WO2011118720A1 - リチウム二次電池及びその製造方法 - Google Patents

リチウム二次電池及びその製造方法 Download PDF

Info

Publication number
WO2011118720A1
WO2011118720A1 PCT/JP2011/057213 JP2011057213W WO2011118720A1 WO 2011118720 A1 WO2011118720 A1 WO 2011118720A1 JP 2011057213 W JP2011057213 W JP 2011057213W WO 2011118720 A1 WO2011118720 A1 WO 2011118720A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
lithium secondary
chemical formula
polyimide resin
Prior art date
Application number
PCT/JP2011/057213
Other languages
English (en)
French (fr)
Inventor
福井 厚史
泰三 砂野
神野 丸男
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to EP11759525.6A priority Critical patent/EP2555288A4/en
Priority to US13/636,811 priority patent/US9413010B2/en
Publication of WO2011118720A1 publication Critical patent/WO2011118720A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1082Partially aromatic polyimides wholly aromatic in the tetracarboxylic moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to a lithium secondary battery using negative electrode active material particles containing silicon and / or a silicon alloy as a negative electrode active material.
  • a negative electrode obtained by sintering and disposing an active material layer containing a silicon-containing active material and a polyimide binder in a non-oxidizing atmosphere is provided. It has been found that good charge / discharge cycle characteristics are exhibited (see Patent Document 1 below).
  • cycle characteristics can be further improved by changing the type of polyimide that is a negative electrode binder (see Patent Documents 2 and 3 below).
  • Patent Document 4 discloses that cycle characteristics can be improved by using a polyimide composed of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride and m-phenylenediamine or 4,4′-diaminodiphenylmethane. (See Patent Document 4 below).
  • An object of the present invention is to provide a lithium secondary battery using negative electrode active material particles containing silicon and / or a silicon alloy as a negative electrode active material, destroying the binder itself during charging / discharging, the negative electrode active material, and the negative electrode current collector and binder. It is an object of the present invention to provide a lithium secondary battery excellent in cycle characteristics and a method for manufacturing the same.
  • the present invention provides a negative electrode in which a negative electrode active material layer containing negative electrode active material particles containing silicon and / or a silicon alloy and a binder is formed on the surface of a negative electrode current collector, a positive electrode, and a nonaqueous electrolyte.
  • the binder includes a polyimide resin including a cross-linked structure formed by imidation of a polycarboxylic acid having 6 or more valences or an anhydride thereof and a diamine.
  • the binder contains a polyimide resin containing a cross-linked structure formed by imidation of a hexavalent or higher polycarboxylic acid or anhydride thereof and a diamine.
  • a polyimide resin containing a cross-linked structure formed by imidation of a hexavalent or higher polycarboxylic acid or anhydride thereof and a diamine.
  • the polyimide resin since the polyimide resin has many imide bonds in the cross-linked structure, it can exhibit high adhesion. Since the imide bond portion has high polarity, it has high adhesion to silicon active material particles and a metal foil that is a current collector, such as a copper foil. Furthermore, since the crosslinked structure has a branched structure extending in many directions, the imide bond portion existing in the crosslinked structure is also expanded in many directions. As a result, many imide bonds having high polarity are also in contact with the irregularities on the surface of the active material particles and current collector, so that the entire polyimide resin exhibits high adhesion to the active material particles and current collector. Can do.
  • polycarboxylic acid anhydrides having a valence of 6 or more include those shown in the following chemical formula 1
  • diamines include those shown in the chemical formula 2 below
  • the crosslinked structure is shown in the chemical formula 3 below. It is preferable that the structure is included.
  • the polyimide resin containing a crosslinked structure also includes a linear structure formed by imidation of tetracarboxylic acid or a dianhydride thereof with a diamine.
  • a polyimide resin containing a crosslinked structure is formed by imidation of a tetracarboxylic dianhydride shown in the following chemical formula 4 and / or chemical formula 5 below and a diamine shown in chemical formula 2. It is preferable to include a linear structure represented by the following chemical formula 6 and / or chemical formula 7 below.
  • the ratio of the total number of moles of the crosslinked structure to the total number of moles of the linear structure is 5:95 to 15:85.
  • the polyimide resin may further include a crosslinked structure by imidation of a trivalent or higher polyvalent amine.
  • the production method of the present invention is a method by which the negative electrode for a lithium secondary battery of the present invention can be produced, and an esterified product obtained by reacting a polycarboxylic acid anhydride having a valence of 6 or more and a monohydric alcohol in a solvent.
  • Forming a binder precursor solution containing a monomer component of a polyimide resin containing a crosslinked structure by adding diamine to the esterified product, and forming negative active material particles containing silicon and / or a silicon alloy into a binder precursor A step of preparing a negative electrode mixture slurry by dispersing in a body solution, a step of applying the negative electrode mixture slurry onto the surface of a conductive metal foil as a negative electrode current collector, and a negative electrode to which the negative electrode mixture slurry is applied By heat-treating the current collector in a non-oxidizing atmosphere, a polymerization reaction and an imidization reaction are performed between monomer components of the polyimide resin containing a crosslinked structure, thereby causing a polymer containing the crosslinked structure.
  • Forming a binder of an imide resin is characterized by comprising a step of preparing a negative electrode.
  • the step of preparing the binder precursor solution is to react an hexavalent or higher polycarboxylic acid anhydride and tetracarboxylic dianhydride with a monohydric alcohol to form an esterified product. It is preferable to include a step of adding a diamine to the esterified product to prepare a binder precursor solution containing a monomer component of a polyimide resin containing a crosslinked structure and a linear structure.
  • a step of producing a negative electrode by the production method of the present invention a step of disposing a separator between the negative electrode and the positive electrode to produce an electrode body, and the electrode And a step of impregnating the body with a non-aqueous electrolyte.
  • the binder forming the negative electrode active material layer contains a polyimide resin containing a crosslinked structure, the mechanical strength and adhesion of the binder itself can be improved. For this reason, even when a volume change occurs in the negative electrode active material particles containing silicon and / or silicon alloy due to charge / discharge, the binder itself is destroyed or peeled off at the interface between the negative electrode active material and the negative electrode current collector and the binder. Since generation
  • FIG. 1 is a plan view showing a lithium secondary battery manufactured in an example according to the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA shown in FIG.
  • FIG. 3 is a perspective view showing an electrode body produced in an example according to the present invention.
  • benzenehexacarboxylic acid mellitic acid
  • benzenehexacarboxylic acid dianhydride mellitic anhydride
  • 1, 2, 3, 4, 5 6-cyclohexanehexacarboxylic acid
  • benzenehexacarboxylic dianhydride represented by Chemical Formula 1 is preferred.
  • Benzene hexacarboxylic dianhydride forms a crosslinked structure by imidation with diamine.
  • three imide groups are equally arranged in three directions within the aromatic ring, and the three-membered five-membered ring planar portion and the aromatic ring planar portion formed in each of the three imide groups are the same. Due to the structure arranged on a plane, the structure has high symmetry and high structural stability. By including this crosslinked structure in the polyimide resin, the entire resin exhibits higher mechanical strength.
  • diamine examples include m-phenylenediamine, p-phenylenediamine, 3,3′-diaminobenzophenone, 4,4′-diaminobiphenyl, 4,4′-diaminodiphenylsulfone, 4,4′-diaminophenyl ether, 4, 4'-diaminophenylmethane, 2,2-bis (4- (4-aminophenoxy) phenyl) propane, 1,4-bis (3-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene Aromatic diamines such as
  • m-phenylenediamine represented by the above chemical formula 2 is most preferable in view of the balance between mechanical strength and deformability (flexibility) of a polyimide resin containing a crosslinked structure formed by imidation with polycarboxylic acid.
  • m-Phenylenediamine contains only one aromatic ring, in which two amine groups are arranged in the meta position.
  • a polyimide resin having a balance between mechanical strength and deformability (flexibility) can be obtained due to high mechanical strength due to the aromatic ring and flexibility due to the arrangement of the meta positions.
  • the polyimide resin produced by p-phenylenediamine has a structure in which two amine groups are arranged in the para position on the aromatic ring, compared to m-phenylenediamine in the meta position. Since the flexibility is low, the deformability (flexibility) is low, and the adhesion tends to be low.
  • the cross-linked structure formed by imidization of a polycarboxylic acid having a valence of 6 or more or an anhydride thereof with a diamine includes benzenehexacarboxylic acid ( It is most preferable to use m-phenylenediamine represented by the above chemical formula 2 as a diamine using a benzenehexacarboxylic acid dianhydride (mellitic anhydride) represented by the above chemical formula 1 which is melittic acid) or an anhydride thereof.
  • m-phenylenediamine represented by the above chemical formula 2 a benzenehexacarboxylic acid dianhydride (mellitic anhydride) represented by the above chemical formula 1 which is melittic acid) or an anhydride thereof.
  • the cross-linked structure represented by Chemical Formula 3 formed by imidization is most preferable.
  • the polyimide resin containing a crosslinked structure as a negative electrode binder in the lithium secondary battery of the present invention preferably also contains a linear structure formed by imidation of tetracarboxylic acid or its anhydride and diamine.
  • the linear structure formed by imidation of tetracarboxylic acid or anhydride and diamine is deformable. (Flexibility) is higher and adhesion is better. Therefore, in the polyimide resin, in addition to the crosslinked structure, a linear structure is also present, so that the deformability (flexibility) by the linear structure can be exhibited in a state where high mechanical strength is exhibited by the crosslinked structure. It becomes possible to make a binder excellent in strength and adhesion.
  • the tetracarboxylic dianhydride includes 1,2,4,5-benzenetetracarboxylic acid 1,2: 4,5-dianhydride (also known as pyromellitic dianhydride), 3, 3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride And aromatic tetracarboxylic dianhydrides such as 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride and 3,3 ′, 4,4′-diphenylmethane tetracarboxylic dianhydride It is done.
  • 3,3 ′, 4,4′-benzophenone tetra represented by the above chemical formula 4 is considered due to the balance between mechanical strength and deformability (flexibility) in the state of the linear structure formed by imidation with diamine.
  • Carboxylic dianhydrides and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydrides are preferred, and 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydrides are particularly preferred according to the examples described below. Is preferred.
  • 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride and 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride both contain two aromatic rings, and these two aromatic rings By the effect of the bond type between the two aromatic rings, the two aromatic rings are always in a flat state, and a polyimide resin having a balance between mechanical strength and deformability (flexibility) can be obtained.
  • a polyimide resin formed from 1,2,4,5-benzenetetracarboxylic acid 1,2: 4,5-dianhydride has 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride.
  • polyimide resins obtained from products and those having two aromatic rings such as 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, they are more rigid and less deformable (flexible). The adhesion tends to be low.
  • 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenylmethane Tetracarboxylic dianhydride is produced by 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride or 3,3', 4,4'-biphenyl due to the influence of the bonding species between two aromatic rings. Unlike tetracarboxylic dianhydride, the two aromatic rings do not always hold a flat surface, so the mechanical strength may be lowered.
  • tetracarboxylic acid is represented by 3,3 ′, 4,4 ′ as shown in the above formula 4.
  • benzophenone tetracarboxylic dianhydride and / or 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride represented by Chemical Formula 5 above m-phenylenediamine represented by Chemical Formula 2 above as diamine Since it is most preferable to use them, the straight chain structures represented by Chemical Formula 6 and Chemical Formula 7 formed by imidization thereof are most preferable.
  • the polyimide resin of the present invention may contain a crosslinked structure including an imide group formed by a trivalent or higher polyvalent amine in addition to the imide group formed by a diamine.
  • a crosslinked structure containing an imide group formed by a trivalent or higher polyvalent amine is formed by imidation of the trivalent or higher polyvalent amine with a hexavalent or higher polycarboxylic acid or tetracarboxylic acid.
  • a cross-linked structure containing an imide group formed by a trivalent or higher polyvalent amine is formed in the polyimide resin. The overall mechanical strength is further increased.
  • a trivalent to hexavalent polyamine can be used, and a trivalent triamine is particularly preferable.
  • a tri- to hexavalent polyamine By using a tri- to hexavalent polyamine, it is possible to obtain a polyimide resin having sufficient mechanical strength.
  • the polyvalent amine is tetravalent or higher, the mechanical strength of the polyimide resin is improved, but the deformability (flexibility) of the cross-linked structure is reduced, so that the polyimide resin becomes brittle, and the polyimide resin is easily broken during charge and discharge. . Further, when the deformability (flexibility) of the resin is low, the adhesion is also lowered. Therefore, trivalent triamine is particularly preferable in view of the balance between mechanical strength and deformability (flexibility).
  • Triamines include tris (4-aminophenyl) methanol (also known as pararose aniline), tris (4-aminophenyl) methane, 3,4,4′-triaminodiphenyl ether, 3,4,4′-triaminobenzophenone. 3,4,4'-triaminodiphenylmethane, 1,4,5-triaminonaphthalene, tris (4-aminophenyl) amine, 1,2,4-triaminobenzene, 1,3,5-triaminobenzene Aromatic triamines such as 2,4,6-triamino-1,3,5-triazine (also known as melamine), 1,3,5-triaminocyclohexane and the like.
  • tris (4-aminophenyl) methanol, tris (4-aminophenyl) methane, tris (4-aminophenyl) amine, 1,3,5-triaminobenzene, 2,4,6-triamino- 1,3,5-triazine and 1,3,5-triaminocyclohexane are preferred. Since these triamines have a high symmetry in the arrangement of amine groups in the molecule, they have a high cross-link symmetry and structural stability formed by imidation with polycarboxylic acid or tetracarboxylic dianhydride. It becomes possible for the whole resin to express higher mechanical strength.
  • tris (4-aminophenyl) methanol, tris (4-aminophenyl) methane, tris (4-aminophenyl) amine, 1,3,3 Aromatic triamines such as 5-triaminobenzene are preferred.
  • Heat treatment is required to cause imidization of polyvalent amine and tetracarboxylic dianhydride. However, if the heat resistance of these materials themselves is low, they can be thermally decomposed during heat treatment to form a desired polyimide resin. Disappear.
  • Examples of commercially available products that are relatively inexpensive include tris (4-aminophenyl) methanol, 3,4,4'-triaminodiphenyl ether, and 1,2,4-triaminobenzene.
  • tris (4-aminophenyl) methanol is most preferable from the viewpoints of price, mechanical strength, heat resistance, and all.
  • tetraamine examples include tetrakis (4-aminophenyl) methane, 3,3 ′, 4,4′-tetraaminodiphenyl ether, 3,3 ′, 4,4′-tetraaminobenzophenone, 3,3 ′, 4,4 ′.
  • -Tetraaminodiphenylmethane N, N, N'N'-tetrakis (4-methylphenyl) benzidine and the like.
  • the molar ratio of diamine to polyvalent amine is preferably within the range of 90:10 to 70:30.
  • a lithium secondary battery including a negative electrode binder including a polyimide resin including a crosslinked structure formed by imidization of a hexavalent or higher polycarboxylic acid anhydride and a diamine. it can.
  • a binder precursor solution a mixture of monomer components of a polyimide resin containing a cross-linked structure, which contains an esterified product of a polycarboxylic acid anhydride having a valence of 6 or more and a monohydric alcohol, and a diamine is used.
  • a polymerization reaction and an imidization reaction that follows the polymerization reaction can be appropriately generated, and a polyimide resin including a crosslinked structure can be formed.
  • the viscosity of the polyimide resin precursor compared with a general binder precursor in a polymer state such as polyamic acid is used. Is low.
  • the binder precursor enters into the irregularities on the surface of the negative electrode active material particles during the preparation of the negative electrode mixture slurry, and within the irregularities on the surface of the negative electrode current collector when the negative electrode mixture slurry is applied onto the negative electrode current collector. It becomes easy for the binder precursor to enter the substrate, and the anchor effect between the negative electrode active material particles and the negative electrode current collector and the binder is greatly expressed, and higher adhesion can be obtained.
  • polycarboxylic acid anhydride and diamine having 6 or more valences used as the binder precursor those exemplified above can be used.
  • esterified products of polycarboxylic acid anhydrides having a valence of 6 or more with alcohols are compounds having a polycarboxylic acid anhydride having a valence of 6 or more and one alcoholic hydroxy group, such as methanol and ethanol. It can be obtained by reacting with an aliphatic alcohol such as benzene, isopropanol or butanol.
  • tetracarboxylic dianhydride is contained in the binder precursor solution.
  • the binder precursor solution contains a tetracarboxylic dianhydride in addition to a polycarboxylic acid anhydride having a valence of 6 or more and a diamine, and the negative electrode current collector coated with the negative electrode mixture slurry is placed in a non-oxidizing atmosphere.
  • the polymerization reaction of tetracarboxylic dianhydride and diamine A linear structure formed by the subsequent imidization reaction is also formed. Furthermore, since these are uniformly present in the solution, the crosslinked structure and the straight chain structure are uniformly combined into a polymer chain, so that a high mechanical strength due to the crosslinked structure is expressed. Thus, the deformability (flexibility) due to the straight chain structure is also exhibited, and it becomes possible to obtain a binder excellent in strength and adhesion.
  • a hexacarboxylic or higher polycarboxylic acid anhydride which is a mixture of monomer components of a polyimide resin including a crosslinked structure and a linear structure as a binder precursor, Even when a mixture of diamine and tetracarboxylic dianhydride is used, it is easy for the binder precursor to enter the surface irregularities of the negative electrode active material particles and the negative electrode current collector during the preparation of the negative electrode, and the negative electrode active material particles And the anchor effect between a negative electrode electrical power collector and a binder expresses greatly, and it becomes possible to obtain higher adhesiveness.
  • diamine used as the binder precursor those exemplified above can be used.
  • the binder precursor solution contains a tetracarboxylic dianhydride in addition to a hexavalent or higher polycarboxylic anhydride and a diamine
  • the hexavalent or higher polycarboxylic anhydride is preferably 5:95 to 15:85.
  • the polycarboxylic acid anhydride of 6 or more and diamine in the polyimide resin The ratio of the cross-linked structure formed by polymerization reaction with and subsequent imidization reaction to the linear reaction formed by polymerization reaction of diamine and tetracarboxylic dianhydride and subsequent imidization reaction is appropriate. Become. As a result, a high mechanical strength due to the crosslinked structure and a deformability (flexibility) due to the straight chain structure are balanced, and thus a binder excellent in strength and adhesion can be obtained.
  • the ratio of the total number of moles of carboxylic acid groups to the total number of moles of amine groups in the binder precursor solution is preferably 1.9 to 2.1.
  • the ratio of the total number of moles of carboxylic acid groups to the total number of moles of amine groups is, for example, that the binder precursor solution has a total mole number of hexavalent polycarboxylic acid components of A, a total number of moles of diamine components of B,
  • the total number of moles of the tetracarboxylic dianhydride component is C
  • the total number of moles of the trivalent polyvalent amine component is D, it is represented by (6A + 4C) / (2B + 3D).
  • the ratio of the total number of moles of carboxylic acid groups to the total number of moles of amine groups is 2, the stoichiometric ratio of the imidization reaction is obtained. Therefore, if the ratio of the total number of moles of carboxylic groups and the total number of moles of amine groups in the binder solution is in the range of 1.9 to 2.1, which is close to 2, the polymerization reaction between the carboxylic acid component and the amine component Subsequent imidization reaction occurs effectively, and a polyimide resin having a long polymer chain and excellent mechanical strength can be obtained.
  • the negative electrode mixture slurry is applied on the current collector, and then heat-treated in a non-oxidizing atmosphere, so that the polymerization reaction and imidization between the monomer components of the polyimide resin containing a crosslinked structure are performed.
  • a reaction occurs to form a polyimide resin binder containing a cross-linked structure.
  • the temperature of the heat treatment under a non-oxidizing atmosphere is preferably in a range below the temperature at which the polyimide resin containing a crosslinked structure starts to decrease by 5% by mass. If the temperature of the heat treatment exceeds the temperature at which the polyimide resin starts to decrease in mass by 5%, the polyimide resin may be thermally decomposed during the heat treatment, and a desired polyimide resin may not be formed.
  • the temperature is preferably higher than the glass transition temperature.
  • the polyimide resin containing the crosslinked structure becomes a plastic region after the polymerization of the binder precursor and the formation of the polyimide resin containing the crosslinked structure by the subsequent imidization reaction.
  • the penetration of the resin into the uneven portions present on the surface of the material particles and the negative electrode current collector is further increased, and the anchor effect is more manifested (resin heat fusion effect is manifested), resulting in greater adhesion. become.
  • the specific temperature of the heat treatment is, for example, preferably in the range of 200 to 500 ° C., more preferably in the range of 300 to 450 ° C.
  • examples of the non-oxidizing atmosphere include an atmosphere of inert gas such as argon and an atmosphere of nitrogen gas. Further, a reducing atmosphere such as hydrogen gas may be used.
  • the negative electrode current collector is not particularly limited as long as it has conductivity.
  • the negative electrode current collector can be made of a conductive metal foil such as a foil made of an alloy made of a metal such as copper, nickel, iron, titanium, cobalt, manganese, tin, or silicon, or a combination thereof.
  • the conductive metal foil contains a metal element that easily diffuses in the active material particles, the conductive metal foil is preferably made of a foil made of a copper thin film or an alloy containing copper.
  • the thickness of the negative electrode current collector is not particularly limited, and can be, for example, about 10 ⁇ m to 100 ⁇ m.
  • the negative electrode active material particles contained in the negative electrode mixture layer together with the binder need only contain at least one of silicon and an alloy containing silicon.
  • the silicon alloy is not particularly limited as long as it is an alloy that functions as a negative electrode active material.
  • silicon alloys include solid solutions of silicon and one or more other elements, intermetallic compounds of silicon and one or more other elements, and eutectic alloys of silicon and one or more other elements. Etc.
  • Examples of a method for producing an alloy containing silicon include an arc melting method, a liquid quenching method, a mechanical alloying method, a sputtering method, a chemical vapor deposition method, and a firing method.
  • Specific examples of the liquid quenching method include a single roll quenching method, a twin roll quenching method, and various atomizing methods such as a gas atomizing method, a water atomizing method, and a disk atomizing method.
  • the negative electrode active material particles may be silicon and / or silicon alloy particles whose particle surfaces are coated with a metal, an alloy, or the like.
  • the coating method include an electroless plating method, an electrolytic plating method, a chemical reduction method, a vapor deposition method, a sputtering method, and a chemical vapor deposition method.
  • the metal that coats the particle surface is preferably the same metal as the conductive metal foil constituting the negative electrode current collector or the following conductive metal powder.
  • the average particle diameter of the negative electrode active material particles is not particularly limited, but is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less, for example.
  • the negative electrode mixture layer may further contain conductive powder such as conductive metal powder or conductive carbon powder.
  • conductive powder such as conductive metal powder or conductive carbon powder.
  • the conductive metal powder a material similar to that of the conductive metal foil is preferably used.
  • a powder formed of a metal such as copper, nickel, iron, titanium, cobalt, or an alloy made of a combination thereof is preferably used as the conductive metal powder.
  • the average particle size of the conductive powder is not particularly limited, but is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • each of the positive electrode and the non-aqueous electrolyte is not particularly limited, and for example, a known one can be used.
  • the positive electrode generally includes a positive electrode current collector formed of a conductive metal foil and the like, and a positive electrode mixture layer formed on the positive electrode current collector.
  • the positive electrode mixture layer includes a positive electrode active material.
  • the positive electrode active material is not particularly limited as long as it is capable of electrochemically inserting and extracting lithium.
  • Specific examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiMnO 2 , LiCo 0.5 Ni 0.5 O 2 , and LiNi 0.7 Co 0.2 Mn 0.1 O 2 . Examples thereof include a lithium-containing transition metal oxide and a metal oxide not containing lithium such as MnO 2 .
  • the solvent used for the nonaqueous electrolyte is not particularly limited.
  • Specific examples of the solvent used for the non-aqueous electrolyte include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and fluoroethylene carbonate, chain carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate, and cyclic carbonates and chains. And a mixed solvent with a carbonate.
  • the solute used for the nonaqueous electrolyte is not particularly limited.
  • Specific examples of the solute used for the non-aqueous electrolyte include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 and the like, and mixtures thereof.
  • a gel polymer electrolyte obtained by impregnating a polymer electrolyte such as polyethylene oxide or polyacrylonitrile with an electrolytic solution, or an inorganic solid electrolyte such as LiI or Li 3 N may be used.
  • the nonaqueous electrolyte preferably contains CO 2 .
  • Example 1 ⁇ Production of negative electrode> [Production of negative electrode active material] First, polycrystalline silicon fine particles were introduced into a fluidized bed having an internal temperature of 800 ° C., and monosilane (SiH 4 ) was introduced to prepare granular polycrystalline silicon.
  • the granular polycrystalline silicon was pulverized using a jet mill, and then classified by a classifier to prepare polycrystalline silicon powder (negative electrode active material) having a median diameter of 9 ⁇ m.
  • the median diameter was obtained as a 50% cumulative volume diameter in the particle size distribution measurement by laser light diffraction method.
  • the crystallite size of this polycrystalline silicon powder was 44 nm as calculated by the Scherrer equation using the half width of the silicon (111) peak in powder X-ray diffraction.
  • NMP N-methyl-2-pyrrolidone
  • benzenehexacarboxylic acid dianhydride represented by Chemical Formula 1 with 3 equivalents of ethanol, and 3 ′, 4,4 represented by Chemical Formula 4 above.
  • the binder precursor solution a1 was obtained by dissolving to 102.5.
  • the negative electrode mixture slurry prepared above was applied to both surfaces of the negative electrode current collector in air at 25 ° C., dried in air at 120 ° C., and then rolled in air at 25 ° C.
  • the obtained product was cut into a rectangle having a length of 380 mm and a width of 52 mm, and then heat-treated in an argon atmosphere at 400 ° C. for 10 hours to produce a negative electrode in which a negative electrode active material layer was formed on the surface of the negative electrode current collector. .
  • a nickel plate as a negative electrode current collecting tab was connected to the end of the negative electrode.
  • the amount of the negative electrode mixture layer on the negative electrode current collector was 5.6 mg / cm 2 and the thickness was 56 ⁇ m.
  • both surfaces of 18-micrometer-thick copper alloy foil (C7025 alloy foil, composition; Cu96.2 mass%, Ni3 mass%, Si0.65 mass%, Mg0.15 mass%) are surfaced.
  • ⁇ Preparation of positive electrode> [Preparation of lithium transition metal composite oxide]
  • a positive electrode active material Li 2 CO 3 and CoCO 3 were mixed in a mortar so that the molar ratio of Li and Co was 1: 1, pulverized after heat treatment at 800 ° C. for 24 hours in an air atmosphere. Then, a positive electrode active material powder of lithium cobalt composite oxide represented by LiCoO 2 having an average particle diameter of 10 ⁇ m was obtained.
  • the positive electrode active material powder obtained had a BET specific surface area of 0.37 m 2 / g.
  • NMP as a dispersion medium
  • LiCoO 2 powder as a positive electrode active material prepared as described above
  • carbon material powder as a positive electrode conductive agent
  • polyvinylidene fluoride as a positive electrode binder
  • a positive electrode active material a conductive agent and a binder
  • This positive electrode mixture slurry was applied to both sides of an aluminum foil having a thickness of 15 ⁇ m, a length of 402 mm, and a width of 50 mm as a positive electrode current collector, dried, and then rolled.
  • the positive electrode mixture slurry was applied so that the application portion had a length of 340 mm and a width of 50 mm on the surface of the positive electrode current collector, and a length of 270 mm and a width of 50 mm on the back surface of the positive electrode current collector.
  • the amount of the active material on the current collector and the thickness of the positive electrode were 48 mg / cm 2 and 143 ⁇ m at the portion where the active material layer was formed on both sides.
  • an aluminum plate was connected as a positive electrode current collecting tab to the uncoated portion of the positive electrode active material layer at the end of the positive electrode.
  • LiPF 6 lithium hexafluorophosphate
  • FEC fluoroethylene carbonate
  • MEC methyl ethyl carbonate
  • Electrode body One positive electrode, one negative electrode, and two polyethylene microporous membrane separators were used.
  • the separator has a thickness of 20 ⁇ m, a length of 450 mm, a width of 54.5 mm, a puncture strength of 340 g, and a porosity of 39%.
  • the positive electrode and the negative electrode are opposed to each other through a separator, and both the positive electrode tab and the negative electrode tab are arranged on the outermost periphery. After producing the electrode body, it was crushed to obtain a flat electrode body.
  • FIG. 1 the schematic diagram of the structure of the produced spiral electrode body is shown in FIG.
  • the electrode body 5 has a positive electrode current collecting tab 3 and a negative electrode current collecting tab 4 taken out from the electrode body 5.
  • FIG. 1 is a plan view showing the manufactured lithium secondary battery.
  • the lithium secondary battery includes an aluminum laminate outer package 1, a closed portion 2 in which the ends of the aluminum laminate are heat-sealed, a positive current collecting tab 3, a negative current collecting tab 4, and an electrode body 5. Has been.
  • FIG. 2 is a cross-sectional view taken along the line AA shown in FIG.
  • the electrode body 5 is configured by winding the separator 8 between the positive electrode 6 and the negative electrode 7.
  • Inventive battery A2 was prepared in the same manner as in the preparation of the negative electrode binder precursor of inventive battery A1 except that the molar ratio of chemical 1: chemical 4: chemical 2 was changed to 15: 85: 107.5.
  • Example 3 A battery A3 of the present invention was prepared in the same manner as in the preparation of the negative electrode binder precursor of the battery A1 of the present invention, except that the molar ratio of Chemical 1: Chemical 4: Chemical 2 was 20: 80: 110.
  • Example 4 In the production of the negative electrode binder precursor of the battery A1 of the present invention, the 3,3 ′ represented by the above chemical formula 5 was used instead of the 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride represented by the above chemical formula 4.
  • a battery A4 of the present invention was produced in the same manner except that ', 4,4'-biphenyltetracarboxylic dianhydride was used.
  • Example 5 In the preparation of the negative electrode binder precursor of the battery A1 of the present invention, tris (4-aminophenyl) methanol represented by the following chemical formula 8 was further added as a polyvalent amine to obtain a molar ratio of 1: Chemical 4: Chemical 2: A battery A5 of the present invention was produced in the same manner except that 8 was changed to 5: 95: 95: 5.
  • Comparative Example 1 In the preparation of the negative electrode binder precursor of the battery A1 of the present invention, a mixture obtained by esterifying the benzenehexacarboxylic dianhydride represented by the above chemical formula 1 with 3 equivalents of ethanol was not mixed. Comparative battery B1 was produced in the same manner except that the ratio was 100: 100.
  • Comparative Example 2 In the preparation of the negative electrode binder precursor of the battery A4 of the present invention, the benzenehexacarboxylic dianhydride represented by the above chemical formula 1 was esterified with 3 equivalents of ethanol, and the chemical formula 5: Comparative battery B2 was produced in the same manner except that the ratio was 100: 100.
  • Constant current charging was performed at a current of 1000 mA until the battery voltage reached 4.2 V, and further, constant voltage charging was performed at a voltage of 4.2 V until the current value reached 50 mA.
  • the initial charge / discharge efficiency and cycle life were determined by the following calculation method.
  • the batteries A1 to A5 of the present invention which are polyimide resins containing a crosslinked structure formed by imidization of a polycarboxylic acid having a valence of 6 or more with a diamine, It can be seen that the cycle life is excellent as compared with comparative batteries B1 and B2 which are polyimide resins not including a crosslinked structure.
  • a comparison between the batteries A1 to A5 of the present invention shows that the ratio of the polycarboxylic acid having a valence of 6 or more that forms a crosslinked structure to the tetracarboxylic acid that forms a linear structure is 5:95 to 15:85. It can be seen that the inventive batteries A1, A2, A4 and A5 exhibit particularly good cycle life.
  • Comparison between the present invention batteries A1 and A5 shows that the present invention battery A5 containing triamine which is a trivalent or higher polyvalent amine in addition to diamine as an amine component exhibits particularly excellent cycle life. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 ケイ素及び/またはケイ素合金を含む負極活物質粒子を用いたリチウム二次電池において、充放電時のバインダー自体の破壊や負極活物質及び負極集電体とバインダーとの界面での剥離の発生を抑制し、高エネルギー密度を有し、かつサイクル特性に優れたリチウム二次電池を得る。 ケイ素及び/またはケイ素合金を含む負極活物質粒子とバインダーとを含む負極活物質層が負極集電体である導電性金属箔の表面上に形成された負極と、正極と、非水電解質とを備えるリチウム二次電池であって、前記バインダーが、6価以上のポリカルボン酸またはその無水物とジアミンとのイミド化により形成される架橋構造を含むポリイミド樹脂を含んでいることを特徴としている。

