WO2011118097A1 - 可視光通信用送信機及び可視光通信システム - Google Patents

可視光通信用送信機及び可視光通信システム Download PDF

Info

Publication number
WO2011118097A1
WO2011118097A1 PCT/JP2010/072522 JP2010072522W WO2011118097A1 WO 2011118097 A1 WO2011118097 A1 WO 2011118097A1 JP 2010072522 W JP2010072522 W JP 2010072522W WO 2011118097 A1 WO2011118097 A1 WO 2011118097A1
Authority
WO
WIPO (PCT)
Prior art keywords
visible light
light communication
pulse
transmitter
data
Prior art date
Application number
PCT/JP2010/072522
Other languages
English (en)
French (fr)
Inventor
雅司 山田
公亮 中村
Original Assignee
太陽誘電株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 太陽誘電株式会社 filed Critical 太陽誘電株式会社
Priority to DE112010005415.0T priority Critical patent/DE112010005415B4/de
Priority to KR1020127015486A priority patent/KR101408816B1/ko
Publication of WO2011118097A1 publication Critical patent/WO2011118097A1/ja
Priority to US13/528,361 priority patent/US8849127B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems
    • H04B10/116Visible light communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/11Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
    • H04B10/114Indoor or close-range type systems

Definitions

  • the present invention relates to a visible light communication transmitter and a visible light communication system that transmit signals using visible light.
  • a white light emitting diode hereinafter referred to as “white LED” including light emission of a phosphor.
  • the present invention relates to a visible light communication transmitter and a visible light communication system that are suitable for communication using a wireless communication device.
  • White LEDs can be classified mainly into three types according to the light emission method as described in Non-Patent Document 1 below, for example.
  • Blue light excitation type white LED It is configured by combining a blue LED and a phosphor that mainly emits yellow light.
  • a YAG (yttrium / aluminum / garnet) phosphor is disposed around the blue LED and is housed in one package.
  • the surrounding phosphor is excited by the blue light output from the blue LED arranged at the center, and light (mainly yellow) mainly having a complementary color relationship with blue is output from this phosphor.
  • pseudo white light can be obtained.
  • Advantages of such a blue-light-excited white LED include: a) high energy utilization efficiency and ease of obtaining high luminous intensity compared with other methods, and b) simple construction and low cost production. , Are mentioned.
  • the disadvantage is that color rendering is poor. This color rendering property refers to the characteristic of the appearance of the color of an object by illumination, and the closer the color is to natural light, the better the color rendering property.
  • An ultraviolet LED is combined with a plurality of phosphors that emit light of three primary colors of R, G, and B (red, green, and blue).
  • a phosphor that emits three primary colors of R, G, and B is arranged around an ultraviolet LED, and is housed in one package.
  • surrounding phosphors are excited by ultraviolet light output from an ultraviolet LED arranged at the center, and light of three primary colors of R, G, and B is output from these phosphors.
  • White light can be obtained by mixing these R, G, and B lights.
  • 3-color white LED This is a combination of three types of LEDs, R, G, and B. It has a structure in which three types of LEDs, a red LED, a green LED, and a blue LED, are housed in one package. In this method, white light can be obtained by causing each of the three primary colors to emit light simultaneously.
  • the color rendering property is good as in the case of the ultraviolet light excitation type white LED.
  • the disadvantage is that since three types of LEDs are mounted in one package, they are more expensive than other methods.
  • a conventional optical communication device using a white LED is shown in FIG.
  • the white LED 904 when transmission data is supplied to the drive unit 902 of the transmitter 900, a corresponding drive current is output to the white LED 904, and the white LED 904 emits light.
  • the white LED 904 blinks using a modulation method such as OOK (On-Off Keying).
  • the optical signal output from the white LED 904 is incident on the PD 912 of the receiver 910.
  • This optical signal is converted into a current signal by the PD 912, and this current signal is converted into a voltage signal by a transimpedance amplifier (current-voltage conversion amplifier) 914.
  • This voltage signal is binarized by a limiting amplifier 918 after desired equalization processing by an equalizer 916, and is output as received data.
  • FIG. 13B shows an apparatus configuration in this case, and a blue color filter 922 is arranged on the light incident side of the PD 912 of the receiver 920.
  • the blue color filter 922 removes light emitted from the phosphor having a slow response speed in the optical signal. As a result, only the light of the blue LED is incident on the PD 912, thereby enabling faster data transmission than the above configuration. However, even with this method, only a transmission speed of about several tens of Mbps can be obtained.
  • the transmission speed is about several Mbps for the same reason as when the blue light excitation type white LED is used.
  • the drive voltage of the LED becomes high, the design of the drive circuit becomes difficult.
  • the white LED 904 when the above-described three-color light emitting type white LED is used as the white LED 904, there is no phosphor light emitting component as compared with the above method, and wavelength multiplexing is performed such that each LED carries a different signal. Since data transmission is also possible, the speed can be increased (see Patent Document 2 below). However, since several LED is used, cost will become high.
  • the transmitter 930 includes a peaking circuit 932.
  • the transmitter 930 includes a peaking circuit 932.
  • the present invention pays attention to the above points, and an object thereof is to perform visible light data communication with a sufficient transmission speed while using a blue light excitation type white LED and preventing element destruction. Another object is to perform visible light data communication at a sufficient transmission rate without using a blue color filter on the receiving side.
  • a transmitter for visible light communication drives a blue light excitation type white LED based on a drive current signal generated based on transmission data, and transmits a visible light signal to a receiver.
  • a transmitter for visible light communication that outputs a rising pulse at the rising edge of the transmission data and adds a falling pulse at the falling edge of the transmission data to generate a multi-tone driving current signal
  • a multi-gradation drive unit, wherein the rising pulse and the falling pulse have the same pulse width as the unit interval of the transmission data.
  • the drive current value corresponding to the transmission data when no color filter is provided on the receiving side, is 4/5 of the current value of the rising pulse and the falling pulse. It is as follows. According to one aspect of the present invention, the ratio of the falling pulse current value to the rising pulse current value is 1.0 ⁇ 0.2. According to another aspect of the present invention, when a color filter is provided in the receiver, the value of the drive current corresponding to the transmission data is set to 5 with respect to the current values of the rising pulse and the falling pulse. It is characterized as follows.
  • One aspect of the visible light communication system of the present invention receives a multi-tone optical signal output from any of the visible light communication transmitters according to an embodiment of the present invention and converts it into an electrical signal, A visible light communication receiver that outputs received data is provided.
  • a modulation encoder is provided in a transmitter and a modulation decoder is provided in a receiver, and 8B10B is used as a modulation code to be used.
  • One aspect of the visible light communication system of the present invention is provided with a modulation encoder in a transmitter and a modulation decoder in a receiver.
  • the modulation code to be used is DC-free and has a coding rate of 2/3 and a minimum run.
  • NRZI-modulated data is transmitted and received using an RLL code in which 1 is set.
  • the white LED is driven by the multi-tone driving current signal to which the pulse is added at the rising edge and the falling edge of the transmission data, the element destruction is prevented without using the blue color filter.
  • the pulse width of the rising pulse and the falling pulse is made equal to the unit interval of the transmission data, the data clock can be used as it is as a clock necessary for generating the multi-grayscale driving signal, and a separately multiplied clock is generated. High-speed transmission can be achieved without adding necessary circuits
  • FIG. 1A shows a circuit configuration of the first embodiment.
  • transmission data to be transmitted is input to the drive waveform generation unit 110 of the transmitter 100.
  • the output side of the drive waveform generator 110 is connected to the blue light excitation type white LED 140 via the multi-tone driver 120.
  • the blue light excitation type white LED 140 for example, a blue LED having a peak wavelength range of 440 to 470 nm as shown in FIG. 2 can be used.
  • the receiving side is configured in the same manner as the background art described above.
  • the optical signal output from the transmitter 100 is incident on the PD 210 of the receiver 200 configured by a general-purpose Si PIN photodiode or the like.
  • the electric signal output side of the PD 210 is connected to the input side of a limiting amplifier 216 that performs binarization processing via a transimpedance amplifier 212 that converts a current signal into a voltage signal and an equalizer 214 that performs equalization processing.
  • Reception data is output from the output side of the limiting amplifier 216.
  • a baseband OOK On-Off-Keying
  • a transmission method modulation method
  • a transmission rate is 50 to 125 Mbps.
  • a circuit including the drive waveform generation unit 110 and the multi-gradation drive unit 120 of the transmitter 100 is used to obtain the transmission data signal shown in FIG.
  • the drive current waveform shown in FIG. That is, the signals shown in (C) to (F) of the figure are combined to obtain the drive current having the waveform shown in (B) of the figure.
  • FIG. 4G shows clock pulses.
  • the drive waveform generation unit 110 is configured by, for example, a digital circuit (not shown) including a PLL that generates a clock synchronized with a transmission data pulse, a rising and falling edge pulse detector, and a D flip-flop.
  • it has a function of generating multi-value (four values in this case) gradation waveforms shown in FIGS.
  • a data clock may be supplied from the outside like the drive waveform generation unit 130 shown in FIG.
  • the multi-tone drive unit 120 is configured by an OR circuit, and synthesizes the signals of FIGS. 3C to 3F output from the drive waveform generation unit 110 (or the drive waveform generation unit 130).
  • a function of outputting a drive current having a waveform shown in (B) is provided.
  • FIG. 4 shows an example of the main parts of the drive waveform generation unit 110 and the multi-gradation drive unit 120.
  • this main part includes gradation waveform generation circuits 112A to 112D using OP amplifiers, transistors, switches, and resistors, and gradation signals SA to SD shown in FIGS. 3 (C) to (F).
  • gradation signals SA to SD shown in FIGS. 3 (C) to (F).
  • the pulse heights HA to HD of the gradation signal are set by the voltages VHA to VHD of the plus inputs Vin1 to Vin4 of the OP amplifier.
  • the rising and falling timings are set by control signals KWA to KWD applied to the control terminals EN1 to EN4 of the switch.
  • the control signal KWA rises at the rising timing of the transmission data in FIG. 3A and falls after a lapse of a certain time corresponding to the pulse width WA. Therefore, the switch is turned on during that period, and the voltage VHA is output as the gradation signal SA.
  • multi-gradation signals SB to SD are output from the other gradation waveform generation circuits 112B to 112D, respectively.
  • the control signals KWA to KWD can be considered as 4-bit digital signals determined from the logical value of the transmission data.
  • the control signal “KWA, KWB, KWC, KWD” is “1, 1, 1, 1” at the timing when the transmission data changes from the logical value L to H (rise timing), and the gradation signal SA from the rise timing. “0, 1, 1, 1” after the elapse of the time corresponding to the pulse width WA of “0, 1, 1, 1”, “0, 0, 0, 1” It becomes “0, 0, 1, 1” after elapse of time corresponding to the pulse width WC of the gradation signal SC from the falling timing.
  • the gradation signals SA to SD output from the gradation waveform generation circuits 112A to 112D are added by a wired OR circuit, and the added signal is supplied to the blue light excitation type white LED 140 via the current mirror circuit 114. .
  • the pulse width WA of the rising pulse SA generated at the same timing when the transmission data rises has the same pulse width as the unit interval of the transmission data.
  • the pulse width WC of the gradation signal SC generated at the same timing when the transmission data falls is the same pulse width as the unit interval of the transmission data.
  • the pulse width WB of the data pulse SB is the same as the transmission data.
  • the current value HD of the pre-bias current SD is constant regardless of transmission data.
  • the sum HA + HB + HC + HD of each pulse is limited by the condition of the rated current value of the LED to be driven or the upper limit of the drive current value of the drive circuit.
  • the height HB of the data pulse SB is HB / HA ⁇ 4 / with respect to the height HA of the rising pulse SA and the height HC of the falling pulse SC. 5, HB / HC ⁇ 4/5.
  • the multi-gradation driving unit 120 is a circuit capable of current driving on the order of nsec, and can output a bias voltage larger than a forward bias voltage (about 3.6 V) necessary for driving the blue excitation type white LED 140. Composed.
  • the blue light excitation type white LED 140 for example, a general-purpose white LED having a rated current of 500 mA (during pulse driving) is used. This white LED is driven under the drive current setting conditions shown in Table 1 below.
  • the white LED is driven according to the following conditions.
  • Current value of rising pulse SA 82.2 mA
  • Current value of data pulse SB 13.9 mA
  • Current value of falling pulse SC 88.3 mA
  • Pre-bias current value 5.2 mA
  • the transmission data shown in FIG. 3A is input to the drive waveform generation unit 110 of the transmitter 100.
  • the drive waveform generation unit 110 and the multi-tone drive unit 120 Based on the input transmission data, the drive waveform generation unit 110 and the multi-tone drive unit 120 generate a multi-tone drive signal shown in FIG.
  • the generated multi-tone drive signal is supplied to the blue excitation white LED 140, and the blue excitation white LED 140 is driven by the multi-tone drive signal to emit light.
  • the optical signal output from the blue excitation type white LED 140 is collected by a lens or the like (not shown) and enters the PD 210 of the receiver 200.
  • the incident optical signal is converted into a current signal by the PD 210. This current signal is converted into a voltage signal by the transimpedance amplifier 212.
  • the equalizer 214 performs a desired equalization process on the converted voltage signal.
  • the equalized voltage signal is binarized by the limiting amplifier 216, and output data is obtained.
  • the reception band for the modulated light of the receiver has a sufficient band for the transmission signal, and a receiver having a flat frequency characteristic within the band necessary for reception is used.
  • the present inventors conducted data transmission / reception experiments using a visible light communication system prototyped for this example.
  • the bit rate was measured under the drive setting conditions shown in Table 1 with four transmission speeds of 50 Mbps, 75 Mbps, 100 Mbps, and 125 Mbps.
  • the transmission data was PRBS2 7 ⁇ 1 and the number of transmission data was 10 10 bits.
  • the measurement results are shown in Table 2 below.
  • At least the ratio of the data pulse current value HB to the rising pulse current value HA (HB / HA) and the ratio of the data pulse current value HB to the falling pulse current value HC (HB / HC) should be 4/5 or less.
  • transmission at 50 Mbps can be performed satisfactorily.
  • the ratio of the data pulse current value HB to the rising pulse current value HA (HB / HA) and the rising value are different even when the data transmission is 75 Mbps or more, although the optimum value of the driving condition itself is different.
  • the ratio of the data pulse current value HB to the falling pulse current value HC (HB / HC) needs to be 4/5 or less.
  • the ratio of the falling pulse current value HC to the rising pulse current value HA is preferably set to 1.0 ⁇ 0.2.
  • FIG. 5 shows the result of observing an eye pattern during 50 Mbps transmission under the driving conditions of “Setting 7” and “Setting 11”.
  • a good eye pattern is obtained under the error-free “Setting 7” driving condition (see FIG. 7A), but the bit error rate deteriorates to 8.0 ⁇ 10 ⁇ 3.
  • FIG. 5B It was observed that intersymbol interference occurred under the driving condition of “Setting 11” (see FIG. 5B). Thus, it can be seen that intersymbol interference is a cause of deterioration of the bit error rate.
  • the second embodiment differs from the first embodiment described above in that a color filter is added and the LED drive current condition.
  • FIG. 6 shows a circuit configuration of the second embodiment.
  • the configuration on the transmission side is the same as that of the first embodiment including the white LED, but the driving conditions of the LED are different.
  • the color filter 208 having the transmittance characteristics shown in FIG. 7 is provided on the receiving side before the PD 210 in the first embodiment.
  • the optical signal output from the transmitter 100 is incident on the PD 210 after most of the light emitted from the phosphor is filtered by the color filter 208.
  • the processing after the transimpedance amplifier 212 is the same as in the first embodiment.
  • the transmission method (modulation method) in this embodiment is “OOK” similar to that in the first embodiment, and the transmission speed is 50 to 125 Mbps.
  • the gradation signals generated by the drive waveform generator 110 and the multi-gradation driver 120 are the same as those in the first embodiment in both the number of gradations and the pulse width, but in this embodiment, 50 Mbps or more.
  • the height HB of the data pulse SB is set to HB / HA ⁇ 5 and HB / HC ⁇ 5 with respect to the height HA of the rising pulse SA and the height HC of the falling pulse SC. Has been. By setting in this way, intersymbol interference can be suppressed and the bit error rate can be lowered.
  • blue light excitation type white LED 140 for example, a general-purpose white LED having a rated current of 500 mA (during pulse driving) is used. This is driven under the drive current setting conditions shown in Table 3 below.
  • the white LED is driven according to the following conditions.
  • Current value of rising pulse SA 45.6 mA
  • Current value of data pulse SB 42.7 mA
  • Falling pulse SC current value 67.0 mA
  • Pre-bias current value 5.2 mA
  • transmission data as shown in FIG. 3A is input to the drive waveform generation unit 110 of the transmitter 100.
  • the drive waveform generation unit 110 and the multi-tone drive unit 120 Based on the input transmission data, the drive waveform generation unit 110 and the multi-tone drive unit 120 generate a multi-tone drive signal shown in FIG.
  • the generated multi-tone drive signal is supplied to the blue excitation white LED 140, and the blue excitation white LED 140 is driven by the multi-tone drive signal to emit light.
  • the optical signal output from the blue excitation type white LED 140 enters the color filter 208 of the receiver 200.
  • the reception band for the modulated light of the receiver has a sufficient band for the transmission signal, and a receiver having a flat frequency characteristic within the band necessary for reception is used.
  • the present inventors conducted data transmission / reception experiments using a visible light communication system prototyped for this example.
  • the transmission speed was set to four types of 50 Mbps, 75 Mbps, 100 Mbps, and 125 Mbps, and the bit error rate was measured under each drive setting condition shown in Table 3 above.
  • the transmission data was PRBS2 7 ⁇ 1 and the number of transmission data was 10 10 bits. The measurement results are shown in Table 4 below.
  • the transmission speed When the transmission speed is set to 50 Mbps, it is error free under the conditions from “Setting 2” to “Setting 11”, and it is recognized that data can be transmitted without any problem.
  • the ratio HB / HA of the data pulse current value HB to the rising pulse current value HA is 5.27
  • the ratio HB / HC of the data pulse current value HB to the falling pulse current value HC is 4.21.
  • the respective ratios are values of 5 or less.
  • the ratio HB / HA of the data pulse current value HB to the rising pulse current value HA and the ratio HB / HC of the data pulse current value HB to the falling pulse current value HC are 5 or less, transmission of 50 Mbps is possible. It can be done well.
  • the ratio of the data pulse current value HB to the rising pulse current value HA and the falling pulse current HB / HA and the optimum value of the driving condition itself are different even at the time of data transmission of 75 Mbps or more.
  • the ratio HB / HC of the data pulse current value HB to the value HC needs to be 5 or less.
  • FIG. 8 shows the result of observing the eye pattern during 50 Mbps transmission under the driving conditions of “Setting 8” and “Setting 12”.
  • the bit error rate deteriorates to 6.3 ⁇ 10 ⁇ 7.
  • intersymbol interference occurred as shown in FIG.
  • FIG. 8 shows the result of observing the eye pattern during 50 Mbps transmission under the driving conditions of “Setting 8” and “Setting 12”.
  • a modulation encoder and a decoder are added to the first and second embodiments, respectively.
  • FIG. 9 shows a circuit configuration of the third embodiment.
  • the modulation encoder 108 and the decoder 218 are added to the circuit configuration of the first embodiment shown in FIG.
  • 8B10B for example, see Patent Document 4
  • 17PP for example, see Patent Document 5
  • the reasons for using these codes are 1) DC-free codes, so that clock recovery on the receiving side is easy, and unnecessary flickering that can cause problems when using visible light as a carrier is suppressed.
  • the DC component can be removed on the receiving circuit, the influence of unmodulated disturbance light (sunlight) can be suppressed.
  • 17PP is classified as a (1,7) RLL code (Run Length Limited code).
  • the RLL code is “0” that falls between “1” and “1” in the code sequence before NRZI modulation when NRZI (NonReturn to Zero Inverted) modulation in which the transmission rectangular wave is inverted by bit 1 is assumed.
  • the minimum number (minimum run) and / or maximum value (maximum run) of the number is limited.
  • the RLL code is expressed as “(d, k) RLL” where d is the minimum run and k is the maximum run.
  • the coding rate of 17PP (represented by m / n, where m is the data bit length before encoding and n is the data bit length after encoding) is 2/3.
  • FIG. 10 shows an eye pattern of the output of the equalizer 214 when the data transmission rate is 100 Mbps and 8B10B and 17PP are used as modulation codes.
  • the eye pattern of 8B10B in FIG. 9A is obtained using the driving condition of “Setting 4” in Table 1.
  • FIG. 11 shows a circuit configuration of the fourth embodiment.
  • the modulation encoder 108 and the decoder 218 are added to the circuit configuration of the second embodiment.
  • FIG. 12 shows an eye pattern of the output of the equalizer 214 when the data transmission rate is 100 Mbps and 8B10B and 17PP are used as modulation codes.
  • the eye pattern of 8B10B in FIG. 8A is obtained using the driving condition of “Setting 6” in Table 3.
  • the eye pattern of 17PP in FIG. It was obtained using the following drive conditions. Regardless of which modulation code is used, a good eye pattern is obtained and error-free transmission is realized. Needless to say, the drive conditions as shown in the second embodiment are satisfied when the error is free.
  • 17PP is used as an example of a modulation code to be used.
  • a code other than 17PP may be used if it is DC-free and is a (1, x) RLL code.
  • the same effect as the third and fourth embodiments can be expected. Therefore, the effect of the present invention is not limited to the case where 17PP is used as the modulation code.
  • the pulse height can be adjusted digitally and easily, and an overcurrent exceeding the rated current of the white LED can be detected, such as a peaking circuit with an analog configuration. There is no fear that the element will be destroyed by flowing.
  • the pulse widths WA and WC of the rising pulse SA and the falling pulse SC are set to the same width as the unit interval.
  • the clock may be the same frequency as the transmission data clock.
  • the transmitter for visible light communication is easy to mount and has an advantage in cost.
  • the first embodiment and the third embodiment since no blue color filter is used on the receiving side, the number of parts can be reduced, which is advantageous in terms of cost.
  • the third embodiment and the fourth embodiment by using a DC-free modulation code, a) Unnecessary flickering that may cause a problem when using visible light as a carrier can be suppressed. b) Since the DC component can be removed on the receiving circuit, the influence of unmodulated ambient light (sunlight) can be suppressed. (5) Since a general-purpose multi-tone drive LD driver IC used in an optical media system can be used, the system can be configured at low cost.
  • this invention is not limited to the Example mentioned above, A various change can be added in the range which does not deviate from the summary of this invention.
  • the following are also included.
  • a blue light excitation type white LED 140 a type in which a phosphor excited by light of a blue LED emits yellow light having a complementary color relationship is common, but recently, in order to improve color rendering properties.
  • an LED in which a light emitting component from a phosphor contains a red component or the like. Such an LED is also included in the “blue light excitation type white LED” of the present invention.
  • the circuit configurations of the drive waveform generation unit 110 and the multi-gradation drive unit 120 shown in the above embodiment are merely examples, and various known circuit configurations that exhibit the same operation are possible.
  • visible light data communication with a sufficient transmission speed can be performed using a blue light excitation type white LED, which is suitable for high-speed visible light communication.
  • transmitter 108 modulation encoder 110: drive waveform generation units 112A to 112D: gradation waveform generation circuit 114: current mirror circuit 120: multi-gradation drive unit 130: drive waveform generation unit 140: blue light excitation type white LED 200: Receiver 208: Color filter 210: PD 212: Transimpedance amplifier 214: Equalizer 216: Limiting amplifier 218: Decoder 900: Transmitter 902: Drive unit 904: White LED 910: Receiver 912: PD 914: transimpedance amplifier 916: equalizer 918: limiting amplifier 920: receiver 922: blue color filter 930: transmitter 932: peaking circuit

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Led Devices (AREA)

Abstract

【課題】汎用でコスト的に有利な青色光励起型白色LEDを用い、素子破壊を防止しつつ、十分な伝送速度の可視光データ通信を行なう。 【解決手段】送信データに基づいて生成された駆動電流信号に基づいて青色光励起型白色LEDを駆動し、可視光信号を受信機に対して出力する際に、前記送信データの立ち上がり時に、パルス幅が前記送信データのユニットインターバルと等しい立ち上がりパルスを付加するとともに、前記送信データの立ち下がり時に、パルス幅が前記送信データのユニットインターバルと等しい立ち下がりパルスを付加して、多階調の駆動電流信号を生成する。

Description

可視光通信用送信機及び可視光通信システム
 本発明は、可視光を用いて信号を伝送する可視光通信用送信機及び可視光通信システムに関し、例えば、蛍光体の発光を含む白色発光ダイオード(Light Emitting Diode:以下「白色LED」という。)を使用する通信に好適な可視光通信用送信機及び可視光通信システムに関する。
 近年、白色LEDの開発が盛んに行われ、照明、車載用ランプ、液晶バックライト等その応用は多岐に亘る。この白色LEDは、例えば蛍光灯等の他の白色光源と比較して、オン/オフの切り替え応答速度が非常に速いといった特徴を持っている。そこで、データ伝送媒体としてLEDによる白色光を用い、白色LEDの照明光にデータ伝送機能を持たせる可視光通信システムが提案されている(下記特許文献1参照)。すなわち、白色LEDの発光強度を送信データに応じて変調し、受信側ではその光の強弱をフォトダイオード(Photo Diode:以下「PD」という。)などの光電変換器により電気信号に変換することで、データ伝送を実現する。
 白色LEDは、例えば下記非特許文献1にあるように、発光方式により主に3種類に分類することができる。
 (1) 青色光励起型白色LED
 青色LEDと、主に黄色を発光する蛍光体を組み合わせて構成される。青色LEDの周囲にたとえばYAG(イットリウム・アルミニウム・ガーネット)系の蛍光体を配置し、一つのパッケージに納めた構造となっている。この方式では、中心に配置された青色LEDから出力された青色光によって周囲の蛍光体が励起され、この蛍光体から主に青色と補色関係のある光(主に黄色)が出力される。この蛍光体からの黄色蛍光と、前記青色LEDからの青色光とを混色することで、擬似的に白色光が得られる。
 このような青色光励起型白色LEDの長所としては、a)他の方式と比較してエネルギー利用効率が高く、高い光度が得易いこと,b)構成が簡便なため安価に作製が可能であること,が挙げられる。一方、短所としては、演色性が悪いことが挙げられる。この演色性とは、照明による物体の色の見え方の特性を指し、色が自然光で見た場合に近いほど演色性がよいという。
 (2) 紫外光励起型白色LED
 紫外LEDと、R,G,B(赤,緑,青)の3原色をそれぞれ発光する複数の蛍光体を組み合わせて構成される。紫外光LEDの周囲にR,G,Bの3原色を発光する蛍光体をそれぞれ配置し、一つのパッケージに納めた構造となっている。この方式では、中心に配置された紫外光LEDから出力された紫外光によって周囲の蛍光体が励起され、これらの蛍光体からR,G,Bの3原色の光がそれぞれ出力される。これらのR,G,Bの光を混色することで白色光が得られる。
 このような紫外光励起型白色LEDの長所としては、上述した演色性が良好であることが挙げられる。一方、短所としては、a)前記青色光励起型白色LEDと比較してエネルギーの利用効率が低く、高い照度が得られにくいこと,b)紫外発光であるため、LEDの駆動電圧が高いこと,が挙げられる。
 (3) 3色発光型白色LED
 R,G,Bの3種類のLEDを組み合わせたものである。赤色LED,緑色LED,青色LEDの3種類のLEDを一つのパッケージに収めた構造となっている。この方式は、3原色であるそれぞれのLEDを同時に発光させることで、白色光が得られる。
 このような3色発光型白色LEDの長所としては、前記紫外光励起型白色LEDと同様に演色性が良いことが挙げられる。一方、短所としては、3種類のLEDを一つのパッケージに実装することになるので、他の方式と比較して高価となってしまうこと、が挙げられる。
 従来の白色LEDを用いた光通信装置としては、図13(A)に示すものがある。同図に示される光通信装置においては、送信データが送信機900の駆動部902に供給されると、対応する駆動電流が白色LED904に出力され、白色LED904が発光する。例えば、OOK(On-Off Keying)などの変調方式を用いて、白色LED904が点滅する。白色LED904から出力された光信号は、受信機910のPD912に入射する。この光信号は、PD912において電流信号に変換され、この電流信号がトランスインピーダンスアンプ(電流電圧変換アンプ)914で電圧信号に変換される。この電圧信号は、イコライザ916による所望の等化処理の後、リミッティングアンプ918で2値化され、受信データとして出力される。
 前記白色LED904として、青色光励起型白色LEDを用いた場合、蛍光体から出力される光の応答速度が低速であるため、高々数Mbps程度の伝送速度しか得られない(下記非特許文献2参照)。そこで、光電変換器の前に青色のみ透過するLED光透過カラーフィルタを設け、蛍光体から出力された応答速度の遅い光成分をこのカラーフィルタで除去することにより、高速化を図る方法が提案されている(下記特許文献1参照)。図13(B)には、この場合の装置構成が示されており、受信機920のPD912の光入射側に青色カラーフィルタ922を配置した構成となっている。この青色カラーフィルタ922によって、光信号中の応答速度の遅い蛍光体から発光される光が除去される。これにより、PD912には青色LEDの光のみが入射することになり、これにより、前記構成より速いデータ伝送を行うことができる。しかし、この方法を用いても、高々数10Mbps程度の伝送速度しか得られない。
 また、白色LED904として、上述した紫外光励起型白色LEDを用いた場合は、前記青色光励起型白色LEDを用いた場合と同様の理由により、伝送速度は数Mbps程度となってしまう。加えて、LEDの駆動電圧が高くなることから、駆動回路の設計も難しくなる。蛍光体材料の改良により蛍光体から発光される光の応答速度の向上を図ることが検討されているが、所望の光度が得られず、蛍光体材料自体のコストが高くなるといった問題点が未解決である。
 更に、白色LED904として、上述した3色発光型白色LEDを用いた場合は、前記方式と比較して蛍光体発光成分がなく、また、各LEDが異なる信号を搬送するといった波長多重化を行ってデータ伝送することも可能であるため、高速化が可能である(下記特許文献2参照)。しかし、複数のLEDを用いるため、コストが高くなってしまう。
 以上のことから、汎用でコスト的に有利な青色光励起型白色LEDを用いて、かつ、高速伝送を実現することが望まれる。このような観点から改良を加えたものとして、下記特許文献3に開示された「光通信用送信機等」がある。図13(C)にその概略が示されるように、送信機930がピーキング回路932を備えている。これにより、駆動電流波形の生成と調整を行って高速変調を行うのに最適な駆動電流波形を得ることによって、太陽光や蛍光灯の光が存在する空間においても、高速伝送に適した光信号が送信機から出力されるようになる。先行技術文献のリストを以下に示す。以下の先行技術文献中、特許文献4~6については後述する。
特許第3465017号公報 特開2002-290335公報 特開2007-43592公報 米国特許第4,486,739号明細書 特許第3985173号公報 特開平7-183849号公報
シーエムシー出版,「白色LED照明システム技術の応用と将来展望」 信学技報 ICD2005-44,Vol.105,No.184,25-30p,「可視光通信用LEDドライバーの試作と可視光LEDの応答性能の評価」
 しかしながら、上述した特許文献3記載の従来技術では、アナログピーキング回路を使用しているため、LEDの定格電流を超えた過電流が流れて、LED素子が破壊される恐れがある。また、抵抗やコンデンサ等の受動部品を使用しているため、最適な駆動条件を得るための調整が難しい。
 本発明は、以上の点に着目したもので、その目的は、青色光励起型白色LEDを用い、素子破壊を防止しつつ、十分な伝送速度の可視光データ通信を行なうことである。他の目的は、受信側で青色カラーフィルタを用いることなく、十分な伝送速度の可視光データ通信を行なうことである。
 前記目的を達成するため、本発明の可視光通信用送信機は、送信データに基づいて生成された駆動電流信号に基づいて青色光励起型白色LEDを駆動し、可視光信号を受信機に対して出力する可視光通信用送信機であって、前記送信データの立ち上がり時に立ち上がりパルスを付加するとともに、前記送信データの立ち下がり時に立ち下がりパルスを付加して、多階調の駆動電流信号を生成する多階調駆動手段、を備え、前記立ち上がりパルス及び立ち下がりパルスのパルス幅を、前記送信データのユニットインターバルと等しくしたことを特徴とする。
 本発明の一態様によれば、受信側にカラーフィルタを設けない場合において、前記送信データに対応する駆動電流の値を、前記立ち上がりパルス及び立ち下がりパルスの電流の値に対して、4/5以下とされる。また、本発明の一態様によれば、前記立ち上がりパルス電流値に対する立ち下がりパルスの電流値の比率を、1.0±0.2とされる。また、本発明の一態様によれば、受信機にカラーフィルタを設けた場合において、前記送信データに対応する駆動電流の値を、前記立ち上がりパルス及び立ち下がりパルスの電流の値に対して、5以下としたことを特徴とする。
 本発明の可視光通信システムの一態様は、本発明の一実施形態に係る記いずれかの可視光通信用送信機から出力された多階調の光信号を受光して電気信号に変換し、受信データを出力する可視光通信用受信機を備える。本発明の可視光通信システムの一態様は、送信機に変調符号器、受信機に変調復号器を設け、使用する変調符号として、8B10Bを用いる。本発明の可視光通信システムの一態様は、送信機に変調符号器、受信機に変調復号器を設け、使用する変調符号として、DCフリーであり、かつ、符号化率2/3、最小ランを1としたRLL符号を用い、NRZI変調されたデータを送受信する。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になるであろう。
 本発明によれば、送信データの立ち上がり時及び立ち下がり時にそれぞれパルスを付加した多階調の駆動電流信号によって白色LEDを駆動することとしたので、青色カラーフィルタを用いることなく、素子破壊を防止し、かつ、調整が容易なシステム構成にて十分な伝送速度が得られる可視光データ通信を行なうことができる。また、前記立ち上がりパルス及び立ち下がりパルスのパルス幅を、前記送信データのユニットインターバルと等しくしたので、多階調駆動信号の生成に必要となるクロックにデータクロックをそのまま使用でき、別途逓倍クロック生成等に必要な回路を追加することなく、高速伝送化を図ることができる
本発明の第一の実施例の装置構成を示す回路ブロック図である。 本発明の第一の実施例における青色光励起型白色LEDの発光スペクトルの一例を示すグラフである。 本発明の第一の実施例の主要部の信号波形を示すタイムチャートである。 本発明の第一の実施例における主要部の回路構成の一例を示す回路図である。 本発明の第一の実施例におけるアイパターンの一例を示すグラフである。(A)はエラーフリー時,(B)はエラー発生時を示す。 本発明の第二の実施例の装置構成を示す回路ブロック図である。 本発明の第二の実施例におけるカラーフィルタの透過特性の一例を示すグラフである。 本発明の第二の実施例におけるアイパターンの一例を示すグラフである。(A)はエラーフリー時,(B)はエラー発生時を示す。 本発明の第三の実施例の装置構成を示す回路ブロック図である。 本発明の第三の実施例におけるアイパターンの一例を示すグラフである。(A)は変調符号8B10Bの場合,(B)は変調符号17PPの場合である。 本発明の第四の実施例の装置構成を示す回路ブロック図である。 本発明の第四の実施例におけるアイパターンの一例を示すグラフである。(A)は変調符号8B10Bの場合,(B)は変調符号17PPの場合である。 従来の可視光通信システムを示す回路ブロック図である。
 以下、本発明を実施するための最良の形態を、実施例に基づいて詳細に説明する。
 最初に、図1~図5を参照して、本発明の第一の実施例について説明する。図1(A)には、第一の実施例の回路構成が示されている。同図において、伝送対象の送信データは、送信機100の駆動波形生成部110に入力されている。駆動波形生成部110の出力側は、多階調駆動部120を介して、青色光励起型白色LED140に接続されている。青色光励起型白色LED140としては、例えば、図2に示すような青色LEDのピーク波長範囲が440~470nmのものを使用することができる。
 一方、受信側は、上述した背景技術と同様に構成されている。例えば、送信機100から出力された光信号は、汎用のSiによるPINフォトダイオードなどによって構成された受信機200のPD210に入射する。PD210の電気信号出力側は、電流信号を電圧信号に変換するトランスインピーダンスアンプ212、等化処理を行なうイコライザ214を介して、2値化処理を行うリミッティングアンプ216の入力側に接続されている。このリミッティングアンプ216の出力側から受信データが出力される。本実施例における伝送方式(変調方式)には、ベースバンド方式のOOK(On-Off-Keying)が用いられ、伝送速度は50~125Mbpsである。
 以上の各構成要素のうち、送信機100の駆動波形生成部110と多階調駆動部120とを含む回路を用いて、図3(A)に一例を示す送信データ信号から、同図(B)に示す駆動電流波形が得られる。すなわち、同図(C)~(F)に示す信号が合成されて同図(B)に示す波形の駆動電流が得られる。同図(G)はクロックパルスである。
 詳述すると、駆動波形生成部110は、例えば、送信データパルスに同期したクロックを生成するPLL,立ち上がり及び立下りのエッジパルス検出器,Dフリップフロップによるデジタル回路(図示せず)によって構成されており、図3(A)の送信データに基づいて、同図(C)~(F)に示す多値(ここでは4値)の階調波形を生成する機能を備えている。
 駆動波形生成部110内のクロック生成を行うPLLに代えて、図1(B)に示す駆動波形生成部130のように、データクロックを外部から供給してもよい。多階調駆動部120は、OR回路によって構成されており、駆動波形生成部110(又は駆動波形生成部130)から出力された図3(C)~(F)の信号を合成して同図(B)に示す波形の駆動電流を出力する機能を備えている。
 図4には、前記駆動波形生成部110及び多階調駆動部120の主要部の一例が示されている。同図に示すように、この主要部は、OPアンプ,トランジスタ,スイッチ,及び抵抗による階調波形生成回路112A~112Dを含み、図3(C)~(F)に示す階調信号SA~SDをそれぞれ出力する。階調信号のパルス高さHA~HDは、OPアンプのプラス入力Vin1~Vin4の電圧VHA~VHDによって設定されている。立ち上がり及び立ち下がりのタイミングは、スイッチの制御端子EN1~EN4に印加される制御信号KWA~KWDによって設定されている。例えば、階調波形生成回路112Aにおいて、制御信号KWAは、図3(A)の送信データの立ち上がりタイミングで立ち上がり、パルス幅WAに相当する一定時間経過後に立ち下がる。このため、その期間においてスイッチがONとなり、電圧VHAが階調信号SAとして出力される。同様に、他の階調波形生成回路112B~112Dからは、多階調信号SB~SDがそれぞれ出力される。
 制御信号KWA~KWDは、送信データの論理値から決定される4ビットのデジタル信号と考えることができる。例えば、この制御信号「KWA,KWB,KWC,KWD」は、送信データが論理値のLからHとなるタイミング(立ち上がりタイミング)で「1,1,1,1」,立ち上がりタイミングから階調信号SAのパルス幅WAに相当する時間の経過後に「0,1,1,1」,送信データが論理値のHからLとなるタイミング(立ち下がりタイミング)で「0,0,0,1」,立ち下がりタイミングから階調信号SCのパルス幅WCに相当する時間の経過後に「0,0,1,1」となる。
 階調波形生成回路112A~112Dから出力された階調信号SA~SDは、ワイヤードOR回路によって加算され、この加算された信号が、カレントミラー回路114を介して青色光励起型白色LED140に供給される。
 次に、図3(C)~(F)に示す階調信号パルスSA~SDについて説明する。まず、送信データの立ち上がり時に同じタイミングで生成される立ち上がりパルスSAのパルス幅WAは、送信データのユニットインターバルと同じパルス幅となっている。同様に、送信データの立ち下がり時に同じタイミングで生成される階調信号SCのパルス幅WCは、送信データのユニットインターバルと同じパルス幅となっている。
 データパルスSBのパルス幅WBは、送信データと同じパルス幅となっている。プリバイアス電流SDの電流値HDは、送信データによらず一定となっている。パルス高さ(電流の大きさ)については、各パルスの総和HA+HB+HC+HDが、駆動対象のLEDの定格電流値の条件もしくは駆動回路の駆動電流値上限によって制限を受ける。本実施例では、50Mbps以上の伝送速度を実現する場合、データパルスSBの高さHBは、立ち上がりパルスSAの高さHA及び立ち下がりパルスSCの高さHCに対して、HB/HA≦4/5,HB/HC≦4/5に設定されている。このように設定することで、符号間干渉を抑制でき、ビットエラーレートを低くすることができる。
 次に、多階調駆動部120は、nsecオーダーで電流駆動可能な回路であり、青色励起型白色LED140の駆動に必要な順方向バイアス電圧(3.6V程度)より大きなバイアス電圧が出力可能に構成される。
 前記青色光励起型白色LED140としては、例えば、定格電流500mA(パルス駆動時)の汎用の白色LEDを使用する。この白色LEDは、下記表1に示す駆動電流の設定条件で駆動される。
Figure JPOXMLDOC01-appb-T000001
 例えば「設定4」の条件では、白色LEDは、以下の条件に従って駆動される。
(1)立ち上がりパルスSAの電流値:82.2mA
(2)データパルスSBの電流値:13.9mA
(3)立ち下がりパルスSCの電流値:88.3mA
(4)プリバイアス電流値:5.2mA
 次に、以上のように構成された本実施例の動作を説明する。送信機100の駆動波形生成部110には、例えば、図3(A)に示す送信データが入力される。この入力された送信データに基づいて、駆動波形生成部110及び多階調駆動部120では、図3(B)に示す多階調駆動信号が生成される。この生成された多階調駆動信号が青色励起型白色LED140に供給され、青色励起型白色LED140はこの多階調駆動信号によって駆動されて発光する。青色励起型白色LED140から出力された光信号は、レンズ等(図示せず)によって集光されて受信機200のPD210に入射する。入射した光信号は、PD210で電流信号に変換される。この電流信号は、トランスインピーダンスアンプ212で電圧信号に変換される。そして、この変換後の電圧信号に対して、イコライザ214において所望の等化処理がなされる。等化処理された電圧信号は、リミッティングアンプ216によって二値化され、出力データが得られる。本実施例においては、受信機の変調光に対する受信帯域は、送信信号に対して十分な帯域を有しており、受信に必要な帯域内での周波数特性が平坦である受信機を使用した。
 本発明者らは、本実施例について試作した可視光通信システムによりデータの送受信実験を行った。伝送速度は50Mbps,75Mbps,100Mbps,125Mbpsの4通りとし、前記表1に示す各駆動設定条件にてビットエラーレートを測定した。送信データはPRBS2-1を使用し、送信データ数は1010ビットとした。この測定結果を、以下の表2に示す。
Figure JPOXMLDOC01-appb-T000002
 伝送速度を50Mbpsに設定した場合には、「設定1」から「設定10」までの条件においてエラーフリーが実現されており、問題なくデータが伝送できていると認められる。「設定10」の条件においては、立ち上がりパルス電流値HAに対するデータパルス電流値HBの比率(HB/HA)は0.99であり、立ち下がりパルス電流値HCに対するデータパルス電流値HBの比率(HB/HC)は、0.88である。また、「設定1」から「設定9」の条件においては、各比率とも4/5以下の値となっている。このことから、少なくとも立ち上がりパルス電流値HAに対するデータパルス電流値HBの比率(HB/HA)及び立ち下がりパルス電流値HCに対するデータパルス電流値HBの比率(HB/HC)が4/5以下であれば、50Mbpsの伝送が良好に行えることになる。
 また、前記表2の結果によれば、75Mbps以上のデータ伝送時においても、駆動条件の最適値自体は異なるものの、立ち上がりパルス電流値HAに対するデータパルス電流値HBの比率(HB/HA)及び立ち下がりパルス電流値HCに対するデータパルス電流値HBの比率(HB/HC)が4/5以下である必要があること自体は疑いの余地が無い。
 本発明の一態様においては、立ち上がりパルス電流値HAに対する立ち下がりパルス電流値HCの比率(HC/HA)は、1.0±0.2に設定することが望ましい。
 次に「設定7」及び「設定11」の駆動条件の際に、50Mbps伝送時のアイパターンを観測した結果を図5に示す。エラーフリーである「設定7」の駆動条件の際には、良好なアイパターンが得られているが(同図(A)参照)、ビットエラーレートが8.0×10-3と悪化している「設定11」の駆動条件下においては、符号間干渉が発生していることが観測された(同図(B)参照)。このように、符号間干渉がビットエラーレートの悪化要因であることがわかる。
 次に、図6~図8を参照しながら、本発明の第二の実施例について説明する。この第二の実施例は、上述した第一の実施例と比較して、カラーフィルタを追加した点とLEDの駆動電流条件の点で異なる。
 図6には、第二の実施例の回路構成が示されている。送信側の構成は、白色LEDを含め、第一の実施例と同様であるであるが、LEDの駆動条件が異なっている。一方、受信側は、第一の実施例におけるPD210の前に、図7に示す透過率特性を持つカラーフィルタ208が設けられている。送信機100から出力された光信号は、カラーフィルタ208によって蛍光体から発光した光の大半が濾過された後、PD210に入射するようになっている。トランスインピーダンスアンプ212以降の処理は、第一の実施例と同様である。
