WO2011118790A1 - 水性塗料組成物ならびに該水性塗料組成物を用いた塗膜形成方法および複層塗膜形成方法 - Google Patents

水性塗料組成物ならびに該水性塗料組成物を用いた塗膜形成方法および複層塗膜形成方法 Download PDF

Info

Publication number
WO2011118790A1
WO2011118790A1 PCT/JP2011/057406 JP2011057406W WO2011118790A1 WO 2011118790 A1 WO2011118790 A1 WO 2011118790A1 JP 2011057406 W JP2011057406 W JP 2011057406W WO 2011118790 A1 WO2011118790 A1 WO 2011118790A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
coating film
epoxy resin
parts
amine
Prior art date
Application number
PCT/JP2011/057406
Other languages
English (en)
French (fr)
Inventor
崇宏 雲林院
憲昌 篠田
Original Assignee
日本ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント株式会社 filed Critical 日本ペイント株式会社
Priority to JP2012507100A priority Critical patent/JP5465778B2/ja
Priority to SG2012071197A priority patent/SG184262A1/en
Priority to MYPI2012004230A priority patent/MY183896A/en
Priority to CN201180015935.1A priority patent/CN102822289B/zh
Publication of WO2011118790A1 publication Critical patent/WO2011118790A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/182Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents
    • C08G59/184Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing using pre-adducts of epoxy compounds with curing agents with amines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2401/00Form of the coating product, e.g. solution, water dispersion, powders or the like
    • B05D2401/20Aqueous dispersion or solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers

Definitions

  • the present invention relates to an aqueous coating composition, a coating film forming method and a multilayer coating film forming method using the aqueous coating composition.
  • an anticorrosion paint As an anticorrosion paint, a one-component solvent-type paint mainly composed of an alkyd resin is generally used.
  • a water-based anticorrosive paint is desired in consideration of the environment.
  • an epoxy ester dispersion resin has been proposed as a main binder suitable for a water-based anticorrosive coating (see Non-Patent Document 1). It has been reported that epoxy ester dispersion resins are superior in salt spray resistance, moisture resistance, water resistance, and the like to water-soluble alkyd resins and acrylic emulsion resins.
  • the alkyd resin has a problem that formaldehyde is generated during curing. Moreover, there is a problem that the corrosion resistance of the epoxy ester dispersion resin is not sufficient. Therefore, there is a demand for anticorrosion paints having even better performance.
  • the coating film formed from the above anticorrosion paint can of course be used alone, but another coating film (for example, on the coating film formed from the anticorrosion paint) is formed to be multi-layered. Therefore, the coating film performance can be further improved. However, if the adhesion between the coating films (interlayers) is low, there is a problem that sufficient performance cannot be exhibited.
  • the present invention has been made to solve the above-described conventional problems, and a main object thereof is to provide an aqueous coating composition having excellent anticorrosion properties. Another object of the present invention is to provide a method for forming a coating film having excellent anticorrosion properties and excellent interlayer adhesion.
  • the water-based coating composition of the present invention comprises an amine-modified epoxy resin (A) obtained by modifying an epoxy resin having a bisphenol skeleton having a molecular weight of 2000 or more with an amine compound, and a water-insoluble plastic having a boiling point of 200 ° C. or more.
  • Agent (C) In a preferred embodiment, the content of the plasticizer (C) is 10 to 30 parts by mass with respect to 100 parts by mass in total with the amine-modified epoxy resin (A).
  • the amino group of the amine-modified epoxy resin (A) is neutralized with the acid compound (B).
  • the neutralization rate of the amine-modified epoxy resin (A) is 10 to 80%.
  • the modified amount of the amine-modified epoxy resin (A) is 1 to 10% by mass.
  • the water solubility of the said plasticizer (C) is 10 mass parts or less with respect to 100 mass parts water.
  • the coating-film formation method is provided. In this method for forming a coating film, a coating film is formed by coating the substrate with the aqueous coating composition.
  • a method for forming a multilayer coating film is provided. In this multi-layer coating film forming method, the above-mentioned aqueous coating composition is applied to a substrate to form a coating film, and then an overcoat layer is formed on the coating film.
  • an intermediate coating layer is formed after the coating film is formed with the aqueous coating composition and before the overcoating layer is formed.
  • the method includes forming an undercoat layer on the substrate before forming a coating film with the water-based coating composition.
  • the resulting coating film contains a lot of rigid bisphenol skeletons and is excellent in corrosion resistance.
  • an epoxy resin having a bisphenol skeleton has high rigidity in proportion to the molecular weight. The higher the rigidity, the better the anticorrosion property, but the glass transition point becomes high, so that it becomes difficult to form a coating film.
  • an aqueous coating composition that achieves excellent anticorrosion properties can be obtained by combining a hard component that does not become a coating film as it is and a plasticizer that satisfies specific requirements.
  • the coating film formed by the aqueous coating composition of the present invention is presumed to have a structure in which an amine-modified epoxy resin containing a large amount of a rigid bisphenol skeleton is formed into a film containing a plasticizer.
  • some of the plasticizers contained in the water-based paint composition volatilize during film formation (coating) and drying, most of them are thought to form a coating film in the state of being contained in the amine-modified epoxy resin. It is done. Since the plasticizer has a low water solubility and a high boiling point, volatilization outside the coating film is suppressed as much as possible. This is thought to contribute to better anticorrosion properties.
  • the coating film formed with the aqueous coating composition of this invention is excellent in adhesiveness with another layer.
  • the multilayer coating film formed by this invention can have the characteristic which has not only the further improvement of corrosion resistance based on multilayering but the function and corrosion resistance which a topcoat layer has.
  • the water-based coating composition of the present invention is water-based and therefore excellent in environmental aspects. Moreover, since oxidative polymerization is not used, problems such as the generation of formaldehyde do not occur. Furthermore, since it is not necessary to use a curing agent in forming a coating film, it can be used as a one-pack type, and storage stability and workability problems based on curing reactivity do not occur. In this way, an aqueous coating composition having sufficient performance as an anticorrosion coating can be obtained by using the epoxy resin itself having a high molecular weight as a coating film forming component and making the most of the characteristics of the epoxy resin. Further, by using such an aqueous coating composition, an excellent anticorrosive property can be obtained, and a coating film forming method excellent in environmental aspects can be obtained.
  • Aqueous coating composition The aqueous coating composition of the present invention comprises an amine-modified epoxy resin (A) and a plasticizer (C) having a boiling point of 200 ° C. or higher and water-insoluble.
  • the plasticizer (C) can dissolve the amine-modified epoxy resin (A) when mixed with the amine-modified epoxy resin (A) at a mass ratio of 1: 1.
  • the aqueous coating composition of the present invention is preferably an aqueous dispersion or aqueous solution of the amine-modified epoxy resin (A).
  • the amine-modified epoxy resin (A) is typically obtained by modifying an epoxy resin with an amine compound.
  • the epoxy resin constituting the amine-modified epoxy resin (A) is an epoxy resin having a bisphenol skeleton.
  • An epoxy resin having a bisphenol skeleton has high rigidity, and the resin itself has excellent corrosion resistance.
  • the epoxy resin having a bisphenol skeleton typically has a structure in which bisphenol A and diglycidyl ether of bisphenol A are condensed, and is represented by the following general formula (n is an integer).
  • the proportion of the bisphenol skeleton in the epoxy resin is preferably 90% by mass or more.
  • the anticorrosion property excellent in using a highly rigid epoxy resin can be obtained.
  • the molecular weight of the epoxy resin (before modification) is 2000 or more, more preferably 2000 to 8500, and still more preferably 3000 to 8000. If the molecular weight is less than 2,000, the anticorrosion property may be lowered. When the molecular weight exceeds 8,500, it is difficult to disperse or dissolve the resulting amine-modified epoxy resin (A) in water, and phase separation may occur.
  • “molecular weight” refers to a value calculated by epoxy equivalent ⁇ 2 assuming that the above structural formula is included.
  • the epoxy resin a commercially available product may be used as it is, or a resin synthesized by condensation with bisphenol A and diglycidyl ether of bisphenol A as described above may be used. Any appropriate method is employed as the synthesis method. As a specific example, there is a method in which diglycidyl ether of bisphenol A is excessively blended with bisphenol A and synthesized by heating in an organic solvent such as methyl isobutyl ketone using an organic base such as dimethylbenzylamine as a catalyst. It is done. Preferably, the reaction is traced by measuring the epoxy equivalent, and the reaction is terminated when the target value is reached.
  • the aqueous coating material composition may contain the organic solvent used in the case of the synthesis
  • combination of an amine modified epoxy resin (A) it is preferable not to contain substantially.
  • the modification is typically performed by ring-opening addition of an amine compound having active hydrogen to an epoxy group of an epoxy resin as a raw material.
  • an amine compound having active hydrogen to an epoxy group of an epoxy resin as a raw material.
  • substantially all of the epoxy groups are modified.
  • the modification rate of the epoxy group is preferably 90% or more.
  • the amount of modification of the amine-modified epoxy resin (A) is preferably 1 to 10% by mass, more preferably 3 to 8% by mass.
  • the modification amount is less than 1% by mass, it is difficult to disperse or dissolve the amine-modified epoxy resin (A) in water, which may cause phase separation. If the amount of modification exceeds 10% by mass, the corrosion resistance and adhesion may be reduced. Also, the drying time for obtaining the coating film may be too long.
  • the “modified amount” is determined by the amount of amine compound / (amount of epoxy resin + amount of amine compound).
  • the “amount of the amine compound” refers to the amount of the amine compound generated in the resin after hydrolysis.
  • amine compound examples include butylamine, octylamine, diethylamine, dibutylamine, methylbutylamine, monoethanolamine, diethanolamine, N-methylethanolamine, ketimine product of aminoethylethanolamine, and diketiminate product of diethylenetriamine. These may be used alone or in combination of two or more. Of these, ketimine compounds are preferable. By using a ketimine compound, a primary amino group can be expressed during neutralization described later, and the coating film properties such as adhesion are improved.
  • Arbitrary appropriate methods are employ
  • the epoxy resin used as a raw material is dissolved in an organic solvent, an amine compound equivalent to the epoxy group of the epoxy resin is added, and then heated if necessary.
  • the amine-modified epoxy resin (A) preferably has its amino group neutralized with the acid compound (B). This is because the amine-modified epoxy resin (A) can be favorably dispersed or dissolved in water.
  • Examples of the acid compound (B) include inorganic acids such as hydrochloric acid, nitric acid, and phosphoric acid; carboxylic acid compounds such as formic acid, acetic acid, propionic acid, and lactic acid; and organic acids such as sulfamic acid. These may be used alone or in combination of two or more. Among these, an organic acid is preferable, and a carboxylic acid compound is particularly preferable. It is because the anticorrosion property (especially when drying at normal temperature) of the obtained aqueous coating composition can be more excellent. Among the carboxylic acid compounds, acetic acid is preferable in view of volatility.
  • the neutralization rate (acid equivalent to the equivalent of amino group of amine-modified epoxy resin (A)) is preferably 10 to 80%, more preferably 15 to 80%. If the neutralization rate is less than 10%, it is difficult to disperse or dissolve the amine-modified epoxy resin (A) in water, which may cause phase separation. If the neutralization rate exceeds 80%, the water resistance may decrease.
  • the amine-modified epoxy resin (A) is dispersed or dissolved in water depends on the molecular weight and amino group of the amine-modified epoxy resin (A), the type of amine compound used for modification, the type of acid compound (B) used, and the acid It can be determined by adjusting the compounding amount (neutralization rate) of the compound (B).
  • the amine-modified epoxy resin (A) is an aqueous dispersion. Since the amine-modified epoxy resin (A) is an aqueous dispersion, it can be more excellent in corrosion resistance.
  • the aqueous coating composition of the present invention contains a plasticizer (C).
  • a plasticizer (C) By using the plasticizer (C), an aqueous coating composition having sufficient performance as an anticorrosion coating can be obtained without sacrificing the rigidity (anticorrosion) of the epoxy resin.
  • the plasticizer (C) can dissolve the amine-modified epoxy resin (A) when mixed with the amine-modified epoxy resin (A) at a mass ratio of 1: 1. If the plasticizer (C) is not sufficiently soluble, problems such as phase separation may occur, and a water-based coating composition may not be obtained satisfactorily.
  • the plasticizer (C) is insoluble in water. Since the plasticizer (C) is insoluble in water, excellent anticorrosive properties can be obtained.
  • water-insoluble means a state that is not freely miscible with water, and a state that is substantially insoluble in water.
  • the water solubility is preferably 10 parts by mass or less with respect to 100 parts by mass of water. When water solubility exceeds 10 mass parts with respect to 100 mass parts of water, there exists a possibility that corrosion resistance may fall.
  • the plasticizer (C) is liquid at room temperature (25 ° C.), and its viscosity is preferably 1000 mPa ⁇ s or less, more preferably 500 mPa ⁇ s or less.
  • the boiling point of the plasticizer (C) is preferably 200 ° C. or higher. If the boiling point of the plasticizer (C) is less than 200 ° C, the anticorrosion property may be lowered.
  • plasticizer (C) examples include diethylene glycol dibutyl ether (dibutyl diglycol, DBDG), ethylene glycol monophenyl ether (phenyl glycol, PhG), diethylene glycol monophenyl ether (phenyl diglycol, PhDG), ethylene glycol monobenzyl.
  • Ether (benzyl glycol, BzG), propylene glycol monophenyl ether (phenylpropylene glycol, PhFG), dipropylene glycol monopropyl ether (propylpropylene diglycol, PFDG), dipropylene glycol monobutyl ether (DPnB, butylpropylene diglycol, BFDG) ), Tripropylene glycol monobutyl ether (TPnB), polypropylene glycol Glycol ether compounds such as 1000; DBE (dibasic acid ester), dibutyl phthalate (DBP), di-2-ethylhexyl phthalate (DOP), diisononyl phthalate (DINP), diisodecyl phthalate (DIDP), diheptyl phthalate (DHP), Carboxylic acid ester compounds such as di-n-octyl phthalate (N-DOP), butyl benzyl phthalate (BBP),
  • Solvesso 200 manufactured by Exxon Chemical Co., Ltd.
  • these may be used alone or in combination of two or more.
  • a compound having no ester bond in the molecule is preferably used.
  • glycol ether compounds are preferably used.
  • the content of the plasticizer (C) is preferably 10 to 30 parts by mass, more preferably 15 to 100 parts by mass with respect to 100 parts by mass of the total amount of the amine-modified epoxy resin (A) ((A) + (C)). 30 parts by mass. There exists a possibility that a crack may enter into a coating film as it is less than 10 mass parts. When it exceeds 30 mass parts, there exists a possibility that the drying time for obtaining a coating film may become long too much.
  • the content of the plasticizer (C) in the aqueous coating composition is preferably 10% by mass or less from the viewpoint of minimizing the use of volatile organic compounds (VOC).
  • the aqueous coating composition of the present invention preferably contains an aqueous medium mainly composed of water.
  • the aqueous medium can include an organic solvent that is soluble in water.
  • Specific examples of the organic solvent include ethylene glycol, propylene glycol, ethylene glycol monobutyl ether, propylene glycol monobutyl ether, diethylene glycol, dipropylene glycol, diethylene glycol monobutyl ether and the like. From the viewpoint of minimizing the use of VOCs, the amount of organic solvent is preferably as small as possible.
  • the total of the content of the amine-modified epoxy resin (A) and the content of the plasticizer (C) in the aqueous coating composition is preferably 15 to 40% by mass. There exists a possibility that a suitable coating film may not be obtained as it is less than 15 mass%. If it exceeds 40% by mass, the stability of the paint may be reduced.
  • the aqueous coating composition of the present invention may contain a pigment.
  • the pigment include titanium oxide, yellow iron oxide, red iron oxide, carbon black, phthalocyanine blue, phthalocyanine green, azo red, quinacridone red, benzimidazolone yellow and the like; calcium carbonate, barium sulfate, kaolin, clay And extender pigments such as talc; rust preventive pigments.
  • the concentration of the pigment in the aqueous coating composition is preferably 10 to 50% by mass.
  • the aqueous coating composition of the present invention may contain an additive.
  • the additive include a dispersant, a viscosity modifier, a curing catalyst, a surface modifier, an antifoaming agent, a plasticizer, a film-forming aid, an ultraviolet absorber, an antioxidant, and a curing agent.
  • curing agent is not required in the water-based coating composition of this invention, when a higher level characteristic is required for a coating film, it can use suitably.
  • the curing agent for example, in addition to the isocyanate compound and the melamine compound, when the amine-modified epoxy resin (A) has a primary or secondary amino group, a compound having a plurality of (meth) acryloyl groups, an epoxy group A compound having a plurality of compounds can be used.
  • the aqueous coating composition of the present invention is preferably obtained by mixing the amine-modified epoxy resin (A), the plasticizer (C) and an aqueous medium.
  • the acid compound (B) is added at any appropriate timing.
  • the acid compound (B) is added after mixing the amine-modified epoxy resin (A) obtained by modifying the epoxy resin with an amine compound and the plasticizer (C).
  • the acid compound (B) is added after mixing the amine-modified epoxy resin (A) obtained by modifying the epoxy resin with an amine compound and the plasticizer (C).
  • a plasticizer (C) is added to an amine-modified epoxy resin (A) organic solvent solution, and an acid compound (B) is further added to prepare a mixture.
  • the obtained mixture is dropped into an aqueous medium, or an aqueous medium is added to the obtained mixture to be dispersed or dissolved, and the organic solvent is distilled off to produce an aqueous coating composition.
  • the organic solvent is finally distilled off as in this embodiment.
  • the above plasticizer (C) can be used as an organic solvent for producing the amine-modified epoxy resin (A) and can be blended in the aqueous coating composition.
  • a plasticizer (C) as an organic solvent, the usage-amount of the whole organic solvent can be suppressed.
  • the other components can be added at any appropriate timing.
  • the aqueous coating composition of the present invention can be applied to any appropriate substrate.
  • the substrate include metal, wood, plastics, rubber, stone, slate, concrete, mortar, fiber, paper, glass, porcelain, earthenware, film, and composites thereof.
  • a sealer may be applied to the surface in advance.
  • metals include iron, copper, tin, zinc, aluminum, and stainless steel.
  • Examples of the object to be coated having metal on the surface include, for example, ships, vehicles (for example, railway vehicles, large vehicles), aircraft, bridges, offshore structures, plants, tanks (for example, oil tanks), pipes, Examples include steel pipes and cast iron pipes.
  • the water-based coating composition can also be applied to buildings and civil engineering structures.
  • the coating method typically includes a method of applying the aqueous coating composition to an object to be coated (base material) and drying. For example, it is possible to simply perform coating without requiring a process such as electrodeposition.
  • a coating method any appropriate method can be adopted depending on the type of an object (base material) to be coated. For example, application, immersion, etc. with a brush, a roller, air spray, airless spray, a trowel, etc. are mentioned.
  • the coating amount of the water-based coating composition can be set to any appropriate coating amount depending on the application and the like. Preferably, it is 10 to 400 g / m 2 .
  • drying method Any appropriate method can be adopted as the drying method. Natural drying or heat drying is preferred. In the case of natural drying, the drying time is preferably 2 hours or longer, more preferably 24 hours or longer.
  • the thickness of the coating film formed by applying the aqueous coating composition is preferably 10 to 100 ⁇ m, more preferably 20 to 100 ⁇ m. When the thickness is thicker than 100 ⁇ m, there is a risk that problems such as sagging occur during painting.
  • a different coating film can be formed before and / or after the aqueous coating composition is applied to form a coating film.
  • a top coating layer is formed on the coating film to form a top coating layer.
  • top coat Any appropriate paint can be adopted as the top coat.
  • an epoxy / amine-based paint a two-component urethane curable paint, a one-component urethane curable paint, a carbodiimide curable paint, an alkyd resin-based paint, an acrylic resin-based paint, an acrylic silicon resin-based paint, and the like.
  • the top coat may be solvent-based or water-based. Preferably, it is aqueous. This is because the environmental load can be reduced.
  • the coating amount of the top coating can be set to any appropriate coating amount depending on the type of coating and the purpose of coating. Preferably, it is 30 to 400 g / m 2 .
  • the thickness of the topcoat layer can be set to any appropriate thickness depending on the type of paint and the purpose of painting. Preferably, it is 10 to 150 ⁇ m.
  • an undercoat layer may be formed by applying an undercoat paint to a substrate.
  • the anticorrosion property is excellent, and for example, it is possible to sufficiently cope with a case where a high anticorrosion property such as a bridge, a plant, or a tank is required.
  • the undercoat paint can be any appropriate paint.
  • an organic or inorganic zinc rich paint is mentioned.
  • the undercoat paint may be solvent-based or water-based. Preferably, it is aqueous. This is because the environmental load can be reduced.
  • the application amount of the undercoat paint can be set to any appropriate application amount according to the type of paint and the purpose of painting. Preferably, it is 80 to 1200 g / m 2 .
  • the thickness of the undercoat layer can be set to any appropriate thickness depending on the type of paint and the purpose of painting. Preferably, it is 20 to 200 ⁇ m.
  • an intermediate coating layer may be formed by applying an intermediate coating on the coating film.
  • the intermediate coating layer it can be more excellent in corrosion resistance.
  • the top coat layer is formed after the intermediate coat layer is formed.
  • any appropriate paint can be adopted as the intermediate coating.
  • an epoxy / amine-based paint, a two-component urethane curable paint, a one-component urethane curable paint, and the like can be given.
  • the intermediate coating may be solvent-based or water-based. Preferably, it is aqueous. This is because the environmental load can be reduced.
  • the coating amount of the intermediate coating can be set to any appropriate coating amount depending on the type of coating and the purpose of coating. Preferably, it is 20 to 400 g / m 2 .
  • the thickness of the intermediate coating layer can be set to any appropriate thickness depending on the type of paint and the purpose of coating. Preferably, it is 10 to 100 ⁇ m.
  • the above-mentioned top coat, intermediate coat and undercoat can contain pigments, additives and the like.
  • the pigment and additive include the pigment and additive described in the above section A.
  • the number, type, and amount of pigments and additives to be added can be appropriately selected according to the purpose.
  • any appropriate method can be adopted as a coating method and a drying method for the top coating material, intermediate coating material, and under coating material, depending on the type of coating material used.
  • Examples of the coating method and the drying method for the top coating material, the intermediate coating material, and the undercoating coating material include the same methods as the coating method and the drying method for the aqueous coating composition described above.
  • Example 1 1005 parts of diglycidyl ether of bisphenol A and 495 parts of bisphenol A were dissolved in 500 parts of methyl isobutyl ketone (hereinafter referred to as “MIBK”). To this, 2 parts of dimethylbenzylamine was added and the reaction was continued until the epoxy equivalent reached 1500 to obtain an epoxy resin having a bisphenol skeleton as a raw material. After completion of the reaction, 123 parts of dibutylamine was added and reacted at 120 ° C. for 1 hour to obtain an amine-modified epoxy resin (A) having a bisphenol skeleton.
  • MIBK methyl isobutyl ketone
  • Example 2 1939 parts of diglycidyl ether of bisphenol A and 1061 parts of bisphenol A were dissolved in 1000 parts of MIBK. To this was added 4 parts of dimethylbenzylamine, and the reaction was continued until the epoxy equivalent reached 3000 to obtain an epoxy resin having a bisphenol skeleton as a raw material. After completion of the reaction, 249 parts of MIBK diketimine of diethylenetriamine (hereinafter referred to as “DETA diketimine”) was added and reacted at 120 ° C. for 1 hour to obtain an amine-modified epoxy resin (A) having a bisphenol skeleton.
  • DETA diketimine MIBK diketimine of diethylenetriamine
  • Example 3 A clear type water-based coating composition (water dispersion) in the same manner as in Example 2 except that the same amount of DBE (dibasic acid ester) was used as the plasticizer (C) instead of dipropylene glycol n-butyl ether. ) To obtain a white water-based paint composition.
  • DBE dibasic acid ester
  • Example 4 As an epoxy resin having a bisphenol skeleton as a raw material, add 100 parts of diethanolamine while heating 4000 parts of an epoxy resin having an epoxy equivalent of 4000 (Japan Epoxy Resin, Grade 1010) to 1167 parts of MIBK, and at 120 ° C. for 1 hour. By reacting, an amine-modified epoxy resin (A) having a bisphenol skeleton was obtained. After adding 1543 parts of tripropylene glycol n-butyl ether (30% by mass with respect to the total of the amine-modified epoxy resin (A)) as a plasticizer (C), 38 parts of 90% acetic acid of the acid compound (B) was added. In addition, neutralization was performed (neutralization rate 60%).
  • Example 1 While maintaining the temperature at 90 ° C., 5773 parts of water was gradually added to achieve homogenization. Further, 2333 parts of a mixture of MIBK and water was distilled off at 50 ° C. under reduced pressure to obtain a clear type water-based coating composition (water dispersion). Further, a white aqueous coating composition was obtained in the same manner as Example 1.
  • Example 1 A white aqueous coating composition was obtained in the same manner as in Example 1 except that the same amount of butyl diglycol was used as the plasticizer (C) instead of dipropylene glycol n-butyl ether.
  • Example 2 A white aqueous coating composition was obtained in the same manner as in Example 2, except that the same amount of propylene glycol n-butyl ether was used instead of dipropylene glycol n-butyl ether as the plasticizer (C).
  • Example 3 The white water-based paint composition was the same as in Example 1 except that the epoxy resin having a bisphenol skeleton as a raw material was changed to 925 parts of an epoxy resin having an epoxy equivalent of 925 (Japan Epoxy Resin, Grade 1004). Got.
  • Example 4 when obtaining an epoxy resin having a bisphenol skeleton as a raw material, the amounts of diglycidyl ether of bisphenol A and bisphenol A were changed to 528 parts and 410 parts, respectively, and polypropylene glycol diglycidyl ether 563 having a molecular weight of 630 was obtained. A white aqueous coating composition was obtained in the same manner except that the part was used and the plasticizer (C) was not used.
  • plasticizer (C) used in each example and comparative example are as follows.
  • DBE viscosity 6 mPa ⁇ s, boiling point 200 ° C.
  • water solubility 5 Tripropylene glycol n-butyl ether (TPnB): viscosity 10 mPa ⁇ s, boiling point 274 ° C., water solubility 3 Butyl diglycol (BDG): viscosity 5 mPa ⁇ s, boiling point 230 ° C., water solubility ⁇
  • PnB viscosity 3 mPa ⁇ s, boiling point 170 ° C., water solubility 6
  • ⁇ Evaluation> The aqueous coating composition obtained above was evaluated by the following method. The results are shown in Table 1. (Appearance of coating film) Each paint composition was applied to a polished steel sheet degreased with xylene in a quantity of 140 g / m 2 using a brush and dried at room temperature for 24 hours. The appearance of the coating film thus obtained was visually observed and judged based on the following criteria. ⁇ : No abnormality ⁇ : Crack (crack) or peeling occurred (drying time) Each paint composition was applied to a polished steel sheet degreased with xylene in a quantity of 140 g / m 2 using a brush and dried at room temperature for 24 hours.
  • the finger was pressed against the coating film thus obtained, and the degree of drying was judged based on the following criteria. ⁇ : The fingertip does not feel sticky and the fingerprint mark does not remain on the coating when the finger is released. ⁇ : The fingertip feels sticky, or the fingerprint mark remains on the coating when the finger is released (water-resistant adhesion) )
  • Each paint composition was applied to a polished steel sheet degreased with xylene in a quantity of 140 g / m 2 using a brush and dried at room temperature for 24 hours to obtain a test plate. After immersing the test plate in 23 ° C. water for 7 days, 5 ⁇ 5 3 mm ⁇ 3 mm squares were formed according to the JIS K 5600-5.6 (2006) cross-cut method.
  • the obtained coating composition was applied to a sandblasted steel plate with a brush at 140 g / m 2 and dried at 20 ° C. for 7 days to obtain a test plate.
  • the obtained test plate was subjected to a cycle corrosion test defined in JIS K 5600 7-7, and the coating state after 120 cycles was judged based on the following criteria.
  • Ratio of rust area generated on coating film surface relative to test plate ⁇ : Less than 0.05% ⁇ : 0.05% or more and less than 0.1% ⁇ : 0.1% or more and less than 0.3% ⁇ : 0.3 % Or more (storage stability) The state change when the obtained white water-based coating composition was stored at room temperature was visually observed. ⁇ : No change after 1 month ⁇ : Some sediment after one month passed ⁇ : There is sediment after one day
  • Examples A to K Formation of a multilayer coating film After the aqueous coating composition of Example 1 or Example 2 was applied to a substrate to form a coating film, a top coating was applied to form a multilayer coating. A film was formed.
  • top coat As a solvent-type epoxy / amine-based paint, Nippon Paint Co., Ltd., trade name “Hypon 40 Topcoat” was used. 2. Solvent two-component urethane paint A As the solvent two-component urethane-based paint A, Nippon Paint Co., Ltd. trade name “Hypon 50 Fine” was used. 3. Solvent two-component urethane paint B As the solvent two-component urethane-based paint B, Nippon Paint Co., Ltd., trade name “Nippure Top Eco” was used. 4).
  • Water-based epoxy / amine-based paint The water-based epoxy / amine-based paint produced in Production Example 2 below was used as the water-based epoxy / amine-based paint. 5.
  • Aqueous two-component urethane paint A As the aqueous two-component urethane coating A, the aqueous two-component urethane coating manufactured in Production Example 3 below was used. 6).
  • Aqueous two-component urethane paint B As an aqueous two-component urethane-based paint B, a product name “Odeure Top” manufactured by Nippon Paint Co., Ltd. was used. 7).
  • Water-based emulsion-based paint As a water-based emulsion-based paint, a product name “Odecoat G” manufactured by Nippon Paint Co., Ltd. was used. 8). Water-based carbodiimide-based paint The water-based carbodiimide-based paint produced in Production Example 4 below was used as the water-based carbodiimide-based paint.
  • the acid value of the obtained monomer mixed solution was 13 mgKOH / g.
  • This monomer mixture is added to an aqueous emulsifier solution in which 1.2 parts of sodium alkyldiphenyl ether disulfonate (trade name “Perex SS-H” manufactured by Kao Corporation) is dissolved in 50 parts of ion-exchanged water and emulsified using a mixer.
  • a pre-emulsion To prepare a pre-emulsion.
  • the former started to drip evenly over 120 minutes and the latter over 150 minutes. After completion of the dropwise addition, the reaction was continued for an additional 120 minutes at the same temperature. After cooling, the solution was neutralized with aqueous ammonia corresponding to 10 mol% of the methacrylic acid used. The neutralized product was filtered through a 200 mesh wire mesh to obtain an acrylic emulsion resin.
  • emulsified epoxy resin (trade name “Adeka Resin EM-101-50” manufactured by ADEKA, epoxy equivalent: 500 g / equivalent, solid content 47%), film-forming aid (manufactured by Chisso, “CS-12”) ]) 1.7 parts, 0.4 part of rust preventive agent, 0.2 part of antifoaming agent and 17 parts of the previously prepared acrylic emulsion resin were mixed to obtain a base coating liquid.
  • 8.9 parts of water-soluble polyamine resin sunmide manufactured by Air Products and Chemicals, trade name “WH-910”, active hydrogen equivalent 135 g / equivalent (solid content conversion, solid content 60%)
  • water 11. 2 parts were mixed to obtain a curing agent.
  • the main component paint liquid and the curing agent were mixed and stirred with a disper to obtain an aqueous epoxy / amine-based paint.
  • methyl isobutyl ketone and water were distilled off at 40 ° C., and the active ingredient was adjusted to 40% by mass to obtain an aqueous carbodiimide curing agent having a carbodiimide equivalent of 825 g / equivalent.
  • an aqueous carbodiimide curing agent having a carbodiimide equivalent of 825 g / equivalent.
  • 6.8 parts of water, 1 part of pigment dispersant (trade name “Disperbyk-190” manufactured by Big Chemie), 1 part of ethylene glycol, 0.2 part of antifoaming agent, 2 parts of barium sulfate, and 24 parts of titanium oxide were added.
  • 35 parts of pigment paste obtained by mixing and dispersing with a disper 35 parts of an acrylic emulsion (acid value: 30 mgKOH / g, solid content: 55% by mass), water-soluble acrylic resin (acid value: 55 mgKOH / g, hydroxyl value: 70 mg KOH / g, mass average molecular weight: 9000, solid content: 30% by mass) 8 parts, film-forming aid (product name “CS-12” manufactured by Chisso Corporation), 1 part of viscosity agent, 1 part of antifoaming agent Were added to obtain a base coating liquid.
  • An aqueous carbodiimide-based paint was obtained by adding 35 parts of the previously prepared aqueous carbodiimide curing agent to the obtained main coating liquid and stirring with a disper.
  • the water-resistant adhesion of the obtained multilayer coating film was evaluated by the same method as the method for evaluating the previous single-layer coating film.
  • Example A was previously degreased with xylene
  • slate plate used in Example H was previously provided with an aqueous sealer for inorganic materials (Nippon Paint). Co., Ltd., trade name “Ultra Sealer III”).
  • Example 2 A multilayer coating film was obtained in the same manner as in Example B except that the aqueous coating composition of Comparative Examples 1 to 4 was used instead of the aqueous coating composition of Example 1. About the obtained multilayer coating film, when water-resistant adhesiveness was evaluated, all were x.
  • the multilayer coating film formed by the multilayer coating film forming method of the present invention was excellent in water-resistant adhesion. Since the multilayer coating film formed by the multilayer coating film forming method of the present invention is excellent in water-resistant adhesion and corrosion resistance, the multilayer coating film is formed by the aqueous coating composition used in the present invention. It was shown that the adhesion between the coating film and the topcoat layer was sufficient. On the other hand, the multilayer coating film of the comparative example was inferior in water-resistant adhesion. This seems to be because the performance of the coating film formed by the aqueous coating composition of the comparative example is insufficient.
  • the aqueous coating composition of the present invention can be suitably used as an anticorrosion coating, for example.
  • vehicles eg, railway vehicles, large vehicles
  • aircraft e.g., bridges, offshore structures, plants, tanks (eg, oil tanks), pipes, steel pipes, cast iron pipes, doors and window frames, etc.
  • tanks e.g, oil tanks
  • pipes steel pipes, cast iron pipes, doors and window frames, etc.
  • the present invention can be suitably applied to metal parts included in other buildings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Epoxy Resins (AREA)

Abstract

 防食性に優れた水性塗料組成物を提供することを目的とする。 本発明の水性塗料組成物は、分子量が2000以上のビスフェノール骨格を有するエポキシ樹脂をアミン化合物で変性して得られたアミン変性エポキシ樹脂(A)と、沸点200℃以上で非水溶性である可塑剤(C)とを含む。

Description

水性塗料組成物ならびに該水性塗料組成物を用いた塗膜形成方法および複層塗膜形成方法
 本発明は、水性塗料組成物ならびに該水性塗料組成物を用いた塗膜形成方法および複層塗膜形成方法に関する。
 防食塗料として、アルキド樹脂を主成分とした一液型の溶剤型塗料が一般的に用いられている。一方で、環境面を配慮して水性の防食塗料が望まれている。例えば、水性防食塗料に適したメインバインダーとして、エポキシエステルディスパージョン樹脂が提案されている(非特許文献1参照)。エポキシエステルディスパージョン樹脂は、水溶性アルキド樹脂およびアクリルエマルション樹脂よりも、耐塩水噴霧性、耐湿性、耐水性などに優れていることが報告されている。
 しかし、上記アルキド樹脂は硬化時にホルムアルデヒドが発生するという問題を有する。また、上記エポキシエステルディスパージョン樹脂の防食性は充分ではないという問題を有する。そこで、さらに優れた性能を有する防食塗料が求められている。
 上記防食塗料により形成される塗膜は、それ単体でももちろん使用可能であるが、さらに別の塗膜を(例えば、防食塗料により形成される塗膜の上に)形成して複層化することによって、更なる塗膜性能向上を図ることができる。ところが、各塗膜間(層間)の密着性が低いと、充分な性能を発揮できないという問題がある。
「環境にやさしい技術の紹介 環境対応形全水系重防食塗装システム」,防錆管理,46,No.1,2002,p.36-39
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、防食性に優れた水性塗料組成物を提供することにある。また、優れた防食性を有し、層間密着性に優れた塗膜の形成方法を提供することにある。
 本発明の水性塗料組成物は、分子量が2000以上のビスフェノール骨格を有するエポキシ樹脂をアミン化合物で変性して得られたアミン変性エポキシ樹脂(A)と、沸点200℃以上で非水溶性である可塑剤(C)とを含む。
 好ましい実施形態においては、上記可塑剤(C)の含有量が、上記アミン変性エポキシ樹脂(A)との合計量100質量部に対して、10~30質量部である。
 好ましい実施形態においては、上記アミン変性エポキシ樹脂(A)のアミノ基が酸化合物(B)により中和されている。
 好ましい実施形態においては、上記アミン変性エポキシ樹脂(A)の中和率が10~80%である。
 好ましい実施形態においては、上記アミン変性エポキシ樹脂(A)の変性量が1~10質量%である。
 好ましい実施形態においては、上記可塑剤(C)の水溶解度が、100質量部の水に対して10質量部以下である。
 本発明の別の局面によれば、塗膜形成方法が提供される。この塗膜形成方法は、基材に、上記水性塗料組成物を塗装して塗膜を形成する。
 本発明のさらに別の局面によれば、複層塗膜形成方法が提供される。この複層塗膜形成方法は、基材に、上記水性塗料組成物を塗装して塗膜を形成後、該塗膜上に上塗り層を形成する。
 好ましい実施形態においては、上記水性塗料組成物による塗膜形成後、上記上塗り層形成前に、中塗り層を形成することを含む。
 好ましい実施形態においては、上記水性塗料組成物による塗膜形成前に、上記基材に、下塗り層を形成することを含む。
 本発明の水性塗料組成物によれば、得られる塗膜は剛直なビスフェノール骨格を多く含み、防食性に優れる。元来、ビスフェノール骨格からなるエポキシ樹脂は、分子量に比例して、高い剛直性を有している。剛直性が高いほど防食性は向上するが、ガラス転移点が高くなるため、塗膜の形成が困難になる。本発明によれば、このように、そのままでは塗膜にならない硬い成分と、特定の要件を満たす可塑剤とを組み合わせることにより、優れた防食性を達成する水性塗料組成物を得ることができる。
 具体的には、本発明の水性塗料組成物により形成される塗膜は、剛直なビスフェノール骨格を多く含むアミン変性エポキシ樹脂が可塑剤を含んだ形で膜化した構造であると推定される。水性塗料組成物に含まれる可塑剤の一部は、造膜(塗装)時および乾燥時に揮発するものの、大部分はアミン変性エポキシ樹脂中に含まれた状態で塗膜を形成していると考えられる。可塑剤は、水溶解度が低く、沸点が高いので、塗膜外に揮発することが極力抑えられている。このことが、より優れた防食性に寄与していると考えられる。また、本発明の水性塗料組成物により形成される塗膜は、他層との密着性に優れている。このため、本発明により形成される複層塗膜は、複層化に基づくさらなる防食性の向上だけでなく、上塗り層が有する機能と防食性とを併せ持つ特性を有することができる。
 本発明の水性塗料組成物は、水性であることから環境面に優れる。また、酸化重合を利用しないので、ホルムアルデヒドを発生する等の不具合も発生しない。さらに、塗膜形成において硬化剤を用いる必要がないので、一液型として使用することができ、硬化反応性に基づいた貯蔵安定性や作業性の問題が発生しない。このように、分子量の高いエポキシ樹脂そのものを塗膜形成成分に用いて、エポキシ樹脂の特性を最大限に活かすことにより、防食塗料として充分な性能を有する水性塗料組成物を得ることができる。また、このような水性塗料組成物を用いることにより、優れた防食性が得られ、環境面にも優れた塗膜の形成方法を得ることができる。
A.水性塗料組成物
 本発明の水性塗料組成物は、アミン変性エポキシ樹脂(A)と、沸点200℃以上で非水溶性である可塑剤(C)とを含む。可塑剤(C)は、アミン変性エポキシ樹脂(A)と質量比1:1で混合した際に、アミン変性エポキシ樹脂(A)を溶解し得る。本発明の水性塗料組成物は、好ましくは、アミン変性エポキシ樹脂(A)の水分散体または水溶液である。
 アミン変性エポキシ樹脂(A)は、代表的には、エポキシ樹脂をアミン化合物で変性することにより得られる。アミン変性エポキシ樹脂(A)を構成するエポキシ樹脂は、ビスフェノール骨格を有するエポキシ樹脂である。ビスフェノール骨格を有するエポキシ樹脂は、剛直性が高く、樹脂そのものが優れた防食性を備えている。ビスフェノール骨格を有するエポキシ樹脂は、代表的には、ビスフェノールAとビスフェノールAのジグリシジルエーテルとが縮合した構造を有し、下記一般式で表わされる(nは整数)。
Figure JPOXMLDOC01-appb-C000001
 エポキシ樹脂におけるビスフェノール骨格が占める割合は、好ましくは90質量%以上である。このように剛直性の高いエポキシ樹脂を用いることで優れた防食性を得ることができる。
 エポキシ樹脂(変性前)の分子量は、2000以上であり、より好ましくは2000~8500、さらに好ましくは3000~8000である。分子量が2000未満であると、防食性が低下するおそれがある。分子量が8500を超えると、得られるアミン変性エポキシ樹脂(A)の水への分散または溶解が困難となり、相分離を起こすおそれがある。ここで、「分子量」とは、上記構造式を有しているものとして、エポキシ当量×2で算出される値をいう。
 エポキシ樹脂としては、市販品をそのまま用いてもよいし、上述のとおり、ビスフェノールAとビスフェノールAのジグリシジルエーテルと縮合させて合成したものを用いてもよい。合成方法としては、任意の適切な方法が採用される。具体例として、ビスフェノールAに対してビスフェノールAのジグリシジルエーテルを過剰に配合し、メチルイソブチルケトン等の有機溶剤中で、ジメチルベンジルアミン等の有機塩基を触媒として加熱することにより合成する方法が挙げられる。好ましくは、エポキシ当量を測定することにより反応追跡を行い、目的とする値になった時点で反応を終了させる。アミン化合物による変性がメチルイソブチルケトン等の有機溶剤中で行われること、固形エポキシ樹脂を有機溶剤に溶解させるのに手間がかかること等を考慮すると、エポキシ樹脂を合成することが好ましい。なお、水性塗料組成物は、アミン変性エポキシ樹脂(A)の合成の際に用いられる有機溶剤を含み得るが、実質的に含まないことが好ましい。
 変性は、代表的には、原料となるエポキシ樹脂のエポキシ基に対して、活性水素を有するアミン化合物を開環付加させることにより行われる。好ましくは、実質的に全部のエポキシ基を変性させる。具体的には、エポキシ基の変性率は、好ましくは90%以上である。
 アミン変性エポキシ樹脂(A)の変性量は、好ましくは1~10質量%であり、より好ましくは3~8質量%である。変性量が1質量%未満であると、アミン変性エポキシ樹脂(A)の水への分散または溶解が困難となり、相分離を起こすおそれがある。変性量が10質量%を超えると、防食性や密着性が低下するおそれがある。また、塗膜を得るための乾燥時間が長くなり過ぎるおそれがある。ここで、「変性量」とは、アミン化合物の量/(エポキシ樹脂の量+アミン化合物の量)で求められる。なお、アミン化合物として後述のジケチミン化物を用いる場合、「アミン化合物の量」は、加水分解後に樹脂中に生成するアミン化合物の量を指す。
 アミン化合物としては、例えば、ブチルアミン、オクチルアミン、ジエチルアミン、ジブチルアミン、メチルブチルアミン、モノエタノールアミン、ジエタノールアミン、N-メチルエタノールアミン、アミノエチルエタノールアミンのケチミン化物、ジエチレントリアミンのジケチミン化物等が挙げられる。これらは、単独で、または、2種以上組み合わせて用いられる。これらの中でも、好ましくは、ケチミン化物である。ケチミン化物を用いることにより、後述の中和の際に、第1級アミノ基が発現し得、密着性等の塗膜物性が向上する。
 アミン化合物による変性(開環付加)方法としては、任意の適切な方法が採用される。例えば、有機溶剤に原料となるエポキシ樹脂を溶解させて、エポキシ樹脂が有するエポキシ基のほぼ当量のアミン化合物を添加し、その後、必要に応じて、加熱する方法が挙げられる。
 アミン変性エポキシ樹脂(A)は、好ましくは、そのアミノ基が酸化合物(B)により中和されている。良好に、アミン変性エポキシ樹脂(A)を水に分散または溶解させることができるからである。
 酸化合物(B)としては、例えば、塩酸、硝酸、リン酸等の無機酸;ギ酸、酢酸、プロピオン酸、乳酸等のカルボン酸化合物、スルファミン酸等の有機酸が挙げられる。これらは、単独で、または、2種以上組み合わせて用いられる。これらの中でも、好ましくは有機酸であり、特に好ましくはカルボン酸化合物である。得られる水性塗料組成物の防食性(特に、常温で乾燥する場合)が、より優れ得るからである。カルボン酸化合物の中でも、揮発性を考慮すると、酢酸が好ましい。
 中和率(アミン変性エポキシ樹脂(A)が有するアミノ基の当量に対する酸当量)は、好ましくは10~80%、さらに好ましくは15~80%である。中和率が10%未満であると、アミン変性エポキシ樹脂(A)の水への分散または溶解が困難となり、相分離を起こすおそれがある。中和率が80%を超えると、耐水性が低下するおそれがある。
 アミン変性エポキシ樹脂(A)が水に分散または溶解するかは、アミン変性エポキシ樹脂(A)の分子量およびアミノ基の量、変性に用いるアミン化合物の種類、用いる酸化合物(B)の種類、酸化合物(B)の配合量(中和率)等を調整することにより決定され得る。好ましくは、アミン変性エポキシ樹脂(A)は、水分散体とされる。アミン変性エポキシ樹脂(A)が水分散体であることにより、防食性により優れ得る。
 上述のとおり、本発明の水性塗料組成物は可塑剤(C)を含む。可塑剤(C)を用いることにより、エポキシ樹脂の剛直性(防食性)を犠牲にすることなく、防食塗料として充分な性能を有する水性塗料組成物を得ることができる。可塑剤(C)は、上記アミン変性エポキシ樹脂(A)と質量比1:1で混合した際に、アミン変性エポキシ樹脂(A)を溶解し得る。可塑剤(C)の溶解性が充分でないと、相分離等の不具合が発生して、良好に水性塗料組成物が得られないおそれがある。
 可塑剤(C)は、非水溶性である。可塑剤(C)が非水溶性であることにより、優れた防食性を得ることができる。ここで、「非水溶性」とは、水と自由に混和しない状態をいい、実質的に水に溶けない状態をいう。具体的には、その水溶解度が、100質量部の水に対して10質量部以下であることが好ましい。水溶解度が水100質量部に対して10質量部を超えると、防食性が低下するおそれがある。
 可塑剤(C)は、室温(25℃)において液状であり、その粘度は、好ましくは1000mPa・s以下、さらに好ましくは500mPa・s以下である。
 可塑剤(C)の沸点は、好ましくは200℃以上である。可塑剤(C)の沸点が200℃未満であると、防食性が低下するおそれがある。
 可塑剤(C)の具体例としては、ジエチレングリコールジブチルエーテル(ジブチルジグリコール、DBDG)、エチレングリコールモノフェニルエーテル(フェニルグリコール、PhG)、ジエチレングリコールモノフェニルエーテル(フェニルジグリコール、PhDG)、エチレングリコールモノベンジルエーテル(ベンジルグリコール、BzG)、プロピレングリコールモノフェニルエーテル(フェニルプロピレングリコール、PhFG)、ジプロピレングリコールモノプロピルエーテル(プロピルプロピレンジグリコール、PFDG)、ジプロピレングリコールモノブチルエーテル(DPnB、ブチルプロピレンジグリコール、BFDG)、トリプロピレングリコールモノブチルエーテル(TPnB)、ポリプロピレングリコール#1000等のグリコールエーテル系化合物;DBE(二塩基酸エステル)、ジブチルフタレート(DBP)、ジー2-エチルヘキシルフタレート(DOP)、ジイソノニルフタレート(DINP),ジイソデシルフタレート(DIDP)、ジヘプチルフタレート(DHP)、ジ-n-オクチルフタレート(N-DOP)、ブチルベンジルフタレート(BBP)、エチルフタリルエチルグリコレート、ジ-2-エチルヘキシルアジペート(DOA)、ジブチルジグリコールアジペート(BXA)等のカルボン酸エステル系化合物が挙げられる。また、市販品として、ソルベッソ200(エクソン化学社製)が用いられる。これらは、単独で、または、2種以上組み合わせて用いられる。これらの中でも、長期安定性を考慮すると、分子中にエステル結合を有しない化合物が好ましく用いられる。また、臭気を考慮すると、グリコールエーテル系化合物が好ましく用いられる。
 可塑剤(C)の含有量は、アミン変性エポキシ樹脂(A)との合計量((A)+(C))100質量部に対して、好ましくは10~30質量部、さらに好ましくは15~30質量部である。10質量部未満であると、塗膜にクラックが入るおそれがある。30質量部を超えると、塗膜を得るための乾燥時間が長くなり過ぎるおそれがある。また、水性塗料組成物における可塑剤(C)の含有量は、揮発性有機化合物(VOC)の使用をできるだけ少なくする観点から、好ましくは10質量%以下である。
 本発明の水性塗料組成物は、好ましくは、水を主成分とした水性媒体を含む。水性媒体は、水に溶解する有機溶剤を含み得る。当該有機溶剤の具体例としては、エチレングリコール、プロピレングリコール、エチレングリコールモノブチルエーテル、プロピレングリコールモノブチルエーテル、ジエチレングリコール、ジプロピレングリコール、ジエチレングリコールモノブチルエーテル等が挙げられる。VOCの使用をできるだけ少なくする観点から、有機溶剤の量はできるだけ少ないことが好ましい。
 水性塗料組成物における、アミン変性エポキシ樹脂(A)の含有量と可塑剤(C)の含有量との合計は、好ましくは15~40質量%である。15質量%未満であると、適切な塗膜が得られないおそれがある。40質量%を超えると、塗料の安定性が低下するおそれがある。
 本発明の水性塗料組成物は、顔料を含み得る。顔料の具体例としては、酸化チタン、黄色酸化鉄、赤色酸化鉄、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン、アゾレッド、キナクリドンレッド、ベンズイミダゾロンイエロ等の着色顔料;炭酸カルシウム、硫酸バリウム、カオリン、クレー、タルク等の体質顔料;防錆顔料等が挙げられる。水性塗料組成物における顔料の濃度は、好ましくは10~50質量%である。
 本発明の水性塗料組成物は、添加剤を含み得る。添加剤の具体例としては、分散剤、粘性調整剤、硬化触媒、表面調整剤、消泡剤、可塑剤、造膜助剤、紫外線吸収剤、酸化防止剤、硬化剤等が挙げられる。なお、本発明の水性塗料組成物において硬化剤は必要ないが、塗膜にさらに高いレベルの特性が必要な場合など、適宜、用いることができる。硬化剤としては、例えば、イソシアネート化合物およびメラミン化合物の他に、アミン変性エポキシ樹脂(A)が1級または2級のアミノ基を有する場合、(メタ)アクリロイル基を複数個有する化合物、エポキシ基を複数個有する化合物が使用できる。
 本発明の水性塗料組成物は、好ましくは、上記アミン変性エポキシ樹脂(A)と可塑剤(C)と水性媒体とを混合することにより得られる。酸化合物(B)を用いる場合、酸化合物(B)は、任意の適切なタイミングで添加される。好ましくは、エポキシ樹脂をアミン化合物で変性して得られたアミン変性エポキシ樹脂(A)と可塑剤(C)とを混合した後に、酸化合物(B)を添加する。一つの実施形態においては、アミン変性エポキシ樹脂(A)有機溶剤溶液に可塑剤(C)を加え、さらに酸化合物(B)を添加して混合物を調製する。その後、得られた混合物を水性媒体に滴下して、もしくは、得られた混合物に水性媒体を加えて分散または溶解させ、有機溶剤を留去することにより水性塗料組成物を製造する。アミン変性エポキシ樹脂(A)は有機溶剤溶液として得られ得るので、本実施形態のように、最終的には、有機溶剤を留去しておくことが好ましい。
 上記可塑剤(C)を、アミン変性エポキシ樹脂(A)を製造する際の有機溶剤として用いて、水性塗料組成物に配合することもできる。可塑剤(C)を有機溶剤として用いることにより、全体の有機溶剤の使用量を抑制することができる。水性塗料組成物の製造において、上記その他の成分は、任意の適切なタイミングで添加され得る。
B.(複層)塗膜形成方法
 本発明の水性塗料組成物は、任意の適切な基材に塗装され得る。基材としては、例えば、金属、木材、プラスティックス、ゴム、石材、スレート、コンクリート、モルタル、繊維、紙、ガラス、磁器、陶器、フィルム、およびこれらの複合体等が挙げられる。また、例えば、基材がスレート、コンクリート等の無機系基材の場合、予めその表面にシーラーが塗布されていてもよい。特性を考慮すると、好ましくは、金属に適用される。金属としては、例えば、鉄、銅、錫、亜鉛、アルミニウム、ステンレス等が挙げられる。
 金属を表面(外面および内面)に有する被塗装物としては、例えば、船舶、車両(例えば、鉄道車両、大型車両)、航空機、橋梁、海上構築物、プラント、タンク(例えば、石油タンク)、パイプ、鋼管、鋳鉄管等が挙げられる。上記以外にも、上記水性塗料組成物は、建築物、土木構築物にも適用可能である。
 塗装方法は、代表的には、上記水性塗料組成物を被塗装物(基材)に塗布し、乾燥する方法が挙げられる。例えば、電着等の工程を必要とせず、簡便に塗装を行うことができる。塗布方法としては、被塗装物(基材)の種類等に応じて、任意の適切な方法が採用され得る。例えば、刷毛、ローラー、エアスプレー、エアレススプレー、コテ等による塗布や浸漬等が挙げられる。
 水性塗料組成物の塗布量は、用途等に応じて、任意の適切な塗布量に設定され得る。好ましくは、10~400g/mである。
 乾燥方法としては、任意の適切な方法が採用され得る。好ましくは、自然乾燥または加熱乾燥である。自然乾燥の場合、乾燥時間は、好ましくは2時間以上、さらに好ましくは24時間以上である。
 水性塗料組成物を塗装して形成される塗膜の厚みは、好ましくは10~100μm、さらに好ましくは20~100μmである。厚みが100μmより厚い場合、塗装時にタレ発生などの不具合が生じるおそれがある。
 上記水性塗料組成物を塗装して塗膜を形成する前および/または後に、別の塗膜(層)を形成することができる。一つの実施形態においては、上記水性塗料組成物を塗装して塗膜を形成した後、当該塗膜上に上塗り塗料を塗装して上塗り層を形成する。上塗り層を形成することにより、外観および防食性がさらに向上する。
 上塗り塗料としては、任意の適切な塗料が採用され得る。例えば、エポキシ/アミン系塗料、2液型ウレタン硬化系塗料、1液型ウレタン硬化系塗料、カルボジイミド硬化系塗料、アルキド樹脂系塗料、アクリル樹脂系塗料、アクリルシリコン樹脂系塗料等が挙げられる。上塗り塗料は、溶剤型であってもよく、水性であってもよい。好ましくは、水性である。環境負荷を低減することができるからである。
 上塗り塗料の塗布量は、塗料の種類および塗装の目的等に応じて、任意の適切な塗布量に設定され得る。好ましくは、30~400g/mである。上塗り層の厚みは、塗料の種類および塗装の目的等に応じて、任意の適切な厚みに設定され得る。好ましくは、10~150μmである。
 上記水性塗料組成物を塗装して塗膜を形成する前に、基材に下塗り塗料を塗装して下塗り層を形成してもよい。下塗り層を形成することで防食性により優れ、例えば、橋梁、プラント、タンク等の高い防食性が要求される場合にも充分に対応することができる。
 下塗り塗料としては、任意の適切な塗料が採用され得る。例えば、有機または無機のジンクリッチ塗料が挙げられる。下塗り塗料は、溶剤型であってもよく、水性であってもよい。好ましくは、水性である。環境負荷を低減することができるからである。
 下塗り塗料の塗布量は、塗料の種類および塗装の目的等に応じて、任意の適切な塗布量に設定され得る。好ましくは、80~1200g/mである。下塗り層の厚みは、塗料の種類および塗装の目的等に応じて、任意の適切な厚みに設定され得る。好ましくは、20~200μmである。
 上記水性塗料組成物を塗布して塗膜を形成した後、当該塗膜上に中塗り塗料を塗装して中塗り層を形成してもよい。中塗り層を形成することにより、防食性により優れ得る。好ましくは、中塗り層の形成後、上記上塗り層を形成する。
 中塗り塗料としては、任意の適切な塗料が採用され得る。例えば、エポキシ/アミン系塗料、2液型ウレタン硬化系塗料、1液型ウレタン硬化系塗料等が挙げられる。中塗り塗料は、溶剤型であってもよく、水性であってもよい。好ましくは、水性である。環境負荷を低減することができるからである。
 中塗り塗料の塗布量は、塗料の種類および塗装の目的等に応じて、任意の適切な塗布量に設定され得る。好ましくは、20~400g/mである。中塗り層の厚みは、塗料の種類および塗装の目的等に応じて、任意の適切な厚みに設定され得る。好ましくは、10~100μmである。
 上記上塗り塗料、中塗り塗料および下塗り塗料は、顔料、添加剤等を含有し得る。顔料および添加剤としては、例えば、上記A項で説明した顔料および添加剤が挙げられる。添加される顔料および添加剤の数、種類および量は、目的に応じて適宜選択され得る。
 上記上塗り塗料、中塗り塗料および下塗り塗料の塗布方法および乾燥方法は、用いる塗料の種類に応じて、任意の適切な方法が採用され得る。上塗り塗料、中塗り塗料および下塗り塗料の塗布方法および乾燥方法としては、例えば、上記で説明した水性塗料組成物の塗布方法および乾燥方法と同様の方法が挙げられる。
 以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例には限定されない。なお、特に明記しない限り、実施例における部および%は質量基準である。
[製造例1]顔料ペーストの製造
 水10部、ヒドロキシエチルセルロース0.1部、顔料分散剤(ビックケミー社製、商品名「Disperbyk-190」)3部、タルク10部、炭酸カルシウム8部、酸化チタン17部、カルシウム系防錆顔料2部を混合し、ディスパーで30分間攪拌することによって、顔料分散ペーストを製造した。
[実施例1]
 ビスフェノールAのジグリシジルエーテル1005部およびビスフェノールA495部を、メチルイソブチルケトン(以下、「MIBK」と言う)500部に溶解した。ここに、ジメチルベンジルアミン2部を加えて、エポキシ当量が1500になるまで反応を続け、原料となるビスフェノール骨格を有するエポキシ樹脂を得た。
 反応終了後、ジブチルアミン123部を加え、120℃で1時間反応させて、ビスフェノール骨格を有するアミン変性エポキシ樹脂(A)を得た。
 可塑剤(C)であるジプロピレングリコールn-ブチルエーテル286部(アミン変性エポキシ樹脂(A)との合計に対して15質量%)を加えた後、酸化合物(B)の90%酢酸3部を加えて中和を行った(中和率20%)。90℃に保ったままで攪拌しながら、水2600部を徐々に加えて、均一化を行った。さらに減圧下50℃で、MIBKと水との混合物1000部を留去して、クリアタイプの水性塗料組成物(水分散体)を得た。
 このクリアタイプの水性塗料組成物50部と先の製造例で得られた顔料ペースト50部とを混合し、ディスパーで10分間攪拌することによって、白色水性塗料組成物を得た。
[実施例2]
 ビスフェノールAのジグリシジルエーテル1939部およびビスフェノールA1061部をMIBK1000部に溶解した。ここに、ジメチルベンジルアミン4部を加えて、エポキシ当量が3000になるまで反応を続け、原料となるビスフェノール骨格を有するエポキシ樹脂を得た。
 反応終了後、ジエチレントリアミンのMIBKジケチミン化物(以下、「DETAジケチミン」と言う)249部を加え、120℃で1時間反応させて、ビスフェノール骨格を有するアミン変性エポキシ樹脂(A)を得た。
 可塑剤(C)であるジプロピレングリコールn-ブチルエーテル1059部(アミン変性エポキシ樹脂(A)との合計に対して25質量%)を加えた後、酸化合物(B)の90%酢酸48部を加えて中和を行った(中和率38%)。90℃に保ったままで攪拌しながら、水4631部を徐々に加えて、均一化を行った。さらに減圧下50℃で、MIBKと水との混合物2324部を留去して、クリアタイプの水性塗料組成物(水分散体)を得た。さらに、実施例1と同様にして、白色水性塗料組成物を得た。
[実施例3]
 可塑剤(C)として、ジプロピレングリコールn-ブチルエーテルのかわりにDBE(二塩基酸エステル)を同量用いたこと以外は実施例2と同様にして、クリアタイプの水性塗料組成物(水分散体)を調製し、白色水性塗料組成物を得た。
[実施例4]
 原料となるビスフェノール骨格を有するエポキシ樹脂として、エポキシ当量が4000であるエポキシ樹脂(ジャパンエポキシレジン社製、グレード1010)4000部をMIBK1167部に加熱しながら、ジエタノールアミン100部を加え、120℃で1時間反応させ、ビスフェノール骨格を有するアミン変性エポキシ樹脂(A)を得た。
 可塑剤(C)であるトリプロピレングリコールn-ブチルエーテル1543部(アミン変性エポキシ樹脂(A)との合計に対して30質量%)を加えた後、酸化合物(B)の90%酢酸38部を加えて中和を行った(中和率60%)。90℃に保ったままで攪拌しながら、水5773部を徐々に加えて、均一化を行った。さらに減圧下50℃で、MIBKと水との混合物2333部を留去して、クリアタイプの水性塗料組成物(水分散体)を得た。さらに、実施例1と同様にして、白色水性塗料組成物を得た。
[比較例1]
 可塑剤(C)として、ジプロピレングリコールn-ブチルエーテルのかわりにブチルジグリコールを同量用いたこと以外は実施例1と同様にして、白色水性塗料組成物を得た。
[比較例2]
 可塑剤(C)として、ジプロピレングリコールn-ブチルエーテルのかわりにプロピレングリコールn-ブチルエーテルを同量用いたこと以外は実施例2と同様にして、白色水性塗料組成物を得た。
[比較例3]
 原料となるビスフェノール骨格を有するエポキシ樹脂を、エポキシ当量が925であるエポキシ樹脂(ジャパンエポキシレジン社製、グレード1004)925部に変更したこと以外は実施例1と同様にして、白色水性塗料組成物を得た。
[比較例4]
 実施例1において、原料となるビスフェノール骨格を有するエポキシ樹脂を得る際、ビスフェノールAのジグリシジルエーテルおよびビスフェノールAの量をそれぞれ528部および410部に変更して、分子量630のポリプロピレングリコールジグリシジルエーテル563部を用いたこと、および、可塑剤(C)を用いなかったこと以外は同様にして、白色水性塗料組成物を得た。
 各実施例および比較例で用いた可塑剤(C)の詳細は、以下のとおりである。
ジプロピレングリコールn-ブチルエーテル(DPnB):粘度5mPa・s、沸点229℃、水溶解度6
DBE:粘度6mPa・s、沸点200℃、水溶解度5
トリプロピレングリコールn-ブチルエーテル(TPnB):粘度10mPa・s、沸点274℃、水溶解度3
ブチルジグリコール(BDG):粘度5mPa・s、沸点230℃、水溶解度∞
プロピレングリコールn-ブチルエーテル(PnB):粘度3mPa・s、沸点170℃、水溶解度6
<評価>
 上記で得られた水性塗料組成物を下記の方法で評価した。結果を表1に示す。
(塗膜外観)
 キシレンで脱脂した磨き鋼板に、刷毛を用いて、140g/mの量でそれぞれの塗料組成物を塗装し、室温で24時間乾燥した。このようにして得られた塗膜の外観を目視で観察し、下記の基準に基づいて判断した。
 ○:異常なし
 ×:ワレ(クラック)や剥離が発生
(乾燥時間)
 キシレンで脱脂した磨き鋼板に、刷毛を用いて、140g/mの量でそれぞれの塗料組成物を塗装し、室温で24時間乾燥した。このようにして得られた塗膜に指を押しつけて、乾燥度合いを下記の基準に基づいて判断した。
 ○:指先にべたつきを感じず、指を離した際に塗膜に指紋跡が残らない
 ×:指先にべたつきを感じる、もしくは、指を離した際に塗膜に指紋跡が残る
(耐水密着性)
 キシレンで脱脂した磨き鋼板に、刷毛を用いて、140g/mの量でそれぞれの塗料組成物を塗装し、室温で24時間乾燥を行って試験板を得た。
 23℃の水中に試験板を7日間浸漬した後、JIS K 5600-5.6(2006)クロスカット法に準じて、3mm×3mmのマス目を5×5個形成した。その表面に粘着テープを貼付した後、急激に剥離し、残ったマスの数で下記基準に基づいて判断した。
 ○:全部のマスが残っている
 ×:一部のマスが残っている
 ××:全くマスが残っていない
(防食性)
 得られた塗料組成物を、サンドブラスト鋼板に140g/mとなるように刷毛で塗布し、20℃で7日間乾燥させることにより、試験板を得た。
 得られた試験板に対し、JIS K 5600 7-7に定めるサイクル腐食試験を実施し、120サイクル後の塗膜状態を下記基準に基づいて判断した。
 試験板の表面に対する塗膜に生じた錆面積の割合
 ◎:0.05%未満
 ○:0.05%以上0.1%未満
 △:0.1%以上0.3%未満
 ×:0.3%以上
(貯蔵安定性)
 得られた白色水性塗料組成物を、室温で保管した際の、状態変化を目視で観察した。
 ◎:1ヶ月経過後も変化なし 
 ○:1ヶ月経過後に若干の沈降物あり
 ×:1日経過後に沈降物あり
Figure JPOXMLDOC01-appb-T000002
 実施例1~4の水性塗料組成物からは、優れた防食性および耐水密着性を有する塗膜が得られたのに対し、比較例の水性塗料組成物では、充分な防食性は得られなかった。
[実施例A~K]複層塗膜の形成
 基材に、上記実施例1もしくは実施例2の水性塗料組成物を塗装して塗膜を形成した後、上塗り塗料を塗装して複層塗膜を形成した。
 用いた上塗り塗料の詳細は以下のとおりである。
[上塗り塗料]
1.溶剤型エポキシ/アミン系塗料
 溶剤型エポキシ/アミン系塗料として、日本ペイント社製、商品名「ハイポン40上塗」を用いた。
2.溶剤2液型ウレタン系塗料A
 溶剤2液型ウレタン系塗料Aとして、日本ペイント社製、商品名「ハイポン50ファイン」を用いた。
3.溶剤2液型ウレタン系塗料B
 溶剤2液型ウレタン系塗料Bとして、日本ペイント社製、商品名「ニッペウレトップエコ」を用いた。
4.水性エポキシ/アミン系塗料
 水性エポキシ/アミン系塗料として、下記製造例2で製造した水性エポキシ/アミン系塗料を用いた。
5.水性2液型ウレタン系塗料A
 水性2液型ウレタン系塗料Aとして、下記製造例3で製造した水性2液型ウレタン系塗料を用いた。
6.水性2液型ウレタン系塗料B
 水性2液型ウレタン系塗料Bとして、日本ペイント社製、商品名「オーデウレトップ」を用いた。
7.水性エマルション系塗料
 水性エマルション系塗料として、日本ペイント社製、商品名「オーデコートG」を用いた。
8.水性カルボジイミド系塗料
 水性カルボジイミド系塗料として、下記製造例4で製造した水性カルボジイミド系塗料を用いた。
[製造例2]水性エポキシ/アミン系塗料の製造
 イオン交換水34.5部、アルキルジフェニルエーテルジスルホン酸ナトリウム(花王社製、商品名「ペレックスSS-H」)0.3部を仕込み、窒素雰囲気のもとで80℃に昇温した。次いで、モノマーとして、スチレン14部、2-エチルへキシルアクリレート58部、メチルメタクリレート22部、エチレングリコールジメタクリレート4部、およびメタクリル酸2部を含み、連鎖移動剤としてラウリルメルカプタン0.5部を含むモノマー混合液を調製した。得られたモノマー混合液の酸価は13mgKOH/gであった。このモノマー混合液を、アルキルジフェニルエーテルジスルホン酸ナトリウム(花王社製、商品名「ペレックスSS-H」)1.2部をイオン交換水50部に溶解させた乳化剤水溶液中に加え、ミキサーを用いて乳化させてプレエマルションを調製した。
 このようにして得られたプレエマルションと、過硫酸アンモニウム0.3部をイオン交換水13部に溶解させた開始剤水溶液とを上記セパラブルフラスコに別個の滴下漏斗から同時に滴下した。前者は120分間、後者は150分間にわたって均等に滴下を開始した。滴下終了後、同温度でさらに120分間反応を継続した。冷却後、用いたメタクリル酸の10モル%に相当するアンモニア水で中和した。中和物を200メッシュの金網で濾過し、アクリルエマルション樹脂を得た。
 続いて、顔料分散剤(ビックケミー社製、商品名「Disperbyk-190」)1.9部、消泡剤(ビックケミー社製、商品名「BYK-019」)0.3部、酸化チタン18.6部、炭酸カルシウム10.9部、タルク8.5部、防錆剤(キクチカラー社製、商品名「LFボウセイPM-303W」)2.9部、および水12.1部を混合し、ディスパーで分散した。
 ここに、乳化エポキシ樹脂(ADEKA社製、商品名「アデカレジンEM-101-50」、エポキシ当量:500g/当量、固形分47%)41部、造膜助剤(チッソ社製、「CS-12」)1.7部、防錆剤0.4部、消泡剤0.2部および、先に製造したアクリルエマルション樹脂17部を混合して、主剤塗料液を得た。
 また、水溶性ポリアミン樹脂サンマイド(エアープロダクツ・アンド・ケミカルズ社製、商品名「WH-910」、活性水素当量 135g/当量(固形分換算)、固形分60%)8.9部と水11.2部とを混合して、硬化剤を得た。
 上記主剤塗料液と硬化剤とを混合し、ディスパーで攪拌することによって、水性エポキシ/アミン系塗料を得た。
[製造例3]水性2液型ウレタン系塗料の製造
 水22部、顔料分散剤(ビックケミー社製、商品名「Disperbyk-190」)6部、酸化チタン70部、消泡剤(ビックケミー社製、商品名「BYK-011」、10%に希釈して使用)1部、ジメチルエタノールアミン水溶液(25質量%)0.4部を混合し、ディスパーで攪拌して、顔料ペーストを得た。
 得られた顔料ペースト39部、水性アクリルポリオール(DIC社製、商品名「バーノックWE-306」)58部、表面調整剤(ビックケミー社製、商品名「BYK-346」)0.4部、レベリング剤(ビックケミー社製、商品名「BYK-333」)0.05部、界面活性剤(エアープロダクツ社製、商品名「ダイノール604」)0.4部、粘性調整剤(ローム&ハース社製、商品名「プライマルRM-8W」)0.5部、ジメチルエタノールアミン水溶液(25質量%)0.1部、消泡剤(サンノプコ社製、商品名「SNディフォーマー373」)2部を混合して、ディスパーで攪拌することにより主剤塗料液を得た。
 上記主剤塗料液100部に対し、水分散性ポリイソシアネート(DIC社製、商品名「バーノックDNW-5000」)17部を混合し、ディスパーで攪拌して水性2液型ウレタン系塗料を得た。
[製造例4]水性カルボジイミド系塗料の製造
 4,4-ジシクロヘキシルメタンジイソシアネート100部を、カルボジイミド化触媒3-メチル-1-フェニル-2-ホスホレン-1-オキシド1部の存在下、170℃で8時間反応を行い、1分子中にカルボジイミド基を約3個有し、両末端にイソシアネート基を有するカルボジイミド化合物(イソシアネート当量450g/当量)を得た。
 このカルボジイミド化合物をメチルイソブチルケトンで50質量%に希釈して得られた溶液360部に、ジブチル錫ラウレート0.02部および分子量2000のポリプロピレングリコール165部を加え、85℃で1時間反応させた。続いて、繰り返し単位数15のポリエチレングリコールモノメチルエーテル125部を加え、85℃で1.5時間反応させた。
 赤外分光光度計でイソシアネート基の消失を確認した後、イオン交換水920部を加え、攪拌して均一化した。減圧下、40℃でメチルイソブチルケトンおよび水を留去して、有効成分が40質量%になるよう調整して、カルボジイミド当量が825g/当量の水性カルボジイミド硬化剤を得た。
 次いで、水6.8部、顔料分散剤(ビックケミー社製、商品名「Disperbyk-190」)1部、エチレングリコール1部、消泡剤0.2部、硫酸バリウム2部、酸化チタン24部をディスパーで混合分散して得られた顔料ペースト35部と、アクリルエマルション(酸価:30mgKOH/g、固形分:55質量%)35部、水溶性アクリル樹脂(酸価:55mgKOH/g、水酸基価:70mgKOH/g、質量平均分子量:9000、固形分:30質量%)8部、造膜助剤(チッソ社製、商品名「CS-12」)3部、粘性剤1部、消泡剤1部とを加え、主剤塗料液を得た。
 得られた主剤塗料液に、先に製造した水性カルボジイミド硬化剤35部を加え、ディスパーで攪拌することにより、水性カルボジイミド系塗料を得た。
 得られた複層塗膜の耐水密着性を、先の単層塗膜を評価した方法と同じ方法により評価した。
 基材、塗装条件の詳細とともに評価結果を表2に示す。なお、実施例Aおよび実施例Bで用いた磨き鋼板は、予め、キシレンで脱脂したものであり、実施例Hで用いたスレート板は、予め、その表面に、無機質材用水性シーラー(日本ペイント社製、商品名「ウルトラシーラーIII」)を塗布したものである。
Figure JPOXMLDOC01-appb-T000003
[比較例]
 実施例1の水性塗料組成物のかわりに、比較例1~4の水性塗料組成物を用いたこと以外は、実施例Bと同様にして、複層塗膜を得た。
 得られた複層塗膜について、耐水密着性を評価したところ、いずれも×であった。
 表2に示すとおり、いずれの実施例においても、本発明の複層塗膜形成方法により形成された複層塗膜は、耐水密着性に優れていた。本発明の複層塗膜形成方法により形成された複層塗膜は、耐水密着性および防食性に優れていることから、複層塗膜において、本発明で用いる水性塗料組成物により形成される塗膜と上塗り層との密着性が充分であることが示された。
 これに対し、比較例の複層塗膜は、いずれも耐水密着性に劣っていた。これは、比較例の水性塗料組成物により形成された塗膜の性能が不充分であるためであると思われる。
 本発明の水性塗料組成物は、例えば、防食塗料として、好適に用いられ得る。具体的には、船舶、車両(例えば、鉄道車両、大型車両)、航空機、橋梁、海上構築物、プラント、タンク(例えば、石油タンク)、パイプ、鋼管、鋳鉄管等に加え、扉や窓枠等の建築物に含まれる金属部分に好適に適用され得る。

Claims (10)

  1.  分子量が2000以上のビスフェノール骨格を有するエポキシ樹脂をアミン化合物で変性して得られたアミン変性エポキシ樹脂(A)と、
     沸点200℃以上で非水溶性である可塑剤(C)とを含む、
     水性塗料組成物。
  2.  前記可塑剤(C)の含有量が、前記アミン変性エポキシ樹脂(A)との合計量100質量部に対して、10~30質量部である、請求項1に記載の水性塗料組成物。
  3.  前記アミン変性エポキシ樹脂(A)のアミノ基が酸化合物(B)により中和されている、請求項1または2に記載の水性塗料組成物。
  4.  前記アミン変性エポキシ樹脂(A)の中和率が10~80%である、請求項3に記載の水性塗料組成物。
  5.  前記アミン変性エポキシ樹脂(A)の変性量が1~10質量%である、請求項1から4のいずれかに記載の水性塗料組成物。
  6.  前記可塑剤(C)の水溶解度が、100質量部の水に対して10質量部以下である、請求項1から5のいずれかに記載の水性塗料組成物。
  7.  基材に、請求項1から6のいずれかに記載の水性塗料組成物を塗装して塗膜を形成する、塗膜形成方法。
  8.  基材に、請求項1から6のいずれかに記載の水性塗料組成物を塗装して塗膜を形成後、該塗膜上に上塗り層を形成する、複層塗膜形成方法。
  9.  前記水性塗料組成物による塗膜形成後、前記上塗り層形成前に、中塗り層を形成することを含む、請求項8に記載の複層塗膜形成方法。
  10.  前記水性塗料組成物による塗膜形成前に、前記基材に、下塗り層を形成することを含む、請求項8または9に記載の複層塗膜形成方法。
PCT/JP2011/057406 2010-03-26 2011-03-25 水性塗料組成物ならびに該水性塗料組成物を用いた塗膜形成方法および複層塗膜形成方法 WO2011118790A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012507100A JP5465778B2 (ja) 2010-03-26 2011-03-25 水性塗料組成物ならびに該水性塗料組成物を用いた塗膜形成方法および複層塗膜形成方法
SG2012071197A SG184262A1 (en) 2010-03-26 2011-03-25 Water-based coating composition, and process for formation of coating film and process for formation of multilayer coating film, which comprise using the water-based coating composition
MYPI2012004230A MY183896A (en) 2010-03-26 2011-03-25 Water-based coating composition, and process for formation of coating film and process for formation of multilayer coating film, which comprise using the water-based coating compostion
CN201180015935.1A CN102822289B (zh) 2010-03-26 2011-03-25 水性涂料组合物以及使用该水性涂料组合物的涂膜形成方法及多层涂膜形成方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010072286 2010-03-26
JP2010-072285 2010-03-26
JP2010072285 2010-03-26
JP2010-072286 2010-03-26

Publications (1)

Publication Number Publication Date
WO2011118790A1 true WO2011118790A1 (ja) 2011-09-29

Family

ID=44673329

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057406 WO2011118790A1 (ja) 2010-03-26 2011-03-25 水性塗料組成物ならびに該水性塗料組成物を用いた塗膜形成方法および複層塗膜形成方法

Country Status (5)

Country Link
JP (1) JP5465778B2 (ja)
CN (1) CN102822289B (ja)
MY (1) MY183896A (ja)
SG (1) SG184262A1 (ja)
WO (1) WO2011118790A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102796237A (zh) * 2012-08-31 2012-11-28 合肥安科精细化工有限公司 双羟基阳离子亲水扩链剂及其在合成阳离子水性聚氨酯分散体中的应用
CN103857755A (zh) * 2011-09-30 2014-06-11 日本油漆株式会社 电沉积涂料组合物
CN106566383A (zh) * 2016-11-14 2017-04-19 江苏科技大学 含复配偶联剂的水性有机无机杂化防腐涂料及制备方法
JP6398025B1 (ja) * 2018-02-06 2018-09-26 日本ペイント・インダストリアルコ−ティングス株式会社 電着塗料組成物及び電着塗装方法
CN112608065A (zh) * 2019-12-13 2021-04-06 科之杰新材料集团(贵州)有限公司 一种喷射混凝土用液体无碱速凝剂及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104830203B (zh) * 2015-05-22 2017-07-14 Ppg涂料(天津)有限公司 单组分高防腐速干环氧涂料组合物
JP6106209B2 (ja) * 2015-05-26 2017-03-29 日本ペイント株式会社 自然乾燥型水性塗料組成物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339250A (ja) * 2003-05-12 2004-12-02 Nippon Paint Co Ltd カチオン電着塗料組成物、カチオン電着塗膜形成方法及び塗装物
JP2006307196A (ja) * 2005-04-01 2006-11-09 Kansai Paint Co Ltd 断面が海島構造の塗膜を形成するカチオン電着塗料組成物
JP2006348316A (ja) * 2005-06-13 2006-12-28 Nippon Paint Co Ltd 電着塗膜形成方法
WO2008015955A1 (fr) * 2006-08-02 2008-02-07 Nippon Paint Co., Ltd. Procédé pour la formation d'un film à revêtement multicouche

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3627860A1 (de) * 1986-08-16 1988-02-18 Basf Lacke & Farben Waessriges ueberzugsmittel, verfahren zu seiner herstellung sowie seine verwendung zur beschichtung von dosen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339250A (ja) * 2003-05-12 2004-12-02 Nippon Paint Co Ltd カチオン電着塗料組成物、カチオン電着塗膜形成方法及び塗装物
JP2006307196A (ja) * 2005-04-01 2006-11-09 Kansai Paint Co Ltd 断面が海島構造の塗膜を形成するカチオン電着塗料組成物
JP2006348316A (ja) * 2005-06-13 2006-12-28 Nippon Paint Co Ltd 電着塗膜形成方法
WO2008015955A1 (fr) * 2006-08-02 2008-02-07 Nippon Paint Co., Ltd. Procédé pour la formation d'un film à revêtement multicouche

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103857755A (zh) * 2011-09-30 2014-06-11 日本油漆株式会社 电沉积涂料组合物
CN102796237A (zh) * 2012-08-31 2012-11-28 合肥安科精细化工有限公司 双羟基阳离子亲水扩链剂及其在合成阳离子水性聚氨酯分散体中的应用
CN102796237B (zh) * 2012-08-31 2014-01-29 合肥安科精细化工有限公司 双羟基阳离子亲水扩链剂及其在合成阳离子水性聚氨酯分散体中的应用
CN106566383A (zh) * 2016-11-14 2017-04-19 江苏科技大学 含复配偶联剂的水性有机无机杂化防腐涂料及制备方法
JP6398025B1 (ja) * 2018-02-06 2018-09-26 日本ペイント・インダストリアルコ−ティングス株式会社 電着塗料組成物及び電着塗装方法
JP2019137724A (ja) * 2018-02-06 2019-08-22 日本ペイント・インダストリアルコ−ティングス株式会社 電着塗料組成物及び電着塗装方法
CN112608065A (zh) * 2019-12-13 2021-04-06 科之杰新材料集团(贵州)有限公司 一种喷射混凝土用液体无碱速凝剂及其制备方法

Also Published As

Publication number Publication date
JP5465778B2 (ja) 2014-04-09
SG184262A1 (en) 2012-10-30
JPWO2011118790A1 (ja) 2013-07-04
CN102822289B (zh) 2017-06-27
CN102822289A (zh) 2012-12-12
MY183896A (en) 2021-03-17

Similar Documents

Publication Publication Date Title
JP5465778B2 (ja) 水性塗料組成物ならびに該水性塗料組成物を用いた塗膜形成方法および複層塗膜形成方法
CN108034346B (zh) 一种用于生产水性涂层的组合物及其形成的涂层体系
JP5612667B2 (ja) 塗膜形成方法
JP5587537B2 (ja) 2液型水性防食塗料及び防食塗装方法
JP5273752B1 (ja) 水性エポキシ樹脂塗料組成物及びそれを用いた防食塗装方法
JP6165419B2 (ja) 水系2成分型コーティング組成物、インキ組成物、及び接着剤組成物、並びにその使用方法
WO2013140953A1 (ja) 水性エポキシ樹脂塗料組成物、防食塗装方法、及び塗装体
JP2016216689A (ja) 自然乾燥型水性塗料組成物
WO2011118792A1 (ja) 水性塗料組成物および塗膜形成方法
CN1592773A (zh) 防腐蚀混合物和包含该防腐蚀混合物的涂料
JP2002506113A5 (ja)
JP4771717B2 (ja) 水性塗料組成物
CN109385175B (zh) 重防腐涂料用油漆套装
WO1994024212A1 (en) Curable composition and process for producing film therefrom
JP5775800B2 (ja) 1液常温架橋型水性被覆組成物
KR101137247B1 (ko) 친환경 2액형 수용성 불소 도료 조성물 및 그 제조방법, 이를 이용한 시공방법
JPH11343462A (ja) 水性塗料組成物
JP5846828B2 (ja) 電着塗料組成物
JP3088073B2 (ja) 塗装仕上方法
JP2022100574A (ja) シーラー部を有する被塗物に対する塗膜形成方法
KR102463072B1 (ko) 특수 무늬 도막을 형성하는 도장 방법
JP2013006897A (ja) 熱線高反射塗料組成物、熱線高反射塗料組成物調製用キット、熱線高反射塗装物、および熱線高反射塗装物の塗装方法
JP4331931B2 (ja) 水性下塗材組成物
JP2009155396A (ja) クリヤー塗料組成物及び複層塗膜形成方法
JP2018053028A (ja) 下塗り塗料用二液反応硬化型水性塗料組成物、並びにこれを用いた複層膜形成方法及び塗装体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180015935.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759594

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012507100

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11759594

Country of ref document: EP

Kind code of ref document: A1