Description

リチウム二次電池及びその製造方法
 本発明は、負極活物質として、ケイ素及び/またケイ素合金を含む負極活物質粒子を用いたリチウム二次電池に関するものである。
 最近、リチウム二次電池では、実用化されている黒鉛材料に代わり、更なる高エネルギー密度化を目的として、リチウムとの合金化反応によって高い体積比容量を有するAl、Sn、Siなどの元素の合金材料が、新たな負極活物質の候補として取り上げられ、多く検討なされている。
 しかしながら、リチウムと合金化する材料を活物質として用いた負極では、リチウムの吸蔵、放出時に活物質の体積変化が大きいため、活物質の微粉化や集電体からの離脱が生じ、電極内の集電性が低下して充放電サイクル特性が劣悪になるという問題がある。
 そこで、負極内に高い集電性を達成するため、ケイ素を含む材料から成る活物質とポリイミドバインダーとを含む活物質層を非酸化性雰囲気下で焼結して配置することによって得た負極が、良好な充放電サイクル特性を示すことが見出されている(下記特許文献1参照)。
 更に、負極バインダーであるポリイミド種の変更を行うことにより、更にサイクル特性が改善できることが見出されている(下記特許文献2、3参照)。特許文献4においては3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物とm-フェニレンジアミンまたは4,4’-ジアミノジフェニルメタンとからなるポリイミドを用いることでサイクル特性が改善できることが開示されている(下記特許文献4参照)。
特開2002-260637号公報 国際公開第04/004031号パンフレット 特開2007-242405号公報 特開2008-34352号公報
 しかしながら、上記従来の技術においても、バインダーによる負極部材間の密着性が不十分であり、サイクル特性が不十分であった。
 本発明の目的は、ケイ素及び/またはケイ素合金を含む負極活物質粒子を負極活物質として用いたリチウム二次電池において、充放電時のバインダー自体の破壊や負極活物質及び負極集電体とバインダーとの界面での剥離の発生を抑制し、サイクル特性に優れたリチウム二次電池及びその製造方法を提供することにある。
 本発明は、ケイ素及び/またはケイ素合金を含む負極活物質粒子とバインダーとを含む負極活物質層が負極集電体の表面上に形成された負極と、正極と、非水電解質とを備えるリチウム二次電池であって、バインダーが、6価以上のポリカルボン酸またはその無水物とジアミンとのイミド化により形成される架橋構造を含むポリイミド樹脂を含んでいることを特徴としている。
 本発明においては、バインダーが、6価以上のポリカルボン酸またはその無水物とジアミンとのイミド化により形成される架橋構造を含むポリイミド樹脂を含んでいる。このような架橋構造をポリイミド樹脂が含むことにより、架橋構造を含まず直鎖構造だけで構成されているポリイミド樹脂に比べ、バインダーの機械的強度を高めることができる。このため、充放電によりケイ素負極活物質粒子に体積変化が生じた際の、バインダー自体の破壊を抑制することができるため、負極内の集電構造が維持され、優れた充放電サイクル特性を得ることができる。
 また、上記ポリイミド樹脂は、架橋構造の部分に、イミド結合が多く存在しているので、高い密着性を発現することができる。イミド結合部は、高い極性を有するので、ケイ素活物質粒子や、集電体である金属箔、例えば銅箔との密着性が高い。さらに、架橋構造は、多くの方向に広がった分岐構造を有しているので、その架橋構造内に存在するイミド結合部も多くの方向に広がっている。これにより、活物質粒子や集電体の表面の凹凸にも高い極性を有するイミド結合が多く接することになるので、ポリイミド樹脂全体として活物質粒子や集電体との高い密着性を発現することができる。
 本発明に従う好ましい実施形態においては、6価以上のポリカルボン酸の無水物が下記化1に示されるものを含み、ジアミンが下記化2に示されるものを含み、架橋構造が下記化3に示される構造を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 また、本発明に従う好ましい実施形態においては、架橋構造を含むポリイミド樹脂が、テトラカルボン酸またはその二無水物とジアミンとのイミド化により形成される直鎖構造をも含むことが好ましい。
 また、本発明に従う好ましい実施形態においては、架橋構造を含むポリイミド樹脂が、下記化4及び/または下記化5に示されるテトラカルボン酸二無水物と化2に示されるジアミンとのイミド化により形成される下記化6及び/または下記化7に示される直鎖構造を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 また、架橋構造及び直鎖構造を含むポリイミド樹脂において、架橋構造の総モル数と、直鎖構造の総モル数との比率(架橋構造:直鎖構造)は、5:95~15:85であることが好ましい。このような範囲内とすることにより、架橋構造による高い機械的強度と直鎖構造による変形性(柔軟性)のバランスがとれた状態となるため、強度と密着性に優れたバインダーとすることができる。
 また、本発明においては、ポリイミド樹脂が、3価以上の多価アミンのイミド化による架橋構造をさらに含んでいてもよい。
 本発明の製造方法は、上記本発明のリチウム二次電池用負極を製造することができる方法であり、溶媒中にて6価以上のポリカルボン酸無水物と1価アルコールを反応させてエステル化物を形成し、このエステル化物にジアミンを添加して、架橋構造を含むポリイミド樹脂のモノマー成分を含むバインダー前駆体溶液を作製する工程と、ケイ素及び/又はケイ素合金を含む負極活物質粒子をバインダー前駆体溶液中に分散させて負極合剤スラリーを作製する工程と、負極合剤スラリーを負極集電体である導電性金属箔の表面上に塗布する工程と、負極合剤スラリーが塗布された負極集電体を非酸化性雰囲気下で熱処理することにより、架橋構造を含むポリイミド樹脂のモノマー成分間での重合反応とイミド化反応を行って架橋構造を含むポリイミド樹脂のバインダーを形成し、負極を作製する工程とを備えることを特徴としている。
 上記本発明の製造方法においては、バインダー前駆体溶液を作製する工程が、6価以上のポリカルボン酸無水物及びテトラカルボン酸二無水物を1価アルコールと反応させてエステル化物を形成し、このエステル化物にジアミンを添加して、架橋構造及び直鎖構造を含むポリイミド樹脂のモノマー成分を含むバインダー前駆体溶液を作製する工程を含むことが好ましい。
 本発明のリチウム二次電池の製造方法においては、上記本発明の製造方法により負極を製造する工程と、上記負極と正極との間にセパレータを配置して電極体を作製する工程と、上記電極体に非水電解質を含浸させる工程とを備えることを特徴としている。
 本発明によれば、負極活物質層を形成するバインダーが、架橋構造を含むポリイミド樹脂を含んでいるので、バインダー自体の機械的強度及び密着性を向上させることができる。このため、充放電によりケイ素及び/またはケイ素合金を含む負極活物質粒子に体積変化が生じた際にも、バインダー自体の破壊や負極活物質及び負極集電体とバインダーとの界面での剥離の発生を抑制することができ、負極内部の電子伝導性が低下するのを抑えることができるので、優れたサイクル特性を発揮することができる。
図1は、本発明に従う実施例において作製したリチウム二次電池を示す平面図である。 図2は、図1に示すA-A線に沿う断面図である。 図3は、本発明に従う実施例において作製した電極体を示す斜視図である。
 以下、本発明についてさらに詳細に説明する。
 6価以上のポリカルボン酸またはその無水物としては、ベンゼンヘキサカルボン酸(メリト酸)またはその無水物であるベンゼンヘキサカルボン酸三無水物(無水メリト酸)、1,2,3,4,5,6-シクロヘキサンヘキサカルボン酸、などが挙げられる。
 この中でも化1で示されるベンゼンヘキサカルボン酸三無水物が好ましい。ベンゼンヘキサカルボン酸三無水物はジアミンとのイミド化により架橋構造を形成する。この架橋構造では、芳香環内で3つのイミド基が3方向に均等に配置され、且つ3つのイミド基それぞれにおいて形成されている3つの5員環部分の平面部分と芳香環の平面部分が同一平面上に並んだ構造となっていることにより、対称性及び構造安定性が高い構造となっている。この架橋構造がポリイミド樹脂内に含まれていることにより、樹脂全体がより高い機械的強度を発現することになる。
 ジアミンとしては、m-フェニレンジアミン、p-フェニレンジアミン、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノフェニルエーテル、4,4’-ジアミノフェニルメタン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン等の芳香族ジアミンが挙げられる。
 この中でもポリカルボン酸とのイミド化により生成する架橋構造を含むポリイミド樹脂の機械的強度と変形性(柔軟性)との兼ね合いより、上記化2で示されるm-フェニレンジアミンが最も好ましい。m-フェニレンジアミンは芳香環1つだけを含み、この芳香環に2つのアミン基がメタ位で配置されている。これにより、芳香環による高い機械的強度とメタ位の配置による屈曲性により、機械的強度と変形性(柔軟性)のバランスの取れたポリイミド樹脂を得ることができる。
 これに対し、p-フェニレンジアミンにより生成したポリイミド樹脂は、p-フェニレンジアミンが芳香環に2つのアミン基がパラ位で配置された構造のために、メタ位であるm-フェニレンジアミンに比べて屈曲性が低くなるので、変形性(柔軟性)が低くなり、密着性が低くなる傾向にある。
 また、3,3’-ジアミノベンゾフェノン、4,4’-ジアミノビフェニル、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノフェニルエーテル、4,4’-ジアミノフェニルメタン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼンは、2つ以上の芳香環を含むため、芳香環が1つのm-フェニレンジアミンに比べ、変形性(柔軟性)が高くなりすぎて、機械的強度が低くなる傾向にある。
 従って、本発明においては、6価以上のポリカルボン酸またはその無水物とジアミンとのイミド化により形成される架橋構造としては、6価以上のポリカルボン酸またはその無水物としてベンゼンヘキサカルボン酸(メリト酸)またはその無水物である上記化1で示されるベンゼンヘキサカルボン酸三無水物(無水メリト酸)を用い、ジアミンとして上記化2で示されるm-フェニレンジアミンを用いることが最も好ましいので、これらのイミド化によって形成される上記化3で示される架橋構造が最も好ましい。
 本発明のリチウム二次電池での負極バインダーとしての架橋構造を含むポリイミド樹脂は、テトラカルボン酸またはその無水物とジアミンとのイミド化により形成される直鎖構造をも含んでいることが好ましい。
 6価以上のポリカルボン酸またはその無水物とジアミンとのイミド化により形成される架橋構造に比べ、テトラカルボン酸またはその無水物とジアミンとのイミド化により形成される直鎖構造は、変形性(柔軟性)がより高く、密着性に優れる。従って、ポリイミド樹脂中に、架橋構造に加えて直鎖構造も存在することにより、架橋構造による高い機械的強度を発現させた状態で直鎖構造による変形性(柔軟性)も発現させることができ、強度と密着性に優れたバインダーとすることが可能となる。
 本発明においては、テトラカルボン酸二無水物としては、1,2,4,5-ベンゼンテトラカルボン酸1,2:4,5-二無水物(別名;ピロメリット酸二無水物)、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルメタンテトラカルボン酸二無水物等の芳香族テトラカルボン酸二無水物が挙げられる。
 これらの中でも、ジアミンとのイミド化により生成する直鎖構造の状態における機械的強度と変形性(柔軟性)の兼ね合いより、上記化4で示される3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物が好ましく、特に後述の実施例により、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物が好ましい。3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物は、共に2つの芳香環を含み、これら2つの芳香環の間の結合種の効果によって、2つの芳香環が常に平面を保持した状態となっており、機械的強度と変形性(柔軟性)のバランスの取れたポリイミド樹脂を得ることができる。
 これに対し、1,2,4,5-ベンゼンテトラカルボン酸1,2:4,5-二無水物により生成したポリイミド樹脂は、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物や3,3’,4,4’-ビフェニルテトラカルボン酸二無水物のような芳香環を2つ有するものから得られるポリイミド樹脂に比べ、剛直性が高く、変形性(柔軟性)が低く、密着性が低い傾向にある。
 また、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルメタンテトラカルボン酸二無水物は、2つの芳香環の間の結合種による影響により、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物や3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と異なり、2つの芳香環が常に平面を保持した状態とならないため、機械的強度が低くなる場合がある。
 従って、本発明においては、テトラカルボン酸またはその無水物とジアミンとのイミド化により形成される直鎖構造としては、テトラカルボン酸としては上記化4で示される3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物及び/または上記化5で示される3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を用い、ジアミンとして上記化2で示されるm-フェニレンジアミンを用いることが、最も好ましいので、これらのイミド化により形成される上記化6と上記化7で示される直鎖構造が最も好ましい。
 本発明のポリイミド樹脂においては、ジアミンにより形成されるイミド基以外にも、3価以上の多価アミンにより形成されるイミド基を含む架橋構造が含まれていてもよい。3価以上の多価アミンにより形成されるイミド基を含む架橋構造は、この3価以上の多価アミンと6価以上のポリカルボン酸またはテトラカルボン酸とのイミド化により形成される。ポリカルボン酸とジアミンとのイミド化により形成される架橋構造以外に、更にこの3価以上の多価アミンにより形成されるイミド基を含む架橋構造がポリイミド樹脂内に形成されることにより、ポリイミド樹脂全体の機械的強度が更に高くなる。
 3価以上の多価アミンとしては、3~6価の多価アミンを用いることが可能であるが、特に3価のトリアミンを用いることが好ましい。3~6価の多価アミンを用いることにより、機械的強度が十分に担保されたポリイミド樹脂を得ることができる。しかし、多価アミンが4価以上になるとポリイミド樹脂の機械的強度は向上するが、架橋構造の変形性(柔軟性)が低下するために脆くなり、充放電時にポリイミド樹脂の破壊が生じやすくなる。また、樹脂の変形性(柔軟性)が低い場合、密着性も低下する。従って、機械的強度と変形性(柔軟性)の兼ね合いより、3価のトリアミンが特に好ましい。
 トリアミンとしては、トリス(4-アミノフェニル)メタノール(別名;パラローズアニリン)、トリス(4-アミノフェニル)メタン、3,4,4’-トリアミノジフェニルエーテル、3,4,4’-トリアミノベンゾフェノン、3,4,4’-トリアミノジフェニルメタン、1,4,5-トリアミノナフタレン、トリス(4-アミノフェニル)アミン、1,2,4-トリアミノベンゼン、1,3,5-トリアミノベンゼン等の芳香族トリアミンや、2,4,6-トリアミノ-1,3,5-トリアジン(別名;メラミン)、1,3,5-トリアミノシクロヘキサン等が挙げられる。
 これらの中では、トリス(4-アミノフェニル)メタノール、トリス(4-アミノフェニル)メタン、トリス(4-アミノフェニル)アミン、1,3,5-トリアミノベンゼン、2,4,6-トリアミノ-1,3,5-トリアジン、1,3,5-トリアミノシクロヘキサンが好ましい。これらのトリアミンは、分子内のアミン基の配置の対称性が高いので、ポリカルボン酸やテトラカルボン酸二無水物とのイミド化によって形成される架橋構造の対称性及び構造安定性が高い構造となり、樹脂全体がより高い機械的強度を発現することが可能になる。
 更に、この機械的強度の観点に加えて、耐熱性という観点からは、トリス(4-アミノフェニル)メタノール、トリス(4-アミノフェニル)メタン、トリス(4-アミノフェニル)アミン、1,3,5-トリアミノベンゼンといった芳香族トリアミンが好ましい。多価アミンとテトラカルボン酸二無水物とのイミド化を生じさせるには熱処理を行う必要があるが、これらの材料自体の耐熱性が低いと熱処理時に熱分解し、所望のポリイミド樹脂が形成できなくなる。
 また、市販品として比較的安価に入手可能なものとしては、トリス(4-アミノフェニル)メタノール、3,4,4’-トリアミノジフェニルエーテル、1,2,4-トリアミノベンゼンが挙げられる。
 従って、価格、機械的強度、耐熱性、全ての観点からは、トリス(4-アミノフェニル)メタノールが最も好ましい。
 テトラアミンとしては、テトラキス(4-アミノフェニル)メタン、3,3’,4,4’-テトラアミノジフェニルエーテル、3,3’,4,4’-テトラアミノベンゾフェノン、3,3’,4,4’-テトラアミノジフェニルメタン、N,N,N’N’-テトラキス(4-メチルフェニル)ベンジジン等が挙げられる。
 多価アミンを用いる場合、ジアミンと多価アミンのモル比(ジアミン:多価アミン)は、90:10~70:30の範囲内であることが好ましい。
 本発明の製造方法によれば、6価以上のポリカルボン酸無水物とジアミンとのイミド化により形成される架橋構造を含んだポリイミド樹脂を含む負極バインダーを含むリチウム二次電池を作製することができる。
 バインダー前駆体溶液として、架橋構造を含むポリイミド樹脂のモノマー成分の混合物である、6価以上のポリカルボン酸無水物と1価アルコールとのエステル化物と、ジアミンとを含有したものを用い、これを熱処理することにより、重合反応とそれに引き続くイミド化反応を適正に生じさせ、架橋構造を含むポリイミド樹脂を形成することができる。
 また、このようにバインダー前駆体として、架橋構造を含むポリイミド樹脂のモノマー成分の混合物を用いることにより、ポリイミド樹脂の前駆体として一般的なポリアミド酸のようなポリマー状態のバインダー前駆体と比べて粘度が低い。このため、負極合剤スラリー作製時における負極活物質粒子表面の凹凸内へのバインダー前駆体の入り込みや、負極集電体上への負極合剤スラリーの塗布時における負極集電体表面の凹凸内へのバインダー前駆体の入り込みが生じやすくなり、負極活物質粒子及び負極集電体とバインダーとの間のアンカー効果が大きく発現し、より高い密着性を得ることが可能となる。
 ここでバインダー前駆体として用いられる6価以上のポリカルボン酸無水物とジアミンは、上記で例示したものを用いることが可能である。
 また、アルコール類による6価以上のポリカルボン酸無水物のエステル化物は、6価以上のポリカルボン酸無水物とアルコ-ル性のヒドロキシ基を1個有する化合物、例えば、メタノ-ル、エタノ-ル、イソプロパノ-ル、ブタノ-ルなどの脂肪族アルコ-ルとを反応させることで得られる。
 本発明のリチウム二次電池の製造方法においては、バインダー前駆体溶液中にテトラカルボン酸二無水物が含まれていることが好ましい。バインダー前駆体溶液中に6価以上のポリカルボン酸無水物とジアミンに加えてテトラカルボン酸二無水物が含まれており、負極合剤スラリーが塗布された負極集電体を非酸化性雰囲気下で熱処理することによって、6価以上のポリカルボン酸無水物とジミアンとの重合反応とそれに引き続くイミド化反応により形成される架橋構造に加えて、テトラカルボン酸二無水物とジアミンとの重合反応とそれに引き続くイミド化反応により形成される直鎖構造も形成される。更には、これらが溶液内にて均一に存在していることにより、この架橋構造と直鎖構造が均一に複合し合ったポリマー鎖となるため、架橋構造による高い機械的強度を発現させた状態で直鎖構造による変形性(柔軟性)も発現した状態となって、強度と密着性に優れたバインダーとすることが可能となる。
 また、上記テトラカルボン酸二無水物を含まない場合と同じように、バインダー前駆体として、架橋構造及び直鎖構造を含むポリイミド樹脂のモノマー成分の混合物である6価以上のポリカルボン酸無水物とジアミンとテトラカルボン酸二無水物の混合物を用いていることによっても、負極作製時に負極活物質粒子及び負極集電体の表面凹凸内へのバインダー前駆体の入り込みが生じやすくなり、負極活物質粒子及び負極集電体とバインダーとの間のアンカー効果が大きく発現し、より高い密着性を得ることが可能となる。
 ここでバインダー前駆体として用いられるジアミンは、上記で例示したものを用いることが可能である。
 本発明のリチウム二次電池の製造方法において、バインダー前駆体溶液が、6価以上のポリカルボン酸無水物とジアミンに加えてテトラカルボン酸二無水物を含む場合、6価以上のポリカルボン酸無水物の総モル数と、テトラカルボン酸二無水物の総モル数の比率が、5:95~15:85であることが好ましい。
 15:85の比率(ポリカルボン酸無水物:テトラカルボン酸二無水物)の割合を超えて、6価以上のポリカルボン酸無水物が多くなると、架橋構造が多くなりすぎ、バインダー全体の柔軟性が低くなりすぎる場合がある。よって、負極合剤層と負極集電体との間の密着性が低下し、充放電サイクル特性が悪化する場合がある。
 6価以上のポリカルボン酸無水物の総モル数とテトラカルボン酸二無水物の総モル数の比率が上記範囲内にある場合、ポリイミド樹脂中における、6価以上のポリカルボン酸無水物とジアミンとの重合反応とそれに引き続くイミド化反応により形成される架橋構造とジアミンとテトラカルボン酸二無水物との重合反応とそれに引き続くイミド化反応により形成される直鎖構造との割合が適切なものとなる。これにより架橋構造による高い機械的強度と直鎖構造による変形性(柔軟性)のバランスが取れた状態となるため、強度と密着性に優れたバインダーとすることが可能となる。
 本発明のリチウム二次電池の製造方法においては、バインダー前駆体溶液での、カルボン酸基の総モル数とアミン基の総モル数の比が1.9~2.1であることが好ましい。このカルボン酸基の総モル数とアミン基の総モル数の比は、例えば、バインダー前駆体溶液が、6価のポリカルボン酸成分の総モル数がA、ジアミン成分の総モル数がB、テトラカルボン酸二無水物成分の総モル数がC、3価の多価アミン成分の総モル数がDの組成である場合、(6A+4C)/(2B+3D)で表される。
 カルボン酸基の総モル数とアミン基の総モル数の比が2である場合、イミド化反応の化学量論比となる。従って、バインダー溶液中のカルボン基の総モル数とアミン基の総モル数の比率が2に近い1.9~2.1の範囲内であれば、カルボン酸成分とアミン成分との重合反応とそれに引き続くイミド化反応が効果的に生じて、ポリマー鎖が長く機械的強度に優れたポリイミド樹脂を得ることが可能となる。
 本発明の製造方法においては、集電体上に負極合剤スラリーを塗布した後、非酸化性雰囲気下で熱処理することにより、架橋構造を含むポリイミド樹脂のモノマー成分間での重合反応とイミド化反応が生じ、架橋構造を含むポリイミド樹脂のバインダーを形成する。
 非酸化性雰囲気下での熱処理の温度は、架橋構造を含むポリイミド樹脂が5%質量の減少を開始する温度を下回る範囲であることが好ましい。熱処理の温度が,ポリイミド樹脂が5%質量の減少を開始する温度を上回る場合,熱処理時にポリイミド樹脂の熱分解が生じ、所望のポリイミド樹脂が形成できなくなる場合がある。
 また、架橋構造を含むポリイミド樹脂がガラス転移温度を有している場合は、このガラス転移温度を超える温度であることが好ましい。ガラス転移温度を超える温度で熱処理を行うことにより、バインダー前駆体の重合とそれに引き続くイミド化反応による架橋構造を含むポリイミド樹脂の生成後に、架橋構造を含むポリイミド樹脂が可塑性領域となるため、負極活物質粒子や負極集電体の表面に存在する凹凸部分への樹脂の入り込みが更に大きくなり、アンカー効果がより大きく発現(樹脂の熱融着効果が発現)し、より大きな密着性が得られることになる。
 熱処理の具体的な温度としては、例えば、200~500℃の範囲が好ましく、さらに好ましくは300~450℃の範囲である。
 また、非酸化性雰囲気としては、アルゴンなどの不活性ガスの雰囲気や窒素ガスの雰囲気が挙げられる。また、水素ガスなどの還元性雰囲気であってもよい。
 本発明において、負極集電体は、導電性を有するものである限りにおいて特に限定されない。負極集電体は、例えば、銅、ニッケル、鉄、チタン、コバルト、マンガン、錫、ケイ素等の金属またはこれらの組み合わせからなる合金からなる箔など導電性金属箔により構成することができる。これらの中でも、導電性金属箔は、活物質粒子中に拡散しやすい金属元素を含有するものが好ましいため、銅薄膜または銅を含む合金からなる箔により構成されていることが好ましい。
 負極集電体の厚みは特に限定されず、例えば、10μm~100μm程度とすることができる。
 負極合剤層に上記バインダーと共に含まれる負極活物質粒子は、ケイ素及びケイ素を含む合金のうちの少なくとも一方を含んでいれば良い。また、ケイ素合金は、負極活物質として機能する合金である限りにおいて特に限定されない。
 ケイ素合金の具体例としては、ケイ素と他の1種以上の元素との固溶体、ケイ素と他の1種以上の元素との金属間化合物、ケイ素と他の1種以上の元素との共晶合金などが挙げられる。ケイ素を含む合金の作製方法としては、アーク溶解法、液体急冷法、メカニカルアロイング法、スパッタリング法、化学気相成長法、焼成法などが挙げられる。液体急冷法の具体例としては、単ロール急冷法、双ロール急冷法、及びガスアトマイズ法、水アトマイズ法、ディスクアトマイズ法などの各種アトマイズ法が挙げられる。
 また、負極活物質粒子は、粒子表面が金属や合金等で被覆されたケイ素及び/またはケイ素合金の粒子であってもよい。被覆方法としては、無電解めっき法、電解めっき法、化学還元法、蒸着法、スパッタリング法、化学気相成長法などが挙げられる。粒子表面を被覆する金属は、負極集電体を構成している導電性金属箔や、下記の導電性金属粉末と同じ金属であることが好ましい。導電性金属箔及び導電性金属粉末と同じ金属を用いて粒子を被覆することにより、焼結の際の集電体及び導電性金属粉末との結合性が大きく向上し、さらに優れた充放電サイクル特性を得ることができる。
 負極活物質粒子の平均粒径は、特に限定されないが、例えば、100μm以下であることが好ましく、50μm以下であることがさらに好ましい。
 本発明においては、負極合剤層に、導電性金属粉末や導電性炭素粉末などの導電性粉末がさらに含まれていてもよい。導電性金属粉末の具体例としては、上記導電性金属箔と同様の材質のものを好ましく用いられる。具体的には、銅、ニッケル、鉄、チタン、コバルト等の金属またはこれらの組み合わせからなる合金により形成された粉末が導電性金属粉末として好ましく用いられる。なお、導電性粉末の平均粒径は、特に限定されないが100μm以下であることが好ましく、50μm以下であることがより好ましい。
 本発明において、正極及び非水電解質のそれぞれは、特に限定されず、例えば、公知のものを用いることができる。
 正極は、一般的には、導電性金属箔などにより構成される正極集電体と、正極集電体の上に形成される正極合剤層とを備えている。正極合剤層は、正極活物質を含む。正極活物質は、リチウムを電気化学的に挿入・脱離するものである限りにおいて特に限定されない。正極活物質の具体例としては、LiCoO、LiNiO、LiMn、LiMnO、LiCo0.5Ni0.5、LiNi0.7Co0.2Mn0.1などのリチウム含有遷移金属酸化物や、MnOなどのリチウムを含有していない金属酸化物等が挙げられる。
 非水電解質に用いられる溶媒も特に限定されない。非水電解質に用いられる溶媒の具体例としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネートやフルオロエチレンカーボネートなどの環状カーボネートや、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどの鎖状カーボネート、環状カーボネートと鎖状カーボネートとの混合溶媒などが挙げられる。
 非水電解質に用いられる溶質も特に限定されない。非水電解質に用いられる溶質の具体例としては、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSOなど及びそれらの混合物等が挙げられる。また、電解質として、ポリエチレンオキシド、ポリアクリロニトリルなどのポリマー電解質に電解液を含浸したゲル状ポリマー電解質や、LiI、LiNなどの無機固体電解質を用いてもよい。また、非水電解質には、COが含まれていることが好ましい。
 以下、本発明を具体的な実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。
 (実施例1)
 <負極の作製>
 〔負極活物質の作製〕
 先ず、内温800℃の流動層内に多結晶珪素微粒子を導入し、モノシラン(SiH)を送入することで粒状の多結晶ケイ素を作製した。
 次に、この粒状の多結晶ケイ素をジェットミルを用いて粉砕した後、分級機にて分級し、メディアン径が9μmの多結晶ケイ素粉末(負極活物質)を作製した。メディアン径は、レーザー光回折法による粒度分布測定における累積体積50%径で得た。
 なお、この多結晶ケイ素粉末の結晶子サイズは、粉末X線回折のケイ素の(111)ピークの半値幅を用いたscherrerの式による算出で、44nmであった。
 〔負極バインダー前駆体の作製〕
 N-メチル-2-ピロリドン(NMP)に、上記化1で示されるベンゼンヘキサカルボン酸三無水物を3当量のエタノールでエステル化したものと、上記化4で示される、3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物を2当量のエタノールでエステル化したものと、上記化2で示されるm-フェニレンジアミンを、モル比で化1:化4:化2が、5:95:102.5となるように溶解させ、バインダー前駆体溶液a1を得た。
 ここで、バインダー前駆体溶液a1中における、化1のモル数をA、化4のモル数をB、化2のモル数をc、とすると、(6A+4B)/2c=2となる。
 〔負極合剤スラリーの作製〕
 上記作製の負極活物質と、負極導電剤としての平均粒径3μmの黒鉛粉末と、上記作製の負極バインダー前駆体溶液a1とを、負極活物質粉末と負極導電剤粉末と負極バインダー(負極バインダー前駆体溶液a1の乾燥によるNMP除去、重合反応、イミド化反応後のもの)の質量比が89.5:3.7:6.8となるように混合し、負極合剤スラリーとした。
 〔負極の作製〕
 上記で作製された負極合剤スラリーを、負極集電体の両面に、25℃空気中で塗布し、120℃空気中で乾燥後、25℃空気中で圧延した。得られたものを、長さ380mm、幅52mmの長方形に切り抜いた後、アルゴン雰囲気下で400℃、10時間熱処理し、負極集電体の表面に負極活物質層が形成された負極を作製した。負極の端部には、負極集電タブとしてのニッケル板を接続した。負極集電体上の負極合剤層量は5.6mg/cm、厚みは56μmであった。なお、負極集電体としては、厚さ18μmの銅合金箔(C7025合金箔、組成;Cu96.2質量%、Ni3質量%、Si0.65質量%、Mg0.15質量%)の両面を、表面粗さRa(JIS B 0601-1994)が0.25μm、平均山間隔S(JIS B 0601-1994)が0.85μmとなるように電解銅粗化したものを用いた。
 上記負極の熱処理によって、バインダー前駆体溶液a1からポリイミド化合物が生成したことを確認するために以下の実験を行った。バインダー前駆体溶液a1を、120℃の空気中で乾燥させてNMPを除去後、先述の負極の熱処理と同様に、アルゴン雰囲気下、400℃で10時間熱処理したものの赤外線(IR)吸収スペクトルを測定した。その結果、1720cm-1付近にイミド結合由来のピークが検出された。これにより、バインダー前駆体溶液a1の熱処理により、重合反応とイミド化反応とが進行してポリイミド化合物が生成したことを確認した。
 <正極の作製>
 〔リチウム遷移金属複合酸化物の作製〕
 正極活物質として、LiCOとCoCOとを、LiとCoのモル比が1:1になるようにして乳鉢にて混合し、空気雰囲気中にて800℃で24時間熱処理した後に粉砕し、平均粒子径10μmのLiCoOで表されるリチウムコバルト複合酸化物の正極活物質の粉末を得た。得られた正極活物質粉末のBET比表面積は0.37m/gであった。
 〔正極の作製〕
 分散媒としてのNMPに、上記作製の正極活物質としてのLiCoO粉末と、正極導電剤としての炭素材料粉末と、正極バインダーとしてのポリフッ化ビニリデンとを、正極活物質と導電剤とバインダーとの質量比が95:2.5:2.5となるように加えた後、混練し、正極合剤スラリーとした。
 この正極合剤スラリーを、正極集電体としての厚み15μm、長さ402mm、幅50mmのアルミニウム箔の両面に、塗布し、乾燥した後、圧延した。正極合剤スラリーは、その塗布部が正極集電体の表面で長さ340mm幅50mm、正極集電体の裏面で長さ270mm幅50mmとなるように塗布された。集電体上の活物質量、及び正極の厚みは、両面に活物質層が形成されている部分で48mg/cm、143μmであった。
 なお、正極の端部にある正極活物質層の未塗布部分には、正極集電タブとしてアルミニウム板を接続した。
 〔非水電解液の作製〕
 アルゴン雰囲気下で、フルオロエチレンカーボネート(FEC)とメチルエチルカーボネート(MEC)とを体積比2:8で混合した溶媒に対し、六フッ化リン酸リチウム(LiPF)を1モル/リットル溶解させた後、この溶液に対して0.4質量%の二酸化炭素ガスを溶存させ、非水電解液とした。
 〔電極体の作製〕
上記正極を1枚、上記負極を1枚、ポリエチレン製微多孔膜のセパレータを2枚用いた。セパレータは、厚さ20μm、長さ450mm、幅54.5mmであり、突き刺し強度340g、空孔率39%である。正極と負極とをセパレータを介して対向させ、正極タブ、負極タブ共に最外周となるようにして、円柱型の巻き芯で、渦巻き状に巻回した後、巻き芯を引き抜いて、渦巻状の電極体を作製した後、押し潰して、扁平型の電極体を得た。ここで、作製した渦巻き状電極体の構造の模式図を図3に示す。
 図3に示すように、電極体5は、電極体5から取り出された正極集電タブ3及び負極集電タブ4を有している。
 <リチウム二次電池の作製>
 上記のようにして得られた電極体及び電解液を、25℃で、1気圧の二酸化炭素雰囲気下で、アルミニウムラミネート製の外装体内に挿入し、扁平型のリチウム二次電池を作製した。
 図1は、作製したリチウム二次電池を示す平面図である。図1に示すように、リチウム二次電池は、アルミニウムラミネート外装体1、アルミニウムラミネートの端部同士をヒートシールした閉口部2、正極集電タブ3、負極集電タブ4、電極体5から構成されている。
 図2は、図1に示すA-A線に沿う断面図である。電極体5は、正極6及び負極7の間にセパレータ8を挟んだ状態で巻回することにより構成されている。
 以上のようにして、本発明電池A1を作製した。
 (実施例2)
 前記本発明電池A1の負極バインダー前駆体の作製において、化1:化4:化2のモル比を15:85:107.5とした他は、同様にして、本発明電池A2を作製した。
 (実施例3)
 前記本発明電池A1の負極バインダー前駆体の作製において、化1:化4:化2のモル比を20:80:110とした他は、同様にして、本発明電池A3を作製した。
 (実施例4)
 前記本発明電池A1の負極バインダー前駆体の作製において、上記化4で示される3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物の代わりに、上記化5で示される3,3’,4,4’-ビフェニルテトラカルボン酸二無水物を用いた他は、同様にして、本発明電池A4を作製した。
 (実施例5)
 前記本発明電池A1の負極バインダー前駆体の作製において、多価アミンとして、下記化8で示されるトリス(4-アミノフェニル)メタノールを更に添加し、モル比 化1:化4:化2:化8を5:95:95:5となるようにした他は、同様にして、本発明電池A5を作製した。
Figure JPOXMLDOC01-appb-C000015
 (比較例1)
 前記本発明電池A1の負極バインダー前駆体の作製において、上記化1で示されるベンゼンヘキサカルボン酸三無水物を3当量のエタノールでエステル化したものを混合せず、更に化4:化2のモル比を100:100とした他は、同様にして、比較電池B1を作製した。
 (比較例2)
 前記本発明電池A4の負極バインダー前駆体の作製において、上記化1で示されるベンゼンヘキサカルボン酸三無水物を3当量のエタノールでエステル化したものを混合せず、更に化5:化2のモル比を100:100とした他は、同様にして、比較電池B2を作製した。
 〔充放電サイクル特性の評価〕
 上記の本発明電池A1~A5及び比較電池B1~B2について、下記の充放電サイクル条件にて充放電サイクル特性を評価した。
 (充放電サイクル条件)
 ・1サイクル目の充電条件
 50mAの電流で4時間定電流充電を行った後、200mAの電流で電池電圧が4.2Vとなるまで定電流充電を行い、更に、4.2Vの電圧で電流値が50mAとなるまで定電圧充電を行った。
 ・1サイクル目の放電条件
 200mAの電流で電池電圧が2.75Vとなるまで定電流放電を行った。
 ・2サイクル目以降の充電条件
 1000mAの電流で電池電圧が4.2Vとなるまで定電流充電を行い、更に、4.2Vの電圧で電流値が50mAとなるまで定電圧充電を行った。
 ・2サイクル目以降の放電条件
 1000mAの電流で電池電圧が2.75Vとなるまで定電流放電を行った。
 以下の計算方法で、初期充放電効率、サイクル寿命を求めた。
 ・初期充放電効率
  ; (1サイクル目の放電容量/1サイクル目の充電容量)×100
 ・サイクル寿命
  ; 容量維持率(nサイクル目の放電容量を、1サイクル目の放電容量で除した値)
が85%になった時のサイクル数
 本発明電池A1~A5及び比較電池B1~B2の初期充放電効率、サイクル寿命を表1に示す。
Figure JPOXMLDOC01-appb-T000016
 表1から明らかなように、負極バインダーが6価以上のポリカルボン酸とジアミンとのイミド化により形成される架橋構造を含むポリイミド樹脂である本発明電池A1~A5は、負極バインダーがこのような架橋構造を含まないポリイミド樹脂である比較電池B1~B2に比べて、優れたサイクル寿命を示していることが分かる。
 これは、架橋構造を含むポリイミド樹脂は、その架橋構造によって高い機械的特性と密着性が両立していることにより負極内に高い集電性が発現したためと考える。
 また、本発明電池A1~A5の間での比較より、架橋構造を形成する6価以上のポリカルボン酸と直鎖構造を形成するテトラカルボン酸の比率が5:95~15:85である本発明電池A1、A2、A4及びA5が特に優れたサイクル寿命を示していることが分かる。
 本発明電池A1とA5との比較より、アミン成分としてジアミンに加えて3価以上の多価アミンであるトリアミンが含まれている本発明電池A5が特に優れたサイクル寿命を示していることが分かる。
 また、本発明電池A1とA4との比較より、テトラカルボン酸二無水物として、化5で表されるものより、化4で表されるものを用いることが好ましいことが分かる。
 1…アルミニウムラミネート外装体
 2…閉口部
 3…正極集電タブ
 4…負極集電タブ
 5…電極体
 6…正極
 7…負極
 8…セパレータ

Claims (9)

  1.  ケイ素及び/またはケイ素合金を含む負極活物質粒子とバインダーとを含む負極活物質層が負極集電体である導電性金属箔の表面上に形成された負極と、正極と、非水電解質とを備えるリチウム二次電池であって、
     前記バインダーが、6価以上のポリカルボン酸またはその無水物とジアミンとのイミド化により形成される架橋構造を含むポリイミド樹脂を含んでいることを特徴とするリチウム二次電池。
  2.  前記6価以上のポリカルボン酸の無水物が下記化1に示されるものを含み、前記ジアミンが下記化2に示されるものを含み、前記架橋構造が下記化3に示される構造を含むことを特徴とする請求項1に記載のリチウム二次電池。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
  3.  前記架橋構造を含むポリイミド樹脂が、テトラカルボン酸またはその二無水物とジアミンとのイミド化により形成される直鎖構造を含むことを特徴とする請求項1または2に記載のリチウム二次電池。
  4.  前記架橋構造を含むポリイミド樹脂が、下記化4及び/または下記化5に示されるテトラカルボン酸二無水物と前記化2に示されるジアミンとのイミド化により形成される下記化6及び/または下記化7に示される直鎖構造を含むことを特徴とする請求項2に記載のリチウム二次電池。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
  5.  前記ポリイミド樹脂において、上記化3で示される架橋構造の総モル数と、上記化6及び/または下記化7で示される直鎖構造の総モル数との比率(架橋構造:直鎖構造)が、5:95~15:85であることを特徴とする請求項4に記載のリチウム二次電池。
  6.  前記ポリイミド樹脂が、3価以上の多価アミンのイミド化による架橋構造をさらに含んでいることを特徴とする請求項1~5のいずれか1項に記載のリチウム二次電池。
  7.  溶媒中にて6価以上のポリカルボン酸無水物と1価アルコールを反応させてエステル化物を形成する工程と、
     このエステル化物にジアミンを添加して、架橋構造を含むポリイミド樹脂のモノマー成分を含むバインダー前駆体溶液を作製する工程と、
     ケイ素及び/又はケイ素合金を含む負極活物質粒子をバインダー前駆体溶液中に分散させて負極合剤スラリーを作製する工程と、
     負極合剤スラリーを負極集電体である導電性金属箔の表面上に塗布する工程と、
     負極合剤スラリーが塗布された負極集電体を非酸化性雰囲気下で熱処理することにより、架橋構造を含むポリイミド樹脂のモノマー成分間での重合反応とイミド化反応を行って架橋構造を含むポリイミド樹脂のバインダーを形成する工程とを備えることを特徴とするリチウム二次電池用負極の製造方法。
  8.  前記エステル化物を形成する工程において、さらにテトラカルボン酸二無水物を添加して、前記ポリカルボン酸無水物及び前記カルボン酸二無水物と、前記1価アルコールとを反応させてエステル化物を形成し、
     前記バインダー前駆体溶液を作製する工程において、これらのエステル化物にジアミンを添加して、架橋構造及び直鎖構造を含むポリイミド樹脂のモノマー成分を含むバインダー前駆体溶液を作製することを特徴とする請求項7に記載のリチウム二次電池用負極の製造方法。
  9.  請求項7または8に記載の方法により負極を製造する工程と、
     前記負極と正極との間にセパレータを配置して電極体を作製する工程と、
     前記電極体に非水電解質を含浸させる工程とを備えることを特徴とするリチウム二次電池の製造方法。
PCT/JP2011/057213 2010-03-26 2011-03-24 リチウム二次電池及びその製造方法 WO2011118720A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP11759525.6A EP2555288A4 (en) 2010-03-26 2011-03-24 LITHIUM SECONDARY BATTERY AND METHOD OF MANUFACTURING THEREOF
US13/636,811 US9413010B2 (en) 2010-03-26 2011-03-24 Lithium secondary battery and method for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-072908 2010-03-26
JP2010072908A JP5583447B2 (ja) 2010-03-26 2010-03-26 リチウム二次電池及びその製造方法

