가설용 장치 및 그 장치를 이용한 선로 가설 방법
WO2023132496A1 (ko) 전극판 소재 릴의 자동 교체 시스템 및 이를 이용한 전극판 소재 릴 자동 교체 방법
WO2023132495A1 (ko) 전극판 소재 공급 릴의 자동 교체를 위한 전극판 끝단 이음 장치 및 이를 이용한 전극판 끝단 이음 방법
WO2015026038A1 (ko) 전선 포설 로봇의 제어 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762983

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC