WO2011122535A1 - 竪型シャフト炉、フェロコークス製造設備、及びフェロコークスの製造方法 - Google Patents

竪型シャフト炉、フェロコークス製造設備、及びフェロコークスの製造方法 Download PDF

Info

Publication number
WO2011122535A1
WO2011122535A1 PCT/JP2011/057559 JP2011057559W WO2011122535A1 WO 2011122535 A1 WO2011122535 A1 WO 2011122535A1 JP 2011057559 W JP2011057559 W JP 2011057559W WO 2011122535 A1 WO2011122535 A1 WO 2011122535A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
furnace
coke
temperature
ferro
Prior art date
Application number
PCT/JP2011/057559
Other languages
English (en)
French (fr)
Inventor
孝思 庵屋敷
佐藤 健
藤本 英和
広行 角
佐藤 秀明
関口 毅
Original Assignee
Jfeスチール株式会社
スチールプランテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, スチールプランテック株式会社 filed Critical Jfeスチール株式会社
Priority to CN201180015873.4A priority Critical patent/CN102822315B/zh
Priority to EP11762759.6A priority patent/EP2554632B1/en
Priority to KR1020127024775A priority patent/KR101475582B1/ko
Publication of WO2011122535A1 publication Critical patent/WO2011122535A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B49/00Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated
    • C10B49/02Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge
    • C10B49/04Destructive distillation of solid carbonaceous materials by direct heating with heat-carrying agents including the partial combustion of the solid material to be treated with hot gases or vapours, e.g. hot gases obtained by partial combustion of the charge while moving the solid material to be treated
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B3/00Coke ovens with vertical chambers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/08Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form in the form of briquettes, lumps and the like
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/04Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition
    • C10B57/06Other carbonising or coking processes; Features of destructive distillation processes in general using charges of special composition containing additives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B11/00Making pig-iron other than in blast furnaces
    • C21B11/02Making pig-iron other than in blast furnaces in low shaft furnaces or shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B15/00Other processes for the manufacture of iron from iron compounds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/16Arrangements of tuyeres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/134Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen

Definitions

  • the present invention relates to a vertical shaft furnace for continuously producing a target product by burning, gasifying, dry distillation or reducing the charge charged from the top of the furnace, and a ferro-coke provided with the vertical shaft furnace.
  • the present invention relates to a ferro-coke manufacturing facility to be manufactured and a ferro-coke manufacturing method using this facility.
  • metallurgical coke produced by carbonizing coal in a coke oven is generally used.
  • Metallurgical coke has a role of a spacer for improving ventilation in the blast furnace, a role as a reducing material, and a role as a heat source.
  • a continuous molding coke manufacturing method has been developed as a coke manufacturing method related to a chamber furnace type coke manufacturing method.
  • a vertical shaft furnace composed of chamotte bricks instead of silica brick is used as a carbonization furnace, and coal is molded into a predetermined size in the cold and then charged into the vertical shaft furnace. Then, the charcoal is dry-distilled by heating using a circulating heat medium gas to produce a molded coke.
  • coke with the same strength as a normal chamber furnace coke oven can be produced even if a large amount of non-slightly caking coal with abundant resource reserves is available. Yes.
  • the coal used has high caking properties, the coal is softened and fused in the shaft furnace, which makes it difficult to operate the shaft furnace and causes deterioration of coke quality such as deformation and cracking.
  • Patent Document 1 As an example of a continuous molding coke manufacturing method, a method described in Patent Document 1 is known.
  • a cooling chamber is provided directly connected to the carbonization chamber of the carbonization furnace, the top gas of the carbonization furnace is introduced into the lower part of the cooling chamber as a cooling gas, and most of the gas that has passed through the cooling chamber is placed in the upper part of the cooling chamber.
  • the exhausted gas is supplied to the inlet of the middle part of the dry distillation furnace as the heating medium gas for heating.
  • Patent Document 1 the gas that has passed through the red hot coke layer in the cooling chamber is sucked from the cooling chamber of the carbonization furnace by some means, the flow rate and temperature are adjusted, and the pressure required for blowing the tuyere at the low temperature carbonization chamber is reached. It is necessary to boost the pressure. Therefore, in order to perform this boosting with economical equipment, a part of the furnace top gas is boosted with a blower, and this is used as a driving gas to suck the cooling chamber outlet gas and supply the discharge gas to the low temperature dry distillation chamber tuyere. A method using an ejector has also been proposed (see Patent Document 2).
  • FIG. 5 is a simplified view of FIG. 1 described in Patent Document 2.
  • the continuous molding coke manufacturing method disclosed in Patent Document 2 will be described with reference to FIG.
  • the agglomerated coal 101 is charged into the furnace from the top of the vertical shaft furnace 105 composed of the low temperature carbonization chamber 102, the high temperature carbonization chamber 103, and the cooling chamber 104, and the tuyere is moved down in the furnace. Dry distillation is performed using a heating medium gas introduced from 106 and 107. Further, the dry-coagulated agglomerated coal 101 is introduced from the cooling gas inlet 108, cooled by the cooling gas discharged from the outlet 109, and discharged from the lower part of the dry distillation furnace as the formed coke 110.
  • the gas extracted from the top of the furnace is directly cooled by the cooler 111 and the indirect cooler 112, pressurized by a blower (not shown), partly led out of the system as recovered gas, and the rest as circulating gas inside the system. Circulate.
  • a part of the circulating gas is introduced into the cooling chamber 104 from the cooling gas inlet 108 as a cooling gas.
  • the remaining part of the circulating gas is introduced into the dry distillation furnace from the tuyere 107 as a high-temperature dry distillation heat medium gas that has been pressurized by a blower (not shown) and heated by the heating device 115.
  • the remainder of the circulating gas is adjusted in its pressure, flow rate, and temperature by a blower and a heating device 117 (not shown) and guided to the ejector 118 as its driving gas.
  • the ejector 118 sucks the cooling zone outlet gas from the discharge port 109, increases the pressure to the required pressure after mixing with the driving gas, and introduces it into the dry distillation furnace from the tuyere 106 as a heat medium gas for low temperature dry distillation.
  • Non-Patent Document 1 As disclosed in Non-Patent Document 1, as a method for producing ferro-coke, a molding step for agglomeration, and thereafter, the agglomerated molded product is dry-distilled in a normal chamber furnace type coke oven, What was equipped with the carbonization process which obtains a product was examined.
  • Patent Document 2 uses a vertical shaft furnace when continuously producing molded coke, and does not produce ferro-coke.
  • the vertical shaft furnace as disclosed in Patent Document 2 is composed of chamotte bricks instead of silica bricks, and therefore, even when used for ferro-coke manufacturing, It is thought that the problem like the usual room furnace type coke oven does not occur.
  • the vertical shaft furnace disclosed by patent document 2 for example, which comprises a chamotte brick for a dry distillation process.
  • various problems as shown below remain.
  • Patent Document 2 since this high-temperature gas is reused by introducing it from the tuyere 106 into the low-temperature dry distillation chamber 102, heat loss may occur in the process. Energy saving is inevitable in the future steelmaking process, and it is not a good idea to generate heat loss because a design concept that minimizes the energy required for ferrocoke production is required.
  • Patent Document 2 As described above, various problems remain in using the vertical shaft furnace disclosed in Patent Document 2 as a dry distillation furnace for ferro-coke production. Some of these issues are not only used as a dry distillation furnace in the production of ferro-coke, but also, for example, combustion / gasification furnaces that burn and gasify coal, waste and other charges, plastics, This is also common when used as a gasification furnace for gasifying biomass, a reduction furnace for reducing metal oxides, and a melting furnace for melting scraps.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a vertical shaft furnace in which facilities are simplified and operating conditions are not complicated. Another object of the present invention is to provide a ferro-coke production facility and a ferro-coke that can simplify equipment and operation and reduce energy consumption when a vertical shaft furnace is used as a ferro-coke dry distillation furnace for metallurgy. It is in providing the manufacturing method of.
  • the vertical shaft furnace continuously burns the object charged from the top of the furnace, gasifies, dry-distills or reduces the object product.
  • a plurality of stages of hot gas blowing tuyere are provided in the furnace length direction. It is a feature.
  • a ferro-coke manufacturing facility includes the vertical shaft furnace of the above-described invention, and the carbon-containing material and the iron-containing material are supplied from the top of the vertical shaft furnace.
  • a ferro-coke is continuously produced as a product by charging a molded product.
  • the ferro-coke manufacturing method in order to form a high temperature soaking zone of a predetermined length below the center position in the furnace length direction, A plurality of stages provided with a hot gas blowing tuyere for blowing hot gas, a cold gas blowing tuyere provided above the center position in the furnace length direction for blowing cold gas, and the hot gas blowing tuyere Ferro-coke using a vertical shaft furnace provided with a cooling gas blow-in tuyere for injecting cooling gas provided below the mouth and an in-furnace gas discharge port provided at the top of the furnace for discharging the in-furnace gas A carbon-containing material and an iron-containing material molded product are charged from the top of the furnace, and a low-temperature gas is blown from the low-temperature gas blowing tuyere to blow dry the molded product.
  • the gas is blown from the tuyere at the high temperature gas blow, the cooling gas for cooling the ferro-coke as a product is blown from the tuyere, and the gas is discharged from the furnace gas discharge port at the top of the furnace. It is what.
  • the vertical shaft furnace According to the vertical shaft furnace according to the present invention, it is possible to provide a vertical shaft furnace whose facilities are simplified and whose operating conditions are not complicated. Further, according to the ferro-coke production facility and the ferro-coke production method according to the present invention, when a vertical shaft furnace is used as a ferro-coke dry distillation furnace for metallurgy, simplification of equipment and operation and reduction of energy consumption can be achieved. A ferro-coke manufacturing facility and a ferro-coke manufacturing method that can be provided can be provided.
  • FIG. 1 is an explanatory diagram for explaining the process leading to the present invention, and is a graph showing the temperature distribution of a molded product in a furnace by a one-dimensional mathematical model when a hot gas blowing tuyere is arranged in two stages. is there.
  • FIG. 2 is an explanatory diagram for explaining the circumstances leading to the present invention, and is a graph showing the temperature distribution of the molded product in the furnace by a one-dimensional mathematical model when the hot gas blowing tuyere is in one stage.
  • FIG. 3 is a schematic diagram of a ferro-coke manufacturing facility according to an embodiment of the present invention.
  • FIG. 4 is an explanatory diagram showing an outline of the ferro-coke production test apparatus used in the example of the present invention.
  • FIG. 5 is an explanatory diagram for explaining the outline of the vertical shaft furnace disclosed in Patent Document 2. As shown in FIG.
  • Iron oxide reduction in the ferro-coke production process includes direct reduction with solid carbon (see the following formula (1)), gas reduction with H 2 gas and CO gas generated from coal (see the following formulas (2) and (3) ).
  • the direct reduction of formula (1) involves a large endothermic reaction.
  • the temperature was raised while circulating N 2 to dry-distill the molded product of coal and iron ore, and the above-described reduction mode was analyzed from the exhaust gas composition.
  • the ratio of direct reduction by C (formula (1)) increased rapidly and the endothermic amount during reduction increased. Therefore, in ferro-coke production, an operation design is required so as to compensate for an endothermic reaction in which the temperature of the molded product is 800 ° C. or higher.
  • FIG. 1 shows the calculation results for the case of using the ferro-coke production facility of the present invention in which there is no cooling gas extraction tuyere and the hot gas blowing tuyere has two stages.
  • FIG. 2 shows the calculation results for the case where there is no cooling gas extraction tuyere and only one stage of hot gas blowing tuyere.
  • FIG. 1 and FIG. 2 show the results of calculating gas conditions that satisfy the target temperature distribution such that the region where the molded product is 900 ° C. is 1 to 2 hours.
  • A is a low temperature gas blowing tuyere position, and a gas at 600 ° C. is blown at 800 Nm 3 / t.
  • B is a hot gas blowing tuyere position, and a gas of 990 ° C. is blown in at 950 Nm 3 / t.
  • C is a tuyere position at which high temperature gas is blown, and 990 ° C. gas is blown in the same manner as B at 950 Nm 3 / t.
  • D is a cooling gas blowing tuyere position, and gas of 35 ° C. is blown in 1987 Nm 3 / t.
  • E is the position of the ferro-coke outlet.
  • A is a low temperature gas blowing tuyere position, and a gas of 500 ° C. is blown at 1200 Nm 3 / t.
  • B is a hot gas blowing tuyere position, and a gas of 980 ° C. is blown at 2400 Nm 3 / t.
  • D is a cooling gas blowing tuyere position, and a gas of 35 ° C. is blown in 1983 Nm 3 / t.
  • E is the position of the ferro-coke outlet.
  • the amount of gas can be reduced and the pressure in the furnace can be kept low. It is.
  • the present invention has been made based on the knowledge obtained from the experimental results as described above, and specifically comprises the following configuration.
  • a ferro-coke is produced by continuously carbonizing a molded product of a carbon-containing material and an iron-containing material using a vertical shaft furnace to produce metallic iron in the coke.
  • This ferro-coke production facility is composed of a zone below the stock line level (raw material charging standard level) below the gas outlet in the vertical shaft furnace divided into a low temperature dry distillation zone, a high temperature dry distillation zone, and a cooling zone. Is done.
  • This ferro-coke production facility supplies heat medium gas from the lower part of the low-temperature carbonization zone, the middle and lower parts of the high-temperature carbonization zone, and the lower part of the cooling zone, and the gas in the furnace is discharged only from the top of the furnace. . In this way, this ferro-coke production facility has been simplified by eliminating the cooling gas extraction tuyere that was installed during the production of conventional molded coke.
  • FIG. 3 illustrates the configuration of the ferro-coke manufacturing facility according to the present embodiment.
  • the vertical shaft furnace 1 used in the ferro-coke production facility according to the present embodiment performs dry distillation and reduction of a molded product in the dry distillation zone 5 including the low temperature dry distillation zone 5a and the high temperature dry distillation zone 5b in the shaft furnace main body 3,
  • the ferro-coke is cooled in the cooling zone 7.
  • the vertical shaft furnace 1 has a low temperature gas blowing tuyere 9 at a position corresponding to the lower part of the low temperature carbonization zone 5a on the side of the shaft furnace main body 3.
  • the vertical shaft furnace 1 has high-temperature gas blowing tuyere 11 and 13 at a position corresponding to the middle part and the lower part of the high-temperature carbonization zone 5b on the side of the shaft furnace body 3.
  • the vertical shaft furnace 1 has a cooling gas blowing tuyere 15 at a position corresponding to the lower part of the cooling zone 7 on the side of the shaft furnace body 3.
  • the vertical shaft furnace 1 has a molded product inlet 17 and an in-furnace gas discharge port 19 for discharging the in-furnace gas at the top of the shaft furnace body 3.
  • the vertical shaft furnace 1 has a ferro-coke discharge port 21 for discharging ferro-coke at the lower part of the shaft furnace body 3.
  • a molded product charging device 23 for charging a charging material into the charging port 17 is installed above the shaft furnace body 3.
  • a first circulating gas cooling device 25 and a second circulating gas cooling device 27 are connected to the exhaust gas pipe connected to the furnace gas discharge port 19.
  • the low-temperature gas heating device 29 that performs low-temperature heating and the circulating gas cooled by the second circulating gas cooling device 27 are used as the high-temperature gas.
  • a high-temperature gas heating device 31 for high-temperature heating is provided.
  • the molded product charging device 23 charges a molded product generated from the carbon-containing material and the iron-containing material from the charging port 17 of the shaft furnace body 3.
  • the charged molded product is carbonized in the carbonization zone 5 and then cooled in the cooling zone 7 and discharged as ferrocoke from the ferrocoke discharge port 21 at the lower part of the main body of the shaft furnace 3.
  • the low temperature gas heating device 29 blows in a heating gas (low temperature gas) for dry distillation of the molded product from the low temperature gas blowing tuyere 9.
  • a high temperature gas heating device 31 blows in a heating gas (high temperature gas) from the hot gas blowing tuyere 11 and 13 for dry distillation of the molded product.
  • the high temperature gas blown from the hot gas blowing tuyere 11 and 13 is a gas having a higher temperature than the low temperature gas blown from the low temperature gas blowing tuyere 9.
  • the hot gas blown from the hot gas blowing tuyere 11 and 13 is a gas having substantially the same temperature, thereby forming a high temperature soaking zone between the hot gas blowing tuyere in the furnace.
  • the second circulating gas cooling device 27 blows cooling gas for cooling the ferro-coke from the cooling gas blowing tuyere 15.
  • the blown-in gas is discharged only from the furnace gas discharge port at the top of the furnace.
  • the cold gas blowing tuyere 9 is installed above the center position in the furnace length direction, and the hot gas blowing tuyere 11 and 13 and the cooling gas blowing tuyere 15 are installed below it.
  • the high temperature gas blowing tuyere 11 and 13 for forming the high temperature soaking zone 5c having a predetermined length in the height direction in the furnace is installed below the center position in the furnace length direction.
  • the predetermined length of the high temperature soaking zone 5c formed between the hot gas blowing tuyere 11 and 13 is 8 to 33 of the length from the stock line level (raw material charging reference level) to the ferro-coke discharge port 21. % Is preferably set. If the length of the high temperature soaking zone 5c in the height direction is less than 8% of the furnace length, the heat required for dry distillation of coal and reduction of ore cannot be obtained, resulting in poor productivity.
  • the low-temperature gas blown from the low-temperature gas blow-in tuyere 9 is a gas blown for adjusting the furnace top gas temperature and the temperature rise rate of the solid in the shaft furnace, and is preferably about 400 to 700 ° C.
  • the hot gas blown from the hot gas blowing tuyere 11 and 13 is a gas blown for raising the temperature of the solid to the maximum temperature, and is preferably about 800 to 1000 ° C.
  • the cooling gas blown from the cooling gas blowing tuyere 15 is a gas blown to cool the ferro-coke produced by dry distillation in the furnace, and is preferably about 25 to 80 ° C.
  • the furnace gas discharged from the furnace gas outlet 19 at the top of the furnace is cooled by the first circulating gas cooling device 25 and the second circulating gas cooling device 27, and partly heated by the low temperature gas heating device 29.
  • a part is heated by the high-temperature gas heating device 31 and blown into the furnace from the hot gas blow-in tuyere 11 and 13.
  • the remaining portion is blown into the furnace through the cooling gas blowing tuyere 15.
  • the vertical shaft furnace 1 having four-stage tuyere installed at different heights and having no gas discharge port other than the top of the furnace is used.
  • Low temperature gas is blown from a low temperature gas blowing tuyere 9 installed in the lower part of the low temperature carbonization zone 5a.
  • Hot gas is blown from the hot gas blowing tuyere 11 and 13 installed in the middle and lower part of the hot distillation zone 5b.
  • Cooling gas is blown from a cooling gas blowing tuyere 15 installed in the lower part of the cooling zone 7.
  • the ferro-coke is produced by continuously dry-distilling a molded product of the carbon-containing material and the iron-containing material.
  • the discharge of the gas in the furnace is made only at the top of the furnace, so the gas extracted from the ejector and the gas from the top of the furnace are mixed as the heating medium gas for heating as shown in Patent Document 2 There is no need to do the complicated thing of returning it back into the shaft furnace.
  • the flow of gas in the furnace is unidirectional from the lower part of the furnace to the upper part of the furnace, and the facility is simple, and there is no need to perform complicated operations such as adjusting the gas flow rate for adjusting the gas temperature of the cooling gas blowing tuyere 15.
  • a high temperature soaking zone 5c is formed in the height direction between the hot gas blowing tuyere in the furnace, and in addition to coal dry distillation, iron oxide It can be said that this structure is suitable for the production of ferro-coke that also needs to be reduced.
  • the high temperature gas heated by the high temperature gas heating device 31 is branched in the middle and supplied to each of the high temperature gas blowing tuyere 11 and 13. Therefore, the gas temperature supplied to each hot gas blowing tuyere 11 and 13 becomes substantially the same, and the high temperature soaking zone 5c can be easily formed between the hot gas blowing tuyere in the furnace. Even if the gas of the same temperature is blown from the hot gas blown tuyere 11 and 13, the charge moves downward while receiving heat supply from above, and a reduction reaction of iron ore occurs. Therefore, the temperature in the lower part of the furnace is slightly higher than that in the upper part of the furnace, and strictly speaking, a temperature gradient is formed in the upper and lower parts of the furnace.
  • forming a high temperature soaking zone in this specification is not the purpose of strictly forming the same temperature region, but as a temperature region necessary for raising the charge to the maximum temperature.
  • the purpose is to form a meaningful temperature region.
  • the temperature of the charge may be in the range of about 800 to 1000 ° C.
  • the hot gas blown from the tuyere 11 and 13 need not be at the same temperature.
  • the gas temperature blown from the upper hot gas blowing tuyere 11 may be higher than the gas temperature blown from the lower hot gas blowing tuyere 13.
  • a low temperature gas may be mixed into a high temperature gas blown from a relatively low temperature tuyere 13 side to adjust the blowing temperature.
  • a pipe for mixing a part of the low temperature gas discharged from the low temperature gas heating device 29 into the high temperature gas supplied to the tuyere 13 is provided, and a flow rate adjusting valve is provided in the pipe. Good.
  • Such a flow control valve and piping function as a flow control device of the present invention.
  • the flow rate of the hot gas blown from the tuyere 11 and 13 is not necessarily the same.
  • the gas flow rate deviation may be given to the hot gas blowing tuyere 11 and 13.
  • a flow rate adjusting valve may be provided in a pipe that supplies high temperature gas to the tuyere 11 and 13. This flow regulating valve functions as the flow regulating device of the present invention.
  • the temperature of the molded product in the furnace can be controlled by making it possible to adjust the flow rate and temperature of the hot gas blown from the tuyere 11 and 13.
  • a temperature measuring device for measuring the gas temperature is installed between the tuyere, and the flow rate and temperature of the hot gas blown from the tuyere 11 and 13 are adjusted based on the measured value of the temperature measuring device. It is preferable to do so.
  • a thermocouple or the like is inserted in the vicinity of the furnace wall in order to avoid damage due to dropping of the charged material.
  • the operation as shown below becomes possible by adjusting the gas flow rate.
  • the gas flow rate blown into the lower hot gas blowing tuyere 13 is made lower than the gas flow rate blown into the upper hot gas blowing tuyere 11 to form a predetermined temperature region upward
  • the cooling zone 7 can be made longer in the furnace length direction.
  • the vertical shaft furnace according to the present invention has a hot gas blowing tuyere at the furnace length in order to form a high temperature soaking zone of a predetermined length below the center position in the furnace length direction. Multiple stages were provided in the direction. As a result, even when the charge to be treated is accompanied by a large endothermic reaction in a reaction such as reduction, it is possible to supply an amount of heat that compensates for such an endothermic reaction, and to stabilize the target product. Can be manufactured.
  • the ferro-coke production facility according to the present invention the ferro-coke production can be continuously performed by simplifying the facility, operation, and reducing energy consumption. Thereby, highly reactive ferro-coke can be used for blast furnace operation, and there is an effect of reducing the reducing material ratio.
  • the cross-sectional area of the vertical shaft furnace 1 was 1.67 m 2 , and the descending speed of the charge was 1.6 m / h.
  • Table 1 shows the operating specifications for ferrocoke production, and Table 2 shows the properties of the ferrocoke produced.
  • the strength after dry distillation is expressed as a drum strength index
  • the target value of DI150 / 6 (6 mm index after 150 rotations) is 82.
  • the target value of the reduction rate is 80%.
  • Table 2 the two-stage tuyeres with high-temperature gas injection exceeded the target values for both strength and reduction rate, but the single-stage high-temperature gas injection tuyere exceeded the target value for strength.
  • the reduction rate has not reached the target value. This is presumed that the residence time in the temperature range of 900 ° C. could not be sufficiently secured, and as a result, the reduction rate remained at a low value.
  • the hot gas blowing tuyere is arranged in two stages, but three or more hot gas blowing tuyere may be provided.
  • the high temperature gas blowing tuyere 11 and 13 for forming the high temperature soaking zone is shown below the center position in the furnace length direction. If it is also formed below, the upper hot gas blowing tuyere 11 may be at a height higher than the center position in the furnace length direction, for example, by controlling the hot gas blowing direction.
  • the effect of forming a high temperature soaking zone with two stages of hot gas blowing tuyere is obtained only when the vertical shaft furnace is used as a dry distillation furnace in the production of ferro-coke. is not.
  • the effects include, for example, combustion and gasification furnaces that burn and gasify coal, waste and other charges, gasification furnaces that gasify plastics and biomass, reduction furnaces that reduce metal oxides, scraps, etc. It can also be obtained when used as a melting furnace for melting.
  • the present invention relates to a vertical shaft furnace for continuously producing a target product by burning, gasifying, carbonizing or reducing a charge charged from the top of the furnace, and a ferro-coke comprising the vertical shaft furnace.
  • a ferro-coke manufacturing facility for continuously producing a target product by burning, gasifying, carbonizing or reducing a charge charged from the top of the furnace, and a ferro-coke comprising the vertical shaft furnace.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Coke Industry (AREA)

Abstract

 設備が単純化され、操業条件も複雑化しない竪型シャフト炉を提供することを目的として、本発明に係る竪型シャフト炉1は、炉頂より装入された装入物を燃焼、ガス化、乾留あるいは還元して目的の製品を連続的に製造する竪型シャフト炉であって、炉長方向の中心位置よりも下方に所定長さの高温均熱帯を形成するために、高温ガス吹き込み羽口11および13を炉長方向に2段設けたことを特徴とするものである。

Description

竪型シャフト炉、フェロコークス製造設備、及びフェロコークスの製造方法
 本発明は、炉頂より装入された装入物を燃焼、ガス化、乾留あるいは還元して目的の製品を連続的に製造する竪型シャフト炉、該竪型シャフト炉を備えてフェロコークスを製造するフェロコークス製造設備、及びこの設備を用いたフェロコークスの製造方法に関する。
 高炉操業において、石炭をコークス炉で乾留して製造した冶金用コークスが一般的に用いられている。冶金用コークスには、高炉内の通気をよくするためのスペーサーの役割、還元材としての役割、熱源としての役割などがある。
 近年、コークスの反応性を向上させるという観点から、石炭に鉄鉱石を混合して冶金用のフェロコークスを得る技術が知られている。石炭、鉄鉱石等の鉄源原料を原料に、通常の室炉式コークス炉で乾留してフェロコークスを製造する技術としては、1)石炭と粉鉄鉱石の混合物を室炉式コークス炉に装入する方法、2)石炭と鉄鉱石を冷間、すなわち室温で成型し、その成型物を室炉式コークス炉に装入する方法などが検討されてきた(非特許文献1参照)。
 一方、室炉式コークス製造方法に係るコークス製造方法として、連続式成型コークス製造法が開発されている。連続式成型コークス製造法では、乾留炉として、珪石煉瓦ではなくシャモット煉瓦にて構成される竪型シャフト炉を用い、石炭を冷間で所定の大きさに成型後、竪型シャフト炉に装入し、循環熱媒ガスを用いて加熱することにより成型炭を乾留し、成型コークスを製造する。竪型シャフト炉では、資源埋蔵量が豊富で安価な非微粘結炭を多量に使用しても、通常の室炉式コークス炉と同等の強度を有するコークスが製造可能なことが確認されている。しかし、使用する石炭の粘結性が高い場合には、シャフト炉内で成型炭が軟化融着し、シャフト炉操業が困難になると共に変形や割れ等のコークス品質低下を招く。
 連続式成型コークス製造法の一例として、特許文献1記載の方法が知られている。この方法では、乾留炉の乾留室に直結して冷却室を設け、乾留炉炉頂ガスを冷却用ガスとして冷却室の下部へ導入し、該冷却室を通過したガスの大部分を冷却室上部より排出し、該排出したガスを加熱用熱媒体ガスとして乾留炉中間部の導入口へ供給する。
 特許文献1記載の方法では、冷却室内の赤熱コークス層を通過したガスを乾留炉の冷却室から何らかの手段で吸引し、流量と温度を調節し、かつ低温乾留室羽口吹き込みに必要な圧力に昇圧する必要がある。そこで、この昇圧を経済的な設備で行うために、炉頂ガスの一部をブロワーで昇圧し、これを駆動ガスとして冷却室出口ガスを吸引し、吐出ガスを低温乾留室羽口へ供給するエジェクターを使用する方法も提案されている(特許文献2参照)。
 図5は特許文献2記載の第1図を簡略化して示した図である。特許文献2に開示された連続式成型コークス製造法を図5に基づいて説明する。塊成炭101は、低温乾留室102、高温乾留室103、及び冷却室104から構成されている竪型シャフト炉105の炉頂から炉内に装入され、炉内を降下する過程で羽口106、107から導入される加熱用熱媒体ガスにより乾留される。更に、乾留された塊成炭101は、冷却ガス導入口108から導入され、排出口109から排出される冷却用ガスにより冷却されて、成型コークス110として乾留炉下部から排出される。
 一方、炉頂から抜き出されたガスは、直接クーラー111及び間接クーラー112で冷却され、図示しないブロワーで昇圧され、一部は回収ガスとして系外に導かれ、残りは循環ガスとして系内を循環する。循環ガスの一部は冷却用ガスとして冷却ガス導入口108から冷却室104に導入される。また、循環ガスの残りの一部は、図示しないブロワーで昇圧され加熱装置115で加熱された高温乾留用熱媒体ガスとして羽口107から乾留炉内へ導入される。循環ガスの残りは、図示しないブロワー、加熱装置117で、その圧力・流量・温度を調節され、エジェクター118へその駆動ガスとして導かれる。エジェクター118は、排出口109から冷却ゾーン出口ガスを吸引し、駆動ガスと混合の上必要圧力に昇圧し、低温乾留用熱媒体ガスとして羽口106から乾留炉内へ導入する。
特公昭56-47234号公報 特公昭60-6390号公報
燃料協会「コークス技術年報」1958,p.33-51
 フェロコークスの製造方法として、非特許文献1に開示されたように、塊成化する成型工程と、その後、塊成化された成型物を通常の室炉式コークス炉で乾留してフェロコークスの製品を得る乾留工程とを備えてなるものが検討されていた。
 しかし、通常の室炉式コークス炉は珪石煉瓦で構成されているので、鉄鉱石を装入した場合に鉄鉱石が珪石煉瓦の主成分であるシリカと反応し、低融点のファイアライトが生成されて珪石煉瓦の損傷を招く。このため室炉式コークス炉でフェロコークスを製造する技術は、工業的に実施されていないのが実情である。
 特許文献2に示された例は、成型コークスを連続的に製造するに際して竪型シャフト炉を用いるというものであり、フェロコークスを製造するものではない。しかし、上述のように、特許文献2に開示されたような竪型シャフト炉は、珪石煉瓦ではなくシャモット煉瓦にて構成されていることから、フェロコークス製造に用いた場合でも珪石煉瓦を用いている通常の室炉式コークス炉のような問題が発生しないと考えられる。そこで、フェロコークスを製造するに際して、乾留工程をシャモット煉瓦で構成される、例えば特許文献2に開示された竪型シャフト炉を用いることが考えられる。しかしながら、特許文献2に開示された竪型シャフト炉をフェロコークス製造に適用する場合には、以下に示すような種々の課題が残されている。
 まず、特許文献2の竪型シャフト炉では、図5に示すように竪型シャフト炉105の本体途中に設けられた冷却ガスを抜き出す排出口109からガスを抜き出すため、エジェクター118等を用いる必要があり、設備が複雑になる。また、排出口109から排出される冷却ガスと、排出口109の上部に位置する羽口107から高温乾留室103へ供給される高温乾留用熱媒体ガスとのガスバランス、流量制御などの操業条件が複雑となる。また、排出口109から抜き出すガスは、乾留終了後の高温コークスとの熱交換によって昇温された高温のガスである。一方、特許文献2のものでは、この高温ガスを低温乾留室102に羽口106から導入することにより再利用しているため、その過程において熱ロスが発生する可能性がある。今後の製鉄プロセスにおいて省エネルギー化は不可避であり、フェロコークスの製造に必要なエネルギーを極力低位とする設計思想が必要となることからも、熱ロスが発生するのは得策でない。
 フェロコークス製造の際には石炭の乾留に加えて酸化鉄の還元も行う必要があり、成型コークス製造に比べて酸化鉄の還元が活発化する高温部で熱量を要する。そのため、特許文献2の成型コークス製造のように高温のガスを一旦、炉外に抜き出して、低温乾留室102(乾留炉中間部)で再利用するのでは熱収支上、得策ではないと推察される。また、フェロコークス製造の場合は鉄含有物質の還元を行う必要があり、従来の成型コークス製造方法をそのまま用いることができず、各羽口のガス量の分配等の操業諸元を再考する必要もある。
 以上のように、特許文献2に開示された竪型シャフト炉をフェロコークス製造の際の乾留炉として用いるには種々の課題が残されている。そして、このような課題の一部は、フェロコークス製造の際に乾留炉として用いる場合のみならず、例えば石炭、廃棄物等の装入物を燃焼、ガス化させる燃焼・ガス化炉、プラスチックやバイオマスなどをガス化するガス化炉、金属酸化物を還元する還元炉、スクラップなどを溶融する溶融炉として用いる場合にも共通するものである。
 本発明は、上記課題に鑑みてなされたものであって、その目的は、設備が単純化され、操業条件も複雑化しない竪型シャフト炉を提供することにある。また、本発明の他の目的は、竪型シャフト炉を冶金用のフェロコークスの乾留炉として用いる際に、設備や操業の簡素化、使用エネルギーの削減が可能となるフェロコークス製造設備及びフェロコークスの製造方法を提供することにある。
 上記課題を解決し、目的を達成するために、本発明に係る竪型シャフト炉は、炉頂より装入された装入物を燃焼、ガス化、乾留あるいは還元して目的の製品を連続的に製造する竪型シャフト炉であって、炉長方向の中心位置よりも下方に所定長さの高温均熱帯を形成するために、高温ガス吹き込み羽口を炉長方向に複数段設けたことを特徴とするものである。
 上記課題を解決し、目的を達成するために、本発明に係るフェロコークス製造設備は、上記発明の竪型シャフト炉を備え、該竪型シャフト炉の炉頂部から炭素含有物質と鉄含有物質の成型物を装入して、製品としてフェロコークスを連続的に製造することを特徴とするものである。
 上記課題を解決し、目的を達成するために、本発明に係るフェロコークスの製造方法は、炉長方向の中心位置よりも下方に所定長さの高温均熱帯を形成するために、炉長方向に複数段設けられて高温ガスを吹き込む高温ガス吹き込み羽口と、前記炉長方向の中心位置よりも上方に設けられて低温ガスを吹き込むための低温ガス吹き込み羽口と、前記高温ガスの吹き込み羽口の下方に設けられて冷却ガスを吹き込むための冷却ガス吹き込み羽口と、炉頂部に設けられて炉内ガスを排出する炉内ガス排出口とを備えた竪型シャフト炉を用いてフェロコークスを製造する方法であって、炉頂部から炭素含有物質と鉄含有物質の成型物を装入し、前記低温ガス吹き込み羽口から成型物を乾留するための低温ガスを吹き込み、該低温ガスより温度の高いガスを高温ガス吹き込み羽口から吹き込み、製品としてのフェロコークスを冷却するための冷却ガスを冷却ガス吹き込み羽口から吹き込み、炉頂部の炉内ガス排出口からガスを排出するようにしたことを特徴とするものである。
 本発明に係る竪型シャフト炉によれば、設備が単純化され、操業条件も複雑化しない竪型シャフト炉を提供することができる。また、本発明に係るフェロコークス製造設備及びフェロコークスの製造方法によれば、竪型シャフト炉を冶金用のフェロコークスの乾留炉として用いる際に、設備や操業の簡素化、使用エネルギーの削減が可能となるフェロコークス製造設備及びフェロコークスの製造方法を提供することができる。
図1は、本発明に至った経緯を説明するための説明図であって、高温ガス吹き込み羽口を二段にした場合の一次元数式モデルによる炉内の成型物の温度分布を示すグラフである。 図2は、本発明に至った経緯を説明するための説明図であって、高温ガス吹き込み羽口を一段にした場合の一次元数式モデルによる炉内の成型物の温度分布を示すグラフである。 図3は、本発明の一実施の実施形態に係るフェロコークス製造設備の模式図である。 図4は、本発明の実施例に用いたフェロコークス製造試験装置の概要を示す説明図である。 図5は、特許文献2に開示された竪型シャフト炉の概要を説明する説明図である。
 以下、図面を参照して、本発明の一実施の形態の竪型シャフト炉をフェロコークス製造設備として使用した場合を例に挙げて説明する。
[発明の概要]
 始めに、本発明に至った経緯を、フェロコークスを製造する場合を例に挙げて以下に詳しく説明する。本発明者等は、炭素含有物質、鉄含有物質およびバインダーを含む原料を成型物に成型し、該成型物を乾留してフェロコークスを製造する際には、室炉式コークス炉ではなく冷却機能も兼備した竪型シャフト炉を用いることが望ましいと考えた。なお、以下においては、炭素含有物質として炭材である石炭を、鉄含有物質として鉄鉱石(鉱石)を用いて説明する。
 フェロコークス製造においては、石炭の乾留のみならず、含有した鉱石の還元に熱量を必要とし、成型コークス製造の操業諸元をそのまま流用できないと考えられる。そこで、本発明者等は、乾留・還元に関する基礎特性の調査、それに基づく乾留炉のシミュレーションにより、フェロコークス製造時の竪型シャフト炉操業諸元を検討した。
 まず、本発明者等は、基本的な特性として、成型物の乾留過程における鉄鉱石の還元挙動を調査した。フェロコークス製造過程における酸化鉄の還元は、固体炭素による直接還元(下記式(1)参照)、石炭から発生するHガスおよびCOガスによるガス還元(下記式(2)、式(3)参照)に大別できる。
Fe2O3+3C→2Fe+3CO-ΔH298=-676.1(kcal/kg-Fe2O3)・・・(1)
Fe2O3+3H2→2Fe+3H2O-ΔH298=-142.5(kcal/kg-Fe2O3)・・・(2)
Fe2O3+3CO→2Fe+3CO2-ΔH298=+42.0(kcal/kg-Fe2O3)・・・(3)
 式(1)の直接還元は大きな吸熱反応を伴う。バッチ式の小型炉において、Nを流通させながら昇温することにより石炭と鉄鉱石との成型物を乾留し、排ガス組成から上記の還元形態を解析した。その結果、成型物の温度が800℃以上ではCによる直接還元(式(1))の比率が急増し、還元時の吸熱量が増大することが分かった。従って、フェロコークス製造においては成型物の温度が800℃以上の吸熱反応を補償するような操業設計が必要となる。
 次に、一次元の数式モデルにより炉内の温度分布を推算した。図1に、冷却ガス抜き出し羽口が無く、高温ガス吹き込み羽口を2段化した本発明のフェロコークス製造設備を用いるケースについての計算結果を示す。また、図2に、冷却ガス抜き出し羽口の無い、高温ガス吹き込み羽口1段のみのケースについての計算結果を示す。
 図1および図2は、成型物が900℃となる領域が1~2時間となるような目標温度分布を満たすガス条件を算出した結果である。図1において、Aは低温ガス吹き込み羽口位置であり、600℃のガスを800Nm/t吹き込む。Bは高温ガス吹き込み羽口位置であり、990℃のガスを950Nm/t吹き込む。Cは高温ガス吹き込み羽口位置であり、Bと同様に990℃のガスを950Nm/t吹き込む。Dは冷却ガス吹き込み羽口位置であり、35℃のガスを1987Nm/t吹き込む。Eはフェロコークス排出口の位置である。図2において、Aは低温ガス吹き込み羽口位置であり、500℃のガスを1200Nm/t吹き込む。Bは高温ガス吹き込み羽口位置であり、980℃のガスを2400Nm/t吹き込む。Dは冷却ガス吹き込み羽口位置であり、35℃のガスを1983Nm/t吹き込む。Eはフェロコークス排出口の位置である。
 高温ガス吹き込み羽口1段のみの設備のケースに関しては、低温ガス吹き込み羽口と高温ガス吹き込み羽口間で成型物が900℃となる領域で1時間程度保持可能なゾーンが存在する。しかし、このケースでは、高温ガス吹き込み羽口に多量のガスが必要となり、さらに炉頂温度を所定温度に下げるために低温ガス吹き込み羽口へのガス供給も必要となり炉頂ガス量が多くなる。このため炉内圧力も高くなり、設備的にも経済的とは言えない。一方、高温ガス吹き込み羽口を2段化した設備のケースに関しては、各羽口のガス量も少なく、炉内圧力も低くなっている。
 このように、高温ガス吹き込み羽口を2段化して炉内における高温ガス吹込み羽口間に高温均熱帯を形成することにより、ガス量を少なくして、炉内圧力を低く抑えることができるのである。
 本発明は上記のような実験結果によって得られた知見に基づいてなされたものであり、具体的には以下の構成を備えてなるものである。
[フェロコークス製造設備の構成]
 本実施の形態においては、竪型シャフト炉を用いて炭素含有物質と鉄含有物質との成型物を連続的に乾留し、コークス中に金属鉄を生成させたフェロコークスを製造する。このフェロコークス製造設備は、竪型シャフト炉における炉内ガス排出口の下方のストックラインレベル(原料装入基準レベル)以下の帯域が、低温乾留ゾーン、高温乾留ゾーン、冷却ゾーンに分けられて構成される。ストックラインレベル(原料挿入基準レベル)から低温ガス吹き込み羽口までの間を低温乾留ゾーン、低温ガス吹き込み羽口から炉長方向に下段の高温ガス吹き込み羽口までの間を高温乾留ゾーン、下段の高温ガス吹き込み羽口から冷却ガス吹き込み羽口までの間を冷却ゾーンとする。このフェロコークス製造設備は、低温乾留ゾーンの下部、高温乾留ゾーンの中間部および下部、冷却ゾーンの下部の4箇所から熱媒体ガスを供給し、炉内ガスは炉頂部のみから排出する構造とする。このようにして、このフェロコークス製造設備は、従来の成型コークス製造の際には設置されていた冷却ガス抜き出し羽口を無くすことにより設備を簡素化した。
 図3に本実施の形態に係るフェロコークス製造設備の構成を例示する。本実施の形態に係るフェロコークス製造設備に用いる竪型シャフト炉1は、シャフト炉本体3における低温乾留ゾーン5aと高温乾留ゾーン5bとからなる乾留ゾーン5で成型物の乾留と還元を行い、下部の冷却ゾーン7でフェロコークスの冷却を行なう。竪型シャフト炉1は、シャフト炉本体3の側方であって低温乾留ゾーン5aの下部に相当する位置に低温ガス吹き込み羽口9を有する。竪型シャフト炉1は、シャフト炉本体3の側方であって高温乾留ゾーン5bの中間部および下部に相当する位置に高温ガス吹き込み羽口11および13を有する。竪型シャフト炉1は、シャフト炉本体3の側方であって冷却ゾーン7の下部に相当する位置に冷却ガス吹き込み羽口15を有する。竪型シャフト炉1は、シャフト炉本体3の炉頂部に成型物の装入口17と炉内ガスを排出する炉内ガス排出口19とを有する。竪型シャフト炉1は、シャフト炉本体3の下部にフェロコークスを排出するフェロコークス排出口21を有している。
 シャフト炉本体3の上方には、装入口17に装入物を装入するための成型物装入装置23が設置されている。炉内ガス排出口19に接続される排出ガス配管には、第1循環ガス冷却装置25、第2循環ガス冷却装置27が接続されている。第2循環ガス冷却装置27で冷却された循環ガスを低温ガスとして利用するために低温加熱する低温ガス加熱装置29と、第2循環ガス冷却装置27で冷却された循環ガスを高温ガスとして利用するために高温加熱する高温ガス加熱装置31とを備えている。
[フェロコークスの製造方法]
 上記のように構成されたフェロコークス製造設備を用いてフェロコークスを製造するフェロコークスの製造方法について説明する。フェロコークスを製造する際には、成型物装入装置23が、炭素含有物質と鉄含有物質とから生成された成型物をシャフト炉本体3の装入口17から装入する。装入された成型物は、乾留ゾーン5で乾留された後に冷却ゾーン7で冷却されシャフト炉3本体下部のフェロコークス排出口21からフェロコークスとして排出される。低温ガス加熱装置29が、低温ガス吹き込み羽口9から成型物を乾留するための加熱ガス(低温ガス)を吹き込む。高温ガス加熱装置31が、高温ガス吹き込み羽口11および13から、成型物を乾留するための加熱ガス(高温ガス)を吹き込む。高温ガス吹き込み羽口11および13から吹き込まれる高温ガスは、低温ガス吹き込み羽口9から吹き込まれる低温ガスより温度の高いガスとする。高温ガス吹き込み羽口11および13から吹き込まれる高温ガスは、ほぼ温度の同じガスとすることで、炉内における高温ガス吹込み羽口間に高温の均熱帯を形成する。第2循環ガス冷却装置27が、フェロコークスを冷却するための冷却ガスを、冷却ガス吹き込み羽口15から吹き込む。吹き込まれたガスは、炉頂部の炉内ガスの排出口のみから排出される。低温ガス吹き込み羽口9は、炉長方向の中心位置よりも上方に設置され、その下方に高温ガス吹き込み羽口11および13、冷却ガス吹き込み羽口15が設置される。
 炉内の高さ方向において所定の長さを有する高温均熱帯5cを形成するための高温ガス吹き込み羽口11および13は、炉長方向の中心位置よりも下方に設置される。高温ガス吹込み羽口11および13の間に形成される高温均熱帯5cの所定の長さとは、ストックラインレベル(原料装入基準レベル)からフェロコークス排出口21までの長さの8~33%となるように設定されることが好ましい。高温均熱帯5cの高さ方向における長さが炉長の8%未満の場合、石炭の乾留および鉱石を還元するために必要な熱量が得られず生産性が悪くなる。一方、高温均熱帯5cの高さ方向における長さが炉長の33%を超える場合、低温乾留ゾーン5aでの昇温速度が急激に大きくなるために熱割れが発生し、さらに冷却ゾーン7での冷却が不十分となり、フェロコークス排出口21以降での冷却設備が別途必要になるため経済的ではない。