Publications (1)

Publication Number Publication Date
WO2011118720A1 true WO2011118720A1 (ja) 2011-09-29

Family

ID=44662094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057213 WO2011118720A1 (ja) 2010-03-26 2011-03-24 リチウム二次電池及びその製造方法

Country Status (5)

Country Link
US (1) US9413010B2 (ja)
EP (1) EP2555288A4 (ja)
JP (1) JP5583447B2 (ja)
CN (1) CN102201595B (ja)
WO (1) WO2011118720A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114695892A (zh) * 2022-03-03 2022-07-01 江苏环峰电工材料有限公司广州分公司 一种负极粘结剂用二胺交联型聚酰亚胺及其制备方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197069A (ja) * 2012-03-22 2013-09-30 National Institute Of Advanced Industrial & Technology リチウム二次電池用負極材料及びその製造方法、リチウム二次電池用負極及びその製造方法、リチウム二次電池及びこれを用いた電気機器
JP5099394B1 (ja) 2012-05-31 2012-12-19 Jsr株式会社 蓄電デバイスの電極用バインダー組成物
US9583278B2 (en) 2012-06-18 2017-02-28 Jsr Corporation Binder composition for electrical storage device electrodes, slurry for electrical storage device electrodes, electrical storage device electrode, and electrical storage device
US20150263334A1 (en) * 2012-09-28 2015-09-17 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
CN103811719B (zh) * 2012-11-09 2016-11-23 华为技术有限公司 一种锂离子电池硅负极极片及其制备方法和锂离子电池
US10741842B2 (en) 2012-12-07 2020-08-11 Samsung Electronics Co., Ltd. Solid-state battery
KR101736359B1 (ko) 2013-01-21 2017-05-18 애경화학 주식회사 리튬 이차 전지용 바인더, 리튬 이차 전지용 전극, 리튬 이차 전지용 전극의 제조 방법 및 상기 전극을 포함하는 리튬 이차 전지
US20150221936A1 (en) * 2014-02-05 2015-08-06 GM Global Technology Operations LLC Negative electrode material for a lithium ion battery
JP5999399B2 (ja) 2014-09-08 2016-09-28 Jsr株式会社 リチウムイオン二次電池電極用バインダー組成物、リチウムイオン二次電池電極用スラリー、リチウムイオン二次電池電極、およびリチウムイオン二次電池
US11569508B2 (en) * 2015-02-05 2023-01-31 Pi R&D Co., Ltd. Binder resin for lithium secondary battery electrode, electrode for lithium secondary battery, and lithium secondary battery
JP6111453B2 (ja) * 2015-02-26 2017-04-12 株式会社アイ.エス.テイ ポリイミドコーティング活物質粒子、電極材料用スラリー、負極、電池、及び、ポリイミドコーティング活物質粒子の製造方法
CN106340652B (zh) 2015-07-17 2019-03-08 江苏华东锂电技术研究院有限公司 正极材料及锂硫电池
CN106920917A (zh) * 2015-12-28 2017-07-04 中国科学院长春应用化学研究所 一种电极浆料的制备方法
JP6987780B2 (ja) * 2016-11-29 2022-01-05 三洋電機株式会社 非水電解質二次電池
WO2018180232A1 (ja) 2017-03-28 2018-10-04 東亞合成株式会社 非水電解質二次電池電極用バインダー
WO2020012941A1 (ja) 2018-07-10 2020-01-16 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
WO2020012942A1 (ja) 2018-07-10 2020-01-16 Jsr株式会社 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
JP7220215B2 (ja) 2018-07-10 2023-02-09 株式会社Eneosマテリアル 蓄電デバイス用組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極及び蓄電デバイス
US11502293B2 (en) * 2021-03-17 2022-11-15 Enevate Corporation Method and system for copper coated anode active material
CN109912618B (zh) * 2019-03-20 2020-12-25 浙江福斯特新材料研究院有限公司 一种多官能度有机酸酐及低介电常数超支化聚酰亚胺薄膜
CN113795950A (zh) 2019-05-08 2021-12-14 Jsr株式会社 蓄电设备用粘结剂组合物、蓄电设备电极用浆料、蓄电设备电极以及蓄电设备
CN110128653A (zh) * 2019-05-28 2019-08-16 汕头市鲁汕化工原料有限公司 一种高性能聚酰亚胺制备方法及其在锂电池电极中的应用
KR20220047803A (ko) 2019-08-13 2022-04-19 제이에스알 가부시끼가이샤 축전 디바이스용 조성물, 축전 디바이스 전극용 슬러리, 축전 디바이스 전극 및 축전 디바이스
WO2021039503A1 (ja) 2019-08-29 2021-03-04 Jsr株式会社 蓄電デバイス用バインダー組成物、蓄電デバイス電極用スラリー、蓄電デバイス電極、及び蓄電デバイス
CN112500563B (zh) * 2020-11-13 2023-10-31 四川普利司德高分子新材料有限公司 一种三维共轭导电聚苯胺的合成方法及作为锂离子电池负极粘结剂的应用
CN114805804A (zh) * 2022-04-29 2022-07-29 北京宇程科技有限公司 一种支化交联型聚酰胺酸溶液、聚酰亚胺粘合剂及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359034A (ja) * 1989-07-27 1991-03-14 Hitachi Chem Co Ltd ポリイミド系樹脂の製造法
JPH04261430A (ja) * 1991-02-15 1992-09-17 Hitachi Chem Co Ltd ポリイミド系樹脂の製造法
JPH0653208A (ja) * 1991-02-28 1994-02-25 Hitachi Chem Co Ltd 半導体の多層配線用層間絶縁膜及び/又は表面保護膜用組成物並びに半導体装置
JPH0945332A (ja) * 1995-07-28 1997-02-14 Toyobo Co Ltd 非水電解質二次電池及びその製造方法
JPH10302771A (ja) * 1997-04-22 1998-11-13 Toyobo Co Ltd 二次電池用負極及びそれを用いた二次電池
JP2002260637A (ja) 2000-09-01 2002-09-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法
WO2004004031A1 (ja) 2002-06-26 2004-01-08 Sanyo Electric Co., Ltd. リチウム二次電池用負極及びリチウム二次電池
JP2007242405A (ja) 2006-03-08 2007-09-20 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008034352A (ja) 2006-06-30 2008-02-14 Sanyo Electric Co Ltd リチウム二次電池及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3483144A (en) * 1966-07-27 1969-12-09 Monsanto Co Process for the preparation of a polyimide foam
JP3333035B2 (ja) * 1994-03-14 2002-10-07 三井化学株式会社 疲労特性に優れたポリイミド樹脂及び射出成形体
WO2002021616A1 (fr) 2000-09-01 2002-03-14 Sanyo Electric Co., Ltd. Electrode negative pour accumulateur au lithium et procede de production
JP4610213B2 (ja) * 2003-06-19 2011-01-12 三洋電機株式会社 リチウム二次電池及びその製造方法
JP2006339092A (ja) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd 非水電解液二次電池およびその負極
JP5361232B2 (ja) * 2008-03-28 2013-12-04 三洋電機株式会社 リチウム二次電池及びその製造方法
US9334368B2 (en) * 2008-10-31 2016-05-10 Ube Industries, Ltd. Polyimide precursor solution composition

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0359034A (ja) * 1989-07-27 1991-03-14 Hitachi Chem Co Ltd ポリイミド系樹脂の製造法
JPH04261430A (ja) * 1991-02-15 1992-09-17 Hitachi Chem Co Ltd ポリイミド系樹脂の製造法
JPH0653208A (ja) * 1991-02-28 1994-02-25 Hitachi Chem Co Ltd 半導体の多層配線用層間絶縁膜及び/又は表面保護膜用組成物並びに半導体装置
JPH0945332A (ja) * 1995-07-28 1997-02-14 Toyobo Co Ltd 非水電解質二次電池及びその製造方法
JPH10302771A (ja) * 1997-04-22 1998-11-13 Toyobo Co Ltd 二次電池用負極及びそれを用いた二次電池
JP2002260637A (ja) 2000-09-01 2002-09-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法
WO2004004031A1 (ja) 2002-06-26 2004-01-08 Sanyo Electric Co., Ltd. リチウム二次電池用負極及びリチウム二次電池
JP2007242405A (ja) 2006-03-08 2007-09-20 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008034352A (ja) 2006-06-30 2008-02-14 Sanyo Electric Co Ltd リチウム二次電池及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2555288A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114695892A (zh) * 2022-03-03 2022-07-01 江苏环峰电工材料有限公司广州分公司 一种负极粘结剂用二胺交联型聚酰亚胺及其制备方法

Also Published As

Publication number Publication date
US20130101897A1 (en) 2013-04-25
US9413010B2 (en) 2016-08-09
EP2555288A4 (en) 2013-08-07
CN102201595B (zh) 2015-07-08
JP2011204592A (ja) 2011-10-13
EP2555288A1 (en) 2013-02-06
CN102201595A (zh) 2011-09-28
JP5583447B2 (ja) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5583447B2 (ja) リチウム二次電池及びその製造方法
JP5626644B2 (ja) リチウム二次電池負極用バインダー、リチウム二次電池用負極、リチウム二次電池、リチウム二次電池負極用バインダー前駆体溶液及びリチウム二次電池用負極の製造方法
JP5361232B2 (ja) リチウム二次電池及びその製造方法
JP2011048921A (ja) リチウム二次電池及びその製造方法
US10109856B2 (en) Negative electrode for nonaqueous electrolyte secondary batteries
JP6049611B2 (ja) リチウム二次電池及びその製造方法
JP5334021B2 (ja) リチウム二次電池、そのリチウム二次電池の製造方法及びそれに用いられるリチウム二次電池負極用バインダー前駆体溶液
JP6060896B2 (ja) 二次電池およびその製造方法
WO2013099558A1 (ja) リチウム二次電池の負極の製造方法、リチウム二次電池の負極及びリチウム二次電池
US20110311871A1 (en) Negative electrode for lithium secondary batteries and lithium secondary battery
JP6060897B2 (ja) 二次電池
JP2014067592A (ja) リチウム二次電池用負極、リチウム二次電池、及びリチウム二次電池用負極の製造方法
JP6414058B2 (ja) 電極用バインダー組成物および電極
JP6806068B2 (ja) 樹脂組成物
JP2013149483A (ja) リチウム二次電池の負極の製造方法、リチウム二次電池の負極、リチウム二次電池、及びリチウム二次電池の負極用の導電性金属粉末
JP7070421B2 (ja) 耐熱絶縁層付電極
WO2014068969A1 (ja) 非水電解質二次電池
WO2012132154A1 (ja) 二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11759525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13636811

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011759525

Country of ref document: EP