WO2011120709A1 - Dotierstoff für eine lochleiterschicht für organische halbleiterbauelemente und verwendung dazu - Google Patents
Dotierstoff für eine lochleiterschicht für organische halbleiterbauelemente und verwendung dazu Download PDFInfo
- Publication number
- WO2011120709A1 WO2011120709A1 PCT/EP2011/001645 EP2011001645W WO2011120709A1 WO 2011120709 A1 WO2011120709 A1 WO 2011120709A1 EP 2011001645 W EP2011001645 W EP 2011001645W WO 2011120709 A1 WO2011120709 A1 WO 2011120709A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- organic
- bis
- hole conductor
- conductor layer
- phenyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B57/00—Other synthetic dyes of known constitution
- C09B57/008—Triarylamine dyes containing no other chromophores
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
- H10K50/155—Hole transporting layers comprising dopants
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/17—Carrier injection layers
- H10K50/171—Electron injection layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/30—Doping active layers, e.g. electron transporting layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/371—Metal complexes comprising a group IB metal element, e.g. comprising copper, gold or silver
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/381—Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1014—Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/188—Metal complexes of other metals not provided for in one of the previous groups
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
- H10K50/125—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
- H10K50/13—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Definitions
- the invention relates to novel organometallic materials for hole injection layers in organic electronic components, in particular in light-emitting components such as organic light emitting diodes (OLED) or organic light emitting electrochemical cells (OLEEC) or organic field effect transistors or organic solar cells or organic photodetectors.
- OLED organic light emitting diodes
- OEEC organic light emitting electrochemical cells
- organic field effect transistors organic solar cells or organic photodetectors.
- the conductivity of the material can be increased by orders of magnitude.
- the object of the present invention is to provide further dopants for use in hole conductor materials.
- the object of the invention is therefore to provide a doped hole conductor layer for use in organic electronic components, comprising at least one hole-conducting matrix and a square-planar mononuclear transition metal complex as dopant. It is also an object of the present invention to provide the use of such a hole conductor layer, and finally an organic electronic component.
- the dopant is a square-planar mononuclear transition metal complex with a copper, palladium, platinum, cobalt or nickel atom as the central atom.
- any complex form is referred to, which deviates from the tetrahedral complex configuration according to a crystal structure analysis by more than the usual Meßau- techniken. In no case is it restricted to a planar arrangement of the ligands around the central atom.
- the complexes can be present in their cis or trans form with the same empirical formula. In general, especially for small substituents R, both isomers are equally good at doping. In the following, only the trans isomer is discussed as a representative of both isomers.
- Formula I shows an example of the square-planar copper (II) complexes according to the invention.
- the complex may be in the cis or trans form.
- the bridge Y 1 or Y 2 may be independently N or CR, where R may be any aliphatic or aromatic substituent as discussed below for R 1a , R 1b , R 2a and R 2b ,
- bridge C-H is particularly preferred. This is used in all embodiments.
- the electron-poor representatives of this class form a preferred class within the dopants for hole conductor materials disclosed herein.
- the substituents Ri a, Ri b, R 2a and R 2b may be independently -hydrogen or -Deuterium, methyl, ethyl comparablesammlungrt straight, branched, condensed (deca hydronaphthyl-), annular (cyclohexyl) or wholly or partially substituted alkyl radicals (Ci - C 20 ) be.
- These alkyl radicals can be ether groups (ethoxy, methoxy, etc.), ester, amide, carbonate groups, etc., or else halogens, in particular special F included.
- halogens in particular special F included.
- For the purposes of the invention are also substituted or unsubstituted aliphatic rings or ring systems, such as cyclohexyl.
- Ria, R 1b , R 2a and R 2 b are not restricted to saturated systems, but also include substituted or unsubstituted aromatics such as phenyl, diphenyl, naphthyl, phenanthryl etc. or benzyl, etc.
- a subset of suitable substituents Heterocycles are shown in Table 1.
- R is derived analogously from the radicals R ia , Rib R2a and R 2 b defined here.
- Table 1 shows a selection of substituted or un- substituted heterocycles which are suitable as radicals R a, Rib, R2a and R 2b independently in question. For simplicity, only the basic unit is shown. Binding to the ligand may occur at any bondable site of the Body done. Very particularly preferably, the electron-deficient variants when the substituents R la, R lb / R 2a and R 2b carrying electron-withdrawing substituents by fluorine directly at the binding carbon (see formulas 3.3a to 3.3c).
- Formula III shows various types of particularly preferred substituents for the radicals R ia , Rib / R2a and R 2 b-
- R 7 are independently selected as the radicals R a, Rib / R2a and R 2 b.
- R x is particularly preferred, independently of one another H or F.
- the syntheses of the complexes will not be discussed in more detail, as they have been studied very thoroughly. (Quotation: book "The Chemistry of Metal CVD, T. Koda, M. Hampden Smith, VCH 1994, ISBN 3-527-29071-0, pages 178-192).
- these complexes are used as precursors for copper CVD (chemical vapor deposition) in the semiconductor industry. Many volatile derivatives are therefore commercially available.
- the materials according to the invention for the production of the hole transport layer, in a concentration of 0.1 -
- the deposition of the layer can be carried out both from the gas phase and liquid phase.
- hole transporters which are deposited from the gas phase, come here but not restrictive in question:
- These monomolecular hole transport materials may also be deposited from the liquid phase or blended into the polymeric materials mentioned below.
- the film forming properties are improved when low molecular weight and polymeric materials are mixed.
- the mixing ratios are between 0 - 100%.
- PEDOT poly (3,4-ethylenedioxythiophene)
- PVK poly (9-vinylcarbazole)
- PTPD poly (N, N'-bis (4-butylphenyl) -
- Table 2 shows typical hole-transporting polymers, which are preferably deposited from the liquid phase.
- the mentioned materials can also be used as any other materials.
- Suitable solvents are the customary organic solvents, but especially chlorobenzene, chloroform, benzene, anisole, toluene, xylene, THF, methoxypropyl acetate, phentols, methyl ethyl ketone, N-methylpyrrolidone, gamma-butyrolactone, etc.
- NPB 1 - 2 hole conductor molecules
- the dopants in the form of square-planar transition metal complexes which are shown here for the first time, can be used for the first time to introduce cheap and easily accessible compounds into this technique of dopant additions.
- many of the copper 2+ compounds are readily available because they are used in copper CVD processes in the semiconductor industry.
- the manufacturing processes are well developed, the dopants are often low, the components made with them have a neutral appearance in the off state and finally, the materials are suitable for the deposition of the doped hole conductors from the gas or liquid phase.
- FIG. 1 shows the structure of an OLEEC schematically.
- An OLED 7 is in most cases a simple one
- an organic layer 3 between two organic auxiliary layers, an electron transport layer 5 and a hole transport layer 6 constructed.
- This organically active part of the OLED comprising the layers 3, 5 and 6 is then brought between two electrodes 2 and 4.
- an active emitting layer 3 of an OLED consists of a matrix in which an emitting species is embedded.
- Layer 3 also comprises a layer stack, for example for the emitter red, green, blue.
- the transparent substrate 1 On the transparent substrate 1 is the lower transparent electrode layer 2, for example, the anode. Then comes the hole transport layer 6, whose doping is the subject of the present invention. On the side of the organic active layer opposite the hole conductor layer is the electron injection layer 5, on which the upper electrode 4, for example a metal electrode, is located.
- the OLED 7 is encapsulated in the rule, which is not shown here. example 1
- the dopant Cu (acac) 2 was doped in concentrations of 5% and 10% relative to the evaporation rate in NPB. Substrates, layer thicknesses and size of the devices were as mentioned in the first experiment.
- the component with 5% concentration gave the characteristic marked with squares and the component with 10% concentration the characteristic marked by triangles.
- FIG. 2 shows the graphical summary of the experiments, ie the current-voltage characteristics of NPB (reference line) and NPB doped with Cu (acac) 2 .
- the undoped NPB and the Cu (acac) 2 doped NPB layers were each deposited on a silica glass disk. These samples have no electrical contacts and are only used to measure the absorption and emission spectra of the individual layers.
- the pure NPB layer yielded the characteristic curves for absorption or photo-luminescence spectra marked with black diamonds shown in FIG. Samples of 5% doped Cu (acac) 2 gave the squares shown in squares and the samples of 10% of doped Cu (acac) 2 gave the triangular labeled Spektra.
- Figure 3 shows the absorption spectra of NPB and NPB doped with Cu (acac) 2 .
- the device with 5% concentration yielded the quadratic characteristic and the device with 10%
- the curve marked with black diamonds again shows the reference component made of pure NPB.
- For both concentrations an increase of the current density can be seen as well as a symmetry-like behavior, both of which show an existing doping effect.
- the horizontal area of the 5% line is not a current limit on the part but is the compliance (measuring limit) of the measuring device.
- the higher current density of the 5% sample compared to the 10% sample shows that the optimum of the dopant concentration is below 10%.
- the optimal concentration does not necessarily have to be between 5% and 10%, but it can also be deeper, which can cause an even greater doping effect.
- Figure 5 shows the current-voltage characteristics of NPB and NPB doped with Cu (tcac) 2 .
- the undoped NPB and the Cu (tfac) 2 doped NPB layers were each deposited on a quartz glass disk. These samples have no electrical contacts and are only used to measure the absorption and emission spectra of the individual layers.
- the pure NPB reference layer yielded black diamond marked characteristics for absorbance and phot Luminescence spectra.
- the samples with 5% doped Cu (tfac) 2 yielded the spectra shown with squares and the samples with 10% doped Cu ( tfac) 2 gave the triangles marked spectra.
- Example 4 The doping effect in Example 4 is lower for the 10% sample and again this is evidenced by the lower drop in absorption compared to the 5% sample.
- Comparison of the PL spectra shows that the samples doped with Cu (tfac) 2 also have a higher emission than the pure NPB sample, as in Example 3. At the same time a shift of the emission towards low wavelengths can be observed. Pure NPB emits at 444nm while emitting 5% and 10% doped layers at 436nm and 434nm, respectively. The shift of the emission due to doping can again be explained by the charge-transfer complex. Again, what is new here is the emission enhancing effect of copper acetylacetonate. As already mentioned, amplification is unusual in that dopants are actually known as emission quenchers.
- Figure 6 shows the absorption spectra of NPB and NPB doped with Cu (tfac) 2 in two concentrations
- FIG. 7 shows PL spectra of NPB and NPB doped with Cu (tfac) 2 .
- Luminescence (cd / m 2) Efficiency (cd / A) and lifetime (h) of organic electronic components such as in particular organic light emitting diodes (Fig.l) depend heavily on the Exzito- nenêt in the light emitting layer and the quality of Ladungsskainj ection from and are also limited by these.
- This invention describes a hole injection layer consisting of square planar mononuclear transition metal complexes, such as copper 2+ complexes, embedded in a hole-conducting matrix.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Photovoltaic Devices (AREA)
Priority Applications (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US13/638,596 US9006716B2 (en) | 2010-03-31 | 2011-03-31 | Dopant for a hole conductor layer for organic semiconductor components, and use thereof |
| CN201180018027.8A CN102947414B (zh) | 2010-03-31 | 2011-03-31 | 用于有机半导体器件的空穴导电层的掺杂材料及其应用 |
| KR1020177002902A KR101757888B1 (ko) | 2010-03-31 | 2011-03-31 | 유기 반도체 부품용 정공 도체 층을 위한 도펀트, 그리고 이와 같은 도펀트의 용도 |
| JP2013501693A JP5847157B2 (ja) | 2010-03-31 | 2011-03-31 | 有機半導体デバイス用の正孔伝導層用のドーパント及びその使用 |
| KR1020127028505A KR101705136B1 (ko) | 2010-03-31 | 2011-03-31 | 유기 반도체 부품용 정공 도체 층을 위한 도펀트, 그리고 이와 같은 도펀트의 용도 |
| EP11714935.1A EP2553047B1 (de) | 2010-03-31 | 2011-03-31 | Dotierstoff für eine lochleiterschicht für organische halbleiterbauelemente und verwendung dazu |
| US14/633,609 US9276223B2 (en) | 2010-03-31 | 2015-02-27 | Dopant for a hole conductor layer for organic semiconductor components, and use thereof |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE201010013495 DE102010013495A1 (de) | 2010-03-31 | 2010-03-31 | Dotierstoff für eine Lochleiterschicht für organische Halbleiterbauelemente und Verwendung dazu |
| DE102010013495.3 | 2010-03-31 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/638,596 A-371-Of-International US9006716B2 (en) | 2010-03-31 | 2011-03-31 | Dopant for a hole conductor layer for organic semiconductor components, and use thereof |
| US14/633,609 Continuation US9276223B2 (en) | 2010-03-31 | 2015-02-27 | Dopant for a hole conductor layer for organic semiconductor components, and use thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2011120709A1 true WO2011120709A1 (de) | 2011-10-06 |
Family
ID=44209907
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2011/001645 Ceased WO2011120709A1 (de) | 2010-03-31 | 2011-03-31 | Dotierstoff für eine lochleiterschicht für organische halbleiterbauelemente und verwendung dazu |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US9006716B2 (enExample) |
| EP (1) | EP2553047B1 (enExample) |
| JP (1) | JP5847157B2 (enExample) |
| KR (2) | KR101705136B1 (enExample) |
| CN (2) | CN106410026B (enExample) |
| DE (1) | DE102010013495A1 (enExample) |
| WO (1) | WO2011120709A1 (enExample) |
Cited By (66)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013083216A1 (de) | 2011-11-17 | 2013-06-13 | Merck Patent Gmbh | Spiro -dihydroacridinderivate und ihre verwendung als materialien für organische elektrolumineszenzvorrichtungen |
| WO2013120577A1 (en) | 2012-02-14 | 2013-08-22 | Merck Patent Gmbh | Spirobifluorene compounds for organic electroluminescent devices |
| WO2013135352A1 (de) | 2012-03-15 | 2013-09-19 | Merck Patent Gmbh | Elektronische vorrichtungen |
| DE102012209523A1 (de) * | 2012-06-06 | 2013-12-12 | Osram Opto Semiconductors Gmbh | Hauptgruppenmetallkomplexe als p-Dotanden für organische elektronische Matrixmaterialien |
| WO2013182263A1 (de) | 2012-06-06 | 2013-12-12 | Merck Patent Gmbh | Phenanthrenverbindungen für organische elektronische vorrichtungen |
| DE102012211869A1 (de) | 2012-07-06 | 2014-01-09 | Osram Opto Semiconductors Gmbh | Organisches Licht emittierendes Bauelement |
| JP2014053383A (ja) * | 2012-09-05 | 2014-03-20 | Konica Minolta Inc | タンデム型の有機光電変換素子およびこれを用いた太陽電池 |
| WO2014044344A1 (de) | 2012-09-18 | 2014-03-27 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2014067614A1 (de) | 2012-10-31 | 2014-05-08 | Merck Patent Gmbh | Elektronische vorrichtung |
| WO2014106522A1 (de) | 2013-01-03 | 2014-07-10 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2015000763A1 (de) | 2013-07-02 | 2015-01-08 | Osram Oled Gmbh | Optoelektronisches bauelement, organische funktionelle schicht und verfahren zur herstellung eines optoelektronischen bauelements |
| WO2015036080A1 (de) | 2013-09-11 | 2015-03-19 | Merck Patent Gmbh | Organische elektrolumineszenzvorrichtung |
| WO2015139808A1 (de) | 2014-03-18 | 2015-09-24 | Merck Patent Gmbh | Organische elektrolumineszenzvorrichtung |
| EP2960315A1 (de) | 2014-06-27 | 2015-12-30 | cynora GmbH | Organische Elektrolumineszenzvorrichtung |
| EP2985799A1 (en) * | 2014-08-11 | 2016-02-17 | Dyenamo AB | Solid state hole transport material |
| WO2016042070A1 (de) | 2014-09-17 | 2016-03-24 | Cynora Gmbh | Organische moleküle zur verwendung als emitter |
| WO2016091353A1 (de) | 2014-12-12 | 2016-06-16 | Merck Patent Gmbh | Organische verbindungen mit löslichen gruppen |
| WO2017012687A1 (en) | 2015-07-22 | 2017-01-26 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2017028940A1 (en) | 2015-08-14 | 2017-02-23 | Merck Patent Gmbh | Phenoxazine derivatives for organic electroluminescent devices |
| WO2017133829A1 (de) | 2016-02-05 | 2017-08-10 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2017207596A1 (en) | 2016-06-03 | 2017-12-07 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| DE102017008794A1 (de) | 2016-10-17 | 2018-04-19 | Merck Patent Gmbh | Materialien zur Verwendung in elektronischen Vorrichtungen |
| WO2018069167A1 (de) | 2016-10-10 | 2018-04-19 | Merck Patent Gmbh | Elektronische vorrichtung |
| WO2018083053A1 (de) | 2016-11-02 | 2018-05-11 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2018087020A1 (en) | 2016-11-08 | 2018-05-17 | Merck Patent Gmbh | Compounds for electronic devices |
| WO2018095940A1 (en) | 2016-11-25 | 2018-05-31 | Merck Patent Gmbh | Bisbenzofuran-fused indeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled) |
| WO2018095888A1 (en) | 2016-11-25 | 2018-05-31 | Merck Patent Gmbh | Bisbenzofuran-fused 2,8-diaminoindeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled) |
| WO2018141706A1 (de) | 2017-02-02 | 2018-08-09 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2018157981A1 (de) | 2017-03-02 | 2018-09-07 | Merck Patent Gmbh | Materialien für organische elektronische vorrichtungen |
| EP3378857A1 (de) | 2012-11-12 | 2018-09-26 | Merck Patent GmbH | Materialien für elektronische vorrichtungen |
| WO2018234346A1 (en) | 2017-06-23 | 2018-12-27 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2019002190A1 (en) | 2017-06-28 | 2019-01-03 | Merck Patent Gmbh | MATERIALS FOR ELECTRONIC DEVICES |
| WO2019020654A1 (en) | 2017-07-28 | 2019-01-31 | Merck Patent Gmbh | SPIROBIFLUORENE DERIVATIVES FOR USE IN ELECTRONIC DEVICES |
| WO2019048443A1 (de) | 2017-09-08 | 2019-03-14 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2019076789A1 (en) | 2017-10-17 | 2019-04-25 | Merck Patent Gmbh | MATERIALS FOR ORGANIC ELECTROLUMINESCENT DEVICES |
| WO2019101835A1 (en) | 2017-11-24 | 2019-05-31 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2019101833A1 (en) | 2017-11-24 | 2019-05-31 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2019101719A1 (de) | 2017-11-23 | 2019-05-31 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2019115577A1 (en) | 2017-12-15 | 2019-06-20 | Merck Patent Gmbh | Substituted aromatic amines for use in organic electroluminescent devices |
| WO2019121483A1 (en) | 2017-12-20 | 2019-06-27 | Merck Patent Gmbh | Heteroaromatic compounds |
| WO2019170578A1 (en) | 2018-03-06 | 2019-09-12 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2019170572A1 (en) | 2018-03-06 | 2019-09-12 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2019175149A1 (en) | 2018-03-16 | 2019-09-19 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2020043646A1 (en) | 2018-08-28 | 2020-03-05 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2020043657A1 (en) | 2018-08-28 | 2020-03-05 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2020043640A1 (en) | 2018-08-28 | 2020-03-05 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2020053150A1 (en) | 2018-09-12 | 2020-03-19 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2020089138A1 (en) | 2018-10-31 | 2020-05-07 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2021110741A1 (en) | 2019-12-04 | 2021-06-10 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2022017997A1 (en) | 2020-07-22 | 2022-01-27 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2023052272A1 (de) | 2021-09-28 | 2023-04-06 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023052313A1 (de) | 2021-09-28 | 2023-04-06 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023052275A1 (de) | 2021-09-28 | 2023-04-06 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023052314A1 (de) | 2021-09-28 | 2023-04-06 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023094412A1 (de) | 2021-11-25 | 2023-06-01 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023117835A1 (en) | 2021-12-21 | 2023-06-29 | Merck Patent Gmbh | Electronic devices |
| WO2023117836A1 (en) | 2021-12-21 | 2023-06-29 | Merck Patent Gmbh | Electronic devices |
| WO2023117837A1 (de) | 2021-12-21 | 2023-06-29 | Merck Patent Gmbh | Verfahren zur herstellung von deuterierten organischen verbindungen |
| WO2023152346A1 (de) | 2022-02-14 | 2023-08-17 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| EP4236652A2 (en) | 2015-07-29 | 2023-08-30 | Merck Patent GmbH | Materials for organic electroluminescent devices |
| WO2023222559A1 (de) | 2022-05-18 | 2023-11-23 | Merck Patent Gmbh | Verfahren zur herstellung von deuterierten organischen verbindungen |
| WO2024013004A1 (de) | 2022-07-11 | 2024-01-18 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2024170605A1 (en) | 2023-02-17 | 2024-08-22 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2024218109A1 (de) | 2023-04-20 | 2024-10-24 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2025012253A1 (en) | 2023-07-12 | 2025-01-16 | Merck Patent Gmbh | Materials for electronic devices |
| WO2025021855A1 (de) | 2023-07-27 | 2025-01-30 | Merck Patent Gmbh | Materialien für organische lichtemittierende vorrichtungen und organische sensoren |
Families Citing this family (22)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102010013495A1 (de) * | 2010-03-31 | 2011-10-06 | Siemens Aktiengesellschaft | Dotierstoff für eine Lochleiterschicht für organische Halbleiterbauelemente und Verwendung dazu |
| DE102010062877A1 (de) * | 2010-12-13 | 2012-06-21 | Osram Opto Semiconductors Gmbh | Organisches Lichtemittierendes Bauelement und Verwendung eines Kupferkomplexes in einer Ladungstransportschicht |
| CN102731533B (zh) | 2011-04-12 | 2016-08-10 | 精工爱普生株式会社 | 噻二唑系化合物、发光元件用化合物、发光元件、发光装置、认证装置以及电子设备 |
| JP5765034B2 (ja) | 2011-04-18 | 2015-08-19 | セイコーエプソン株式会社 | チアジアゾール系化合物、発光素子用化合物、発光素子、発光装置、認証装置および電子機器 |
| KR20130018547A (ko) | 2011-08-09 | 2013-02-25 | 세이코 엡슨 가부시키가이샤 | 티아디아졸계 화합물, 발광 소자, 발광 장치, 인증 장치, 전자 기기 |
| JP5790279B2 (ja) | 2011-08-09 | 2015-10-07 | セイコーエプソン株式会社 | 発光素子、発光装置および電子機器 |
| JP5970811B2 (ja) | 2011-12-28 | 2016-08-17 | セイコーエプソン株式会社 | 発光素子、発光装置および電子機器 |
| US9324952B2 (en) | 2012-02-28 | 2016-04-26 | Seiko Epson Corporation | Thiadiazole, compound for light-emitting elements, light-emitting element, light-emitting apparatus, authentication apparatus, and electronic device |
| CN107011365A (zh) | 2012-10-18 | 2017-08-04 | 精工爱普生株式会社 | 噻二唑系化合物、发光元件用化合物、发光元件、发光装置、认证装置以及电子设备 |
| DE102014114224A1 (de) * | 2014-09-30 | 2016-03-31 | Osram Oled Gmbh | Organisches elektronisches Bauteil, Verwendung eines Zinkkomplexes als p-Dotierungsmittel für organische elektronische Matrixmaterialien |
| JP2018110179A (ja) * | 2016-12-31 | 2018-07-12 | 株式会社Flosfia | 正孔輸送層形成用組成物 |
| KR102478039B1 (ko) * | 2017-02-20 | 2022-12-14 | 노발레드 게엠베하 | 전자 반도전성 소자, 전자 반도전성 소자를 제조하기 위한 방법, 및 화합물 |
| EP3382770B1 (en) * | 2017-03-30 | 2023-09-20 | Novaled GmbH | Ink composition for forming an organic layer of a semiconductor |
| JP2018181658A (ja) * | 2017-04-17 | 2018-11-15 | 独立行政法人国立高等専門学校機構 | 有機発光素子の製造方法 |
| KR20230042494A (ko) | 2020-07-27 | 2023-03-28 | 노발레드 게엠베하 | 화학식 (i)의 화합물, 적어도 하나의 화학식 (i)의 화합물을 포함하는 반도체 재료, 적어도 하나의 화학식 (i)의 화합물을 포함하는 반도체 층 및 적어도 하나의 화학식 (i)의 화합물을 포함하는 전자 장치 |
| EP3945090B1 (en) | 2020-07-27 | 2024-10-30 | Novaled GmbH | Metal complexes of 3-(2,3,5-trifluoro-6-(trifluoromethyl)pyridin-4-yl)pentane-2,4-dione and similar ligands as semiconductor materials for use in electronic devices |
| EP4188908A1 (en) | 2020-07-28 | 2023-06-07 | Novaled GmbH | Metal complexes of 4-(2,4-dioxopent-3-yl)-2,3,5,6-tetrafluorobenzonitrile and similar ligands as semiconductor materials for use in electronic devices |
| EP3945125A1 (en) | 2020-07-28 | 2022-02-02 | Novaled GmbH | Compound of formula (i), a semiconductor material comprising at least one compound of formula (i), an semiconductor layer comprising at least one compound of formula (i) and an electronic device comprising at least one compound of formula (i) |
| WO2022097129A1 (es) | 2020-11-05 | 2022-05-12 | Torres Sebastian Agustin | Película plástica laminada para formado de empaques de plástico a alta velocidad |
| WO2023041779A1 (en) | 2021-09-20 | 2023-03-23 | Novaled Gmbh | Metal complex, semiconductor layer comprising a metal complex and organic electronic device |
| EP4151642B1 (en) | 2021-09-20 | 2025-11-19 | Novaled GmbH | Compound, semiconductor layer comprising compound and organic electronic device |
| EP4321506A1 (en) | 2022-08-09 | 2024-02-14 | Novaled GmbH | Metal complex, semiconductor layer comprising a metal complex and organic electronic device |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2003022008A1 (en) * | 2001-08-29 | 2003-03-13 | The Trustees Of Princeton University | Organic light emitting devices having carrier transporting layers comprising metal complexes |
| US20090035675A1 (en) * | 2007-07-31 | 2009-02-05 | Xerox Corporation | Copper containing hole blocking layer photoconductors |
| DE102008051737A1 (de) * | 2007-10-24 | 2009-05-07 | Novaled Ag | Quadratisch planare Übergangsmetallkomplexe und diese verwendende organische halbleitende Materialien sowie elektronische oder optoelektronische Bauelemente |
| WO2011033023A1 (en) * | 2009-09-18 | 2011-03-24 | Osram Opto Semiconductors Gmbh | Organic electronic device and dopant for doping an organic semiconducting matrix material |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US9157023B2 (en) | 2003-11-18 | 2015-10-13 | Koninklijke Philips N.V. | Light-emitting device with an iridium complex |
| JP2011060998A (ja) | 2009-09-10 | 2011-03-24 | Konica Minolta Holdings Inc | 有機光電変換素子、その製造方法、有機光電変換素子を用いた太陽電池及び光センサアレイ |
| JP4798282B2 (ja) * | 2009-10-27 | 2011-10-19 | 大日本印刷株式会社 | 正孔注入輸送層を有するデバイス、及びその製造方法、並びに正孔注入輸送層形成用インク |
| DE102010013495A1 (de) * | 2010-03-31 | 2011-10-06 | Siemens Aktiengesellschaft | Dotierstoff für eine Lochleiterschicht für organische Halbleiterbauelemente und Verwendung dazu |
-
2010
- 2010-03-31 DE DE201010013495 patent/DE102010013495A1/de active Pending
-
2011
- 2011-03-31 KR KR1020127028505A patent/KR101705136B1/ko not_active Expired - Fee Related
- 2011-03-31 JP JP2013501693A patent/JP5847157B2/ja not_active Expired - Fee Related
- 2011-03-31 WO PCT/EP2011/001645 patent/WO2011120709A1/de not_active Ceased
- 2011-03-31 CN CN201610206776.8A patent/CN106410026B/zh active Active
- 2011-03-31 CN CN201180018027.8A patent/CN102947414B/zh active Active
- 2011-03-31 KR KR1020177002902A patent/KR101757888B1/ko active Active
- 2011-03-31 EP EP11714935.1A patent/EP2553047B1/de active Active
- 2011-03-31 US US13/638,596 patent/US9006716B2/en active Active
-
2015
- 2015-02-27 US US14/633,609 patent/US9276223B2/en active Active
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2003022008A1 (en) * | 2001-08-29 | 2003-03-13 | The Trustees Of Princeton University | Organic light emitting devices having carrier transporting layers comprising metal complexes |
| US20090035675A1 (en) * | 2007-07-31 | 2009-02-05 | Xerox Corporation | Copper containing hole blocking layer photoconductors |
| DE102008051737A1 (de) * | 2007-10-24 | 2009-05-07 | Novaled Ag | Quadratisch planare Übergangsmetallkomplexe und diese verwendende organische halbleitende Materialien sowie elektronische oder optoelektronische Bauelemente |
| WO2011033023A1 (en) * | 2009-09-18 | 2011-03-24 | Osram Opto Semiconductors Gmbh | Organic electronic device and dopant for doping an organic semiconducting matrix material |
Non-Patent Citations (6)
| Title |
|---|
| G. HE, O. SCHNEIDER, D. QIN, X. ZHOU, M. PFEIFFER, K. LEO, JOURNAL OF APPLIED PHYSICS, vol. 95, 2004, pages 5773 - 5777 |
| GARETH WILLIAMS J A ET AL: "Optimising the luminescence of platinum(II) complexes and their application in organic light emitting devices (OLEDs)", COORDINATION CHEMISTRY REVIEWS, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 252, no. 23-24, 1 December 2008 (2008-12-01), pages 2596 - 2611, XP025613200, ISSN: 0010-8545, [retrieved on 20080407], DOI: DOI:10.1016/J.CCR.2008.03.014 * |
| GEORGE W. PARSHALL: "Bis(1,1,1,5,5,5-Hexafluoro-2,4-Pentanedionato)-Nickel(II) and -Cobalt(II): (Nickel and Cobalt Hexaftuoroacctylacctonates)", INORGANIC SYNTHESES, vol. 15, 5 January 2007 (2007-01-05), Weinheim, pages 96 - 100, XP002648350, ISBN: 9780470132463, Retrieved from the Internet <URL:http://onlinelibrary.wiley.com/book/10.1002/9780470132463> [retrieved on 20110707], DOI: 10.1002/9780470132463 * |
| LASKAR I R ET AL: "Highly efficient orange-emitting OLEDs based on phosphorescent platinum(II) complexes", POLYHEDRON, PERGAMON PRESS, OXFORD, GB, vol. 24, no. 8, 2 June 2005 (2005-06-02), pages 881 - 888, XP025310122, ISSN: 0277-5387, [retrieved on 20050602] * |
| T.KODAS, M. HAMPDEN SMITH: "The Chemistry of Metal CVD", 1994, VCH, pages: 178 - 192 |
| VIGATO P A ET AL: "The evolution of beta-diketone or beta-diketophenol ligands and related complexes", COORDINATION CHEMISTRY REVIEWS, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 253, no. 7-8, 1 April 2009 (2009-04-01), pages 1099 - 1201, XP026004375, ISSN: 0010-8545, [retrieved on 20080730], DOI: DOI:10.1016/J.CCR.2008.07.013 * |
Cited By (86)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2013083216A1 (de) | 2011-11-17 | 2013-06-13 | Merck Patent Gmbh | Spiro -dihydroacridinderivate und ihre verwendung als materialien für organische elektrolumineszenzvorrichtungen |
| WO2013120577A1 (en) | 2012-02-14 | 2013-08-22 | Merck Patent Gmbh | Spirobifluorene compounds for organic electroluminescent devices |
| EP3235892A1 (en) | 2012-02-14 | 2017-10-25 | Merck Patent GmbH | Materials for organic electroluminescent devices |
| EP3101088A1 (en) | 2012-02-14 | 2016-12-07 | Merck Patent GmbH | Materials for organic electroluminescent devices |
| EP3460864A1 (de) | 2012-03-15 | 2019-03-27 | Merck Patent GmbH | Elektronische vorrichtungen |
| WO2013135352A1 (de) | 2012-03-15 | 2013-09-19 | Merck Patent Gmbh | Elektronische vorrichtungen |
| DE102012209523A1 (de) * | 2012-06-06 | 2013-12-12 | Osram Opto Semiconductors Gmbh | Hauptgruppenmetallkomplexe als p-Dotanden für organische elektronische Matrixmaterialien |
| WO2013182263A1 (de) | 2012-06-06 | 2013-12-12 | Merck Patent Gmbh | Phenanthrenverbindungen für organische elektronische vorrichtungen |
| US10411197B2 (en) | 2012-06-06 | 2019-09-10 | Siemens Aktiengesellschaft | Main group metal complexes as P-dopants for organic electronic matrix materials |
| US10305047B2 (en) | 2012-06-06 | 2019-05-28 | Siemens Aktiengesellschaft | Main group metal complexes as p-dopants for organic electronic matrix materials |
| DE102012211869A1 (de) | 2012-07-06 | 2014-01-09 | Osram Opto Semiconductors Gmbh | Organisches Licht emittierendes Bauelement |
| WO2014005766A1 (de) | 2012-07-06 | 2014-01-09 | Osram Opto Semiconductors Gmbh | Organisches licht emittierendes bauelement |
| JP2014053383A (ja) * | 2012-09-05 | 2014-03-20 | Konica Minolta Inc | タンデム型の有機光電変換素子およびこれを用いた太陽電池 |
| WO2014044344A1 (de) | 2012-09-18 | 2014-03-27 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| EP3806176A1 (de) | 2012-10-31 | 2021-04-14 | Merck Patent GmbH | Elektronische vorrichtung |
| WO2014067614A1 (de) | 2012-10-31 | 2014-05-08 | Merck Patent Gmbh | Elektronische vorrichtung |
| EP3378857A1 (de) | 2012-11-12 | 2018-09-26 | Merck Patent GmbH | Materialien für elektronische vorrichtungen |
| WO2014106522A1 (de) | 2013-01-03 | 2014-07-10 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2015000763A1 (de) | 2013-07-02 | 2015-01-08 | Osram Oled Gmbh | Optoelektronisches bauelement, organische funktionelle schicht und verfahren zur herstellung eines optoelektronischen bauelements |
| US20160111662A1 (en) * | 2013-07-02 | 2016-04-21 | Osram Oled Gmbh | Optoelectronic Component, Organic Functional Layer, and Method for Producing an Optoelectronic Component |
| DE102013106949A1 (de) | 2013-07-02 | 2015-01-08 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement, organische funktionelle Schicht und Verfahren zur Herstellung eines optoelektronischen Bauelements |
| US11038127B2 (en) | 2013-07-02 | 2021-06-15 | Osram Oled Gmbh | Optoelectronic component, organic functional layer, and method for producing an optoelectronic component |
| US12302747B2 (en) | 2013-07-02 | 2025-05-13 | Osram Oled Gmbh | Optoelectronic component, organic functional layer, and method for producing an optoelectronic component |
| WO2015036080A1 (de) | 2013-09-11 | 2015-03-19 | Merck Patent Gmbh | Organische elektrolumineszenzvorrichtung |
| WO2015139808A1 (de) | 2014-03-18 | 2015-09-24 | Merck Patent Gmbh | Organische elektrolumineszenzvorrichtung |
| EP2960315A1 (de) | 2014-06-27 | 2015-12-30 | cynora GmbH | Organische Elektrolumineszenzvorrichtung |
| US10074489B2 (en) | 2014-08-11 | 2018-09-11 | Dyenamo Ab | Solid state hole transport material |
| WO2016023644A1 (en) * | 2014-08-11 | 2016-02-18 | Dyenamo Ab | Solid state hole transport material |
| EP2985799A1 (en) * | 2014-08-11 | 2016-02-17 | Dyenamo AB | Solid state hole transport material |
| WO2016042070A1 (de) | 2014-09-17 | 2016-03-24 | Cynora Gmbh | Organische moleküle zur verwendung als emitter |
| EP3246373A1 (de) | 2014-09-17 | 2017-11-22 | cynora GmbH | Organische moleküle zur verwendung als emitter |
| WO2016091353A1 (de) | 2014-12-12 | 2016-06-16 | Merck Patent Gmbh | Organische verbindungen mit löslichen gruppen |
| WO2017012687A1 (en) | 2015-07-22 | 2017-01-26 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| EP4236652A2 (en) | 2015-07-29 | 2023-08-30 | Merck Patent GmbH | Materials for organic electroluminescent devices |
| WO2017028940A1 (en) | 2015-08-14 | 2017-02-23 | Merck Patent Gmbh | Phenoxazine derivatives for organic electroluminescent devices |
| WO2017133829A1 (de) | 2016-02-05 | 2017-08-10 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| EP3978477A2 (en) | 2016-06-03 | 2022-04-06 | Merck Patent GmbH | Materials for organic electroluminescent devices |
| WO2017207596A1 (en) | 2016-06-03 | 2017-12-07 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| EP4113643A1 (de) | 2016-10-10 | 2023-01-04 | Merck Patent GmbH | Elektronische vorrichtung |
| EP4255151A2 (de) | 2016-10-10 | 2023-10-04 | Merck Patent GmbH | Spiro[fluoren-9,9'-(thio)xanthen] verbindungen |
| WO2018069167A1 (de) | 2016-10-10 | 2018-04-19 | Merck Patent Gmbh | Elektronische vorrichtung |
| DE102017008794A1 (de) | 2016-10-17 | 2018-04-19 | Merck Patent Gmbh | Materialien zur Verwendung in elektronischen Vorrichtungen |
| WO2018083053A1 (de) | 2016-11-02 | 2018-05-11 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2018087020A1 (en) | 2016-11-08 | 2018-05-17 | Merck Patent Gmbh | Compounds for electronic devices |
| WO2018095888A1 (en) | 2016-11-25 | 2018-05-31 | Merck Patent Gmbh | Bisbenzofuran-fused 2,8-diaminoindeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled) |
| WO2018095940A1 (en) | 2016-11-25 | 2018-05-31 | Merck Patent Gmbh | Bisbenzofuran-fused indeno[1,2-b]fluorene derivatives and related compounds as materials for organic electroluminescent devices (oled) |
| WO2018141706A1 (de) | 2017-02-02 | 2018-08-09 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2018157981A1 (de) | 2017-03-02 | 2018-09-07 | Merck Patent Gmbh | Materialien für organische elektronische vorrichtungen |
| WO2018234346A1 (en) | 2017-06-23 | 2018-12-27 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2019002190A1 (en) | 2017-06-28 | 2019-01-03 | Merck Patent Gmbh | MATERIALS FOR ELECTRONIC DEVICES |
| EP4603562A2 (en) | 2017-07-28 | 2025-08-20 | Merck Patent GmbH | Spirobifluorene derivatives for use in electronic devices |
| WO2019020654A1 (en) | 2017-07-28 | 2019-01-31 | Merck Patent Gmbh | SPIROBIFLUORENE DERIVATIVES FOR USE IN ELECTRONIC DEVICES |
| WO2019048443A1 (de) | 2017-09-08 | 2019-03-14 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2019076789A1 (en) | 2017-10-17 | 2019-04-25 | Merck Patent Gmbh | MATERIALS FOR ORGANIC ELECTROLUMINESCENT DEVICES |
| WO2019101719A1 (de) | 2017-11-23 | 2019-05-31 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| EP4242286A2 (de) | 2017-11-23 | 2023-09-13 | Merck Patent GmbH | Materialien für elektronische vorrichtungen |
| WO2019101833A1 (en) | 2017-11-24 | 2019-05-31 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2019101835A1 (en) | 2017-11-24 | 2019-05-31 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2019115577A1 (en) | 2017-12-15 | 2019-06-20 | Merck Patent Gmbh | Substituted aromatic amines for use in organic electroluminescent devices |
| EP4451832A2 (en) | 2017-12-20 | 2024-10-23 | Merck Patent GmbH | Heteroaromatic compounds |
| WO2019121483A1 (en) | 2017-12-20 | 2019-06-27 | Merck Patent Gmbh | Heteroaromatic compounds |
| WO2019170572A1 (en) | 2018-03-06 | 2019-09-12 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2019170578A1 (en) | 2018-03-06 | 2019-09-12 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2019175149A1 (en) | 2018-03-16 | 2019-09-19 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2020043640A1 (en) | 2018-08-28 | 2020-03-05 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2020043646A1 (en) | 2018-08-28 | 2020-03-05 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2020043657A1 (en) | 2018-08-28 | 2020-03-05 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2020053150A1 (en) | 2018-09-12 | 2020-03-19 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2020089138A1 (en) | 2018-10-31 | 2020-05-07 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2021110741A1 (en) | 2019-12-04 | 2021-06-10 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2022017997A1 (en) | 2020-07-22 | 2022-01-27 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2023052275A1 (de) | 2021-09-28 | 2023-04-06 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023052272A1 (de) | 2021-09-28 | 2023-04-06 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023052313A1 (de) | 2021-09-28 | 2023-04-06 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023052314A1 (de) | 2021-09-28 | 2023-04-06 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023094412A1 (de) | 2021-11-25 | 2023-06-01 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023117836A1 (en) | 2021-12-21 | 2023-06-29 | Merck Patent Gmbh | Electronic devices |
| WO2023117837A1 (de) | 2021-12-21 | 2023-06-29 | Merck Patent Gmbh | Verfahren zur herstellung von deuterierten organischen verbindungen |
| WO2023117835A1 (en) | 2021-12-21 | 2023-06-29 | Merck Patent Gmbh | Electronic devices |
| WO2023152346A1 (de) | 2022-02-14 | 2023-08-17 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2023222559A1 (de) | 2022-05-18 | 2023-11-23 | Merck Patent Gmbh | Verfahren zur herstellung von deuterierten organischen verbindungen |
| WO2024013004A1 (de) | 2022-07-11 | 2024-01-18 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2024170605A1 (en) | 2023-02-17 | 2024-08-22 | Merck Patent Gmbh | Materials for organic electroluminescent devices |
| WO2024218109A1 (de) | 2023-04-20 | 2024-10-24 | Merck Patent Gmbh | Materialien für elektronische vorrichtungen |
| WO2025012253A1 (en) | 2023-07-12 | 2025-01-16 | Merck Patent Gmbh | Materials for electronic devices |
| WO2025021855A1 (de) | 2023-07-27 | 2025-01-30 | Merck Patent Gmbh | Materialien für organische lichtemittierende vorrichtungen und organische sensoren |
Also Published As
| Publication number | Publication date |
|---|---|
| US20130099209A1 (en) | 2013-04-25 |
| CN106410026B (zh) | 2019-05-14 |
| CN102947414B (zh) | 2016-04-27 |
| EP2553047B1 (de) | 2016-12-21 |
| KR101757888B1 (ko) | 2017-07-14 |
| CN106410026A (zh) | 2017-02-15 |
| KR101705136B1 (ko) | 2017-02-09 |
| KR20130025897A (ko) | 2013-03-12 |
| US20150200374A1 (en) | 2015-07-16 |
| DE102010013495A1 (de) | 2011-10-06 |
| US9276223B2 (en) | 2016-03-01 |
| CN102947414A (zh) | 2013-02-27 |
| JP2013527599A (ja) | 2013-06-27 |
| US9006716B2 (en) | 2015-04-14 |
| EP2553047A1 (de) | 2013-02-06 |
| KR20170015573A (ko) | 2017-02-08 |
| JP5847157B2 (ja) | 2016-01-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2553047B1 (de) | Dotierstoff für eine lochleiterschicht für organische halbleiterbauelemente und verwendung dazu | |
| EP3057151B1 (de) | Wismut- und zinnkomplexe als p-dotanden für organische elektronische matrixmaterialien | |
| EP1705727B1 (de) | Lichtemittierendes Bauelement | |
| EP2768926B1 (de) | Organisches elektronisches bauelement mit dotierstoff, verwendung eines dotierstoffs und verfahren zur herstellung des dotierstoffs | |
| DE102006054524B4 (de) | Verwendung von Dithiolenübergangsmetallkomplexen und Selen- analoger Verbindungen als Dotand | |
| EP2158625B1 (de) | Verwendung eines metallkomplexes als p-dotand für ein organisches halbleitendes matrixmaterial, organisches halbleitermaterial und organische leuchtdioden | |
| DE102011003192B4 (de) | Halbleiterbauelement und Verfahren zu seiner Herstellung | |
| DE102007031220A1 (de) | Chinoide Verbindungen und deren Verwendung in halbleitenden Matrixmaterialien, elektronischen und optoelektronischen Bauelementen | |
| EP2691997B1 (de) | Komplexierung niedermolekularer halbleiter für die anwendung als emitterkomplex in organischen lichtemittierenden elektrochemischen zellen (oleecs) | |
| WO2012136422A1 (de) | Optoelektronisches bauelement und verwendung eines kupferkomplexes als dotierstoff zum dotieren einer schicht | |
| DE102006054523B4 (de) | Dithiolenübergangsmetallkomplexe und Selen-analoge Verbindungen, deren Verwendung als Dotand, organisches halbleitendes Material enthaltend die Komplexe, sowie elektronische oder optoelektronisches Bauelement enthaltend einen Komplex | |
| EP3201959B1 (de) | Organisches elektronisches bauteil | |
| EP3017488B1 (de) | Optoelektronisches bauelement und verfahren zur herstellung eines optoelektronischen bauelements | |
| DE102007028237A1 (de) | Verwendung eines Metallkomplexes als p-Dotand für ein organisches halbleitendes Matrixmaterial, organisches Halbleitermaterial und elektronisches Bauteil | |
| WO2009135466A1 (de) | Lichtemittierendes organisches bauelement und verfahren zum herstellen | |
| DE102008058230B4 (de) | Chinoxalinverbindung, organische Leuchtdiode, organischer Dünnfilmtransistor und Solarzelle |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 201180018027.8 Country of ref document: CN |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11714935 Country of ref document: EP Kind code of ref document: A1 |
|
| REEP | Request for entry into the european phase |
Ref document number: 2011714935 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2011714935 Country of ref document: EP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2013501693 Country of ref document: JP |
|
| ENP | Entry into the national phase |
Ref document number: 20127028505 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 13638596 Country of ref document: US |