 低温ガス吹き込み羽口9から吹き込まれる低温ガスは炉頂ガス温度およびシャフト炉内の固体の昇温速度調整のために吹き込まれるガスであり、400~700℃程度とするのが好ましい。高温ガス吹き込み羽口11および13から吹き込まれる高温ガスは、固体の最高温度への昇温のために吹き込まれるガスであり、800~1000℃程度とするのが好ましい。冷却ガス吹き込み羽口15から吹き込まれる冷却ガスは、炉内での乾留により製造されたフェロコークスを冷却するために吹き込まれるガスであり、25~80℃程度とするのが好ましい。
 炉頂部の炉内ガス排出口19から排出された炉内ガスは、第1循環ガス冷却装置25、第2循環ガス冷却装置27により冷却されて、一部は低温ガス加熱装置29により加熱されて低温ガス吹き込み羽口9から炉内に吹き込まれる。一部は高温ガス加熱装置31により加熱されて高温ガス吹き込み羽口11および13から炉内に吹き込まれる。残部は冷却ガス吹き込み羽口15から炉内に吹き込まれる。
 以上のように、本実施の形態では、高さの異なる位置に設置された4段羽口を有し、炉頂部以外にガスの排出口を有していない竪型シャフト炉1を用いる。低温乾留ゾーン5aの下部に設置された低温ガス吹き込み羽口9から低温ガスを吹き込む。高温乾留ゾーン5bの中間部および下部に設置された高温ガス吹き込み羽口11および13から高温ガスを吹き込む。冷却ゾーン7の下部に設置された冷却ガス吹き込み羽口15から冷却ガスを吹き込む。このようにして、炭素含有物質と鉄含有物質との成型物を連続的に乾留してフェロコークスを製造する。
 本実施の形態では、炉内ガスの排出は炉頂部のみとしているので、特許文献2に示されたもののようにエジェクターで抜き出したガスと炉頂からのガスを混合して加熱用熱媒体ガスとしてシャフト炉内に再び戻すという複雑なことをする必要がない。炉内のガスの流れも炉下部から炉上部への一方向となり設備的にも簡便となり、冷却ガス吹き込み羽口15のガス温度調整のためのガス流量調整など複雑な操業を行う必要もない。本実施の形態では、高温ガス吹き込み羽口を2段にすることによって、炉内における高温ガス吹き込み羽口間は高さ方向に高温均熱帯5cが形成され、石炭の乾留に加えて酸化鉄の還元も行う必要があるフェロコークスの製造に適した構造と言える。
 上記の実施の形態では、高温ガス加熱装置31によって加熱された高温ガスを途中で分岐して高温ガス吹き込み羽口11、13のそれぞれに供給するようにしている。そのため、各高温ガス吹き込み羽口11、13に供給されるガス温度は略同一となり、炉内においても高温ガス吹込み羽口間に高温均熱帯5cを容易に形成できる。高温ガス吹き込み羽口11、13から同一温度のガスを吹き込んだとしても、装入物は上方から熱の供給を受けながら下方に移動するとともに、鉄鉱石の還元反応が生じる。そのため、炉内の上部より下部の方が若干高温になり、厳密には炉内の上下で温度勾配ができる。したがって、本明細書で高温均熱帯を形成すると称しているのは、厳密に同一温度領域を形成するという趣旨ではなく、装入物の最高温度への昇温のために必要な温度領域としての意義のある温度領域を形成するという趣旨である。例えば装入物の温度が800~1000℃程度の範囲にあればよい。
 高温ガス吹き込み羽口11、13から吹き込む高温ガスは同一温度である必要はない。例えば上側の高温ガス吹き込み羽口11から吹き込むガス温度を下側の高温ガス吹き込み羽口13から吹き込むガス温度よりも高温にしてもよい。ガス温度の調整方法としては、例えば比較的低温側の羽口13側から吹き込む高温ガスに、吹込み前に低温ガスを混入させて吹込み温度を調整するようにすればよい。具体的には、低温ガス加熱装置29から吐出される低温ガスの一部を、羽口13に供給する高温ガスに混入するための配管を設け、該配管に流量調整弁を設けるようにすればよい。このような流量調整弁や配管が本発明の流量調整装置として機能する。
 高温ガス吹き込み羽口11、13から吹き込む高温ガスの流量も同一である必要はない。所定の温度領域を形成するために高温ガス吹き込み羽口11、13にガス流量偏差をつけてもよい。ガス流量偏差を設ける方法としては、羽口11、13に高温ガスを供給する配管に流量調整弁を設けるようにすればよい。この流量調整弁が本発明の流量調整装置とし機能する。
 羽口11、13から吹き込む高温ガスの流量や温度を調整可能にすることで、炉内の成型物の温度制御が可能となる。温度制御をより確実に行うため羽口間にガス温度を計測する温度計測装置を設置して、該温度計測装置の計測値に基づいて羽口11、13から吹き込む高温ガスの流量や温度を調整するようにするのが好ましい。成型物の温度を計測する温度計測装置の例としては、装入物の落下による損傷を避けるため、炉壁近傍に熱電対等を差し込むようにしたものが挙げられる。
 ガス流量を調整可能にすることで、下記に示すような操業が可能になる。フェロコークスの冷却を促進するために、下側の高温ガス吹き込み羽口13に吹き込むガス流量を、上側の高温ガス吹き込み羽口11に吹き込むガス流量よりも低くし、所定の温度領域を上方に形成させ、冷却ゾーン7を炉長方向に長くとることもできる。高温ガス吹き込み羽口を2段にすることによって、結果的に吹き込む全ガス流量を抑制し、ガス処理系の設備規模を小さくすることが可能となる。
 以上の説明から明らかなように、本発明に係る竪型シャフト炉は、炉長方向の中心位置よりも下方に所定長さの高温均熱帯を形成するために、高温ガス吹き込み羽口を炉長方向に複数段設けた。これにより、処理対象とする装入物が還元等の反応において大きな吸熱反応を伴う場合であっても、このような吸熱反応を補償する熱量を供給することができ、目的の製品を安定して製造することができる。本発明に係るフェロコークス製造設備によれば、設備、操業の簡略化およびエネルギー消費の低減を実現して、フェロコークス製造を連続的に行うことができる。これにより反応性の高いフェロコークスを高炉操業に用いることができ、還元材比低減の効果がある。
 本発明の効果を確認するために、図4に示したフェロコークス製造試験装置を用いて、高温ガス吹き込み羽口が2段の場合と1段の場合についてのフェロコークスの製造試験を実施した。図4において図1と同一部分には同一の符号を付してある。図4に示した竪型シャフト炉1は、全長が13.0m、炉上端面からストックラインレベルまでが0.65m、ストックラインレベルから低温ガス吹き込み羽口9の中心までが3.5m、低温ガス吹き込み羽口9の中心から上段の高温ガス吹き込み羽口11の中心までが3.0m、高温ガス吹き込み羽口11の中心から下段の高温ガス吹き込み羽口13の中心までが2.0m、下段の高温ガス吹き込み羽口13の中心から冷却ガス吹き込み羽口の中心までが2.85m、冷却ガス吹き込み羽口の中心から排出口21までが1.0mに設定されている。竪型シャフト炉1の断面積は1.67m、装入物の降下速度は1.6m/hであった。表1にフェロコークス製造における操業諸元を、表2に製造したフェロコークスの性状を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 今回のフェロコークス製造試験装置での温度、降下速度では、乾留後の強度をドラム強度指数で表し、DI150/6(150回転後の6mm指数)の目標値を82としている。また、還元率の目標値は80%としている。表2に示したように、高温ガス吹き込み羽口を2段化したものでは、強度、還元率ともに目標値を超えているが、高温ガス吹き込み羽口が1段では強度に関しては目標値を超えているが、還元率では目標値に至っていない。これは、900℃の温度域での滞留時間が十分に確保できず、その結果、還元率が低い値に留まったものと推察される。
 本実験から、高温ガス吹き込み羽口を2段にして、高温均熱帯を炉内に形成することで、大きな吸熱反応を伴うフェロコークス製造を安定して行うことができることが確認された。
 上記の例では、高温ガス吹き込み羽口を2段にする例を示したが、高温ガス吹き込み羽口を3段以上設けるようにしてもよい。上記の例では、高温均熱帯を形成するための高温ガス吹き込み羽口11および13を炉長方向の中心位置よりも下方に設置する例を示したが、高温均熱帯が炉長方向中心位置よりも下方に形成されるのであれば、例えば高温ガスの吹込み方向を制御することにより、上側の高温ガス吹き込み羽口11が炉長方向中心位置以上の高さにあってもよい。
 上記の実施例の結果から、高温ガス吹き込み羽口を2段にして高温均熱帯を形成することによる効果は、竪型シャフト炉をフェロコークス製造の際に乾留炉として用いる場合にのみ得られるものではない。その効果は、例えば石炭、廃棄物等の装入物を燃焼、ガス化させる燃焼・ガス化炉、プラスチックやバイオマスなどをガス化するガス化炉、金属酸化物を還元する還元炉、スクラップなどを溶融する溶融炉として用いる場合にも得られるものである。
 以上、本発明者によってなされた発明を適用した実施の形態について説明したが、本実施形態による本発明の開示の一部をなす記述及び図面により本発明は限定されることはない。すなわち、本実施形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明の範疇に含まれる。
 本発明は、炉頂より装入された装入物を燃焼、ガス化、乾留あるいは還元して目的の製品を連続的に製造する竪型シャフト炉、及び該竪型シャフト炉を備えてフェロコークスを製造するフェロコークス製造設備、フェロコークスの製造方法に適用することができる。
  1 竪型シャフト炉
  3 シャフト炉本体
  5 乾留ゾーン
   5a 低温乾留ゾーン
   5b 高温乾留ゾーン
   5c 高温均熱帯
  7 冷却ゾーン
  9 低温ガス吹き込み羽口
 11、13 高温ガス吹き込み羽口
 15 冷却ガス吹き込み羽口
 17 装入口
 19 炉内ガス排出口
 21 フェロコークス排出口
 23 成型物装入装置
 25 第1循環ガス冷却装置
 27 第2循環ガス冷却装置
 29 低温ガス加熱装置
 31 高温ガス加熱装置