 本実施例における伝送方式(変調方式)は、第一の実施例と同様の「OOK」であり、伝送速度は50~125Mbpsである。また、駆動波形生成部110及び多階調駆動部120によって生成される階調信号については、階調数,パルス幅とも第一の実施例と同様であるが、本実施例においては、50Mbps以上の伝送速度を実現する場合、データパルスSBの高さHBは、立ち上がりパルスSAの高さHA及び立ち下がりパルスSCの高さHCに対して、HB/HA≦5,HB/HC≦5に設定されている。このように設定することで、符号間干渉を抑制でき、ビットエラーレートを低くすることができる。
 前記青色光励起型白色LED140としては、例えば、定格電流500mA(パルス駆動時)の汎用の白色LEDを使用する。これを以下の表3に示す駆動電流の設定条件で駆動する。
Figure JPOXMLDOC01-appb-T000003
 例えば、表3の「設定6」の条件では、白色LEDは、以下の条件に従って駆動される。
(1)立ち上がりパルスSAの電流値:45.6mA
(2)データパルスSBの電流値:42.7mA
(3)立ち下がりパルスSCの電流値:67.0mA
(4)プリバイアス電流値:5.2mA
 次に、以上のように構成された本実施例の動作を説明する。送信機100の駆動波形生成部110には、例えば、図3(A)に示すような送信データが入力される。入力された送信データに基づいて、駆動波形生成部110及び多階調駆動部120では、図3(B)に示す多階調駆動信号が生成される。この生成された多階調駆動信号が青色励起型白色LED140に供給され、青色励起型白色LED140はこの多階調駆動信号によって駆動されて発光する。青色励起型白色LED140から出力された光信号は、受信機200のカラーフィルタ208に入射する。これより、青色励起型白色LED140から出力された光のうち、蛍光体から発光した光の大半が濾過された後、レンズ等(図示せず)によって集光されて、PD210に入射する。入射した光信号は、PD210で電流信号に変換される。この電流信号は、トランスインピーダンスアンプ212で電流信号から電圧信号に変換される。そして、この変換後の電圧信号に対しては、イコライザ214において所望の等化処理がなされる。等化処理された電圧信号は、リミッティングアンプ216によって二値化され、出力データが得られる。本実施例においては、受信機の変調光に対する受信帯域は、送信信号に対して十分な帯域を有しており、受信に必要な帯域内での周波数特性が平坦である受信機を使用した。
 本発明者らは、本実施例について試作した可視光通信システムにより、データの送受信実験を行った。伝送速度は50Mbps,75Mbps,100Mbps,125Mbpsの4通りとし、前記表3に示した各駆動設定条件にてビットエラーレートを測定した。送信データはPRBS2-1を使用し、送信データ数は1010ビットとした。この測定結果を、次の表4に示す。
Figure JPOXMLDOC01-appb-T000004
 伝送速度を50Mbpsに設定した場合には、「設定2」から「設定11」までの条件においてエラーフリーとなっており、問題なくデータが伝送できていると認められる。「設定11」の条件においては、立ち上がりパルス電流値HAに対するデータパルス電流値HBの比率HB/HAは5.27であり、立ち下がりパルス電流値HCに対するデータパルス電流値HBの比率HB/HCは4.21である。また、「設定2」から「設定10」の条件においては、前記各比率とも5以下の値となっている。このことから、少なくとも立ち上がりパルス電流値HAに対するデータパルス電流値HBの比率HB/HA及び立ち下がりパルス電流値HCに対するデータパルス電流値HBの比率HB/HCが5以下であれば、50Mbpsの伝送が良好に行えることになる。
 また、表4の結果によれば、75Mbps以上のデータ伝送時においても、駆動条件の最適値自体は異なるものの、立ち上がりパルス電流値HAに対するデータパルス電流値HBの比率HB/HA並びに立ち下がりパルス電流値HCに対するデータパルス電流値HBの比率HB/HCが5以下である必要があること自体は疑いの余地がない。
 最後に「設定8」及び「設定12」の駆動条件の際に、50Mbps伝送時のアイパターンを観測した結果を、図8に示す。エラーフリーである「設定8」の駆動条件の際には、同図(A)に示すように良好なアイパターンが得られているが、ビットエラーレートが6.3×10-7と悪化している「設定12」の駆動条件下においては、同図(B)に示すように符号間干渉が発生していることが観測された。このように、符号間干渉がビットエラーレートの悪化要因であることがわかる。
 次に、図9~図10を参照して、本発明の第三の実施例について説明する。この第三及び次の第四の実施例は、変調符号器と復号器を前記第一及び第二の実施例にそれぞれ付加したものである。
 図9には、第三の実施例の回路構成が示されている。図1(A)に示した第一の実施例の回路構成に、変調符号器108及び復号器218を追加した構成となっている。ここでは、一例として、変調符号器108に使用する変調符号として、8B10B(例えば、特許文献4参照)と17PP(例えば、特許文献5参照)を使用した場合について説明する。これらの符号を使用する理由は、1)DCフリーの符号であるため、受信側におけるクロック再生が容易で、かつ、キャリアに可視光を用いた際に問題となりうる不要なチラツキを抑制することができ、更に受信回路上で直流成分を除去できるため、変調されていない外乱光(太陽光)などの影響を抑制することができること,2)例えば、マンチェスター符号(例えば、特許文献6参照)と比較した場合に、下記表5に示す通り、伝送速度に対して必要とする最小パルスの幅が広くなるため、必要とする変調帯域上限を低くすることができること,である。なお、表5中の変調帯域の上限値は、1÷最小パルス幅×0.7として計算している。これは、一般的な経験則による。
Figure JPOXMLDOC01-appb-T000005
 一般に、17PPは、(1,7)RLL符号(Run Length Limited符号)に分類される。RLL符号とは、ビット1で伝送矩形波を反転させるNRZI(NonReturn to Zero Inverted)変調を前提としたとき、NRZI変調前の符号系列における"1"と"1"の間に入る"0"の個数の最小値(最小ラン)と最大値(最大ラン)の両方もしくは一方のみ制限したものである。RLL符号は、最小ランをd,最大ランをkとしたときに、「(d,k)RLL」と表記される。例えば、上述のような(1,7)RLLという表記をされた符号においては、連続する"0"又は"1"は最小で2個,最大で8個となる。なお、17PPの符号化率(符号化前のデータビット長をm,符号化後のデータビット長をnとしたときに、m/nで表される。)は、2/3である。
 データの伝送速度を100Mbpsとし、変調符号として8B10B及び17PPを使用した際のイコライザ214の出力のアイパターンを図10に示す。同図(A)の8B10Bのアイパターンは、表1の「設定4」の駆動条件を用いて得られたものであり,同図(B)の17PPのアイパターンは、表1の「設定3」の駆動条件を用いて得られたものである。いずれの変調符号を使用した場合においても、良好なアイパターンが得られており、エラーフリー伝送が実現されている。エラーフリーの際に、第一の実施例で示すような駆動条件を満たしていることは言うまでもない。
 次に、図11及び図12を参照して、本発明の第四の実施例について説明する。図11には、第四の実施例の回路構成が示されている。第二の実施例の回路構成に変調符号器108及び復号器218を追加した構成となっている。
 データの伝送速度を100Mbpsとし、変調符号として8B10B及び17PPを使用した際のイコライザ214の出力のアイパターンを図12に示す。同図(A)の8B10Bのアイパターンは、表3の「設定6」の駆動条件を用いて得られたものであり,同図(B)の17PPのアイパターンは表3の「設定5」の駆動条件を用いて得られたものである。いずれの変調符号を使用した場合においても、良好なアイパターンが得られており、エラーフリー伝送が実現されている。なお、エラーフリーの際に、第二の実施例で示すような駆動条件を満たしていることは言うまでもない。
 第三及び第四の実施例では、使用する変調符号の一例として17PPを使用しているが、DCフリーで、かつ、(1,x)RLL符号であれば、17PP以外の符号を用いても第三及び第四の実施例と同等な効果が期待できる。したがって、本発明の効果は、変調符号として17PPを使用した場合に限定されるものではない。
 以上のように、上記各実施例によれば、次のような効果がある。
(1) 白色LEDを多階調駆動するので、パルス高さなどをデジタル的に良好かつ簡便に調整することができ、アナログ構成によるピーキング回路のように白色LEDの定格電流を超えた過電流が流れて素子が破壊される恐れがない。
(2) 多階調駆動を行う場合、駆動パルス幅の最小分解能が小さいほど最適な波形が得られやすいが、その分、データクロックの(ユニットインターバル÷駆動最小パルス幅)倍のクロックが必要となる。これに対し、本発明の各実施例によれば、立ち上がりパルスSA及び立ち下がりパルスSCのパルス幅WA,WCをユニットインターバルと同じ幅にしているため、多階調駆動電流波形の生成に使用するクロックが送信データクロックと同じ周波数でよい。このため、本発明の様々な実施形態に係る可視光通信用送信機は、実装が容易で、コスト面で優位である。
(3) 第一の実施例と第三の実施例によれば、受信側で青色カラーフィルタを使用しないため、部品点数を減らすことができ、コスト面で優位である。
(4) 第三の実施例と第四の実施例によれば、DCフリーの変調符号を使用することにより、
a)キャリアに可視光を用いた際に問題となりうる不要なチラツキを抑制することができる。
b)受信回路上で直流成分を除去できるため、変調されていない外乱光(太陽光)などの影響を抑制することができる。
(5) 光メディアシステムに使用されている汎用の多階調駆動型LDドライバICを使用することができるため、システムを安価に構成することが可能となる。
 なお、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることができる。例えば、以下のものも含まれる。
(1) 青色光励起型白色LED140としては、青色LEDの光により励起された蛍光体が、補色関係にある黄色の光を発光するタイプが一般的であるが、最近では、演色性を改善するために、蛍光体からの発光成分に赤色成分その他を含んでいるLEDがある。このようなLEDも、本発明の「青色光励起型白色LED」に含まれる。
(2) 前記実施例で示した駆動波形生成部110及び多階調駆動部120の回路構成は一例であり、同様の作用を奏する公知の各種の回路構成が可能である。
 本発明によれば、青色光励起型白色LEDを使用して十分な伝送速度の可視光データ通信を行なうことができ、高速の可視光通信に好適である。
100:送信機
108:変調符号器
110:駆動波形生成部
112A~112D:階調波形生成回路
114:カレントミラー回路
120:多階調駆動部
130:駆動波形生成部
140:青色光励起型白色LED
200:受信機
208:カラーフィルタ
210:PD
212:トランスインピーダンスアンプ
214:イコライザ
216:リミッティングアンプ
218:復号器
900:送信機
902:駆動部
904:白色LED
910:受信機
912:PD
914:トランスインピーダンスアンプ
916:イコライザ
918:リミッティングアンプ
920:受信機
922:青色カラーフィルタ
930:送信機
932:ピーキング回路

Claims (8)

  1.  送信データに基づいて生成された駆動電流信号に基づいて駆動される青色光励起型白色LEDからの可視光信号を受信機に対して出力する可視光通信用送信機であって、前記送信データの立ち上がり時に立ち上がりパルスを付加するとともに、前記送信データの立ち下がり時に立ち下がりパルスを付加して、多階調の駆動電流信号を生成する多階調駆動手段を備えており、前記立ち上がりパルス及び立ち下がりパルスのパルス幅を、前記送信データのユニットインターバルと等しくしたことを特徴とする可視光通信用送信機。
  2.  前記送信データに対応する駆動電流の値を、前記立ち上がりパルス及び立ち下がりパルスの電流の値に対して、4/5以下としたことを特徴とする請求項1記載の可視光通信用送信機。
  3.  前記立ち上がりパルス電流値に対する立ち下がりパルスの電流値の比率を、1.0±0.2としたことを特徴とする請求項2記載の可視光通信用送信機。
  4.  請求項1~3のいずれか一項に記載の可視光通信用送信機と、該可視光通信用送信機から出力された多階調の可視光信号を受光して電気信号に変換し、受信データを出力する可視光通信用受信機と、を備えたことを特徴とする可視光通信システム。
  5.  前記可視光通信用受信機において、カラーフィルタを介して可視光信号を受信するとともに、前記送信データに対応する駆動電流の値を、前記立ち上がりパルス及び立ち下がりパルスの電流の値に対して、5以下としたことを特徴とする請求項4記載の可視光通信システム。
  6.  変調符号器を前記可視光通信用送信機に設けるとともに、前記変調符号器で変調された変調符号を復号する変調復号器を前記可視光通信用受信機に設けたことを特徴とする請求項4又は5記載の可視光通信システム。
  7.  使用する変調符号として8B10Bを用いたことを特徴とする請求項6記載の可視光通信システム。
  8.  使用する変調符号として、DCフリーであり、かつ、符号化率2/3、最小ランを1としたRLL符号を用い、NRZI変調されたデータを送受信することを特徴とする請求項6記載の可視光通信システム。
PCT/JP2010/072522 2010-03-24 2010-12-15 可視光通信用送信機及び可視光通信システム WO2011118097A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112010005415.0T DE112010005415B4 (de) 2010-03-24 2010-12-15 Sender zur Kommunikation mit sichtbarem Licht und System zur Kommunikation mit sichtbarem Licht
KR1020127015486A KR101408816B1 (ko) 2010-03-24 2010-12-15 가시광 통신용 송신기 및 가시광 통신 시스템
US13/528,361 US8849127B2 (en) 2010-03-24 2012-06-20 Visible light communication transmitter and visible light communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-068370 2010-03-24
JP2010068370A JP5583999B2 (ja) 2010-03-24 2010-03-24 可視光通信用送信機及び可視光通信システム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/528,361 Continuation US8849127B2 (en) 2010-03-24 2012-06-20 Visible light communication transmitter and visible light communication system

Publications (1)

Publication Number Publication Date
WO2011118097A1 true WO2011118097A1 (ja) 2011-09-29

Family

ID=44672679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072522 WO2011118097A1 (ja) 2010-03-24 2010-12-15 可視光通信用送信機及び可視光通信システム

Country Status (5)

Country Link
US (1) US8849127B2 (ja)
JP (1) JP5583999B2 (ja)
KR (1) KR101408816B1 (ja)
DE (1) DE112010005415B4 (ja)
WO (1) WO2011118097A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140363A (zh) * 2015-08-12 2015-12-09 华南师范大学 功率型可见光通信led器件

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5161176B2 (ja) * 2008-09-26 2013-03-13 太陽誘電株式会社 可視光通信用送信機及び可視光通信システム
JP5583999B2 (ja) 2010-03-24 2014-09-03 太陽誘電株式会社 可視光通信用送信機及び可視光通信システム
JP2011211364A (ja) * 2010-03-29 2011-10-20 Kinki Univ 光通信システム、発光装置、照明装置、表示装置、標示装置及び光通信方法
JP5399975B2 (ja) 2010-05-14 2014-01-29 太陽誘電株式会社 可視光通信用受信機、可視光通信システム、及び可視光通信方法
JP5866703B2 (ja) * 2011-07-07 2016-02-17 株式会社マリンコムズ琉球 可視光通信方法及び可視光通信装置
JP6184776B2 (ja) * 2013-07-04 2017-08-23 ローム株式会社 可視光通信システム
JP6480652B2 (ja) * 2013-07-10 2019-03-13 パナソニック株式会社 可視光通信装置及びそれを用いた照明器具、並びに照明システム
JP6398473B2 (ja) * 2014-08-28 2018-10-03 株式会社デンソー 電子制御装置
US9455787B2 (en) * 2014-10-28 2016-09-27 Cisco Technology, Inc. Light emitting diode (LED)-based multi-bitrate data links
EP3051718B1 (en) * 2015-01-30 2019-12-04 Casio Computer Co., Ltd. Information transmission system, symbol stream generating apparatus, symbol stream decoding apparatus, symbol stream generating program, symbol stream decoding program, symbol stream generating method and symbol stream decoding method
JP6800858B2 (ja) * 2015-02-10 2020-12-16 ブライトコーデス テクノロジーズ リミテッド 光学的に符号化された情報を提供するためのシステムと方法
KR102196507B1 (ko) 2015-06-09 2020-12-30 한국전자통신연구원 전기적 절환 가능한 유리를 이용한 가시광 통신 장치 및 방법
CN108512598A (zh) * 2017-02-27 2018-09-07 中国科学院深圳先进技术研究院 一种光通信的方法及系统
WO2019054994A1 (en) * 2017-09-13 2019-03-21 Osram Sylvania Inc. TECHNIQUES FOR DECODING COMMUNICATION MESSAGES BASED ON LIGHT
US10771155B2 (en) 2017-09-28 2020-09-08 Soraa Laser Diode, Inc. Intelligent visible light with a gallium and nitrogen containing laser source
JP6622782B2 (ja) * 2017-11-24 2019-12-18 ファナック株式会社 制御装置、電子機器、及び制御システム
US11757250B2 (en) 2019-12-23 2023-09-12 Kyocera Sld Laser, Inc. Specialized mobile light device configured with a gallium and nitrogen containing laser source
CN112787722B (zh) * 2021-03-12 2021-12-28 苏州大学 自适应调光的可见光通信系统及调制解调方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174711A (ja) * 1998-12-04 2000-06-23 Toshiba Corp 光送信モジュール及び発光素子駆動回路
JP2005116638A (ja) * 2003-10-03 2005-04-28 Sharp Corp 光送信装置およびその制御方法
JP2007043592A (ja) * 2005-08-05 2007-02-15 Taiyo Yuden Co Ltd 光通信用送信機,光通信用受信機、光通信システム、及び通信装置
JP2009060203A (ja) * 2007-08-30 2009-03-19 Nec Corp 光受信信号断検出回路及び光受信信号断検出方法
JP2009527892A (ja) * 2006-02-22 2009-07-30 パナソニック株式会社 光送信回路

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598973B2 (ja) * 1979-12-19 1984-02-28 日本電信電話株式会社 発光ダイオ−ドの駆動回路
US4486739A (en) 1982-06-30 1984-12-04 International Business Machines Corporation Byte oriented DC balanced (0,4) 8B/10B partitioned block transmission code
US4867395A (en) 1986-05-01 1989-09-19 Spacehab, Inc. Flat end cap module for space transportation systems
EP0472318A3 (en) * 1990-08-06 1994-08-10 At & T Corp Led pulse shaping circuit
DE4341408A1 (de) * 1993-12-04 1995-06-08 Sel Alcatel Ag Optisches System zur Übertragung eines Mehrstufensignals
JPH07183849A (ja) 1993-12-22 1995-07-21 N T T Data Tsushin Kk 光空間伝送方法及び装置
JP3985173B2 (ja) 1998-05-29 2007-10-03 ソニー株式会社 変調装置および方法、復調装置および方法、並びにデータ格納媒体
US6424444B1 (en) * 2001-01-29 2002-07-23 Stratalight Communications, Inc. Transmission and reception of duobinary multilevel pulse-amplitude-modulated optical signals using finite-state machine-based encoder
JP2002290353A (ja) 2001-03-26 2002-10-04 Mitsubishi Electric Corp 放送装置および放送再生装置
JP2002290335A (ja) 2001-03-28 2002-10-04 Sony Corp 光空間伝送装置
JP3465017B2 (ja) 2002-04-23 2003-11-10 学校法人慶應義塾 照明光送信装置、照明光受信装置及び蛍光体タイプ照明光通信システム
JP4224001B2 (ja) * 2004-07-22 2009-02-12 浜松ホトニクス株式会社 Led駆動回路
JP2006073739A (ja) * 2004-09-01 2006-03-16 Taiyo Yuden Co Ltd 発光素子駆動装置および方法
DE602005018684D1 (de) * 2005-01-06 2010-02-11 Infra Com Ltd Fehlerdetektion und korrektur für drahtlose systeme im basisband
US7689130B2 (en) * 2005-01-25 2010-03-30 Koninklijke Philips Electronics N.V. Method and apparatus for illumination and communication
US7689132B2 (en) 2005-06-07 2010-03-30 Industrial Technology Research Institute Interference-rejection coding method for an optical wireless communication system and the optical wireless communication system thereof
US7570246B2 (en) * 2005-08-01 2009-08-04 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Method and apparatus for communication using pulse-width-modulated visible light
JP4977981B2 (ja) * 2005-08-29 2012-07-18 富士ゼロックス株式会社 光伝送装置
US7907852B2 (en) * 2006-01-25 2011-03-15 Panasonic Corporation Optical transmitter circuit
US20070196112A1 (en) * 2006-02-23 2007-08-23 Crews Darren S Power save mode for an optical receiver
JP4870495B2 (ja) * 2006-08-04 2012-02-08 パナソニック株式会社 データ送信装置
KR100856194B1 (ko) 2006-11-30 2008-09-03 삼성전자주식회사 가시광 통신을 이용한 통신 링크 연결방법
JP5064011B2 (ja) * 2006-12-20 2012-10-31 パナソニック株式会社 データ送信装置及びデータ受信装置
US8059972B2 (en) 2007-03-01 2011-11-15 Taiyo Yuden Co., Ltd. Optical receiver and visible light communication system
JP5583999B2 (ja) 2010-03-24 2014-09-03 太陽誘電株式会社 可視光通信用送信機及び可視光通信システム
JP5399975B2 (ja) 2010-05-14 2014-01-29 太陽誘電株式会社 可視光通信用受信機、可視光通信システム、及び可視光通信方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000174711A (ja) * 1998-12-04 2000-06-23 Toshiba Corp 光送信モジュール及び発光素子駆動回路
JP2005116638A (ja) * 2003-10-03 2005-04-28 Sharp Corp 光送信装置およびその制御方法
JP2007043592A (ja) * 2005-08-05 2007-02-15 Taiyo Yuden Co Ltd 光通信用送信機,光通信用受信機、光通信システム、及び通信装置
JP2009527892A (ja) * 2006-02-22 2009-07-30 パナソニック株式会社 光送信回路
JP2009060203A (ja) * 2007-08-30 2009-03-19 Nec Corp 光受信信号断検出回路及び光受信信号断検出方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105140363A (zh) * 2015-08-12 2015-12-09 华南师范大学 功率型可见光通信led器件

Also Published As

Publication number Publication date
US8849127B2 (en) 2014-09-30
DE112010005415B4 (de) 2016-01-21
KR101408816B1 (ko) 2014-06-19
DE112010005415T5 (de) 2013-02-28
JP2011205223A (ja) 2011-10-13
KR20120099074A (ko) 2012-09-06
US20120257901A1 (en) 2012-10-11
JP5583999B2 (ja) 2014-09-03

Similar Documents

Publication Publication Date Title
JP5583999B2 (ja) 可視光通信用送信機及び可視光通信システム
JP5161176B2 (ja) 可視光通信用送信機及び可視光通信システム
JP4464888B2 (ja) 光通信用送信機,光通信用受信機、光通信システム、及び通信装置
Roberts et al. IEEE 802.15. 7 physical layer summary
JP5399975B2 (ja) 可視光通信用受信機、可視光通信システム、及び可視光通信方法
Karunatilaka et al. LED based indoor visible light communications: State of the art
Che et al. A fully integrated IEEE 802.15. 7 visible light communication transmitter with on-chip 8-W 85% efficiency boost LED driver
Le Minh et al. High-speed visible light communications using multiple-resonant equalization
Lee et al. Modulations for visible light communications with dimming control
Liu et al. Equalization and pre-distorted schemes for increasing data rate in in-door visible light communication system
Dahri et al. A review of modulation schemes for visible light communication
Fujimoto et al. The fastest visible light transmissions of 662 Mb/s by a blue LED, 600 Mb/s by a red LED, and 520 Mb/s by a green LED based on simple OOK-NRZ modulation of a commercially available RGB-type white LED using pre-emphasis and post-equalizing techniques
Choi et al. Visible light communications employing PPM and PWM formats for simultaneous data transmission and dimming
KR100944024B1 (ko) 광 수신 장치 및 가시광 통신 장치
Idris et al. A survey of modulation schemes in visible light communications
Choi et al. Visible light communications with color and dimming control by employing VPPM coding
JP5068680B2 (ja) 光受信機及び可視光通信装置
Choi et al. Visible light communication with color and brightness control of RGB LEDs
Zhang An experiment demonstration of a LED driver based on a 2 nd order pre-emphasis circuit for visible light communications
Teja et al. Experimental Biomedical ECG Signal Transmission using VLC
Memon et al. Efficient Modulation Schemes for Visible Light Communication Systems
Matsuda et al. Experimental Evaluation of Hybrid PWM/DPAM Dimming Control Method for Digital Color Shift Keying Using RGB-LED Array
Memon et al. 17 Efficient Modulation
CN116366153A (zh) 基于不同占空比rz-pam4信号的室内多色复用可见光接入系统
JP2011211364A (ja) 光通信システム、発光装置、照明装置、表示装置、標示装置及び光通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848489

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127015486

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120100054150

Country of ref document: DE

Ref document number: 112010005415

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848489

Country of ref document: EP

Kind code of ref document: A1