WO2011121711A1 - 車両の制御装置 - Google Patents

車両の制御装置 Download PDF

Info

Publication number
WO2011121711A1
WO2011121711A1 PCT/JP2010/055605 JP2010055605W WO2011121711A1 WO 2011121711 A1 WO2011121711 A1 WO 2011121711A1 JP 2010055605 W JP2010055605 W JP 2010055605W WO 2011121711 A1 WO2011121711 A1 WO 2011121711A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression ratio
vehicle
state
lock
value
Prior art date
Application number
PCT/JP2010/055605
Other languages
English (en)
French (fr)
Inventor
忠行 永井
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to DE112010005427.4T priority Critical patent/DE112010005427B4/de
Priority to US13/126,228 priority patent/US8600632B2/en
Priority to CN201080001949.3A priority patent/CN102483002B/zh
Priority to JP2011517689A priority patent/JP5146598B2/ja
Priority to PCT/JP2010/055605 priority patent/WO2011121711A1/ja
Publication of WO2011121711A1 publication Critical patent/WO2011121711A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0269Controlling the valves to perform a Miller-Atkinson cycle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • B60W10/024Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches including control of torque converters
    • B60W10/026Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches including control of torque converters of lock-up clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D15/00Varying compression ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/14Control of torque converter lock-up clutches
    • F16H61/143Control of torque converter lock-up clutches using electric control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/16Indirect injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2400/00Control systems adapted for specific engine types; Special features of engine control systems not otherwise provided for; Power supply, connectors or cabling for engine control systems
    • F02D2400/12Engine control specially adapted for a transmission comprising a torque converter or for continuously variable transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0215Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a technical field of a vehicle control device that controls a vehicle including an internal combustion engine having a variable compression ratio and a transmission having a lockup function.
  • a device for controlling a transmission having a lock-up function As a device for controlling a transmission having a lock-up function, a device that sets a lock-up region based on a lock-up line defined by a vehicle speed and a throttle opening is proposed (for example, see Patent Document 1). According to the device disclosed in Patent Document 1, lockup is executed in an area where the torque fluctuation of the engine is not large and there is no noise even when locked up.
  • the present invention has been made in view of the above-described problems, and in a vehicle equipped with a variable compression ratio internal combustion engine, a vehicle that can mutually coordinate lockup control of a lockup mechanism and control of the compression ratio. It is an object to provide a control device.
  • a first vehicle control apparatus includes an internal combustion engine having a variable compression ratio, and a torque converter and a lockup mechanism between an engine output shaft and an input shaft of the internal combustion engine. And a vehicle control apparatus for controlling a vehicle having a transmission that can change a ratio between the rotational speed of the input shaft and the rotational speed of the output shaft connected to the axle. And first control means for switching the operation state of the lockup mechanism according to the driving condition of the vehicle, and second control means for changing the compression ratio at least in part when the operation state is switched. It is characterized by that.
  • a vehicle according to the present invention includes an internal combustion engine and a transmission.
  • the internal combustion engine according to the present invention is a concept that encompasses an engine that generates power by burning fuel, and is particularly defined as a compression ratio (for example, ((stroke volume + combustion chamber volume) / combustion chamber volume)). Can be changed in a binary manner in a preset range, in multiple stages or continuously (seamlessly).
  • variable compression ratio may be derived from any physical configuration of the internal combustion engine.
  • an internal combustion engine may have a variable compression ratio by controlling the valve opening period (IVO) or valve closing timing of the intake valve.
  • the intake valve may be kept open for a while after passing through the bottom dead center (BDC) in the intake stroke, and the compression ratio may be lowered from the normal time by blowing back the intake air.
  • the internal combustion engine has a structure for changing the top dead center (TDC) of the piston or is provided with such a mechanism, and changes in the top dead center position (that is, changes in both the stroke volume and the combustion chamber volume).
  • the compression ratio may be variable.
  • the internal combustion engine may have a structure for changing the position of the cylinder head or may be provided with such a mechanism, and the compression ratio may be made variable by changing the cylinder head position (that is, changing the combustion chamber volume).
  • the transmission according to the present invention is a device that can change the rotational speed ratio (that is, the transmission ratio) between the input and output shafts in a binary manner, in multiple stages, or continuously.
  • This is a so-called ECT (Electronic Controlled Transmission) in which a plurality of engagement devices and differential mechanisms are provided and the engagement state of these engagement devices is electronically controlled.
  • a transmission according to the present invention includes a torque converter (hereinafter simply referred to as “torque converter”) and a lockup mechanism between an input shaft and an engine output shaft of an internal combustion engine (for example, a crankshaft or a shaft connected to the crankshaft). Is provided.
  • torque converter hereinafter simply referred to as “torque converter”
  • lockup mechanism between an input shaft and an engine output shaft of an internal combustion engine (for example, a crankshaft or a shaft connected to the crankshaft).
  • the lock-up mechanism is configured so that the operation state is at least a lock-up off state in which the lock-up is not performed and a lock-up on state in which the lock-up is performed, they are switched in a binary manner.
  • middle half lockup states between them by sliding the engagement elements of an engagement apparatus suitably according to engagement hydraulic pressure etc. may be sufficient.
  • the lockup mechanism can directly connect the engine output shaft and the input shaft of the transmission in the lockup on state, it achieves higher transmission efficiency than when using ATF fluid resistance to transmit power Can do.
  • the first vehicle control device is a device for controlling such a vehicle according to the present invention.
  • a vehicle for example, one or a plurality of CPUs (Central Processing Unit), MPU (Micro Processing Unit), various types A single or multiple ECUs (Electronic Controlled Units) that can appropriately include various storage means such as a processor or various controllers, or ROM (Read Only Memory), RAM (Random Access Memory), buffer memory or flash memory, etc.
  • CPUs Central Processing Unit
  • MPU Micro Processing Unit
  • ECUs Electronic Controlled Units
  • ROM Read Only Memory
  • RAM Random Access Memory
  • buffer memory etc.
  • processing units, various controllers, various computer systems such as a microcomputer device, and the like can be employed.
  • the operation state of the lockup mechanism is switched by the first control means in accordance with the driving conditions of the vehicle.
  • the driving condition of the vehicle refers to the degree of necessity for lock-up in advance (in the case of simply expressing “lock-up”, it means that the operating state is switched to or maintained in the lock-up on state). It means various conditions associated with each other, for example, a load equivalent value and a vehicle speed equivalent value of the internal combustion engine.
  • the “load equivalent value” is a concept that includes values that can correspond to the load state of the internal combustion engine on a one-to-one, one-to-many, many-to-one, or many-to-many basis. It means the amount of air or accelerator opening.
  • the “vehicle speed equivalent value” is a concept including values that can correspond to the vehicle speed on a one-to-one, one-to-many, many-to-one, or many-to-many basis, and preferably the vehicle speed or the input shaft rotation speed of the transmission. Or it means the output shaft rotation speed or the like.
  • the effect of the lock-up action by the lock-up mechanism is mainly to improve the power transmission efficiency by directly connecting the power shaft without using the torque converter, and in short, to improve the fuel consumption of the internal combustion engine.
  • the direct connection of the power shaft also has the effect of reducing drivability, such as the fact that torque fluctuations generated on the internal combustion engine side are transmitted to the axle without being relaxed, or the so-called roaring noise is generated.
  • lock-up is executed under vehicle operating conditions where these can be within an acceptable range.
  • the compression ratio of the internal combustion engine can also be appropriately switched according to the driving conditions of the vehicle. From the standpoint of ensuring combustion efficiency and driving force, a higher compression ratio is better, but in practical operation, a high compression ratio can cause knocking and torque fluctuation. Accordingly, the compression ratio is also correlated with the driving conditions of the vehicle so that the degree of knocking and torque fluctuation can be within an allowable range.
  • the compression ratio can be varied in a lockup region (region where lockup can be turned on from a practical point of view) that has only been optimized with respect to the compression ratio that has been determined in advance by the circumstances of the internal combustion engine. We have found that it is possible to expand by changing the compression ratio by utilizing a certain thing.
  • the second control means changes the compression ratio at least partially when the operation state of the lockup mechanism is switched.
  • the compression ratio was not affected by the operating state of the lockup mechanism, but by treating the compression ratio as a kind of adjustment element according to the operating state of the lockup mechanism in this way. Therefore, it becomes possible to improve the fuel consumption.
  • the fuel efficiency can be optimized by finding practical benefits in the mutual cooperation between the lockup action and the compression ratio variable action. is there.
  • the cooperative operation between the first control unit and the second control unit may be performed while the first control unit and / or the second control unit individually select the operation each time, or in advance. It may be performed as if they seem to be independent on the basis of experiments, empirically, theoretically or based on a control map or the like formulated based on simulation or the like. In any case, there is no change in the point that the compression ratio control and the lock-up control cooperate with each other.
  • the second control means is configured such that the operation state is locked up in a region where the load equivalent value of the internal combustion engine is less than a reference value as the operation condition.
  • the compression ratio is lowered.
  • the region where the load equivalent value of the internal combustion engine is less than the reference value that is, the compression ratio can be set on the relatively high compression ratio side (or the compression ratio can be reduced).
  • the compression ratio is reduced by the second control means.
  • the lock-up on region where the lock-up action by the lock-up mechanism is effective is expanded by the compression ratio reduction measure. Since the reduction of the compression ratio means a reduction in torque fluctuation, by reducing the compression ratio, an operation state that could not be conventionally adopted other than the lock-up off state can adopt the lock-up state. For this reason, it is remarkably effective in situations where lockup is desired.
  • the first control means locks up the state element including at least one of vibration and noise generated in the vehicle so as to satisfy a predetermined requirement. Switches the operating state of the mechanism.
  • the operation state of the lockup mechanism is switched so that the state element including at least one of vibration and noise satisfies the predetermined requirement.
  • the “predetermined requirement” means, for example, that it falls within the above-described allowable range, and preferably means a requirement that does not cause a decrease in drivability in vehicle operation.
  • the first control means is a load equivalent value of the internal combustion engine.
  • the operation state is determined based on the predicted value of the efficiency of the drive system when the compression ratio is reduced to an allowable value determined so that the state element satisfies the predetermined requirement. Switch.
  • the operation state of the lockup mechanism is switched based on the predicted value of the efficiency of the drive system when the compression ratio is reduced to an allowable value determined so that the state element satisfies the predetermined requirement. Therefore, it is possible and useful to numerically grasp the benefit of reducing the compression ratio.
  • the “drive system” means a vehicle powertrain including at least an internal combustion engine and a transmission, and the drive system efficiency is, as a preferred form, the thermal efficiency of the internal combustion engine and the transmission of torque converter. It corresponds to an index value multiplied by efficiency. Such efficiency is suitable as a determination index because the fuel consumption of the entire vehicle can be suitably defined.
  • the first control means includes the load equivalent value of the vehicle.
  • the operation state is switched to a lockup on state
  • the second control means is When the operating state is switched to the lock-up on state due to the operating condition falling within the cooperative lock-up region, the compression ratio is reduced to the allowable value.
  • the operation state of the lockup mechanism is switched to the lockup on state, and accordingly, the compression ratio is reduced to an allowable value by the second control means. Therefore, the drivability and fuel consumption of the entire vehicle can be maintained optimally.
  • the cooperative lockup region includes the load equivalent value and the vehicle speed equivalent value of the vehicle.
  • the compression ratio is a high compression ratio equivalent value and the operating state Is a region sandwiched between a first region that is in the lock-up off state and a second region in which the compression ratio is a value equivalent to the high compression ratio and the operating state is in the lock-up state.
  • the position of the cooperative lockup region in the two-dimensional coordinate system in which the load equivalent value and the vehicle speed equivalent value are arranged as the driving conditions of the vehicle is clarified.
  • the first control means is configured to load the internal combustion engine in the cooperative lockup region.
  • the change amount of the equivalent value is greater than or equal to a reference value
  • the operation state is returned to the lock-up off state
  • the second control means is configured to return the operation state to the lock-up off state.
  • the operation state of the lockup mechanism Is returned to the lock-up off state, and the compression ratio is controlled to increase and decrease. Accordingly, it is possible to adapt to transient requirements such as driver acceleration requirements.
  • the first control means does not dare to take a compression ratio reduction measure in the cooperative lockup region in a situation where the change amount is surely equal to or greater than the reference value in the cooperative lockup region. Aspects are of course included.
  • a second vehicle control apparatus includes an internal combustion engine having a variable compression ratio, and a torque converter and a lockup mechanism between an engine output shaft and an input shaft of the internal combustion engine. And a vehicle control apparatus for controlling a vehicle having a transmission that can change a ratio between the rotational speed of the input shaft and the rotational speed of the output shaft connected to the axle. And first control means for changing the compression ratio according to driving conditions of the vehicle, and second control means for switching the operation state of the lockup mechanism in at least part of the case where the compression ratio is changed. It is characterized by that.
  • the second vehicle control apparatus is an apparatus applied to a vehicle including the above-described internal combustion engine and transmission according to the present invention, as with the first vehicle control apparatus.
  • the compression ratio of the internal combustion engine is controlled by the first control means in accordance with the driving conditions of the vehicle, and the appropriate compression ratio is realized.
  • the vehicle operating conditions that can define the compression ratio can include, for example, the load equivalent value, the vehicle speed equivalent value, the engine rotational speed, or the like described above.
  • the second control means switches the operation state of the lockup mechanism in at least a part of the period during which the compression ratio is changed by the first control means.
  • the operating state of the lock-up mechanism affects the driving force in addition to the fuel consumption performance and the performance related to NV described above. More specifically, in the lock-up on state, the torque amplification action of the torque converter cannot be used, so that the torque to be supplied to the output shaft is likely to be insufficient. In other words, if the operation state of the lockup mechanism is changed, whether it is binary, multistage, or continuous, the power performance of the vehicle can be changed with respect to the compression ratio at that time. .
  • the second vehicle control device of the present invention in the process in which the compression ratio is controlled according to the predetermined standard, the mutual operation of the lockup mechanism is appropriately switched to thereby achieve mutual coordination of the vehicle.
  • the power performance can be maintained well over a wider range.
  • the first control means changes the compression ratio to low and high according to the magnitude of the load equivalent value of the internal combustion engine as the operating condition
  • the second control means when the compression ratio changes to a value less than the reference value, Switch the operating state to the lock-up off state.
  • the compression ratio of an internal combustion engine tends to induce knocking and torque fluctuation as the compression ratio becomes higher, and therefore usually tends to shift to the lower compression ratio side as it reaches a high rotation range or a high load range.
  • the operation state of the lockup mechanism is in the lockup on state in this kind of high rotation region or high load region where remarkably high power performance is required.
  • deficiency in driving force may significantly reduce drivability due to the torque amplification effect of the torque converter not occurring and the low compression ratio.
  • the second control means when the lock-up mechanism is in the lock-up on state and the load equivalent value is equal to or greater than the reference value, the second control means is configured such that the compression ratio becomes less than the reference value by the first control means.
  • the lockup mechanism is switched to the lockup off state. By switching to the lock-up off state, the torque amplification action by the torque converter is effective, and it becomes possible to secure the driving force of the vehicle as much as possible under limited conditions.
  • FIG. 1 is a schematic configuration diagram conceptually showing a configuration of a vehicle according to a first embodiment of the present invention. It is a typical side surface sectional view of the engine in the vehicle of FIG. 3 is a flowchart of drive control executed by an ECU in the vehicle of FIG. It is a figure which illustrates the relationship between the compression ratio and engine efficiency in the drive control of FIG. It is a figure which illustrates the relationship between the torque converter speed ratio and torque converter efficiency in the drive control of FIG. It is a figure which illustrates the relationship between the compression ratio and the torque fluctuation index value in the drive control of FIG.
  • FIG. 4 is a diagram for visually explaining a cooperative lock-up on region according to the effect of the drive control in FIG. 3.
  • FIG. 9 is a diagram exemplifying a one-hour transition of acceleration of the vehicle after the acceleration request is generated, related to the effect of the acceleration priority control of FIG. 8. It is a flowchart of the driving force ensuring control which concerns on 3rd Embodiment of this invention. It is a figure which illustrates the relationship between a throttle opening and a compression ratio in driving force ensuring control.
  • FIG. 1 is a schematic configuration diagram conceptually showing the configuration of the vehicle 10.
  • the vehicle 10 includes an ECU 100, an engine 200, a torque converter 300, a lock-up clutch 400, and an ECT 500.
  • the ECU 100 is an electronic control unit that includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like, and controls the entire operation of the vehicle 10. Is an example.
  • the ECU 100 is configured to be able to execute drive control, which will be described later, in accordance with a control program stored in the ROM.
  • the engine 200 is an in-line four-cylinder gasoline engine that functions as a main power source of the vehicle 10 and is an example of an “internal combustion engine” according to the present invention.
  • FIG. 2 is a schematic side sectional view of the engine 200. As shown in FIG. In the figure, the same reference numerals are given to the same portions as those in FIG. 1, and the description thereof will be omitted as appropriate.
  • an engine 200 burns an air-fuel mixture through an ignition operation by a spark plug 202 in a cylinder 201, and a reciprocating motion of a piston 203 that occurs in response to an explosive force due to such combustion is performed via a connecting rod 204.
  • the crankshaft 205 can be converted into a rotational motion.
  • crank position sensor 206 that detects the rotational position (ie, crank angle) of the crankshaft 205 is installed.
  • the crank position sensor 206 is electrically connected to the ECU 100 (not shown), and the ECU 100 calculates the engine rotational speed Ne of the engine 200 based on the crank angle signal output from the crank position sensor 206. It is the composition which becomes.
  • the engine 200 is an in-line four-cylinder engine in which four cylinders 201 are arranged in series in a direction perpendicular to the paper surface.
  • the configurations of the individual cylinders 201 are equal to each other, in FIG. Only the cylinder 201 will be described. Further, the number of cylinders, the cylinder arrangement, the intake / exhaust system structure, the fuel supply mode, etc. in the internal combustion engine according to the present invention are not limited in any way as long as the compression ratio is variable as will be described later. .
  • the air sucked from the outside passes through the intake pipe 207 and is guided into the cylinder 201 through the intake port 210 when the intake valve 211 is opened.
  • the fuel injection valve of the injector 212 is exposed at the intake port 210, so that fuel can be injected into the intake port 210.
  • the fuel injected from the injector 212 is mixed with the intake air before and after the opening timing of the intake valve 211 to become the above-described mixture.
  • Fuel is stored in a fuel tank (not shown), and is supplied to the injector 212 via a delivery pipe (not shown) by the action of a feed pump (not shown).
  • the air-fuel mixture combusted inside the cylinder 201 becomes exhaust, and is led to the exhaust pipe 215 via the exhaust port 214 when the exhaust valve 213 that opens and closes in conjunction with the opening and closing of the intake valve 211 is opened.
  • a three-way catalyst 216 is installed in the exhaust pipe 215.
  • the three-way catalyst 216 is configured to be able to purify CO (carbon monoxide), HC (hydrocarbon), and NOx (nitrogen oxide) discharged from the engine 200, respectively.
  • the exhaust pipe 215 is provided with an air-fuel ratio sensor 217 configured to be able to detect the exhaust air-fuel ratio of the engine 200. Further, a water temperature sensor 218 for detecting the cooling water temperature related to the cooling water (LLC) circulated and supplied to cool the engine 200 is disposed in the water jacket installed in the cylinder block that houses the cylinder 201. ing.
  • the air-fuel ratio sensor 217 and the water temperature sensor 218 are electrically connected to the ECU 100, respectively, and the detected air-fuel ratio and cooling water temperature are appropriately referred to by the ECU 100, respectively.
  • a throttle valve 208 for adjusting the intake air amount related to the intake air guided through a cleaner is disposed on the upstream side of the intake port 210 in the intake pipe 207.
  • the throttle valve 208 is configured such that its drive state is controlled by a throttle valve motor 209 electrically connected to the ECU 100.
  • the ECU 100 basically controls the throttle valve motor 209 so as to obtain a throttle opening degree corresponding to an opening degree (not shown) of an accelerator pedal (that is, an accelerator opening degree Ta). It is also possible to adjust the throttle opening without intervention of the driver's intention through the operation control. That is, the throttle valve 208 is configured as a kind of electronically controlled throttle valve.
  • a throttle opening sensor (not shown) configured to be able to detect the throttle opening thr that is the opening of the throttle valve 208 is disposed.
  • the throttle opening sensor is electrically connected to the ECU 100, and the detected throttle opening thr is appropriately referred to by the ECU 100.
  • the engine 200 is configured such that the compression ratio Rc is variable within a predetermined range.
  • the compression ratio Rc is the ratio of the intake stroke volume and the combustion chamber volume, but the engine structure for making the compression ratio Rc variable is not unique.
  • the length in the stroke direction of the cylinder block that houses the cylinder 201 may be variable in the intake stroke. That is, in this case, since the stroke of the piston 203 increases, the intake stroke volume increases and the compression ratio increases.
  • the top dead center position of the piston 203 may be variable in the intake stroke. In this case, since the intake stroke volume decreases and the combustion chamber volume increases, the compression ratio can be changed.
  • the engine 200 according to the present embodiment is not a method in which the compression ratio is variable depending on the physical structure of the engine, but the compression ratio is variable by changing the IVO (valve opening period) of the intake valve 211. . That is, when the normal closing timing of the intake valve 211 is delayed and IVO is expanded, the intake air blows back from the inside of the cylinder to the intake port side during a part of the compression stroke. For this reason, the intake air amount compressed in the compression stroke is reduced, and the same effect can be obtained as when the intake stroke volume is substantially reduced.
  • IVO valve opening period
  • the intake air amount to be compressed is approximately when the intake valve 211 is opened before and after the end of the exhaust stroke and closed after the start of the compression stroke (when using a kind of supercharging effect due to intake inertia).
  • the engine 200 basically makes the compression ratio variable by the control on the side to decrease the compression ratio. For this reason, in the original physical configuration, the engine 200 is set so as to obtain a higher compression ratio than a normal engine (an engine whose compression ratio does not change).
  • the engine 200 since it is necessary to control the closing timing of the intake valve 211 in conjunction with the exhaust valve 213, the engine 200 employs an electrically driven variable valve timing device.
  • This device is a kind of cam-by-wire mechanism, and adopts a configuration in which the rotational phase of a cam as a swinging member that drives the intake valve 213 is changed within a predetermined range by the driving force of the electric motor.
  • the engine 211 may include a vane-driven VVT (variable valve timing device), or may have a so-called lost motion cam drive mechanism.
  • VVT variable valve timing device
  • the torque converter 300 is a torque transmission device connected to the crankshaft 205 of the engine 200.
  • the torque converter 300 outputs the rotational power of a pump impeller (not shown) connected to the input side (crankshaft 205 side) via an ATF (Automatic Transmission Transmission) and amplifying torque by a stator (not shown).
  • This is a fluid transmission device configured to be able to transmit to a turbine runner (not shown) connected to the side (ECT 500 side) as rotational power. That is, the engine torque Te, which is the torque of the engine 200, is transmitted to the ECT 500 via the torque converter 300.
  • the input shaft of the ECT 500 is connected to the turbine runner installed on the output side of the torque converter 300.
  • the lockup clutch 400 includes a pair of engagement elements, and according to the engagement state of the pair of engagement elements, the pump impeller as an input side element and the turbine runner as an output side element in the torque converter 300 are connected and disconnected.
  • This is a known hydraulic engagement type clutch device that is an example of a “lock-up mechanism” according to the present invention that is configured to be controllable.
  • the engagement state of the pair of engagement elements of the lock-up clutch 400 is configured to be binary-switched between a fastening state in which they are fastened to each other and a released state in which they are separated from each other.
  • the pump impeller and the turbine runner are directly connected.
  • the function of the torque converter 300 described above as a fluid clutch is lost, and the engine torque Te is input to the ECT 500 without loss due to the ATF. .
  • the hydraulic drive device that controls the engagement state of the lockup clutch 400 is electrically connected to the ECU 100, and the operation state is controlled by the ECU 100.
  • a state where the pump impeller and the turbine runner are directly connected is hereinafter referred to as a “lock-up on state” as appropriate, and a state where these are not coupled is hereinafter referred to as a “lock-up off state” as appropriate.
  • the ECT 500 is an electronically controlled stepped transmission that is an example of a “transmission” according to the present invention, and includes a plurality of friction engagement devices (not shown) including a plurality of clutch elements, brake elements, one-way clutch elements, and the like. is there.
  • the ECT 500 is electrically connected to the ECU 100, and a plurality of mutually different frictional engagement devices are changed by changing the engagement state between these friction engagement devices through drive control of various solenoids (not shown) by the ECU 100. It is possible to obtain a plurality of shift speeds corresponding to the transmission gear ratio.
  • the ECT 500 is provided with a rotation sensor (not shown), and is configured to be able to detect the ECT output shaft rotational speed Nout, which is the rotational speed of the output shaft of the ECT 500.
  • the rotation sensor is electrically connected to the ECU 100, and the output shaft rotation speed Nout of the ECT 500 is appropriately referred to by the ECU 100.
  • the ECT 400 has a configuration equivalent to that of a known electronically controlled automatic transmission, and detailed illustration thereof is omitted. However, as a gear position corresponding to the forward direction of the vehicle 10, “1st ”,“ 2nd ”,“ 3rd ”,“ 4th ”,“ 5th ”and“ 6th ”, and the gear ratio is such that the larger gear ratio is obtained in descending order. .
  • the ECU 100 can set the gear ratio of the ECT 500 to a value corresponding to any one of the above-described gears by controlling the engagement state of each friction engagement device in the ECT 500. .
  • the output shaft of the ECT 500 is connected to the left front axle SFL and the right front axle SFR, which are connected to the left front wheel FL and the right front wheel FR, which are driving wheels, via the speed reduction mechanism 11, respectively.
  • FIG. 3 is a flowchart of drive control.
  • the drive control improves the fuel efficiency of the vehicle 10 by correcting the compression ratio Rc of the engine 200 before and after the lock-up on timing of the lock-up clutch 400 and expanding the lock-up region. It is an example of operation
  • the ECU 100 reads various information necessary for drive control (step S101). Specifically, the ECU 100 reads the throttle opening degree thr and the ECT output shaft rotation speed Nout.
  • the throttle opening degree thr is an example of the “load equivalent value” according to the present invention
  • the ECT output shaft rotational speed Nout is an example of the “vehicle speed equivalent value” according to the present invention.
  • the ECU 100 determines whether or not the operating point of the vehicle 10 falls within the lock-up off region based on the read throttle opening degree thr and ECT output shaft rotation speed Nout (step S102).
  • the operating point of the vehicle 10 is an operating point plane formed by arranging the throttle opening degree thr on the vertical axis and the ECT output shaft rotational speed Nout on the horizontal axis (the “coordinate system” according to the present invention).
  • An example is defined above. That is, one coordinate point on the coordinate plane defined by one throttle opening thr and one ECT output shaft rotation speed Nout is treated as one operating point of the vehicle 10.
  • Whether the lock-up clutch 400 should take the lock-up on state or the lock-up off state is defined by a lock-up line LLK (described later) set on the operation point plane.
  • the lock-up off region is basically a region on the lower rotation side than the lock-up line LLK.
  • step S102 when the operating point of the vehicle 10 is in the lock-up off region (step S102: YES), the ECU 100 determines whether or not the operating point of the vehicle 10 corresponds to the high compression ratio region (step S103).
  • the compression ratio Rc of the engine 200 is switched in a binary manner between a low compression ratio RcL and a high compression ratio RcH.
  • the compression ratio Rc may be varied in more stages or continuously.
  • the high compression ratio region is a region in which it is defined that the high compression ratio RcH should be adopted as the compression ratio of the engine 200. Similar to the lock-up clutch 400, the compression ratio switching line set on the operating point plane is set. Defined by LRc.
  • the high compression ratio region is basically a region on the lower load side than the compression ratio switching line LRc.
  • the ECU 100 calculates the pre-switching engine efficiency ⁇ a (step S104).
  • the pre-switching engine efficiency ⁇ a is used as one of element values that define the “current value of drive system efficiency” according to the present invention.
  • FIG. 4 is a diagram illustrating the relationship between the compression ratio and the engine efficiency.
  • the horizontal axis and the vertical axis represent the compression ratio Rc and the engine efficiency, respectively.
  • the engine efficiency is the thermal efficiency of the engine 200. The higher the engine efficiency, the higher the fuel consumption efficiency, that is, the better the fuel consumption.
  • an engine efficiency line Lee is defined.
  • the engine efficiency line Lee is a line obtained by connecting the engine efficiency for one compression ratio Rc.
  • step S104 the ECU 100 first refers to the relationship of FIG. 4 and acquires the pre-switching engine efficiency ⁇ a as the engine efficiency corresponding to the current compression ratio RcH (see point A in the figure).
  • the ECU 100 calculates a pre-switching torque converter efficiency ⁇ c (step S105).
  • the pre-switching torque converter efficiency ⁇ c is used as another element value that defines the “current value of drive system efficiency” according to the present invention.
  • FIG. 5 is a diagram illustrating the relationship between the torque converter speed ratio Rs and the torque converter efficiency.
  • the torque converter speed ratio Rs is the rotational speed ratio between the pump impeller and the turbine runner, and takes 1 when the lockup is on when these are mechanically directly connected (see point D in the figure).
  • the horizontal axis and the vertical axis represent the torque converter speed ratio Rs and the torque converter efficiency, respectively.
  • the torque converter efficiency is the torque transmission efficiency in the torque converter 300, and means that the higher the loss, the less the loss.
  • a torque converter efficiency line Let is defined.
  • the torque converter efficiency line Let is a line obtained by connecting the torque converter efficiency with respect to one torque converter speed ratio Rs.
  • step S105 the ECU 100 refers to the relationship of FIG. 5 and acquires the pre-switching torque converter efficiency ⁇ c as the torque converter efficiency corresponding to the current torque converter speed ratio Rs (see point C in the figure).
  • the ECU 100 calculates a torque fluctuation allowable value (step S106).
  • the torque fluctuation allowable value is a limit value that allows noise and vibration of the vehicle 10 to fall within an allowable range when the lock-up clutch 400 is shifted to the lock-up on state under the current driving conditions of the vehicle 10, or such This is a torque fluctuation index value corresponding to a value obtained by adding a certain margin to the limit value.
  • the torque fluctuation index value Tc is a standardized index value that specifies the degree of torque fluctuation of the engine 200, experimentally obtained in advance, and means that the larger the torque fluctuation, the larger the torque fluctuation.
  • the torque fluctuation allowable value is stored in advance as a variable value in accordance with the driving condition of the vehicle 10 in the ROM.
  • the ECU 100 calculates the allowable compression ratio Rcsfy (step S107).
  • the allowable compression ratio Rcsfy is the compression ratio of the engine 200 corresponding to the torque fluctuation allowable value.
  • the torque fluctuation allowable value will be described with reference to FIG.
  • FIG. 6 is a diagram illustrating the relationship between the compression ratio and the torque fluctuation index value in the vehicle 10. In the figure, the same reference numerals are given to the same portions as those in FIG. 4, and the description thereof will be omitted as appropriate.
  • the horizontal axis and the vertical axis represent the compression ratio Rc and the torque fluctuation index value Tc, respectively.
  • a torque fluctuation line Ltc is defined.
  • the torque fluctuation line Ltc is a line obtained by connecting torque fluctuation index values for one compression ratio Rc.
  • step S107 of FIG. 3 the ECU 100 refers to the relationship of FIG. 6, and sets the compression ratio Rc value (see point B in the figure) necessary for suppressing the torque fluctuation index value to the torque fluctuation allowable value Tcth to the allowable compression. Obtained as the ratio Rcsfy.
  • the ECU 100 calculates the post-switching engine efficiency ⁇ b (step S108).
  • the post-switching engine efficiency ⁇ b is the engine efficiency corresponding to the allowable compression ratio Rcsfy, and is the engine efficiency corresponding to the point B with reference to FIG.
  • the post-switching engine efficiency ⁇ b is a factor that defines the “predicted value of the efficiency of the drive system when the compression ratio is reduced to an allowable value determined so that the state element satisfies the predetermined requirement” according to the present invention. Value.
  • the post-switching torque converter efficiency ⁇ d is the torque converter efficiency at the time of lock-up on, that is, “1” in the present embodiment.
  • the post-switching torque converter efficiency ⁇ d is a value that defines the “predicted value of the efficiency of the drive system when the compression ratio is reduced to an allowable value determined so that the state element satisfies the predetermined requirement” according to the present invention. Element value.
  • step S110 the ECU 100 determines whether or not ⁇ b ⁇ ⁇ d is larger than ⁇ a ⁇ ⁇ c (step S110).
  • ⁇ b ⁇ ⁇ d is an example of the “predicted value of drive system efficiency” according to the present invention
  • ⁇ b ⁇ ⁇ d is an example of the “current value of drive system efficiency” according to the present invention. That is, in step S110, when the compression ratio Rc of the engine 200 is reduced from the current compression ratio RcH to the allowable compression ratio Rcsfy corresponding to the torque fluctuation allowable value Rcth, is the fuel consumption of the vehicle 10 as a whole improved? This is a process for determining whether or not.
  • step S110 when the predicted value is less than or equal to the current value (step S110: NO), that is, when the effect of improving fuel efficiency cannot be obtained even when the compression ratio is lowered and the lockup clutch 400 is in the lockup on state.
  • the ECU 100 maintains the compression ratio Rc at the current value (step S113), and continues the lockup-off state related to the lockup clutch 400 (step S114).
  • step S110 when the predicted value is larger than the current value (step S110: YES), that is, when the effect of improving the fuel consumption can be obtained by lowering the compression ratio and bringing the lockup clutch 400 into the lockup on state, the ECU 100 Lowers the compression ratio Rc from the current value to the allowable compression ratio Rcsfy (step S111), and switches the lockup clutch 400 to the lockup on state (step S112).
  • step S112 or step S114 When step S112 or step S114 is executed, the process returns to step S101, and a series of processes is repeated.
  • the drive control is executed as described above.
  • FIG. 7 is a schematic diagram of the operating point plane described above.
  • the same reference numerals are assigned to portions overlapping with the description so far, and the description thereof is omitted as appropriate.
  • the operating point plane having the throttle opening degree thr and the ECT output shaft rotational speed Nout as the axis elements described above is shown, and the above-described lockup line LLK is shown by a solid line in the figure.
  • the compression ratio switching line LRc described above is represented by a chain line in the drawing.
  • the throttle opening degree thr that defines the compression ratio switching line LRc is an example of the “reference value” of the “load equivalent value” according to the present invention.
  • the operating point plane is divided into four by the compression ratio switching line LRc and the lockup line LLK, and the region on the lower load side than the compression ratio switching line LRc and on the lower rotation side than the lockup line LLK is the first drive region.
  • the region on the lower load side than the compression ratio switching line LRc and the higher rotation side than the lockup line LLK is the second drive region, the region on the higher load side than the compression ratio switching line LRc and the lower rotation side than the lockup line LLK
  • the third drive region, the region on the high load side from the compression ratio switching line LRc and the region on the higher rotation side than the lockup line LLK is defined as a fourth drive region.
  • the magnitude relationship between the predicted value and the current value of the drive system described above is not unambiguous, and the predicted value may exceed the current value.
  • the efficiency of the drive system remains at the current value even in the operating point region where the predicted value exceeds the current value.
  • the opportunity to improve the fuel efficiency of the corner vehicle 10 is lost in vain.
  • the compression ratio Rc is set as a reference value that is set in advance.
  • the lockup clutch 400 is shifted to the lockup on state.
  • the cooperative lock-up on region becomes the hatched region shown in the figure. That is, the cooperative lockup on region exists over a significant range between the first drive region and the second drive region.
  • This cooperative lock-up on region is a region where the fuel efficiency of the vehicle 10 can be improved as compared with the case where measures similar to the drive control according to the present embodiment are not taken.
  • the lockup on region is expanded by the amount corresponding to the cooperative lockup on region by mutually coordinating the control of the operation state of the lockup clutch 400 and the compression ratio control. It is possible to improve the fuel efficiency of the vehicle 10 by efficiently utilizing the variable compression ratio effect of the engine 200 which is a variable compression ratio type internal combustion engine.
  • the cooperative lock-up on region illustrated in FIG. 7 is obtained each time by comparing the predicted value with the current value.
  • the relationship illustrated in FIG. It goes without saying that the same benefits can be enjoyed by holding and the like.
  • Second Embodiment In the drive control exemplified in the first embodiment, the lockup clutch 400 is uniformly switched to the lockup on state in the cooperative lockup on region. However, the lock-up on operation in the cooperative lock-up on region is accompanied by a decrease in the compression ratio, and thus sacrifices the acceleration performance of the vehicle 10 to some extent. Therefore, a second embodiment of the present invention that can ensure acceleration performance will be described with reference to FIG.
  • FIG. 8 is a flowchart of the acceleration priority control according to the second embodiment of the present invention.
  • the ECU 100 reads information necessary for executing the acceleration priority control (step S201). Specifically, the throttle opening degree thr is read. Next, the ECU 100 calculates a throttle change amount ⁇ thr (step S202).
  • the throttle change amount ⁇ thr is a deviation between the current value and the previous value of the throttle opening degree thr, and is synonymous with the change speed of the throttle opening degree if the information reading cycle according to step S201 is constant.
  • the ECU 100 determines whether or not the throttle change amount ⁇ thr is greater than zero (step S203).
  • the throttle change amount ⁇ thr can take a positive or negative value.
  • the throttle change amount ⁇ thr takes a negative value, the vehicle 10 has made a deceleration request.
  • step S203 NO
  • the ECU 100 permits the cooperative lockup on operation (step S208), and returns the process to step S201.
  • step S203 when the throttle change amount ⁇ thr takes a positive value (step S203: YES), the ECU 100 further determines whether or not the throttle change amount ⁇ thr is larger than the reference value f (step S204).
  • step S204 when the throttle change amount ⁇ thr is equal to or smaller than the reference value f (step S204: NO), the ECU 100 returns the process to step S201 and repeats a series of processes.
  • the reference value f is a conforming value, and is set to a boundary value at which a decrease in acceleration performance due to cooperative lock-up on can cause a significant decrease in drivability.
  • step S204 determines whether or not the current operating point of the vehicle falls within the cooperative lockup on region (step S205).
  • step S205 NO
  • the ECU 100 returns the process to step S201 and repeats a series of processes.
  • FIG. 9 is a diagram illustrating a one-hour transition of the acceleration of the vehicle when the acceleration request is generated.
  • the vertical axis and the horizontal axis represent acceleration and time, respectively. It is assumed that an acceleration request is generated at time T1 (that is, the throttle change amount ⁇ thr> f is satisfied). In this case, in the fuel efficiency priority control similar to the first embodiment, as illustrated in the broken line in the drawing, the change in acceleration with time is slow. This is due to the torque reduction caused by the compression ratio of the engine 200 being reduced to the allowable compression ratio Rcsfy and the torque amplification effect not occurring in the torque converter 300.
  • the acceleration priority control according to the present embodiment when the acceleration priority control according to the present embodiment is applied, as shown by the solid line in the figure, the acceleration rises after the acceleration request is generated and the desired acceleration feeling can be provided.
  • the cooperative lockup on operation (lockup on and compression ratio) in the cooperative lockup on region is performed. (Reduction) is forcibly terminated or execution thereafter is prohibited. For this reason, in the situation where acceleration is prioritized over fuel efficiency, a decrease in drivability (deviation from the driver's intention) due to uniform travel control with fuel efficiency is suppressed, and favorable drivability is ensured.
  • the aspect in which the compression ratio Rc of the engine 200 and the switching of the operation state of the lockup clutch 400 are coordinated with each other is the compression ratio in the operation state switching control of the lockup clutch 400 as in the first and second embodiments. It is not limited only to coordinating control.
  • a third embodiment of the present invention based on such a purpose will be described.
  • the driving force securing control is control for coordinating switching of the operation state of the lockup clutch 400 on the premise of the compression ratio control of the engine 200, that is, an example of the operation of the second vehicle control device according to the present invention. It is.
  • vehicle configuration in the present embodiment is not different from the vehicle 10 according to the first and second embodiments.
  • the ECU 100 reads various information necessary for driving force securing control (step S301). Specifically, the throttle opening degree thr, the ECT output shaft rotational speed Nout, and the engine rotational speed Ne are read.
  • the ECU 100 determines the lock-up state (operation state) of the lock-up clutch 400 (step S302), and determines whether or not the lock-up clutch 400 is in the lock-up on state (step S303).
  • lock-up clutch 400 is in the lock-up off state (step S303: NO)
  • ECU 100 returns the process to step S301.
  • step S303 When the lockup clutch 400 is in the lockup on state (step S303: YES), the ECU 100 sets the compression ratio Rc of the engine 200 based on the engine rotational speed Ne and the throttle opening degree thr read in step S301 ( Step S304). When the compression ratio Rc is set, the ECU 100 determines whether or not the set compression ratio is less than the reference value Rcth (step S305).
  • FIG. 11 is a diagram illustrating the relationship between the throttle opening degree thr and the compression ratio.
  • the vertical axis and the horizontal axis represent the compression ratio Rc and the throttle opening degree thr, respectively.
  • the locus of the compression ratio Rc of the engine 200 with respect to the throttle opening degree thr is as shown by a solid line in the figure, and as the throttle opening degree thr increases, that is, as the engine 200 shifts to a high load state, the compression is performed.
  • the ratio Rc decreases. This is because knocking and torque fluctuation are more likely to occur in the high load region, and the compression ratio Rc has to be reduced in consideration of the combustibility and durability of the engine 200 and the comfort of the vehicle 10.
  • a decrease in the compression ratio Rc leads to a decrease in the engine torque that is the output of the engine 200.
  • an increase in the throttle opening thr means an increase in the required acceleration. Accordingly, in the relationship illustrated in FIG. 11, a driving force shortage that can be manifested as a decrease in drivability occurs due to an engine torque that decreases with an increase in required acceleration.
  • the compression ratio Rc corresponding to the deficiency in driving force that can be manifested as a decrease in drivability is the reference value Rcth.
  • step S305: NO if the set compression ratio is equal to or greater than the reference value Rcth (step S305: NO), the ECU 100 returns the process to step S301, assuming that the driving force is insufficient.
  • step S305: YES when the set compression ratio is less than the reference value Rcth (step S305: YES), the ECU 100 switches the lockup clutch 400 in the lockup on state to the lockup off state (step S306).
  • step S306 is executed, the process returns to step S301, and a series of processes is repeated.
  • the lockup clutch 400 cooperates and the place where the lockup on state should be originally taken is switched to the lockup off state.
  • the torque amplification effect in the torque converter 300 is restored, and it is possible to ensure acceleration performance by compensating for the shortage of engine torque due to a decrease in the compression ratio. As a result, it becomes possible to suppress a decrease in drivability.
  • the operation state and compression of the lock-up clutch 400 are described.
  • the ratio for example, it becomes possible to further improve fuel consumption and power performance (drivability).
  • Such a specific advantage according to the present application is superior to an apparatus based on any technical idea that does not have a technical idea of cooperatively controlling them.
  • the throttle opening degree thr is used as the “load equivalent value” according to the present invention.
  • the accelerator opening degree and the intake air amount are used as the load equivalent value. May be.
  • the ECT output shaft rotation speed Nout is used as the “vehicle speed equivalent value” according to the present invention.
  • the vehicle speed itself may be used as the vehicle speed equivalent value. .
  • the compression ratio is switched between the low compression ratio RcL and the high compression ratio RcH in order to prevent the explanation from becoming complicated.
  • the compression ratio Rc may be continuously variable according to the throttle opening degree thr and the engine rotational speed Ne, as exemplified in the third embodiment, for example. In any case, the cooperative lock-up on region illustrated in FIG. 7 does not change significantly.
  • the present invention can be applied to a vehicle including an internal combustion engine having a variable compression ratio and a transmission having a lock-up mechanism.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Fluid Gearings (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

圧縮比可変型内燃機関を備えた車両において、ロックアップ機構のロックアップ制御と圧縮比の制御とを相互に協調させる圧縮比が可変な内燃機関と、該内燃機関の機関出力軸と入力軸との間にトルクコンバータ及びロックアップ機構を有すると共に前記入力軸の回転速度と車軸に連結された出力軸の回転速度(Nout)との比を変化させることが可能な変速装置とを駆動系として備えた車両を制御する車両の制御装置は、前記車両の運転条件に応じて前記ロックアップ機構の動作状態を切り替える第1制御手段と、前記動作状態が切り替えられる場合の少なくとも一部において前記圧縮比を変化させる第2制御手段とを具備する。

Description

車両の制御装置
本発明は、圧縮比が可変な内燃機関とロックアップ機能を有する変速装置とを備えた車両を制御する車両の制御装置の技術分野に関する。
 ロックアップ機能を有する変速装置を制御する装置として、車速とスロットル開度とによって規定されるロックアップ線に基づいてロックアップ領域を設定するものが提案されている(例えば、特許文献1参照)。特許文献1に開示された装置によれば、エンジンのトルク変動が大きくなく且つロックアップしても篭り音がしない領域でロックアップが実行される。
特開平8-150859号公報
 圧縮比可変型の内燃機関を備えた車両におけるロックアップ制御については、これまで十分に議論されていない。従って、特許文献1に開示される技術思想を適用したところで、動力性能、燃費及び耐ノッキング性能等を勘案して車両の運転条件と圧縮比とが対応付けられ、これら圧縮比をデフォルト値として、トルク変動や篭り音等を勘案したロックアップ制御がなされるよりない。
 ところが、本願出願人が新たに見出したところによれば、圧縮比を変化させることが可能な内燃機関においては、圧縮比とロックアップ領域との間に有意な関係性が存在する。従って、この種の関係性を考慮することなく両者を独立に制御するよりない上述の技術思想では、燃費やドライバビリティ等に改善の余地が生じ得る。
 本発明は、上述した問題点に鑑みてなされたものであり、圧縮比可変型内燃機関を備えた車両において、ロックアップ機構のロックアップ制御と圧縮比の制御とを相互に協調させ得る車両の制御装置を提供することを課題とする。
 上述した課題を解決するため、本発明に係る第1の車両の制御装置は、圧縮比が可変な内燃機関と、該内燃機関の機関出力軸と入力軸との間にトルクコンバータ及びロックアップ機構を有すると共に前記入力軸の回転速度と車軸に連結された出力軸の回転速度との比を変化させることが可能な変速装置とを駆動系として備えた車両を制御する車両の制御装置であって、前記車両の運転条件に応じて前記ロックアップ機構の動作状態を切り替える第1制御手段と、前記動作状態が切り替えられる場合の少なくとも一部において前記圧縮比を変化させる第2制御手段とを具備することを特徴とする。
 本発明に係る車両は、内燃機関と変速装置とを備える。
 本発明に係る内燃機関は、燃料の燃焼により動力を生成する機関を包括する概念であって、特に圧縮比(例えば((行程容積+燃焼室容積)/燃焼室容積)等として規定される)を予め設定された範囲で二値的に、多段階に或いは連続的(シームレス)に変化させることが可能な機関である。
 ここで、圧縮比を可変とする態様は、公知非公知を含めて各種存在し得るが、本発明に係る車両の制御装置は、圧縮比を可変とするための物理的構成に関係なくその効能を発揮し得る。従って、可変な圧縮比は、内燃機関の如何なる物理構成により導かれるものであってもよい。
 例えば、内燃機関は、吸気弁の開弁期間(IVO)或いは閉弁時期を制御することによって圧縮比を可変としてもよい。この場合、例えば、吸気行程において下死点(BDC)通過後の暫時にわたって吸気弁を開弁状態に維持し、吸気の吹き返しにより圧縮比を通常時より低下させてもよい。また、内燃機関は、ピストンの上死点(TDC)を変化させる構造を有し又はそのような機構を備え、上死点位置の変化(即ち、行程容積及び燃焼室容積の双方の変化)により圧縮比を可変としてもよい。或いは内燃機関は、シリンダヘッドの位置を変化させる構造を有し又はそのような機構を備え、シリンダヘッド位置の変化(即ち、燃焼室容積の変化)により圧縮比を可変としてもよい。
 本発明に係る変速装置は、入出力軸間の回転速度比(即ち、変速比)を二値的に、多段階に又は連続的に変化させることが可能な装置であり、好適な一形態として、複数の係合装置や差動機構を有し、これら係合装置の係合状態が電子制御される所謂ECT(Electronic Controlled Transmission:電子制御式変速装置)である。
 本発明に係る変速装置は、入力軸と内燃機関の機関出力軸(例えば、クランク軸又はクランク軸に繋がる軸)との間にトルクコンバータ(以下、適宜「トルコン」と略称する)及びロックアップ機構を備える。
 ロックアップ機構は、少なくともその動作状態として、ロックアップがなされないロックアップオフ状態と、ロックアップがなされたロックアップオン状態とを採り得る限りにおいて、それらが二値的に切り替わる構成であっても、例えば係合装置の係合要素同士を係合油圧等に応じて適宜滑らせることによって、それらの間に中間的な一又は複数の半ロックアップ状態を構築し得る構成であってもよい。いずれにせよ、ロックアップ機構は、ロックアップオン状態において、機関出力軸と変速装置の入力軸とを直結し得るため、ATFの流体抵抗を利用して動力伝達を行うよりも高い伝達効率を実現し得る。
 本発明に係る第1の車両の制御装置は、このような本発明に係る車両を制御する装置であって、例えば、一又は複数のCPU(Central Processing Unit)、MPU(Micro Processing Unit)、各種プロセッサ又は各種コントローラ、或いは更にROM(Read Only Memory)、RAM(Random Access Memory)、バッファメモリ又はフラッシュメモリ等の各種記憶手段等を適宜に含み得る、単体の或いは複数のECU(Electronic Controlled Unit)等の各種処理ユニット、各種コントローラ或いはマイコン装置等各種コンピュータシステム等の形態を採り得る。
 本発明に係る車両の制御装置によれば、第1制御手段により、車両の運転条件に応じてロックアップ機構の動作状態が切り替えられる。
 ここで、車両の運転条件とは、予めロックアップ(尚、単に「ロックアップ」と表現する場合は、動作状態をロックアップオン状態に切り替える或いは維持することを意味する)の必要性の度合いに対応付けられてなる各種の条件を意味し、例えば、内燃機関の負荷相当値及び車速相当値等を意味する。
 尚、「負荷相当値」とは、内燃機関の負荷状態と一対一、一対多、多対一又は多対多に対応し得る値を包括する概念であって、好適には、スロットル開度、吸入空気量又はアクセル開度等を意味する。また、「車速相当値」とは、車速と一対一、一対多、多対一又は多対多に対応し得る値を包括する概念であって、好適には、車速又は変速装置の入力軸回転速度若しくは出力軸回転速度等を意味する。
 ロックアップ機構によるロックアップ作用の効能は、主としてトルコンを介さない動力軸の直結による動力伝達効率の向上にあり、端的には、内燃機関の燃費を向上させる点にある。但し、動力軸の直結作用には、内燃機関側で生じるトルク変動が緩和されることなく車軸側に伝達される点、或いは所謂篭り音が発生する点等ドライバビリティを低下させる作用もあり、実践的運用面においては、これらが許容範囲に収まり得る車両の運転条件において、ロックアップが実行される。
 一方、本発明においては、内燃機関の圧縮比もまた、車両の運転条件に応じて適宜切り替えられ得る。燃焼効率及び駆動力確保の面から言えば圧縮比は高い方が良いが、実践的運用面においては、高圧縮比はノッキングの発生やトルクの変動を招来し得る。従って、圧縮比もまた、ノッキングやトルク変動の度合いが許容範囲に収まり得るように車両の運転条件との相関が規定される。
 ところで、ロックアップ作用による機械的伝達効率の向上も、高圧縮比化による燃焼効率の向上も、いずれも車両全体としての燃費性能に影響する要素であるが、従来は、これらが相互に如何に影響しあうかについては勘案されておらず、従って、これらは各々について最適化されているに過ぎなかった。
 ここで、本願出願人は、これらを相互に協調させることによって、燃費性能を始めとする各種の性能の最適化がより図られ得る点を新規に見出した。
 例えば、従来、予め内燃機関側の事情で決定されていた圧縮比に対し最適化されるに過ぎなかったロックアップ領域(実践的見地からロックアップオンが可能な領域)を、圧縮比が可変であることを利用し、圧縮比を変化させることによって拡大し得る点を見出したのである。
 即ち、本発明に係る第1の車両の制御装置によれば、第2制御手段は、ロックアップ機構の動作状態が切り替えられる場合の少なくとも一部において圧縮比を変化させる。
 従来の技術思想の範疇では、圧縮比がロックアップ機構の動作状態に影響されることはなかったが、このようにロックアップ機構の動作状態に応じて圧縮比を一種の調整要素として扱うことにより、より燃費の向上を図ることが可能となるのである。
 このように、本発明に係る第1の車両の制御装置によれば、ロックアップ作用と圧縮比可変作用との相互協調に実践的有益性を見出すことにより、燃費性能の最適化を図り得るのである。
 尚、第1制御手段と第2制御手段との協調動作は、第1制御手段又は第2制御手段或いはその両方が、その都度個別具体的に動作選択を行いつつ遂行されてもよいし、予め実験的に、経験的に、理論的に又はシミュレーション等に基づいて策定された制御マップ等に基づいて、外見上あたかもこれらが独立性を保っているかのように遂行されてもよい。いずれにせよ、圧縮比の制御とロックアップ制御とが相互協調している点にいささかの変わりもない。
 本発明に係る第1の車両の制御装置の一の態様では、前記第2制御手段は、前記運転条件として前記内燃機関の負荷相当値が基準値未満となる領域において前記動作状態がロックアップオン状態へ切り替えられる場合に、前記圧縮比を低下させる。
 この態様によれば、内燃機関の負荷相当値が基準値未満となる領域、端的には、圧縮比を相対的に高圧縮比側で設定し得る(或いは、下げシロのある圧縮比とし得る)領域において、ロックアップ機構の動作状態がロックアップオン状態へ切り替えられる場合に、第2制御手段によって圧縮比が低減される。
 即ち、この態様によれば、ロックアップ機構によるロックアップ作用が実効状態となるロックアップオン領域が、圧縮比の低減措置によって拡大される。圧縮比の低減は、トルク変動の緩和を意味するから、圧縮比を低減することによって、従来はロックアップオフ状態以外採り得なかった動作状態がロックアップ状態を採り得るのである。このため、ロックアップが所望される状況においては顕著に効果的である。
 本発明に係る第1の車両の制御装置の他の態様では、前記第1制御手段は、前記車両において発生する振動及び騒音のうち少なくとも一方を含む状態要素が所定要件を満たすように前記ロックアップ機構の動作状態を切り替える。
 この態様によれば、ロックアップ機構の動作状態が、先に述べたように、振動及び騒音のうち少なくとも一方を含む状態要素が所定要件を満たすように切り替えられる。
 ここで、「所定要件」とは、例えば、先述の許容範囲に収まること等を意味し、好適には、車両運行上ドライバビリティの低下を招来しないよう定められた要件を意味する。
 このため、ロックアップオン状態への移行に伴って、燃費向上に係る利益のみが享受され有益である。
 状態要素が所定要件を満たすようにロックアップ機構の動作状態が切り替えられる、本発明に係る第1の車両の制御装置の一の態様では、前記第1制御手段は、前記内燃機関の負荷相当値が基準値未満となる領域において、前記圧縮比を前記状態要素が前記所定要件を満たすように定められた許容値まで低下させた場合における前記駆動系の効率の予測値に基づいて前記動作状態を切り替える。
 この態様によれば、状態要素が所定要件を満たすよう定められた許容値まで圧縮比を低下させた際の駆動系の効率の予測値に基づいて、ロックアップ機構の動作状態が切り替えられる。従って、圧縮比を低下させることの有益性を数値的に把握することが可能であり有益である。
 補足すると、この効率の予測値は、状態要素が所定要件を満たす旨の許容値まで圧縮比を低下させることが前提であるから、ロックアップ機構の動作状態をロックアップオン状態に移行させたとしても、ドライバビリティの低下が生じることがないのである。
 尚、「駆動系」とは、内燃機関と変速装置とを少なくとも含む車両のパワートレインを意味しており、駆動系の効率とは、好適な一形態としては、内燃機関の熱効率とトルコンの伝達効率とを乗じた指標値に相当する。係る効率は、車両全体の燃費を好適に規定し得るため、判断指標として適している。
 駆動系の予測値に基づいてロックアップ機構の動作状態が切り替えられる本発明に係る第1の車両の制御装置の一の態様では、前記第1制御手段は、前記負荷相当値を含む前記車両の運転条件が、前記駆動系の効率の現在値が前記予測値未満となる所定の協調ロックアップ領域に該当する場合に、前記動作状態をロックアップオン状態へと切り替え、前記第2制御手段は、前記運転条件が前記協調ロックアップ領域に該当することに起因して前記動作状態が前記ロックアップオン状態へ切り替えられた場合に、前記圧縮比を前記許容値まで低下させる。
 この態様によれば、第1制御手段は、車両の運転条件が、駆動系の効率の現在値(即ち、切り替え前の値)が上記予測値未満となる協調ロックアップ領域に該当する場合に、ロックアップ機構の動作状態をロックアップオン状態へと切り替え、それに伴い、第2制御手段により圧縮比が許容値まで低減される。従って、車両全体のドライバビリティ及び燃費を最適に維持することが可能となる。
 協調ロックアップ領域において動作状態がロックアップオン状態へ切り替えられる本発明に係る第1の車両の制御装置の一の態様では、前記協調ロックアップ領域は、前記負荷相当値と前記車両の車速相当値とを軸要素とする座標系において、前記負荷相当値が前記基準値未満となる領域であって、且つ前記車速相当値の方向において、前記圧縮比が高圧縮比相当値であり且つ前記動作状態が前記ロックアップオフ状態となる第1領域と、前記圧縮比が前記高圧縮比相当値であり且つ前記動作状態が前記ロックアップ状態となる第2領域とに挟まれた領域である。
 この態様によれば、車両の運転条件として負荷相当値と車速相当値とを配してなる二次元座標系における協調ロックアップ領域の位置が明確化される。
 協調ロックアップ領域において動作状態がロックアップオン状態へ切り替えられる本発明に係る第1の車両の制御装置の他の態様では、前記第1制御手段は、前記協調ロックアップ領域において前記内燃機関の負荷相当値の変化量が基準値以上である場合に、前記動作状態を前記ロックアップオフ状態へ戻し、前記第2制御手段は、前記動作状態が前記ロックアップオフ状態へ戻されるのに伴って前記圧縮比を上昇させる。
 協調ロックアップ領域においては、ドライバビリティと燃費との高次元の両立が図られ得るが、基準となる圧縮比に対し圧縮比の低下を伴い得る点に鑑みれば、動力性能が顕著に要求される局面においては、加速力の不足がドライバビリティの低下を惹起し得る。
 この態様によれば、ドライバの加速要求と相関する負荷相当値の変化量(好適には、時間変化量であり、変化速度である)が基準値以上である場合に、ロックアップ機構の動作状態がロックアップオフ状態へ戻され、圧縮比がそれに相前後して上昇制御される。従って、ドライバの加速要求等過渡的な要求等に対しても適応することができる。
 尚、本態様の趣旨に基づけば、第1制御手段が、協調ロックアップ領域において当該変化量が確実に基準値以上となる状況において、敢えて協調ロックアップ領域における圧縮比低減措置を講じないといった動作態様も当然ながら含まれる。
 上述した課題を解決するため、本発明に係る第2の車両の制御装置は、圧縮比が可変な内燃機関と、該内燃機関の機関出力軸と入力軸との間にトルクコンバータ及びロックアップ機構を有すると共に前記入力軸の回転速度と車軸に連結された出力軸の回転速度との比を変化させることが可能な変速装置とを駆動系として備えた車両を制御する車両の制御装置であって、前記車両の運転条件に応じて前記圧縮比を変化させる第1制御手段と、前記圧縮比を変化させる場合の少なくとも一部において前記ロックアップ機構の動作状態を切り替える第2制御手段とを具備することを特徴とする。
 本発明に係る第2の車両の制御装置は、第1の車両の制御装置と同様、上述した本発明に係る内燃機関及び変速装置を備えた車両に適用される装置である。
 本発明に係る第2の車両の制御装置によれば、その動作時には、第1制御手段により、車両の運転条件に応じて内燃機関の圧縮比が制御され、然るべき圧縮比が実現される。尚、圧縮比を規定し得る車両の運転条件とは、例えば、先述した負荷相当値や車速相当値、或いは機関回転速度等を含み得る。
 一方、第2制御手段は、この第1制御手段により圧縮比が変化せしめられる期間の少なくとも一部において、ロックアップ機構の動作状態を切り替える。
 ロックアップ機構の動作状態は、燃費性能や上述したNVに関する性能等の他に、駆動力にも影響する。より具体的には、ロックアップオン状態においては、トルクコンバータのトルク増幅作用を利用することができないため、出力軸に供給すべきトルクは不足し易くなる。逆に言えば、ロックアップ機構の動作状態を二値的であれ、多段階であれ、連続的であれ変化させれば、その時点の圧縮比に対し、車両の動力性能を変化させることができる。
 従って、本発明の第2の車両の制御装置によれば、圧縮比が所定基準に従って制御される過程において、適宜ロックアップ機構の動作状態を切り替えることにより両者の相互協調を図ることによって、車両の動力性能をより広範囲にわたって良好に維持することが可能となる。
 本発明の第2の車両の制御装置の一の態様では、前記第1制御手段は、前記運転条件として前記内燃機関の負荷相当値の大小に応じて前記圧縮比を夫々低高に変化させ、前記第2制御手段は、前記動作状態がロックアップオン状態であり且つ前記内燃機関の負荷相当値が基準値以上である場合において、前記圧縮比が基準値未満の値まで変化した場合に、前記動作状態をロックアップオフ状態へ切り替える。
 内燃機関の圧縮比は、高圧縮比程、ノッキングやトルク変動を誘発し易くなるから、通常、高回転領域や高負荷領域になるに連れて低圧縮比側へ移行する傾向がある。
 ところが、内燃機関の駆動力は、圧縮比が低い程低くなるから、顕著に動力性能が要求されるこの種の高回転領域或いは高負荷領域において、ロックアップ機構の動作状態がロックアップオン状態に移行すると、或いはロックアップオン状態にあると、トルクコンバータのトルク増幅作用が生じないことと、圧縮比が低いこととに起因して、駆動力の不足がドライバビリティを顕著に低下させかねない。
 この態様によれば、第2制御手段は、ロックアップ機構がロックアップオン状態にあり且つ負荷相当値が基準値以上である場合に、第1制御手段により圧縮比が基準値未満となった場合には、ロックアップ機構をロックアップオフ状態へ切り替える。ロックアップオフ状態への切り替えにより、トルクコンバータによるトルク増幅作用が発効し、限られた条件の中で、可及的に車両の駆動力を確保することが可能となるのである。
 本発明のこのような作用及び他の利得は次に説明する実施形態から明らかにされる。
本発明の第1実施形態に係る車両の構成を概念的に表してなる概略構成図である。 図1の車両におけるエンジンの模式的な側面断面図である。 図1の車両においてECUが実行する駆動制御のフローチャートである。 図3の駆動制御における、圧縮比とエンジン効率との関係を例示する図である。 図3の駆動制御におけるトルクコンバータ速度比とトルクコンバータ効率との関係を例示する図である。 図3の駆動制御における、圧縮比とトルク変動指標値との関係を例示する図である。 図3の駆動制御の効果に係り、協調ロックアップオン領域を視覚的に説明する図である。 本発明の第2実施形態に係る加速優先制御のフローチャートである。 図8の加速優先制御の効果に係り、加速要求発生時点以降の車両の加速度の一時間推移を例示する図である。 本発明の第3実施形態に係る駆動力確保制御のフローチャートである。 駆動力確保制御における、スロットル開度と圧縮比との関係を例示する図である。
<発明の実施形態>
 以下、図面を参照して、本発明の好適な実施形態について説明する。
<第1実施形態>
 <実施形態の構成>
 始めに、図1を参照して、本発明の第1実施形態に係る車両10の構成について説明する。ここに、図1は、車両10の構成を概念的に表してなる概略構成図である。
 図1において、車両10は、ECU100、エンジン200、トルクコンバータ300、ロックアップクラッチ400及びECT500を備える。
 ECU100は、CPU(Central Processing Unit)、ROM(Read Only Memory)及びRAM(Random Access Memory)等を備え、車両10の動作全体を制御する電子制御ユニットであり、本発明に係る「車両の制御装置」の一例である。ECU100は、ROMに格納された制御プログラムに従って、後述する駆動制御を実行可能に構成されている。
 エンジン200は、車両10の主たる動力源として機能する、本発明に係る「内燃機関」の一例たる直列4気筒ガソリンエンジンであり、。ここで、図2を参照して、エンジン200の詳細な構成について説明する。ここに、図2は、エンジン200の模式的な側面断面図である。尚、同図において、図1と重複する箇所には同一の符号を付してその説明を適宜省略することとする。
 図2において、エンジン200は、気筒201内において点火プラグ202による点火動作を介して混合気を燃焼せしめると共に、係る燃焼による爆発力に応じて生じるピストン203の往復運動を、コネクティングロッド204を介してクランクシャフト205の回転運動に変換可能に構成されている。
 クランクシャフト205近傍には、クランクシャフト205の回転位置(即ち、クランク角)を検出するクランクポジションセンサ206が設置されている。このクランクポジションセンサ206は、ECU100(不図示)と電気的に接続されており、ECU100では、このクランクポジションセンサ206から出力されるクランク角信号に基づいて、エンジン200の機関回転速度Neが算出される構成となっている。
 尚、エンジン200は、紙面と垂直な方向に4本の気筒201が直列に配されてなる直列4気筒エンジンであるが、個々の気筒201の構成は相互に等しいため、図2においては一の気筒201についてのみ説明を行うこととする。また、本発明に係る内燃機関における気筒数、気筒配列、吸排気系の構造或いは燃料の供給態様等は、少なくとも後述するように圧縮比が可変である限りにおいて如何様にも限定されない趣旨である。
 以下に、エンジン200の要部構成を、その動作の一部と共に説明する。
 エンジン200において、外部から吸入された空気は吸気管207を通過し、吸気ポート210を介して吸気バルブ211の開弁時に気筒201内部へ導かれる。一方、吸気ポート210には、インジェクタ212の燃料噴射弁が露出しており、吸気ポート210に対し燃料を噴射可能な構成となっている。インジェクタ212から噴射された燃料は、吸気バルブ211の開弁時期に前後して吸入空気と混合され、上述した混合気となる。
 燃料は、図示せぬ燃料タンクに貯留されており、図示せぬフィードポンプの作用により、図示せぬデリバリパイプを介してインジェクタ212に供給される構成となっている。気筒201内部で燃焼した混合気は排気となり、吸気バルブ211の開閉に連動して開閉する排気バルブ213の開弁時に排気ポート214を介して排気管215に導かれる。
 排気管215には、三元触媒216が設置されている。三元触媒216は、エンジン200から排出されるCO(一酸化炭素)、HC(炭化水素)、及びNOx(窒素酸化物)を夫々浄化可能に構成されている。
 排気管215には、エンジン200の排気空燃比を検出することが可能に構成された空燃比センサ217が設置されている。更に、気筒201を収容するシリンダブロックに設置されたウォータージャケットには、エンジン200を冷却するために循環供給される冷却水(LLC)に係る冷却水温を検出するための水温センサ218が配設されている。これら空燃比センサ217及び水温センサ218は、夫々ECU100と電気的に接続されており、検出された空燃比及び冷却水温は、夫々ECU100により適宜参照される構成となっている。
 一方、吸気管207における、吸気ポート210の上流側には、図示せぬクリーナを経て導かれた吸入空気に係る吸入空気量を調節するスロットルバルブ208が配設されている。このスロットルバルブ208は、ECU100と電気的に接続されたスロットルバルブモータ209によってその駆動状態が制御される構成となっている。尚、ECU100は、基本的には不図示のアクセルペダルの開度(即ち、アクセル開度Ta)に応じたスロットル開度が得られるようにスロットルバルブモータ209を制御するが、スロットルバルブモータ209の動作制御を介してドライバの意思を介在させることなくスロットル開度を調整することも可能である。即ち、スロットルバルブ208は、一種の電子制御式スロットルバルブとして構成されている。
 尚、このスロットルバルブ208の近傍には、スロットルバルブ208の開度たるスロットル開度thrを検出可能に構成された不図示のスロットル開度センサが配設される。このスロットル開度センサは、ECU100と電気的に接続されており、検出されたスロットル開度thrは、ECU100により適宜参照される構成となっている。
 ここで、本実施形態に係るエンジン200は、圧縮比Rcが所定範囲で可変に構成される。圧縮比Rcとは、吸気行程容積と燃焼室容積との比であるが、圧縮比Rcを可変とするためのエンジン構造は一義的ではない。
 例えば、エンジン200は、気筒201を収容するシリンダブロックの、ストローク方向の長さが吸気行程において可変であってもよい。即ち、この場合、ピストン203のストロークが増加するため、吸気行程容積が増大して圧縮比が増加する。
 また、エンジン200は、ピストン203の上死点位置が吸気行程において可変であってもよい。この場合、吸気行程容積が減少し且つ燃焼室容積が増加するため、圧縮比を変化させることが可能となる。
 尚、本実施形態に係るエンジン200は、このようなエンジンの物理構造により圧縮比を可変とする方式でなく、吸気バルブ211のIVO(開弁期間)を変化させることにより圧縮比を可変とする。即ち、通常の吸気バルブ211の閉弁時期を遅角して、IVOを拡大すると、圧縮行程の一部で吸気が気筒内から吸気ポート側へ吹き戻る。このため、圧縮行程において圧縮される吸気量が減少して、実質的に吸気行程容積が減少したのと同様の効果を得ることができる。
 尚、圧縮される吸気量は、吸気バルブ211を、排気行程終了に相前後して開弁し、圧縮行程開始後に閉弁した場合(吸気慣性による一種の過給効果を利用した場合)に略最大となる。即ち、この場合の圧縮比がエンジン200の最大圧縮比Rcmaxであり、所望の圧縮比Rcは、吸気バルブ211の閉弁時期を徐々に遅角させることにより実現される。このように、エンジン200は、基本的に圧縮比を減少させる側の制御によって圧縮比を可変とする。このため、元々の物理構成において、エンジン200は、通常のエンジン(圧縮比不変のエンジン)と較べて高い圧縮比が得られるように設定されている。
 一方、吸気バルブ211の閉弁時期を排気バルブ213と非連動に制御する必要から、エンジン200には、電気駆動式可変バルブタイミング装置が採用されている。この装置は、一種のカム・バイ・ワイヤ機構であり、吸気バルブ213を駆動する揺動部材としてのカムの回転位相を、電気モータの駆動力によって所定範囲で変化させる構成を採る。
 尚、吸気バルブ211のバルブタイミングを可変とする機構は、公知の各種方式を採用可能であることは言うまでもない。例えば、エンジン211は、ベーン駆動式のVVT(可変バルブタイミング装置)を備えていてもよいし、所謂ロストモーション方式のカム駆動機構を有していてもよい。
 図1に戻り、トルクコンバータ300は、エンジン200のクランクシャフト205に接続されたトルク伝達装置である。トルクコンバータ300は、入力側(クランクシャフト205側)に接続されたポンプインペラ(不図示)の回転動力をATF(Automatic Transmission Fluid)を介して、またステータ(不図示)によってトルクを増幅させつつ出力側(ECT500側)に接続されたタービンランナ(不図示)に回転動力として伝達可能に構成された流体伝達装置である。即ち、エンジン200のトルクたるエンジントルクTeは、トルクコンバータ300を介してECT500に伝達される構成となっている。尚、トルクコンバータ300の出力側に設置されたタービンランナには、ECT500の入力軸が接続されている。
 ロックアップクラッチ400は、一対の係合要素を備え、当該一対の係合要素の係合状態に応じて、トルクコンバータ300における入力側要素たるポンプインペラと、出力側要素たるタービンランナとの断接状態を制御可能に構成された、本発明に係る「ロックアップ機構」の一例たる公知の油圧係合式クラッチ装置である。
 ロックアップクラッチ400の一対の係合要素の係合状態は、これらが相互に締結された締結状態と、これらが相互に離間した解放状態との間で二値的に切り替えられる構成となっており、これらが締結状態を採る場合に、ポンプインペラとタービンランナとが直結される構成となっている。ポンプインペラとタービンランナとが直結された状態においては、先に述べたトルクコンバータ300の流体クラッチとしての機能は消失し、エンジントルクTeがATFによる損失無しにECT500に入力される構成となっている。
 尚、ロックアップクラッチ400の係合状態を制御する油圧駆動装置は、ECU100と電気的に接続されており、ECU100によってその動作状態が制御される構成となっている。また、ポンプインペラとタービンランナとが直結された状態をこれ以降適宜「ロックアップオン状態」と表現し、これらが結合されない状態をこれ以降適宜「ロックアップオフ状態」と表現することとする。
 ECT500は、複数のクラッチ要素、ブレーキ要素及びワンウェイクラッチ要素等からなる複数の摩擦係合装置(不図示)を備えた、本発明に係る「変速装置」の一例たる電子制御式有段変速装置である。ECT500は、ECU100と電気的に接続されており、ECU100による各種ソレノイド(不図示)等の駆動制御を介してこれら各摩擦係合装置相互間の係合状態が変化することによって、相互に異なる複数の変速比に対応する複数の変速段を得ることが可能である。
 また、ECT500には、不図示の回転センサが備わっており、ECT500の出力軸の回転速度たるECT出力軸回転速度Noutを検出可能に構成されている。この回転センサは、ECU100と電気的に接続されており、ECT500の出力軸回転速度Noutは、ECU100によって適宜参照される構成となっている。
 尚、ECT400は公知の電子制御式自動変速機と同等の構成を有しており、その詳細な図示は省略するが、車両10の前進方向に対応する変速段として、ギア比の大きい順に「1st」、「2nd」、「3rd」、「4th」、「5th」及び「6th」の6段の変速段を有しており、これらギア比が大きい順に大きい変速比が得られる構成となっている。車両10が前進する場合、ECU100は、ECT500における各摩擦係合装置の係合状態を制御することによって、ECT500の変速比を上記いずれかの変速段に対応する値に設定することが可能である。
 ECT500の出力軸は、減速機構11を介して、駆動輪たる左前輪FL及び右前輪FRに夫々連結された左前車軸SFL及び右前車軸SFRに連結されている。
 <実施形態の動作>
  <駆動制御の詳細>
 始めに、図3を参照し、駆動制御の流れについて説明する。ここに、図3は駆動制御のフローチャートである。尚、駆動制御は、ロックアップクラッチ400のロックアップオン時期と相前後してエンジン200の圧縮比Rcを補正し、ロックアップ領域を拡大することによって車両10の燃費を向上させる、本発明に係る第1の車両の制御装置の動作の一例である。
 図3において、ECU100は、駆動制御に必要となる各種の情報を読み込む(ステップS101)。具体的に、ECU100は、スロットル開度thrとECT出力軸回転速度Noutを読み込む。尚、スロットル開度thrは、本発明に係る「負荷相当値」の一例であり、ECT出力軸回転速度Noutは、本発明に係る「車速相当値」の一例である。また、これらは夫々本発明に係る「車両の運転条件」の一例である。
 次に、ECU100は、読み込んだスロットル開度thr及びECT出力軸回転速度Noutに基づいて、車両10の動作点がロックアップオフ領域に該当するか否かを判定する(ステップS102)。
 ここで、本実施形態において、車両10の動作点は、スロットル開度thrを縦軸に、ECT出力軸回転速度Noutを横軸に配してなる動作点平面(本発明に係る「座標系」の一例)上で規定される。即ち、一のスロットル開度thrと一のECT出力軸回転速度Noutとによって規定される当該座標平面上の一座標点が、車両10の一動作点として扱われる。
 ロックアップクラッチ400がその動作状態としてロックアップオン状態を採るべきか、ロックアップオフ状態を採るべきかは、この動作点平面上に設定されるロックアップ線LLK(後述)によって規定される。ロックアップオフ領域は、基本的にロックアップ線LLKよりも低回転側の領域である。既に車両10の動作点がロックアップオン領域にある場合(ステップS102:NO)、ECU100は、処理をステップS101に戻す。
 一方、車両10の動作点がロックアップオフ領域にある場合(ステップS102:YES)、ECU100は、車両10の動作点が高圧縮比領域に該当するか否かを判定する(ステップS103)。
 尚、説明の煩雑化を防ぐ目的から、本実施形態において、エンジン200の圧縮比Rcは、低圧縮比RcLと高圧縮比RcHとの間で二値的に切り替えられるとする。但し、無論圧縮比Rcはより多段階に或いは連続的に可変とされてよい。
 高圧縮比領域とは、エンジン200の圧縮比として高圧縮比RcHを採るべき旨が規定された領域であり、ロックアップクラッチ400と同様に、上記動作点平面上に設定される圧縮比切り替え線LRcによって規定される。高圧縮比領域とは、基本的に圧縮比切り替え線LRcよりも低負荷側の領域である。既に車両10の動作点が低圧縮比領域に該当する場合(ステップS103:NO)、ECU100は、処理をステップS103に戻す。
 一方、車両10の動作点が高圧縮比領域にある場合(ステップS103:YES)、ECU100は、切り替え前エンジン効率ηaを算出する(ステップS104)。切り替え前エンジン効率ηaは、本発明に係る「駆動系の効率の現在値」を規定する要素値の一つとして利用される。
 ここで、図4を参照して、切り替え前エンジン効率ηaについて説明する。ここに、図4は、圧縮比とエンジン効率との関係を例示する図である。
 図4において、横軸及び縦軸には夫々圧縮比Rc及びエンジン効率が表される。エンジン効率とは、エンジン200の熱効率であり、高い程燃料の消費効率が高い、即ち燃費が良好であることを意味する。また、図5において、エンジン効率線Leeが規定される。エンジン効率線Leeは、一の圧縮比Rcに対するエンジン効率を繋げて得られる線である。
 図3に戻り、ステップS104において、ECU100は、先ず、図4の関係を参照し、現在の圧縮比RcH(図示A点参照)に対応するエンジン効率としての切り替え前エンジン効率ηaを取得する。
 次に、ECU100は、切り替え前トルコン効率ηcを算出する(ステップS105)。切り替え前トルコン効率ηcは、本発明に係る「駆動系の効率の現在値」を規定する要素値の他の一つとして利用される。
 ここで、図5を参照して、切り替え前トルコン効率ηcについて説明する。ここに、図5は、トルクコンバータ速度比Rsとトルクコンバータ効率との関係を例示する図である。尚、トルクコンバータ速度比Rsとは、ポンプインペラとタービンランナの回転速度比であり、これらが機械的に直結されるロックアップオン時において1を採る(図示D点参照)。
 図5において、横軸及び縦軸には夫々トルクコンバータ速度比Rs及びトルクコンバータ効率が表される。トルクコンバータ効率とは、トルクコンバータ300におけるトルクの伝達効率であり、高い程損失が少ないことを意味する。また、図において、トルコン効率線Letが規定される。トルコン効率線Letは、一のトルクコンバータ速度比Rsに対するトルクコンバータ効率を繋げて得られる線である。
 図3に戻り、ステップS105において、ECU100は、図5の関係を参照し、現在のトルクコンバータ速度比Rs(図示C点参照)に対応するトルクコンバータ効率としての切り替え前トルコン効率ηcを取得する。
 次に、ECU100は、トルク変動許容値を算出する(ステップS106)。トルク変動許容値とは、現時点の車両10の運転条件においてロックアップクラッチ400をロックアップオン状態に移行させた場合に、車両10の騒音及び振動を許容範囲に収め得る限界値、或いはそのような限界値に一定のマージンを付与した値に相当するトルク変動指標値である。尚、トルク変動指標値Tcとは、予め実験的に得られた、エンジン200のトルク変動の度合いを規定する規格化された指標値であり、大きい程トルク変動が大きいことを意味する。トルク変動許容値は、予めROMに車両10の運転条件に応じた可変値として格納されている。
 トルク変動許容値を算出すると、ECU100は、許容圧縮比Rcsfyを算出する(ステップS107)。許容圧縮比Rcsfyとは、トルク変動許容値に対応するエンジン200の圧縮比である。ここで、図6を参照し、トルク変動許容値について説明する。ここに、図6は、車両10において圧縮比とトルク変動指標値との関係を例示する図である。尚、同図において、図4と重複する箇所には同一の符号を付してその説明を適宜省略することとする。
 図6において、横軸及び縦軸には夫々圧縮比Rc及びトルク変動指標値Tcが表される。また、図6において、トルク変動線Ltcが規定される。トルク変動線Ltcは、一の圧縮比Rcに対するトルク変動指標値を繋げて得られる線である。
 図3のステップS107において、ECU100は、図6の関係を参照し、トルク変動指標値をトルク変動許容値Tcthに抑制するにあたって必要となる圧縮比Rcの値(図示B点参照)を、許容圧縮比Rcsfyとして取得する。
 図3に戻り、許容圧縮比Rcsfyを算出すると、ECU100は、切り替え後エンジン効率ηbを算出する(ステップS108)。切り替え後エンジン効率ηbとは、許容圧縮比Rcsfyに対応するエンジン効率であり、図4を参照すれば、B点に対応するエンジン効率である。尚、切り替え後エンジン効率ηbは、本発明に係る「圧縮比を状態要素が所定要件を満たすように定められた許容値まで低下させた場合における駆動系の効率の予測値」を規定する一要素値である。
 次に、ECU100は、切り替え後トルコン効率ηdを算出する(ステップS109)。切り替え後トルコン効率ηdとは、ロックアップオン時のトルクコンバータ効率であり、即ち、本実施形態では「1」である。尚、切り替え後トルコン効率ηdは、本発明に係る「圧縮比を状態要素が所定要件を満たすように定められた許容値まで低下させた場合における駆動系の効率の予測値」を規定する他の要素値である。
 これらが求まると、ECU100は、ηb×ηdが、ηa×ηcよりも大きいか否かを判定する(ステップS110)。尚、ηb×ηdは、本発明に係る「駆動系の効率の予測値」の一例であり、ηb×ηdは、本発明に係る「駆動系の効率の現在値」の一例である。即ち、ステップS110は、エンジン200の圧縮比Rcを、現在の圧縮比RcHから、トルク変動許容値Rcthに対応する許容圧縮比Rcsfyまで低下させた場合に、車両10全体としての燃費が向上するか否かを判定するプロセスである。
 ステップS110の結果、予測値が現在値以下である場合(ステップS110:NO)、即ち、圧縮比を下げてロックアップクラッチ400をロックアップオン状態としても燃費向上の効果が得られない場合には、ECU100は、圧縮比Rcを現在値に維持し(ステップS113)、ロックアップクラッチ400に係るロックアップオフ状態を継続させる(ステップS114)。
 一方、予測値が現在値より大きい場合(ステップS110:YES)、即ち、圧縮比を下げてロックアップクラッチ400をロックアップオン状態とすることによって、燃費向上の効果が得られる場合には、ECU100は、圧縮比Rcを現在値から許容圧縮比Rcsfyまで下げ(ステップS111)、ロックアップクラッチ400をロックアップオン状態に切り替える(ステップS112)。
 ステップS112又はステップS114が実行されると、処理はステップS101に戻され、一連の処理が繰り返される。駆動制御は以上のように実行される。
 ここで、このような駆動制御の効果について、図7を参照し視覚的に説明する。ここに、図7は、先述した動作点平面の模式図である。尚、同図において、これまでの説明と重複する部分に関しては、同一の参照符号を付してその説明を適宜省略することとする。
 図7において、上述した、スロットル開度thr及びECT出力軸回転速度Noutを軸要素とする動作点平面が表されており、先述したロックアップ線LLKが、図示実線で表される。また、先述した圧縮比切り替え線LRcが図示鎖線で表されている。尚、圧縮比切り替え線LRcを規定するスロットル開度thrは、本発明に係る「負荷相当値」の「基準値」の一例である。
 ここで、圧縮比切り替え線LRcとロックアップ線LLKとによって、動作点平面を四分割し、圧縮比切り替え線LRcより低負荷側且つロックアップ線LLKよりも低回転側の領域を第1駆動領域、圧縮比切り替え線LRcより低負荷側且つロックアップ線LLKよりも高回転側の領域を第2駆動領域、圧縮比切り替え線LRcより高負荷側且つロックアップ線LLKよりも低回転側の領域を第3駆動領域、圧縮比切り替え線LRcより高負荷側且つロックアップ線LLKよりも高回転側の領域を第4駆動領域とする。
 このように各駆動領域を定義すると、圧縮比切り替え線LRcより低負荷側でロックアップクラッチ400をロックアップオン状態に移行させるにあたって、本実施形態に係る駆動制御がなされない場合には、上記第2駆動領域のみロックアップオンが可能である。
 一方、上述した駆動系の予測値と現在値との大小関係は、一義的ではなく、予測値が現在値を上回る場合がある。ところが、圧縮比Rcの切り替えをロックアップクラッチ400のロックアップ制御と相互に協調させる概念がない場合、この予測値が現在値を上回る動作点領域においても駆動系の効率は現在値のままであり、折角車両10の燃費を向上させ得る機会を無駄に損失することになる。
 ここで特に、本実施形態では、上述した現在値と予測値との比較判定プロセスによって、予測値が現在値を上回る旨の予測が成立する場合には、圧縮比Rcが予め設定された基準値に対し減少側に補正され、ロックアップクラッチ400がロックアップオン状態に移行される。
 ここで、このような、圧縮比との協調によりロックアップオンが実現される領域を協調ロックアップオン領域と定義すると、協調ロックアップオン領域は、図示ハッチング領域となる。即ち、協調ロックアップオン領域は、第1駆動領域と第2駆動領域との間に有意な範囲にわたって存在する。この協調ロックアップオン領域は、本実施形態に係る駆動制御に類する措置が講じられない場合と較べて車両10の燃費を向上させ得る領域である。
 このように、本実施形態によれば、ロックアップクラッチ400の動作状態の制御と圧縮比制御とを相互に協調させることにより、協調ロックアップオン領域に相当する分だけ、ロックアップオン領域を拡大することが可能であり、可変圧縮比型内燃機関たるエンジン200における圧縮比可変の効能を効率的に利用して、車両10の燃費を向上させることが可能である。
 尚、本実施形態では、図7に例示する協調ロックアップオン領域を、予測値と現在値との比較によりその都度求める構成としたが、例えば、図7に例示する関係を数値化してマップとして保持すること等によっても、同様の利益を享受し得ることは言うまでもない。
<第2実施形態>
 第1実施形態に例示した駆動制御では、協調ロックアップオン領域において一律にロックアップクラッチ400がロックアップオン状態に切り替えられた。然るに、協調ロックアップオン領域でのロックアップオン動作は、圧縮比の低下を伴うため、車両10の加速性能を少なからず犠牲にしていることになる。そこで、加速性能を担保し得る本発明の第2実施形態について、図8を参照して説明する。ここに、図8は、本発明の第2実施形態に係る加速優先制御のフローチャートである。
 図8において、ECU100は、加速優先制御を実行するにあたって必要となる情報を読み込む(ステップS201)具体的には、スロットル開度thrが読み込まれる。次に、ECU100は、スロットル変化量Δthrを算出する(ステップS202)。スロットル変化量Δthrは、スロットル開度thrの今回値と先回値との偏差であり、ステップS201に係る情報の読み込み周期が一定であれば、即ち、スロットル開度の変化速度と同義である。
 スロットル変化量Δthrが算出されると、ECU100は、スロットル変化量Δthrがゼロより大きいか否かを判定する(ステップS203)。尚、スロットル変化量Δthrは正負の値を採り得る。スロットル変化量Δthrが負値を採る場合、車両10には減速要求が生じていることになる。
 スロットル変化量Δthrがゼロ又は負値を採る場合(ステップS203:NO)、ECU100は、協調ロックアップオン動作を許可し(ステップS208)、処理をステップS201に戻す。
 一方、スロットル変化量Δthrが正値を採る場合(ステップS203:YES)、ECU100は更にスロットル変化量Δthrが基準値fより大きいか否かを判定する(ステップS204)。スロットル変化量Δthrが基準値f以下である場合(ステップS204:NO)、ECU100は、処理をステップS201に戻し一連の処理を繰り返す。尚、基準値fは、適合値であり、協調ロックアップオンによる加速性能の低下が顕著にドライバビリティの低下を招来し得る境界値に設定されている。
 スロットル変化量Δthrが基準値より大きい場合(ステップS204:YES)、ECU100は、現在の車両の動作点が協調ロックアップオン領域に該当するか否かを判定する(ステップS205)。協調ロックアップオン領域に該当しない場合(ステップS205:NO)、ECU100は、処理をステップS201に戻し一連の処理を繰り返す。
 車両10の動作点が協調ロックアップオン領域に該当する場合(ステップS205:YES)、ECU100は、協調ロックアップオン動作を禁止又は強制終了する(ステップS206)と共に、ロックアップクラッチ400の動作状態をロックアップオフ状態に切り替える(ステップS207)。尚、ロックアップオフに伴い減少補正されていた圧縮比Rcは、高圧縮比RcHに戻される。ステップS207が実行されると、処理はステップS201に戻され一連の処理が繰り返される。加速優先制御はこのようにして実行される。
 ここで、図9を参照し、加速優先制御の効果について説明する。ここに、図9は、加速要求発生時の車両の加速度の一時間推移を例示する図である。
 図9において、縦軸及び横軸は夫々加速度及び時刻である。時刻T1において、加速要求が生じたとする(即ち、スロットル変化量Δthr>fとなったとする)。この場合、第1実施形態に類する燃費優先の制御では、図示破線に例示するように、時間経過に対する加速度の変化が緩慢である。これは、エンジン200の圧縮比が許容圧縮比Rcsfyまで低下していることに起因するトルク低下と、トルクコンバータ300にトルク増幅効果が生じないこととに起因する。
 それに対し、本実施形態に係る加速優先制御を適用した場合、図示実線で示すように、加速要求発生時以降の加速度の立ち上がりが俊敏になり、所望の加速感を提供することが可能となる。
 このように、加速優先制御によれば、スロットル変化量Δthrが参照され、車両10に加速要求が生じている場合には、協調ロックアップオン領域における協調ロックアップオン動作(ロックアップオン及び圧縮比低減)が強制的に終了される或いはそれ以降の実行が禁止される。このため、燃費よりも加速が優先される状況において一律に燃費優先の走行制御がなされることによるドライバビリティの低下(ドライバ意思との乖離)が抑制され、好適なドライバビリティが確保される。
<第3実施形態>
 エンジン200の圧縮比Rcと、ロックアップクラッチ400の動作状態の切り替えとを相互に協調させる態様は、第1及び第2実施形態のように、ロックアップクラッチ400の動作状態の切り替え制御に圧縮比制御を協調させるのみに限定されない。ここでは、そのような趣旨に基づいた、本発明の第3実施形態について説明する。始めに、図10を参照し、本発明の第3実施形態に係る駆動力確保制御の詳細について説明する。ここに、図10は、駆動力確保制御のフローチャートである。尚、駆動力確保制御は、エンジン200の圧縮比制御を前提としてロックアップクラッチ400の動作状態の切り替えを協調させる制御であり、即ち、本発明に係る第2の車両の制御装置の動作の一例である。
 尚、本実施形態における車両構成は、第1及び第2実施形態に係る車両10と相違ないものとする。
 図10において、ECU100は、駆動力確保制御に必要な各種情報を読み込む(ステップS301)。具体的には、スロットル開度thr、ECT出力軸回転速度Nout及び機関回転速度Neが読み込まれる。
 次に、ECU100は、ロックアップクラッチ400のロックアップ状態(動作状態)を判定し(ステップS302)、ロックアップクラッチ400がロックアップオン状態にあるか否かを判定する(ステップS303)。ロックアップクラッチ400がロックアップオフ状態にある場合には(ステップS303:NO)、ECU100は、処理をステップS301に戻す。
 ロックアップクラッチ400がロックアップオン状態にある場合(ステップS303:YES)、ECU100は、ステップS301で読み込んだ機関回転速度Ne及びスロットル開度thrに基づいて、エンジン200の圧縮比Rcを設定する(ステップS304)。圧縮比Rcが設定されると、ECU100は、この設定された圧縮比が基準値Rcth未満であるか否かを判定する(ステップS305)。
 ここで、図11を参照し、基準値Rcthについて説明する。ここに、図11は、スロットル開度thrと圧縮比との関係を例示する図である。
 図11において、縦軸及び横軸に夫々圧縮比Rc及びスロットル開度thrが表される。ここで、スロットル開度thrに対するエンジン200の圧縮比Rcの軌跡は図示実線の如くになり、スロットル開度thrが大きくなるに連れ、即ち、エンジン200が高負荷状態に移行するに連れて、圧縮比Rcは減少する。これは、高負荷領域程、ノッキング及びトルク変動が生じ易いためであり、エンジン200の燃焼性、耐久性及び車両10の快適性を考慮すると、圧縮比Rcを減少させざるを得ないのである。
 一方、圧縮比Rcの減少は、エンジン200の出力たるエンジントルクの低下に繋がる。他方、スロットル開度thrの増加は、要求加速度の増加を意味する。従って、図11に例示する関係においては、増加する要求加速度に対し低下するエンジントルクによってドライバビリティの低下として顕在化し得る駆動力不足が発生することになる。このドライバビリティの低下として顕在化し得る駆動力不足に対応する圧縮比Rcが、即ち、基準値Rcthである。
 尚、図11から明らかなように、圧縮比Rcが基準値Rcthを採る場合、スロットル開度thrも高負荷領域にあり、本発明に係る「基準値」以上である旨の条件もまた満たされる。
 図10に戻り、設定された圧縮比が基準値Rcth以上であれば(ステップS305:NO)、ECU100は、駆動力不足が許容範囲内であるとして処理をステップS301に戻す。一方、設定された圧縮比が基準値Rcth未満である場合(ステップS305:YES)、ECU100は、ロックアップオン状態にあるロックアップクラッチ400をロックアップオフ状態に切り替える(ステップS306)。ステップS306が実行されると、処理はステップS301に戻され、一連の処理が繰り返される。
 このように、駆動力確保制御によれば、圧縮比が基準値Rcth未満となる領域において、ロックアップクラッチ400が協調し、本来ロックアップオン状態を採るべきところがロックアップオフ状態に切り替えられる。その結果、トルクコンバータ300におけるトルク増幅効果が復活し、圧縮比低下によるエンジントルクの不足を補償して、加速性能を確保することが可能となる。ひいては、ドライバビリティの低下を抑制することが可能となるのである。
 上記第1乃至第3実施形態に例示したように、ロックアップクラッチ400(ロックアップ機構)とエンジン200(圧縮比可変型内燃機関)とを備える構成においては、ロックアップクラッチ400の動作状態と圧縮比とを適宜協調させることによって、例えば、燃費や動力性能(ドライバビリティ)をより向上させることが可能となる。このような本願に係る特有の利益は、これらを相互に協調制御する旨の技術思想を持たない如何なる技術思想に基づいた装置に対しても優越するものである。
 尚、上記各実施形態においては、本発明に係る「負荷相当値」としてスロットル開度thrが使用されるが、これは一例に過ぎず、アクセル開度や吸入空気量が負荷相当値として使用されてもよい。また、上記各実施形態においては、本発明に係る「車速相当値」としてECT出力軸回転速度Noutが使用されるが、これは一例に過ぎず、車速そのものが車速相当値として使用されてもよい。
 尚、上記第1及び第2実施形態においては、説明の煩雑化を防ぐ目的から、圧縮比が低圧縮比RcLと高圧縮比RcHとの間で二値的に切り替えられる構成としたが、これは一例に過ぎず、圧縮比Rcは、例えば、第3実施形態に例示したように、スロットル開度thr及び機関回転速度Neに応じて連続的に可変であってもよい。いずれにしたところで、図7に例示した協調ロックアップオン領域が大きく変化することはない。
 尚、請求の範囲、明細書及び図面の範囲において、「以上」及び「未満」とは基準値の設定如何により容易に「より大きい」及び「以下」と置換され得る概念であって、不要な限定を伴うものでないことは明らかである。
 本発明は、上述した実施形態に限られるものではなく、請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う車両の制御装置もまた本発明の技術的範囲に含まれるものである。
産業上の利用の可能性
 本発明は、圧縮比が可変な内燃機関と、ロックアップ機構を有する変速装置とを備えた車両に適用可能である。
 10…車両、100…ECU、200…エンジン、201…気筒、203…ピストン、205…クランクシャフト、207…インジェクタ、300…トルクコンバータ、400…ロックアップクラッチ、500…ECT。

Claims (9)

  1.  圧縮比が可変な内燃機関と、該内燃機関の機関出力軸と入力軸との間にトルクコンバータ及びロックアップ機構を有すると共に前記入力軸の回転速度と車軸に連結された出力軸の回転速度との比を変化させることが可能な変速装置とを駆動系として備えた車両を制御する車両の制御装置であって、
     前記車両の運転条件に応じて前記ロックアップ機構の動作状態を切り替える第1制御手段と、
     前記動作状態が切り替えられる場合の少なくとも一部において前記圧縮比を変化させる第2制御手段と
     を具備することを特徴とする車両の制御装置。
  2.  前記第2制御手段は、前記運転条件として前記内燃機関の負荷相当値が基準値未満となる領域において前記動作状態がロックアップオン状態へ切り替えられる場合に、前記圧縮比を低下させる
     ことを特徴とする請求の範囲第1項に記載の車両の制御装置。
  3.  前記第1制御手段は、前記車両において発生する振動及び騒音のうち少なくとも一方を含む状態要素が所定要件を満たすように前記ロックアップ機構の動作状態を切り替える
     ことを特徴とする請求の範囲第1項に記載の車両の制御装置。
  4.  前記第1制御手段は、前記内燃機関の負荷相当値が基準値未満となる領域において、前記圧縮比を前記状態要素が前記所定要件を満たすように定められた許容値まで低下させた場合における前記駆動系の効率の予測値に基づいて前記動作状態を切り替える
     ことを特徴とする請求の範囲第3項に記載の車両の制御装置。
  5.  前記第1制御手段は、前記負荷相当値を含む前記車両の運転条件が、前記駆動系の効率の現在値が前記予測値未満となる所定の協調ロックアップ領域に該当する場合に、前記動作状態をロックアップオン状態へと切り替え、
     前記第2制御手段は、前記運転条件が前記協調ロックアップ領域に該当することに起因して前記動作状態が前記ロックアップオン状態へ切り替えられた場合に、前記圧縮比を前記許容値まで低下させる
     ことを特徴とする請求の範囲第4項に記載の車両の制御装置。
  6.  前記協調ロックアップ領域は、前記負荷相当値と前記車両の車速相当値とを軸要素とする座標系において、前記負荷相当値が前記基準値未満となる領域であって、且つ前記車速相当値の方向において、前記圧縮比が高圧縮比相当値であり且つ前記動作状態が前記ロックアップオフ状態となる第1領域と、前記圧縮比が前記高圧縮比相当値であり且つ前記動作状態が前記ロックアップ状態となる第2領域とに挟まれた領域である
     ことを特徴とする請求の範囲第5項に記載の車両の制御装置。
  7.  前記第1制御手段は、前記協調ロックアップ領域において前記内燃機関の負荷相当値の変化量が基準値以上である場合に、前記動作状態を前記ロックアップオフ状態へ戻し、
     前記第2制御手段は、前記動作状態が前記ロックアップオフ状態へ戻されるのに伴って前記圧縮比を上昇させる
     ことを特徴とする請求の範囲第5項に記載の車両の制御装置。
  8.  圧縮比が可変な内燃機関と、該内燃機関の機関出力軸と入力軸との間にトルクコンバータ及びロックアップ機構を有すると共に前記入力軸の回転速度と車軸に連結された出力軸の回転速度との比を変化させることが可能な変速装置とを駆動系として備えた車両を制御する車両の制御装置であって、
     前記車両の運転条件に応じて前記圧縮比を変化させる第1制御手段と、
     前記圧縮比を変化させる場合の少なくとも一部において前記ロックアップ機構の動作状態を切り替える第2制御手段と
     を具備することを特徴とする車両の制御装置。
  9.  前記第1制御手段は、前記運転条件として前記内燃機関の負荷相当値の大小に応じて前記圧縮比を夫々低高に変化させ、
     前記第2制御手段は、前記動作状態がロックアップオン状態であり且つ前記内燃機関の負荷相当値が基準値以上である場合において、前記圧縮比が基準値未満の値まで変化した場合に、前記動作状態をロックアップオフ状態へ切り替える
     ことを特徴とする請求の範囲第8項に記載の車両の制御装置。
PCT/JP2010/055605 2010-03-29 2010-03-29 車両の制御装置 WO2011121711A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112010005427.4T DE112010005427B4 (de) 2010-03-29 2010-03-29 Fahrzeugsteuerungsgerät
US13/126,228 US8600632B2 (en) 2010-03-29 2010-03-29 Vehicle control apparatus
CN201080001949.3A CN102483002B (zh) 2010-03-29 2010-03-29 车辆的控制装置
JP2011517689A JP5146598B2 (ja) 2010-03-29 2010-03-29 車両の制御装置
PCT/JP2010/055605 WO2011121711A1 (ja) 2010-03-29 2010-03-29 車両の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/055605 WO2011121711A1 (ja) 2010-03-29 2010-03-29 車両の制御装置

Publications (1)

Publication Number Publication Date
WO2011121711A1 true WO2011121711A1 (ja) 2011-10-06

Family

ID=44711506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055605 WO2011121711A1 (ja) 2010-03-29 2010-03-29 車両の制御装置

Country Status (5)

Country Link
US (1) US8600632B2 (ja)
JP (1) JP5146598B2 (ja)
CN (1) CN102483002B (ja)
DE (1) DE112010005427B4 (ja)
WO (1) WO2011121711A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038715A1 (ja) * 2014-09-11 2016-03-17 日産自動車株式会社 車両の制御装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354477B2 (ja) * 2014-09-11 2018-07-11 日産自動車株式会社 車両の制御装置
US10145316B2 (en) * 2016-05-04 2018-12-04 Ford Global Technologies, Llc Method and system for engine control
DE102018209384A1 (de) * 2018-06-13 2019-12-19 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Betreiben einer Hubkolben-Brennkraftmaschine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11117785A (ja) * 1997-10-17 1999-04-27 Nissan Motor Co Ltd 過給機付エンジンの制御装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4114585A (en) * 1971-09-28 1978-09-19 Terrytune Developments Limited Internal-combustion engines
CA1268687A (en) * 1986-01-20 1990-05-08 Tsutomu Hayashi Swash plate type hydraulic system
US7286922B1 (en) * 1994-02-23 2007-10-23 Luk Getriebe-Systeme Gmbh Method of and apparatus for transmitting torque in vehicular power trains
JP3120670B2 (ja) 1994-11-29 2000-12-25 トヨタ自動車株式会社 車両用エンジンおよび自動変速機の制御装置
US5819702A (en) * 1995-05-17 1998-10-13 Ngv Technologies, Inc. High efficiency vehicle and engine
JP3332011B2 (ja) * 1999-06-22 2002-10-07 トヨタ自動車株式会社 内燃機関の制御装置
JP3772699B2 (ja) * 2001-06-28 2006-05-10 トヨタ自動車株式会社 機関作動特性変更手段のロック防止作動制御方法
WO2003010023A1 (en) * 2001-07-26 2003-02-06 Toyota Jidosha Kabushiki Kaisha Vehicle control device and control method therefor
JP2003206770A (ja) * 2002-01-10 2003-07-25 Toyota Motor Corp パワートレーン
JP2004239146A (ja) * 2003-02-05 2004-08-26 Nissan Motor Co Ltd エンジンの吸気制御装置
JP4004415B2 (ja) * 2003-02-20 2007-11-07 保全産業株式会社 余剰汚泥処理装置とそれを用いた活性汚泥処理システム
JP4351966B2 (ja) * 2004-08-27 2009-10-28 本田技研工業株式会社 制御装置
JP2006170163A (ja) * 2004-12-20 2006-06-29 Denso Corp 内燃機関の始動制御装置
JP5029290B2 (ja) * 2007-10-29 2012-09-19 日産自動車株式会社 可変圧縮比エンジン
JP2012219761A (ja) * 2011-04-12 2012-11-12 Toyota Motor Corp 車両制御装置
JP2012225165A (ja) * 2011-04-15 2012-11-15 Nissan Motor Co Ltd 可変圧縮比エンジンの制御装置
JP5360121B2 (ja) * 2011-04-19 2013-12-04 マツダ株式会社 火花点火式エンジンの制御方法および火花点火式エンジン
JP5700134B2 (ja) * 2011-10-24 2015-04-15 日産自動車株式会社 内燃機関の回転速度制御装置及び回転速度制御方法
JP2013122226A (ja) * 2011-12-12 2013-06-20 Toyota Motor Corp 車両用駆動装置の制御装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11117785A (ja) * 1997-10-17 1999-04-27 Nissan Motor Co Ltd 過給機付エンジンの制御装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016038715A1 (ja) * 2014-09-11 2016-03-17 日産自動車株式会社 車両の制御装置
JPWO2016038715A1 (ja) * 2014-09-11 2017-04-27 日産自動車株式会社 車両の制御装置
US10138998B2 (en) 2014-09-11 2018-11-27 Nissan Motor Co., Ltd. Vehicle control device
RU2674368C2 (ru) * 2014-09-11 2018-12-07 Ниссан Мотор Ко., Лтд. Устройство управления транспортного средства

Also Published As

Publication number Publication date
DE112010005427T5 (de) 2013-02-28
DE112010005427B4 (de) 2018-02-08
US8600632B2 (en) 2013-12-03
US20120035816A1 (en) 2012-02-09
JP5146598B2 (ja) 2013-02-20
CN102483002A (zh) 2012-05-30
JPWO2011121711A1 (ja) 2013-07-04
CN102483002B (zh) 2014-11-05

Similar Documents

Publication Publication Date Title
US7785230B2 (en) Variable displacement engine powertrain fuel economy mode
US8617027B2 (en) Control strategy for multi-mode vehicle propulsion system
US8439796B2 (en) Methods and systems for turbocharger control
CN101737223B (zh) 控制车辆发动机的方法及系统
US6738702B2 (en) Method for particulate filter regeneration in vehicles having an automatically controlled transmission
JP5979030B2 (ja) 可変気筒エンジン
US10196065B2 (en) Vehicle control system
US20080078593A1 (en) Hybrid Vehicle with Camless Valve Control
JP7137146B2 (ja) エンジンの制御装置
JP6020218B2 (ja) 可変気筒エンジン
US20190055892A1 (en) Method and system for engine control
JP5146598B2 (ja) 車両の制御装置
JP5120230B2 (ja) 車両の制御装置
JP5333313B2 (ja) 車両の制御装置
JP7159821B2 (ja) 車両用エンジンの制御装置
CN105383480B (zh) 用于改进混合动力传动系统操作的方法和系统
US6716136B2 (en) Powertrain control method for minimizing effects of engine torque disturbances
JP2009255701A (ja) 動力伝達機構の制御装置
US20040043864A1 (en) Method for controlling camless engine having an automatically controlled transmission
JP2009041525A (ja) 車両の制御装置、制御方法およびその方法をコンピュータで実現されるプログラムならびにそのプログラムを記録した記録媒体
JP5413152B2 (ja) 火花点火式エンジンの制御装置
JP5182039B2 (ja) 車両の制御装置
JP4725448B2 (ja) 内燃機関の制御装置
JP4961812B2 (ja) 車両の制御装置
JP2010159650A (ja) ハイブリッド車両のエンジン停止制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001949.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011517689

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13126228

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848891

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112010005427

Country of ref document: DE

Ref document number: 1120100054274

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848891

Country of ref document: EP

Kind code of ref document: A1