Claims (10)

  1.  炉頂より装入された装入物を燃焼、ガス化、乾留あるいは還元して目的の製品を連続的に製造する竪型シャフト炉であって、
     炉長方向の中心位置よりも下方に所定長さの高温均熱帯を形成するために、高温ガス吹き込み羽口を炉長方向に複数段設けたことを特徴とする竪型シャフト炉。
  2.  前記複数段設けた高温ガス吹き込み羽口に供給する高温ガスの流量を調整する流量調整装置を設けたことを特徴とする請求項1記載の竪型シャフト炉。
  3.  前記複数段設けた高温ガス吹き込み羽口に供給する高温ガスの温度を調整するガス温度調整装置を設けたことを特徴とする請求項1又は2記載の竪型シャフト炉。
  4.  前記高温均熱帯の温度を計測する温度計測装置を設けたことを特徴とする請求項2又は3記載の竪型シャフト炉。
  5.  前記炉長方向の中心位置よりも上方に低温ガスを吹き込むための低温ガス吹き込み羽口を設けたことを特徴とする請求項1乃至4のいずれか一項に記載の竪型シャフト炉。
  6.  前記高温ガスの吹き込み羽口の段数を2段にしたことを特徴とする請求項1乃至5のいずれか一項に記載の竪型シャフト炉。
  7.  前記高温ガスの吹き込み羽口の下方に設けられて冷却ガスを吹き込む冷却ガス吹き込み羽口と、炉頂部にのみ設けられて炉内ガスを排出する炉内ガス排出口とを備えたことを特徴とする請求項1乃至6のいずれか一項に記載の竪型シャフト炉。
  8.  請求項1乃至7のいずれか一項に記載の竪型シャフト炉を備え、該竪型シャフト炉の炉頂部から炭素含有物質と鉄含有物質の成型物を装入して、製品としてフェロコークスを連続的に製造することを特徴とするフェロコークス製造設備。
  9.  炉内ガス排出口から排出されたガスを、低温ガス吹き込み羽口と、高温ガス吹き込み羽口と、冷却ガス吹き込み羽口とからシャフト炉内に吹き込むようにした排出ガスの循環装置を備えたことを特徴とする請求項8記載のフェロコークス製造設備。
  10.  炉長方向の中心位置よりも下方に所定長さの高温均熱帯を形成するために、炉長方向に複数段設けられて高温ガスを吹き込む高温ガス吹き込み羽口と、前記炉長方向の中心位置よりも上方に設けられて低温ガスを吹き込むための低温ガス吹き込み羽口と、前記高温ガスの吹き込み羽口の下方に設けられて冷却ガスを吹き込むための冷却ガス吹き込み羽口と、炉頂部に設けられて炉内ガスを排出する炉内ガス排出口とを備えた竪型シャフト炉を用いてフェロコークスを製造するフェロコークスの製造方法であって、
     炉頂部から炭素含有物質と鉄含有物質の成型物を装入し、前記低温ガス吹き込み羽口から成型物を乾留するための低温ガスを吹き込み、該低温ガスより温度の高いガスを高温ガス吹き込み羽口から吹き込み、製品としてのフェロコークスを冷却するための冷却ガスを冷却ガス吹き込み羽口から吹き込み、炉頂部の炉内ガス排出口からガスを排出するようにしたことを特徴とするフェロコークスの製造方法。
PCT/JP2011/057559 2010-03-29 2011-03-28 竪型シャフト炉、フェロコークス製造設備、及びフェロコークスの製造方法 WO2011122535A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180015873.4A CN102822315B (zh) 2010-03-29 2011-03-28 立式竖炉、铁焦制造设备及铁焦的制造方法
EP11762759.6A EP2554632B1 (en) 2010-03-29 2011-03-28 Ferro-coke production facility comprising a vertical shaft furnace and method for producing ferro-coke
KR1020127024775A KR101475582B1 (ko) 2010-03-29 2011-03-28 수직형 샤프트로, 페로 코크스 제조 설비, 및 페로 코크스의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010074481 2010-03-29
JP2010-074481 2010-03-29

Publications (1)

Publication Number Publication Date
WO2011122535A1 true WO2011122535A1 (ja) 2011-10-06

Family

ID=44712231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057559 WO2011122535A1 (ja) 2010-03-29 2011-03-28 竪型シャフト炉、フェロコークス製造設備、及びフェロコークスの製造方法

Country Status (5)

Country Link
EP (1) EP2554632B1 (ja)
JP (1) JP4860003B2 (ja)
KR (1) KR101475582B1 (ja)
CN (1) CN102822315B (ja)
WO (1) WO2011122535A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2450419A1 (en) * 2009-08-10 2012-05-09 JFE Steel Corporation Ferro-coke producing method and producing device
US20210301358A1 (en) * 2020-03-24 2021-09-30 Midrex Technologies, Inc. Methods and systems for increasing the carbon content of direct reduced iron in a reduction furnace

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089352A (ja) 2011-10-14 2013-05-13 Honda Motor Co Ltd 燃料電池システム及びその停止方法
JP5900025B2 (ja) * 2012-03-02 2016-04-06 Jfeスチール株式会社 炉内温度分布の推定方法および推定装置
JP5900027B2 (ja) * 2012-03-02 2016-04-06 Jfeスチール株式会社 炉内温度分布の推定方法および推定装置
JP5900026B2 (ja) * 2012-03-02 2016-04-06 Jfeスチール株式会社 炉内温度分布の推定方法および推定装置
JP6094127B2 (ja) * 2012-10-02 2017-03-15 Jfeスチール株式会社 温度分布推定方法及び温度分布推定装置
JP5900386B2 (ja) * 2013-03-13 2016-04-06 Jfeスチール株式会社 乾留炉の制御方法および制御装置
CN106635067A (zh) * 2016-11-24 2017-05-10 武汉科思瑞迪科技有限公司 一种生产铁焦的竖炉工艺
CN110129500B (zh) * 2019-06-05 2020-09-15 东北大学 一种铁焦的制备方法和制备系统
CN111004638B (zh) * 2019-12-31 2021-04-30 中冶南方工程技术有限公司 一种铁焦生产竖炉尺寸确定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647234B2 (ja) 1975-08-18 1981-11-09
JPS606390B2 (ja) 1979-10-17 1985-02-18 社団法人 日本鉄鋼連盟 竪型成型コ−クス乾留炉におけるガス循環装置
JPH0797577A (ja) * 1993-09-28 1995-04-11 Kawasaki Steel Corp 成形コークスの製造方法
WO2011018964A1 (ja) * 2009-08-10 2011-02-17 Jfeスチール株式会社 フェロコークスの製造方法及び製造装置
JP2011046927A (ja) * 2009-07-29 2011-03-10 Jfe Steel Corp フェロコークスの製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143402A (en) * 1978-04-28 1979-11-08 Nippon Steel Corp Manufacturing of metallurgical formed coke
JPH07126648A (ja) * 1993-10-29 1995-05-16 Kawasaki Steel Corp 竪型成形コークス乾留炉のガス混合室と高温羽口間の除煤方法
JP3487912B2 (ja) * 1994-07-04 2004-01-19 新日本製鐵株式会社 鉄鉱石を内装した成型コークスおよび成型コークスの製造方法および高炉操業方法
CN1036075C (zh) * 1994-08-27 1997-10-08 冶金工业部钢铁研究总院 熔融还原炼铁方法及其装置
CN2259246Y (zh) * 1995-12-22 1997-08-13 乔志海 一种新型外燃煤氧化球团矿竖炉
KR100531767B1 (ko) * 2004-02-18 2005-11-28 주식회사 포스코건설 코크스 오븐 가스의 탈황방법 및 그 장치
CA2651463C (en) * 2006-05-05 2014-12-02 Bioecon International Holding N.V. Improved process for converting carbon-based energy carrier material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5647234B2 (ja) 1975-08-18 1981-11-09
JPS606390B2 (ja) 1979-10-17 1985-02-18 社団法人 日本鉄鋼連盟 竪型成型コ−クス乾留炉におけるガス循環装置
JPH0797577A (ja) * 1993-09-28 1995-04-11 Kawasaki Steel Corp 成形コークスの製造方法
JP2011046927A (ja) * 2009-07-29 2011-03-10 Jfe Steel Corp フェロコークスの製造方法
WO2011018964A1 (ja) * 2009-08-10 2011-02-17 Jfeスチール株式会社 フェロコークスの製造方法及び製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Kokusu Gijutsu Nenpou (Annual Report on Coke Technology", 1958, FUEL SOCIETY OF JAPAN, pages: 33 - 51

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2450419A1 (en) * 2009-08-10 2012-05-09 JFE Steel Corporation Ferro-coke producing method and producing device
EP2450419A4 (en) * 2009-08-10 2012-06-27 Jfe Steel Corp IRON KOKS MANUFACTURING METHOD AND MANUFACTURER
US8690987B2 (en) 2009-08-10 2014-04-08 Jfe Steel Corporation Method and apparatus for producing carbon iron composite
US20210301358A1 (en) * 2020-03-24 2021-09-30 Midrex Technologies, Inc. Methods and systems for increasing the carbon content of direct reduced iron in a reduction furnace

Also Published As

Publication number Publication date
EP2554632A4 (en) 2014-06-11
CN102822315A (zh) 2012-12-12
EP2554632B1 (en) 2018-10-10
KR101475582B1 (ko) 2014-12-22
CN102822315B (zh) 2016-08-03
JP2011226766A (ja) 2011-11-10
KR20120120470A (ko) 2012-11-01
JP4860003B2 (ja) 2012-01-25
EP2554632A1 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
WO2011122535A1 (ja) 竪型シャフト炉、フェロコークス製造設備、及びフェロコークスの製造方法
JP4666114B2 (ja) フェロコークスの製造方法及び製造装置
JP4191681B2 (ja) 流動還元炉の操業を改善した溶銑製造装置及びその溶銑製造方法
JP2014132108A (ja) 高炉の操業方法及び溶銑の製造方法
JP4801732B2 (ja) 鉄塊化物を予熱する方法
JP6274126B2 (ja) フェロコークス製造装置
JP2953938B2 (ja) 低温乾留による冶金用成型コークス製造方法
US10851430B2 (en) Flash ironmaking system and method
JP6683212B2 (ja) フェロコークス製造用竪型乾留炉
CN107267701A (zh) 一种煤热解、热解气加热与钒钛矿还原耦合的系统和方法
JP5504650B2 (ja) 成型コークスの製造設備及び成型コークスの製造方法
KR101511720B1 (ko) 강의 제조 장치 및 그 방법
US20020011132A1 (en) Process to preheat and carburate directly reduced iron (DRI) to be fed to an electric arc furnace (EAF)
JP5708029B2 (ja) 高炉操業方法
CN216688206U (zh) 回转窑快速还原系统
CN207738772U (zh) 一种煤热解、热解气加热与钒钛矿还原耦合的系统
JP2003003172A (ja) コークスの改質方法
JPH0665578A (ja) 冶金用成型コークスの製造方法
JPH04359088A (ja) 冶金用成型コークスの製造方法
JP5504654B2 (ja) 成型コークスの製造方法
KR101876263B1 (ko) 일산화탄소를 이용한 코크스 건식 소화 방법
Riley et al. Iron Production
JP2001011514A (ja) 大量生産に適した金属鉱石の溶融還元製錬方法及び装置
JP2017137373A (ja) フェロコークス製造方法および竪型乾留炉
JP2014132122A (ja) 高炉の操業方法及び溶銑の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015873.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762759

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2616/KOLNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127024775

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011762759

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE