WO2011115151A1 - ブタノールの製造方法 - Google Patents
ブタノールの製造方法 Download PDFInfo
- Publication number
- WO2011115151A1 WO2011115151A1 PCT/JP2011/056161 JP2011056161W WO2011115151A1 WO 2011115151 A1 WO2011115151 A1 WO 2011115151A1 JP 2011056161 W JP2011056161 W JP 2011056161W WO 2011115151 A1 WO2011115151 A1 WO 2011115151A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- butanol
- membrane
- containing solution
- concentration
- phase
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B63/00—Purification; Separation; Stabilisation; Use of additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/027—Nanofiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/029—Multistep processes comprising different kinds of membrane processes selected from reverse osmosis, hyperfiltration or nanofiltration
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/74—Separation; Purification; Use of additives, e.g. for stabilisation
- C07C29/76—Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C31/00—Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
- C07C31/02—Monohydroxylic acyclic alcohols
- C07C31/12—Monohydroxylic acyclic alcohols containing four carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/16—Butanols
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/06—Specific process operations in the permeate stream
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/26—Further operations combined with membrane separation processes
- B01D2311/2646—Decantation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Definitions
- the present invention relates to a method for producing butanol by separating butanol from a butanol-containing solution.
- Butanol is an industrially very important compound as a raw material, solvent, and fuel for chemicals and pharmaceuticals. Butanol is generally produced by a chemical synthesis method using propylene as a raw material (oxo method). However, in recent years, due to problems with the decline and rise in crude oil resources and GHG (greenhouse gas) emission regulations, biomass, which is a non-fossil raw material, is used. Butanol production technology by microbial fermentation as a raw material has attracted attention and several reports have been made (for example, Patent Document 1). However, in general, butanol production by microbial fermentation can accumulate only about 1 to 3% by weight of butanol concentration in the fermentation broth due to inhibition of microbial growth by butanol.
- Patent Document 2 as a method for separating and purifying butanol from a butanol-containing solution produced by microbial fermentation, butanol is recovered by concentrating the fermented liquid using a reverse osmosis membrane and then distilling the butanol phase of the two-phase separated concentrated liquid.
- a method is disclosed.
- fermentation broth contains impurities such as inorganic salts, saccharides, proteins, by-produced alcohol and organic acids derived from the fermentation medium, and these effects tend to cause membrane fouling, thereby increasing the osmotic pressure.
- Patent Document 2 discloses a reverse osmosis membrane. In the production of butanol, it is described in Patent Document 2 because there is no description about the effect of impurities when using a reverse osmosis membrane. It was unclear whether the method can be applied.
- Patent Document 3 discloses a method for recovering a solvent contained in a dilute aqueous solution with a nanofiltration membrane, and a specific example of the solvent is butanol.
- the purpose of this method is to recover a solvent such as butanol from the non-permeating side of the nanofiltration membrane, and the mechanism of butanol recovery in this method indicates to those skilled in the art that butanol is not permeable to the nanofiltration membrane. It is a suggestion.
- Patent Document 3 does not disclose an example of actually filtering a butanol-containing solution with a nanofiltration membrane, and there is no description regarding the two-phase separation property of the recovered butanol aqueous solution.
- An object of the present invention is to provide a method for separating the high-purity butanol from the above-described problem, that is, a butanol-containing solution.
- butanol has the permeability of a nanofiltration membrane, contrary to expectations.
- the butanol-containing solution is filtered through a nanofiltration membrane, the butanol-containing solution is recovered from the permeate side, and the resulting butanol-containing solution is passed through a reverse osmosis membrane to increase the butanol concentration, thereby suppressing input energy.
- the present inventors have found that high-efficiency and high-purity butanol can be recovered, and have completed the present invention.
- the present invention comprises the following (1) to (11).
- Step B for separating the aqueous phase into two phases
- Step C for recovering butanol from the butanol phase obtained from Step B.
- R represents —H or —CH 3
- n represents an integer of 0 to 3
- step B The process for producing butanol according to any one of (1) to (6), wherein in step B, the concentrated solution is concentrated so that the butanol concentration is 8% by weight or more.
- step C The process for producing butanol according to any one of (1) to (8), wherein in step C, the recovered butanol phase is purified by distillation.
- high-purity butanol can be separated from a butanol-containing solution with high efficiency.
- FIG. 1 is a schematic diagram illustrating one preferred embodiment of the present invention. It is a schematic diagram showing one of the preferred embodiments of the membrane filtration and concentration device used in the present invention.
- Butanol in the present invention is a general term for monohydric alcohols having 4 carbon atoms, and specific examples include n-butanol (1-butanol), isobutanol, 2-butanol or 2-methyl-2-propanol. In addition, one kind or plural kinds may be used, but the present invention is preferably applied to a method for producing n-butanol or isobutanol.
- the method for producing a butanol-containing solution used in the present invention is not particularly limited as long as it is a method known to those skilled in the art. Specifically, in the case of using a chemical synthesis method, a method of synthesizing from acetaldehyde by a Wacker method, a method of synthesizing from propylene, carbon monoxide and water by a Reppe method, and microorganisms by anaerobic culture using Clostidium butyricum, etc. It can also be produced by this fermentation culture method.
- a preferred method for producing a butanol-containing solution used in the present invention is a microorganism fermentation culture method. That is, the butanol-containing solution used in the present invention is preferably a culture solution for fermentation fermentation of microorganisms.
- the butanol-containing solution used in the present invention is preferably a culture solution for fermentation fermentation of microorganisms.
- an isobutanol-containing solution is obtained by a method described in US2009 / 0226991, Appl Microbiol Biotechnol (2010) 85, 651-657, Current Opinion in Biotechnology (2009) 20, 307-315, etc.
- an n-butanol-containing solution is preferably prepared by a method described in Fermentation Handbook (edited by Bioindustry Association), acetone-butanol fermentation (page 19), etc. Can be manufactured.
- the present invention filters a butanol-containing solution through a nanofiltration membrane, recovers the butanol-containing solution from the permeate side, concentrates the butanol-containing solution obtained from step A through a reverse osmosis membrane, It is characterized by being composed of Step B for separating the water phase into two phases and Step C for recovering butanol from the butanol phase obtained from Step B.
- Step B for separating the water phase into two phases
- Step C for recovering butanol from the butanol phase obtained from Step B.
- the nanofiltration membrane used in the present invention is also called a nanofilter (nanofiltration membrane, NF membrane), and is generally defined as “a membrane that transmits monovalent ions and blocks divalent ions”. It is a film. It is a membrane that is considered to have a minute gap of about several nanometers, and is mainly used to block minute particles, molecules, ions, salts, and the like in water.
- filter through a nanofiltration membrane means that a butanol-containing solution is filtered through a nanofiltration membrane to remove impurities other than butanol mainly on the non-permeation side, and the butanol-containing solution is removed from the permeation side. It means to collect.
- the butanol-containing solution is a culture solution produced by fermentation culture of microorganisms
- the culture solution is filtered through a nanofiltration membrane, and dissolved or precipitated as inorganic salts, saccharides, organic acids, coloring components It is meant that impurities such as are removed or blocked or filtered and the butanol-containing solution is permeated as a filtrate. Since the non-permeate containing impurities contains butanol, the non-permeate is preferably recycled to raw water (feed water) in order to increase the butanol recovery rate.
- a nanofiltration membrane having a functional layer is preferably used.
- the functional layer may be a film containing a plurality of other film materials.
- the membrane structure has a dense layer on at least one side of the membrane, and on the asymmetric membrane having fine pores gradually increasing from the dense layer to the inside of the membrane or the other side, or on the dense layer of the asymmetric membrane.
- a composite film having a very thin functional layer formed of another material may be used.
- a composite membrane described in JP-A-62-201606 in which a nanofiltration membrane comprising a functional layer of polyamide is formed on a support membrane made of polysulfone as a membrane material can be used.
- the nanofiltration membrane having a polyamide functional layer preferably used in the present invention is preferably a composite membrane having high pressure resistance, high water permeability, and high solute removal performance. Further, in order to maintain durability against operating pressure, high water permeability, and blocking performance, a structure in which polyamide is used as a functional layer and is held by a support made of a porous film or a nonwoven fabric is preferable.
- carboxylic acid components of monomers constituting the polyamide include, for example, trimesic acid, benzophenone tetracarboxylic acid, trimellitic acid, pyrometic acid, isophthalic acid, terephthalic acid, naphthalene
- aromatic carboxylic acids such as dicarboxylic acid, diphenyl carboxylic acid, pyridine carboxylic acid and the like can be mentioned, but in view of solubility in a film forming solvent, trimesic acid, isophthalic acid, terephthalic acid or a mixture thereof is more preferable.
- Preferred amine components of the monomers constituting the polyamide include m-phenylenediamine, p-phenylenediamine, benzidine, methylenebisdianiline, 4,4′-diaminobiphenyl ether, dianisidine, 3,3 ′, 4- Triaminobiphenyl ether, 3,3 ′, 4,4′-tetraaminobiphenyl ether, 3,3′-dioxybenzidine, 1,8-naphthalenediamine, m (p) -monomethylphenylenediamine, 3,3′- Monomethylamino-4,4′-diaminobiphenyl ether, 4, N, N ′-(4-aminobenzoyl) -p (m) -phenylenediamine-2,2′-bis (4-aminophenylbenzimidazole), 2 , 2'-bis (4-aminophenylbenzoxazole), 2,2'-bis (4-amino) Secondary diamines
- the nanofiltration membrane is generally used as a spiral membrane module, but the nanofiltration membrane used in the present invention is also preferably used as a spiral membrane module.
- preferable nanofiltration membrane modules include, for example, GE Sepa, a nanofiltration membrane manufactured by GE Osmonics, which is a cellulose acetate-based nanofiltration membrane, NF99 or NF99HF, a nanofiltration membrane manufactured by Alfa Laval, which has a functional layer of polyamide, KOCH nanofiltration membrane MPS-34 or MPS-36, Filmtec nanofiltration membrane NF-45, NF-90, NF-200, NF-270, or NF-400 made of film-tech with functionalized cross-linked piperazine polyamide
- Nanofiltration Membrane Modules SU-210 and SU-220 manufactured by Toray Industries Inc. including UTC60, which has a functional layer of a polyamide containing a crosslinked piperazine polyamide as a main component and the structural component represented by Formula 1 above.
- the nanofiltration membrane NF99 or NF99HF manufactured by Alfa Laval Co. which uses polyamide as a functional layer
- the NF-45, NF-90, NF-200 nanofiltration membranes manufactured by Filmtec Co., Ltd. which uses cross-linked piperazine polyamide as a functional layer.
- the nanofiltration membrane used in the present invention is evaluated by calculating the inorganic ion removal rate (blocking rate) as a method for evaluating the degree of removal, blocking or filtration of impurities precipitated as dissolved or solid.
- the inorganic salt removal rate is determined by the analysis represented by ion chromatography.
- the concentration of inorganic salt contained in raw water (feed water) (raw water inorganic salt concentration) and the concentration of inorganic salt contained in permeate ( By measuring the permeated liquid inorganic salt concentration), it can be calculated by Equation 1.
- Inorganic salt removal rate (%) (1 ⁇ (permeate inorganic salt concentration / raw water inorganic salt concentration)) ⁇ 100 (Formula 1).
- the membrane separation performance of the nanofiltration membrane used in the present invention is a nanofiltration membrane having a removal rate of 45% or more calculated by Formula 1 of sodium chloride (500 mg / L) adjusted to a temperature of 25 ° C. and pH 6.5. Is preferably used.
- the permeation flow rate (m 3 / m 2 / day) of sodium chloride (500 mg / L) per unit membrane area is 0.5 or more at a filtration pressure of 0.3 MPa.
- a filtration membrane is preferably used.
- the permeation flow rate (membrane permeation flux) per membrane unit area the permeate amount, the time during which the permeate amount was collected, and the membrane area can be calculated by Equation 2.
- Membrane permeation flux (m 3 / m 2 / day) permeate amount / membrane area / water sampling time (formula 2).
- butanol permeability As an evaluation method of butanol nanofiltration membrane permeability when separating butanol from an aqueous solution of butanol by the above method, butanol permeability can be calculated and evaluated.
- the butanol permeability is determined by analysis represented by high performance liquid chromatography, butanol concentration in raw water (feed water) (raw water butanol concentration) and butanol concentration in permeate (butanol-containing solution) (permeate butanol). By measuring (concentration), it can be calculated by equation 3.
- Butanol membrane permeability (%) (permeate butanol concentration / raw water butanol concentration) ⁇ 100 (Equation 3).
- the filtration with the nanofiltration membrane may be applied with a pressure, and the filtration pressure is preferably used in the range of 0.1 MPa to 8 MPa. If the filtration pressure is lower than 0.1 MPa, the membrane permeation rate decreases, and if it is higher than 8 MPa, the membrane may be damaged. In addition, if the filtration pressure is 0.5 MPa or more and 7 MPa or less, since the membrane permeation flux is high, the butanol aqueous solution can be efficiently permeated, and the possibility of affecting the membrane damage is less. It is preferably used at 1 MPa or more and 6 MPa or less.
- concentrate through a reverse osmosis membrane means that the butanol-containing solution obtained in step A is filtered through a reverse osmosis membrane, and a concentrated solution containing butanol on the non-permeate side is collected. It means that water is mainly transmitted to and removed from the permeate side.
- a composite membrane using a cellulose acetate-based polymer as a functional layer (hereinafter, also referred to as a cellulose acetate-based reverse osmosis membrane) or a composite membrane using a polyamide as a functional layer (hereinafter referred to as a cellulose acetate-based reverse osmosis membrane) And a polyamide-based reverse osmosis membrane).
- cellulose acetate-based polymer organic acid esters of cellulose such as cellulose acetate, cellulose diacetate, cellulose triacetate, cellulose propionate, cellulose butyrate and the like, or a mixture thereof and those using mixed esters can be mentioned. It is done.
- the polyamide includes a linear polymer or a crosslinked polymer having an aliphatic and / or aromatic diamine as a monomer.
- preferable reverse osmosis membranes used in the present invention include, for example, polyamide-based reverse osmosis membranes UTC-70, SU-710, SU-720, SU-720F, SU-710L, SU- manufactured by Toray Industries, Inc.
- the membrane form an appropriate form such as a flat membrane type, a spiral type, and a hollow fiber type can be used.
- sodium chloride adjusted to a temperature of 25 ° C. and a pH of 6.5 (raw water sodium chloride concentration of 3.5%) was evaluated with a filtration pressure of 5.5 MPa.
- Those having a sodium removal rate of 90% or more are preferably used, and those having a sodium removal rate of 95% or more are preferably used.
- the sodium chloride removal rate can be calculated by Equation 1.
- the permeation performance of the reverse osmosis membrane is such that sodium chloride (3.5%) has a membrane permeation flux (m 3 / (m 2 ⁇ day)) of 0.2 or more at a filtration pressure of 5.5 MPa. If it is, it can be preferably used because the concentration rate of the culture solution can be increased.
- the membrane permeation flux mentioned here is the permeation flow rate per unit area and unit pressure of the membrane. The permeate amount and the time during which the permeate amount was sampled and the membrane area were measured and calculated by Equation 2. can do.
- a reverse osmosis membrane having a low butanol permeability and a high water permeability is preferably used.
- the butanol permeability can be calculated and evaluated.
- the butanol permeability is determined by analysis represented by high performance liquid chromatography, butanol concentration in raw water (feed water) (raw water butanol concentration) and butanol concentration in permeate (butanol-containing solution) (permeate butanol). By measuring (concentration), it can be calculated by equation 3.
- the filtration with the reverse osmosis membrane may be applied with a pressure, and the filtration pressure is preferably used in the range of 0.1 MPa to 8 MPa. If the filtration pressure is lower than 0.1 MPa, the membrane permeation rate decreases, and if it is higher than 8 MPa, the membrane may be damaged. Also, if the filtration pressure is 0.5 MPa or more and 7 MPa or less, the membrane permeation flux is high, so that the aqueous solution of butanol can be efficiently concentrated, and it is less likely to affect the membrane damage. It is preferably used at 1 MPa or more and 6 MPa or less.
- the temperature of the butanol-containing solution at the time of concentration through the reverse osmosis membrane is not particularly limited, but is preferably in the range of 4 to 60 ° C, and more preferably in the range of 20 to 50 ° C. If the temperature of the butanol-containing solution is lower than 4 ° C, the two-phase separation operation of the butanol phase and the aqueous phase may be difficult, and if the temperature of the butanol-containing solution exceeds 60 ° C, the reverse osmosis membrane is damaged. May cause problems in the concentration operation.
- the butanol concentration of the concentrate obtained in Step B is not particularly limited, but is preferably 8% by weight or more, more preferably 15% by weight or more, further preferably 30% by weight or more, and particularly preferably 40% by weight or more. If the butanol concentration is 8% by weight or more, it exceeds the saturated solubility of butanol in water within the preferred temperature range of the butanol-containing solution obtained in the above-mentioned Step A, so that it is separated into two phases, a butanol phase and an aqueous phase. When the two-phase separation occurs, as a result of further concentration of the aqueous phase portion by the reverse osmosis membrane, butanol exceeding the saturation solubility is transferred to the butanol phase.
- the butanol concentration in the aqueous phase is always saturated, it is possible to substantially increase the butanol concentration with a constant osmotic pressure difference. Since the butanol-containing solution that leads to the reverse osmosis membrane is filtered by the nanofiltration membrane, the impurity concentration is extremely low. Therefore, the influence of the osmotic pressure due to the impurity is small, and the solution can be concentrated at a low operating pressure. Furthermore, since impurities having a surface-active effect are filtered by the nanofiltration membrane, they are easily separated into two phases.
- Butanol is obtained by recovering the butanol phase from the butanol concentrate obtained in Step B and separated into two phases into a butanol phase and an aqueous phase.
- the obtained butanol has an extremely low impurity concentration because it is filtered by the nanofiltration membrane in the step A.
- butanol that has been dissolved in the saturated solubility remains in the aqueous phase that has not been recovered, and can be recycled as raw nanofiltration membrane water in step A and / or reverse osmosis membrane raw water in step B, thereby recovering butanol as a whole process. You can raise the rate.
- the butanol distillation purification step is preferably performed under a reduced pressure of 1 Pa or more and atmospheric pressure (normal pressure, about 101 kPa), more preferably 100 Pa or more and 80 kPa or less, more preferably 100 Pa or more and 50 kPa or less. More preferably it is performed.
- the distillation temperature is preferably 20 ° C. or higher and 200 ° C. or lower, more preferably 40 ° C. or higher and 150 ° C. or lower.
- butanol distillation purification step high-purity butanol can be mainly recovered from the liquid side, but since butanol and water are azeotroped on the vapor side, the condensate recovered from the vapor side is again reused in step A.
- the butanol recovery rate of the entire process can be increased.
- butanol recovered from the liquid side is distilled again, and butanol is recovered from the vapor side, whereby the purity of butanol can be further increased.
- FIG. 1 is one of the preferred embodiments of the present invention, in which a butanol-containing solution stream 6 is passed through a nanofiltration membrane into a butanol-containing permeate stream 7 and a non-permeate stream 8 containing impurities. Divided. The butanol-containing permeate stream 7 is passed through the reverse osmosis membrane, and the non-permeate stream 8 containing a large amount of impurities is recycled to the butanol aqueous solution stream 6 or the raw water tank 1.
- the 7 passed through the reverse osmosis membrane is divided into a non-permeate stream 9 enriched in butanol and a permeate 10 substantially free of butanol and containing water.
- the non-permeate stream 9 enriched in butanol is received in the extraction tank 4 and separated into two phases into a butanol phase and an aqueous phase containing butanol having a saturated solubility.
- An aqueous phase stream 11 containing butanol of saturated solubility is recycled to the butanol-containing permeate stream 7 or butanol aqueous solution stream 6 leading to the reverse osmosis membrane or the raw water tank 1, and the butanol phase stream 14 is supplied to the distillation column. Is done.
- the butanol phase supplied to the distillation tower is recovered from the bottom of the distillation tower as a high-purity butanol stream 15, and the stream 16 containing butanol and water is a butanol-containing permeate stream 7 leading to the reverse osmosis membrane or an isobutanol aqueous solution. Recycled to stream 6 or raw water tank 1.
- Examples 1 to 4 Separation and purification of isobutanol model fermentation broth (Preparation of isobutanol model fermentation broth) In 48 L of pure water, 10% by weight of isobutanol (manufactured by Wako Pure Chemical Industries, Ltd.), 10% by weight of glucose (manufactured by Wako Pure Chemical Industries, Ltd.), 5% by weight of yeast extract (manufactured by Oriental Yeast Co., Ltd.), Zinc sulfate (Wako Pure Chemical Industries, Ltd.) 5% by weight, ammonium sulfate (Wako Pure Chemical Industries, Ltd.) 5% by weight, and acetic acid (Wako Pure Chemical Industries, Ltd.) 5% by weight Thereafter, the pH was adjusted to 6 and high-pressure steam sterilization (121 ° C., 20 minutes) was performed and diluted 10 times with pure water to obtain a model fermentation broth. Each component in the model fermentation broth and purified isobutanol was analyzed by the measurement methods shown below.
- Measurement of degree of coloring of aqueous solution APHA was used as an index indicating the degree of purification of the isobutanol-containing solution.
- the measurement was performed with a petroleum product color tester OME2000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
- the isobutanol-containing solution from which glucose and sulfate ions were efficiently removed was collected from the permeation side of the nanofiltration membrane by the nanofiltration membrane module at any pressure. Moreover, since the clear isobutanol containing solution (APHA1) was obtained from the model fermentation liquid which was brown, it was guessed that other impurities were also removed by the nanofiltration membrane.
- Example 3 (Concentration experiment with reverse osmosis membrane) 470 L of the recovered liquid (isobutanol nanofiltration membrane permeate, temperature 25 ° C.) obtained in Example 3 was poured into the raw water tank 18. Next, the 4-inch reverse osmosis membrane module 3 (TM-810, membrane area 7 m 2 , manufactured by Toray Industries, Inc.) was set in a dedicated container, and the operating pressure of the high-pressure pump 19 was adjusted to 5 MPa. The permeate 10 was discharged out of the system, and the non-permeate 20 was returned to the raw water tank 18 for repeated concentration. Table 2 shows the results of measurement of isobutanol, glucose, sulfate ion concentration, and membrane permeation flux of the permeate 10 contained in the raw water tank 18.
- Examples 5 to 7 Concentration and separation of nanofiltration membrane permeate by reverse osmosis membrane A model fermentation broth was prepared in the same manner as described above so that the initial concentration of isobutanol was 1.5, 2.0, and 3.0% by weight. (Examples 5 to 7). This was concentrated with a nanofiltration membrane at 2.0 MPa in the same manner as in Example 3 to obtain a permeate. Further, 460 L of permeate was removed and concentrated using a reverse osmosis membrane module under the same conditions as in Example 3, and the isobutanol phase was recovered from the concentrated raw water tank, and the recovery rate of isobutanol was evaluated. Table 4 shows the results.
- isobutanol was concentrated by the reverse osmosis membrane module, but the isobutanol model fermentation broth contained a large amount of impurities, so the amount of permeate was low due to the influence of osmotic pressure. A decrease in the permeation flux was observed, and when the permeate amount exceeded 440 L, the membrane permeation flow rate became zero, so the experiment was stopped. At this time, 30 L of the solution remained in the raw water tank and separated into two phases as in Example 3. However, the phase boundary line was unclear and the two-phase separation property was poor. When the upper phase was recovered, the isobutanol recovery rate was 32.6%.
- the isobutanol obtained by distillation had a high degree of coloring, and the distillation yields were 75% and 83%, respectively.
- Examples 8 to 11 Separation and purification of n-butanol model fermentation broth (Preparation of n-butanol model fermentation broth) In 48 L of pure water, 10% by weight of n-butanol (manufactured by Wako Pure Chemical Industries, Ltd.), 10% by weight of glucose (manufactured by Wako Pure Chemical Industries, Ltd.), and 5% by weight of yeast extract (manufactured by Oriental Yeast Co., Ltd.) Zinc sulfate (Wako Pure Chemical Industries, Ltd.) 5 wt%, ammonium sulfate (Wako Pure Chemical Industries, Ltd.) 5 wt%, and acetic acid (Wako Pure Chemical Industries, Ltd.) 5 wt% After dissolution, it was adjusted to pH 6, autoclaved (121 ° C., 20 minutes), diluted 10-fold with pure water to obtain a model fermentation broth. Each component in the model fermentation broth and purified n-butanol was analyzed by the same measurement method as
- the n-butanol-containing solution from which glucose and sulfate ions were efficiently removed was collected from the permeation side of the nanofiltration membrane by the nanofiltration membrane module at any pressure. Further, since a clear n-butanol-containing solution (APHA1) was obtained from the model fermentation broth that was brown, it was presumed that other impurities were also removed by the nanofiltration membrane.
- Example 10 (Concentration experiment with reverse osmosis membrane) 470 L of the recovered liquid (n-butanol nanofiltration membrane permeate, temperature 25 ° C.) obtained in Example 10 was poured into the raw water tank 18. Next, the 4-inch reverse osmosis membrane module 3 (TM-810, membrane area 7 m 2 , manufactured by Toray Industries, Inc.) was set in a dedicated container, and the operating pressure of the high-pressure pump 19 was adjusted to 5 MPa. The permeate 10 was discharged out of the system, and the non-permeate 20 was returned to the raw water tank 18 for repeated concentration. Table 8 shows the results of measurement of n-butanol, glucose, sulfate ion concentration, and membrane permeation flux of the permeate 10 contained in the raw water tank 18.
- Examples 12 to 14 Concentration and separation of nanofiltration membrane permeate with reverse osmosis membrane Model fermented liquor was prepared in the same manner as described above so that the initial concentration of n-butanol was 1.5, 2.0, and 3.0% by weight. (Examples 12 to 14). This was concentrated with a nanofiltration membrane at 2.0 MPa in the same manner as in Example 3 to obtain a permeate. Further, 455 L of the permeate was removed and concentrated using a reverse osmosis membrane module under the same conditions as in Example 10, and the n-butanol phase was recovered from the concentrated raw water tank. The recovery rate of n-butanol Table 10 shows the results of the evaluation.
- the butanol-containing solution was filtered through a nanofiltration membrane to recover the butanol-containing solution from the permeate side, and the resulting butanol-containing solution was concentrated through a reverse osmosis membrane. It was revealed that butanol having a high efficiency and high purity can be recovered by separating the two phases into a butanol phase and an aqueous phase.
- the butanol obtained by the present invention has a high purity and can be used as a raw material, solvent and fuel for chemicals and pharmaceuticals.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
2 ナノ濾過膜モジュール
3 逆浸透膜モジュール
4 抽出槽
5 蒸留塔
6 ブタノール水溶液の流れ
7 ブタノール含有透過液の流れ
8 不純物を多く含む非透過液の流れ
9 ブタノールが濃縮された非透過液の流れ
10 実質的にブタノールを含まず水を含む透過液
11 飽和溶解度分のブタノールを含む水相の流れ
12 水相
13 ブタノール相
14 ブタノール相の流れ
15 高純度なブタノールの流れ
16 ブタノールと水を含む流れ
17 高圧ポンプ
18 逆浸透膜に供される原水槽
19 高圧ポンプ
20 逆浸透膜非透過液の流れ
本発明で用いるナノ濾過膜とは、ナノフィルター(ナノフィルトレーション膜、NF膜)とも呼ばれるものであり、「一価のイオンは透過し、二価のイオンを阻止する膜」と一般に定義される膜である。数ナノメートル程度の微小空隙を有していると考えられる膜で、主として、水中の微小粒子や分子、イオン、塩類等を阻止するために用いられる。
無機塩除去率(%)=(1-(透過液無機塩濃度/原水無機塩濃度))×100・・・(式1)。
膜透過流束(m3/m2/day)=透過液量/膜面積/採水時間・・・(式2)。
ブタノール膜透過率(%)=(透過液ブタノール濃度/原水ブタノール濃度)×100・・・(式3)。
本発明における「逆浸透膜に通じて濃縮する」とは、工程Aで得られたブタノール含有溶液を、逆浸透膜に通じて濾過し、非透過液側にブタノールを含む濃縮液を回収し、透過液側に主に水を透過、除去させることを意味する。
工程Bで得られたブタノール相と水相に2相分離されたブタノール濃縮液からブタノール相を回収することで、ブタノールが得られる。得られたブタノールは、工程Aにおいてナノ濾過膜により濾過されていることから不純物濃度が極めて低い。なお、回収されなかった水相にも飽和溶解度分溶解したブタノールが残っており、工程Aのナノ濾過膜原水および/または工程Bの逆浸透膜原水としてリサイクルすることで、工程全体としてのブタノール回収率を上げることができる。
(イソブタノールモデル発酵液の準備)
純水48Lに、イソブタノール(和光純薬工業株式会社製)を10重量%、グルコース(和光純薬工業株式会社製)を10重量%、酵母エキス(オリエンタル酵母株式会社製)を5重量%、硫酸亜鉛(和光純薬工業株式会社製)を5重量%、硫酸アンモニウム(和光純薬工業株式会社製)を5重量%、酢酸(和光純薬工業株式会社製)を5重量%となるように溶解後pH6に調整して、高圧蒸気滅菌(121℃、20分)し、純水で10倍希釈し、モデル発酵液とした。モデル発酵液および精製イソブタノール中の各成分は以下に示す測定方法により分析した。
使用カラム Luna5u NH2 100A(Phenomenex社製)
移動相 アセトニトリル:純水=3:1
検出器 RI。
使用カラム Luna5u NH2 100A(Phenomenex社製)
移動相 アセトニトリル:純水=3:1
検出器 RI。
以下の条件で不純物である硫酸イオンおよび酢酸イオン濃度を測定した。
カラム(AS22(DIONEX製))、溶離液(1.8mM 炭酸ナトリウム/1.7mM 炭酸水素ナトリウム)、温度(35℃)。
イソブタノール含有溶液の精製度を示す指標として、APHA(ハーゼン色数)を用いた。測定は石油製品色試験器OME2000(日本電色工業株式会社製)にて行った。
ガスクロマトグラフィー:GC-2010(株式会社島津製作所製)により以下の条件で分析し、(イソブタノールピーク面積)/(全ピーク面積)×100を算出してCG純度とした。
カラム:TC-1 0.53mmI.D.×15m df=1.5um(GL Science)
移動相:ヘリウムガス(7.9mL/min、50~200℃:5℃/min)
検出:FID 250℃。
図2に示す原水槽1に上記で得られたイソブタノールモデル発酵液480Lを注入した。次いで、4インチナノ濾過膜モジュール2(SU-610、膜面積7m2、東レ株式会社製)を専用容器にセットし、高圧ポンプ17の操作圧力を0.5、1.0、2.0および4.0MPaに調整して運転を行った(実施例1~4)。この際、透過液7は回収し、非透過液8を原水槽1に戻して運転し、回収液470Lを得た。モデル発酵液および回収液に含まれる、イソブタノール、グルコース、硫酸イオン、酢酸濃度、着色度(APHA)を測定した。その結果を表1に示す。
上記実施例3で得られた回収液(イソブタノールナノ濾過膜透過液、温度25℃)470Lを原水槽18に注入した。次いで、4インチ逆浸透膜モジュール3(TM-810、膜面積7m2、東レ株式会社製)を専用容器にセットし、高圧ポンプ19の操作圧力を5MPaに調整した。透過液10を系外に排出し、非透過液20を原水槽18に戻して濃縮を繰り返し行った。原水槽18に含まれる、イソブタノール、グルコース、硫酸イオン濃度、透過液10の膜透過流束を測定した結果を表2に示す。
実験2で回収したイソブタノール相を10kPa、80℃、または常圧、95℃で蒸留し、蒸気側を回収した。結果を表3に示す。
イソブタノールの初期濃度が1.5、2.0、3.0重量%となるように前述と同様にモデル発酵液を調製した(実施例5~7)。これを実施例3と同様に2.0MPaにてナノ濾過膜濃縮し透過液を得た。さらに、これを実施例3と同様の条件で逆浸透膜モジュールを用いてそれぞれ460Lの透過液を除去・濃縮し、濃縮後の原水槽からイソブタノール相を回収し、イソブタノールの回収率を評価した結果を表4に示す。
前述のイソブタノールモデル発酵液470Lを調製し、ナノ濾過膜による濾過を行わず、実施例3と同様の条件で逆浸透膜による濃縮・2相分離を試みた。
実施例1~4と同様に調製したイソブタノールモデル発酵液470L(温度25℃)を、図2に示す原水槽18に注入し、4インチ逆浸透膜モジュール3(TM-810、膜面積7m2、東レ株式会社製)を専用容器にセットし、高圧ポンプ19の圧力を5MPaに調整した。透過液10を系外に排出し、非透過液20を原水槽18に戻して運転を行った。原水槽18に含まれる、イソブタノール、グルコース、硫酸イオン濃度、透過液10の膜透過流束を測定した。その結果を表5に示す。
上記で回収したイソブタノール相を実施例3と同様に10kPa、80℃、または常圧、95℃で蒸留し、蒸気側を回収した。その結果を表6に示す。
(n-ブタノールモデル発酵液の準備)
純水48Lに、n-ブタノール(和光純薬工業株式会社製)を10重量%、グルコース(和光純薬工業株式会社製)を10重量%、酵母エキス(オリエンタル酵母株式会社製)を5重量%、硫酸亜鉛(和光純薬工業株式会社製)を5重量%、硫酸アンモニウム(和光純薬工業株式会社製)を5重量%、酢酸(和光純薬工業株式会社製)を5重量%となるように溶解後pH6に調整して、高圧蒸気滅菌(121℃、20分)し、純水で10倍希釈し、モデル発酵液とした。モデル発酵液および精製n-ブタノール中の各成分分析は実施例1~7および比較例1記載のイソブタノールと同様の測定方法により分析した。
図2に示す原水槽1に上記で得られたn-ブタノールモデル発酵液480Lを注入した。次いで、4インチナノ濾過膜モジュール2(SU-610、膜面積7m2、東レ株式会社製)を専用容器にセットし、高圧ポンプ17の操作圧力を0.5、1.0、2.0および4.0MPaに調整して運転を行った(実施例5~8)。この際、透過液7は回収し、非透過液8を原水槽1に戻して運転し、回収液470Lを得た。モデル発酵液および回収液に含まれる、n-ブタノール、グルコース、硫酸イオン、酢酸濃度、着色度(APHA)を測定した。その結果を表7に示す。
上記実施例10で得られた回収液(n-ブタノールナノ濾過膜透過液、温度25℃)470Lを原水槽18に注入した。次いで、4インチ逆浸透膜モジュール3(TM-810、膜面積7m2、東レ株式会社製)を専用容器にセットし、高圧ポンプ19の操作圧力を5MPaに調整した。透過液10を系外に排出し、非透過液20を原水槽18に戻して濃縮を繰り返し行った。原水槽18に含まれる、n-ブタノール、グルコース、硫酸イオン濃度、透過液10の膜透過流束を測定した結果を表8に示す。
前述のように回収したn-ブタノール相を常圧、95℃で蒸留し、蒸気側を回収した。結果を表9に示す。
n-ブタノールの初期濃度が1.5、2.0、3.0重量%となるように前述と同様にモデル発酵液を調製した(実施例12~14)。これを実施例3と同様に2.0MPaにてナノ濾過膜濃縮し透過液を得た。さらに、これを実施例10と同様の条件で逆浸透膜モジュールを用いてそれぞれ455Lの透過液を除去・濃縮し、濃縮後の原水槽からn-ブタノール相を回収し、n-ブタノールの回収率を評価した結果を表10に示す。
Claims (11)
- ブタノール含有溶液をナノ濾過膜に通じて濾過し、透過側からブタノール含有溶液を回収する工程A、工程Aより得られたブタノール含有溶液を逆浸透膜に通じて濃縮し、ブタノール相と水相に2相分離させる工程Bおよび工程Bより得られるブタノール相からブタノールを回収する工程Cを含む、ブタノールの製造方法。
- 前記ブタノールがn-ブタノールまたはイソブタノールである、請求項1に記載のブタノールの製造方法。
- 前記ブタノール含有溶液が微生物発酵によって得られる培養液である、請求項1または2に記載のブタノールの製造方法。
- 前記ナノ濾過膜の機能層がポリアミドを含む、請求項1から3のいずれかに記載のブタノールの製造方法。
- 工程Bにおいて、濃縮時のブタノール含有溶液の温度が4~60℃の範囲である、請求項1から5のいずれかに記載のブタノールの製造方法。
- 工程Bにおいて、濃縮液のブタノール濃度が8重量%以上になるように濃縮する、請求項1から6のいずれかに記載のブタノールの製造方法。
- 前記水相を、工程Aのナノ濾過膜および/または工程Bの逆浸透膜に通じる流れにリサイクルする、請求項1から7のいずれかに記載のブタノールの製造方法。
- 工程Cにおいて、回収されたブタノール相を蒸留精製する、請求項1から8のいずれかに記載のブタノールの製造方法。
- 前記蒸留精製において蒸気側から回収されたブタノール含有溶液を、工程Aのナノ濾過膜および/または工程Bの逆浸透膜に通じる流れにリサイクルする、請求項9に記載のブタノールの製造方法。
- 前記蒸留精製において液体側から回収されたブタノール含有溶液を、さらに蒸留精製に供し、蒸気側からブタノールを回収する、請求項9または10に記載のブタノールの製造方法。
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11756335.3A EP2551254B1 (en) | 2010-03-17 | 2011-03-16 | Butanol manufacturing method |
KR1020127021623A KR20130004566A (ko) | 2010-03-17 | 2011-03-16 | 부탄올의 제조 방법 |
RU2012144014/04A RU2560167C2 (ru) | 2010-03-17 | 2011-03-16 | Способ получения бутанола |
JP2011514969A JP4985874B2 (ja) | 2010-03-17 | 2011-03-16 | ブタノールの製造方法 |
CA2793200A CA2793200C (en) | 2010-03-17 | 2011-03-16 | Butanol manufacturing method |
ES11756335T ES2705018T3 (es) | 2010-03-17 | 2011-03-16 | Procedimiento de fabricación de butanol |
BR112012022525A BR112012022525A2 (pt) | 2010-03-17 | 2011-03-16 | método para produzir butanol |
AU2011228079A AU2011228079B2 (en) | 2010-03-17 | 2011-03-16 | Butanol manufacturing method |
SG2012066858A SG183982A1 (en) | 2010-03-17 | 2011-03-16 | Butanol manufacturing method |
CN201180014258.1A CN102803190B (zh) | 2010-03-17 | 2011-03-16 | 丁醇的制造方法 |
US13/635,066 US9056805B2 (en) | 2010-03-17 | 2011-03-16 | Butanol manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010-060946 | 2010-03-17 | ||
JP2010060946 | 2010-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011115151A1 true WO2011115151A1 (ja) | 2011-09-22 |
Family
ID=44649235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2011/056161 WO2011115151A1 (ja) | 2010-03-17 | 2011-03-16 | ブタノールの製造方法 |
Country Status (15)
Country | Link |
---|---|
US (1) | US9056805B2 (ja) |
EP (1) | EP2551254B1 (ja) |
JP (1) | JP4985874B2 (ja) |
KR (1) | KR20130004566A (ja) |
CN (1) | CN102803190B (ja) |
AU (1) | AU2011228079B2 (ja) |
BR (1) | BR112012022525A2 (ja) |
CA (1) | CA2793200C (ja) |
ES (1) | ES2705018T3 (ja) |
MY (1) | MY158940A (ja) |
RU (1) | RU2560167C2 (ja) |
SG (1) | SG183982A1 (ja) |
TR (1) | TR201902074T4 (ja) |
TW (1) | TWI496765B (ja) |
WO (1) | WO2011115151A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014042472A (ja) * | 2012-08-24 | 2014-03-13 | Nippon Shokubai Co Ltd | アルコール製造方法 |
JP2018505664A (ja) * | 2014-12-16 | 2018-03-01 | ニューペック・エセ・アー・デ・セー・ウベ | イソブタノールの酵素的生成方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103641683B (zh) * | 2013-12-11 | 2015-09-16 | 褚雅志 | 1,4-丁二醇装置的正丁醇回收装置 |
RU2636002C1 (ru) * | 2017-02-20 | 2017-11-17 | Общество с ограниченной ответственностью ООО "Инжиниринговый центр "Зеленая химия" | Способ выделения бутанола из культуральной среды |
WO2021173739A1 (en) * | 2020-02-28 | 2021-09-02 | The Procter & Gamble Company | Method of using nanofiltration and reverse osmosis to remove chemical contaminants |
AT523815A1 (de) * | 2020-04-23 | 2021-11-15 | Gs Gruber Schmidt | Verfahren zur Erzeugung von Dibutylether und Dihexylether durch Fermentation von Synthesegas |
CN111908691A (zh) * | 2020-08-14 | 2020-11-10 | 北京首钢朗泽新能源科技有限公司 | 一种发酵醪液蒸发浓缩与精馏联产蛋白粉的方法和系统 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62201606A (ja) | 1985-09-20 | 1987-09-05 | Toray Ind Inc | 複合半透膜及びその製造方法 |
JP2006151821A (ja) | 2004-11-25 | 2006-06-15 | Toray Ind Inc | 溶媒の回収方法 |
WO2009086391A2 (en) | 2007-12-27 | 2009-07-09 | Gevo, Inc. | Recovery of higher alcohols from dilute aqueous solutions |
US20090226991A1 (en) | 2007-12-23 | 2009-09-10 | Gevo, Inc. | Yeast organism producing isobutanol at a high yield |
WO2009113565A1 (ja) * | 2008-03-12 | 2009-09-17 | 東レ株式会社 | ジアミンおよびポリアミドの製造方法 |
JP2009539407A (ja) | 2006-06-15 | 2009-11-19 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 溶媒耐性微生物および単離方法 |
US20090305374A1 (en) * | 2008-05-29 | 2009-12-10 | Theodora Retsina | Process for obtaining biochemicals in a zero-liquid discharge plant |
JP2010143888A (ja) * | 2008-12-22 | 2010-07-01 | Toray Ind Inc | ブタノールの製造方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU827474A1 (ru) * | 1979-07-11 | 1981-05-07 | Ордена Трудового Красного Знамениинститут Нефтехимических Процессовим. Академика Ю.Г.Мамедалиеваан Азербайджанской Ccp | Способ разделени смеси вода-триметилкарбинол |
JPS57165005A (en) * | 1981-04-02 | 1982-10-09 | Kuraray Co Ltd | Method for separating liquid |
US7732173B2 (en) * | 2005-08-03 | 2010-06-08 | Membrane Technology And Research, Inc. | Ethanol recovery process |
US7727434B2 (en) * | 2005-08-16 | 2010-06-01 | General Electric Company | Membranes and methods of treating membranes |
JP5078559B2 (ja) * | 2007-11-02 | 2012-11-21 | 本田技研工業株式会社 | 車両の乗車検知構造 |
JP2011177085A (ja) * | 2010-02-26 | 2011-09-15 | Nippon Shokubai Co Ltd | 発酵による1−ブタノールの製造方法 |
-
2011
- 2011-03-16 US US13/635,066 patent/US9056805B2/en active Active
- 2011-03-16 AU AU2011228079A patent/AU2011228079B2/en not_active Ceased
- 2011-03-16 TW TW100108857A patent/TWI496765B/zh not_active IP Right Cessation
- 2011-03-16 MY MYPI2012004103A patent/MY158940A/en unknown
- 2011-03-16 CA CA2793200A patent/CA2793200C/en active Active
- 2011-03-16 BR BR112012022525A patent/BR112012022525A2/pt not_active IP Right Cessation
- 2011-03-16 SG SG2012066858A patent/SG183982A1/en unknown
- 2011-03-16 CN CN201180014258.1A patent/CN102803190B/zh active Active
- 2011-03-16 WO PCT/JP2011/056161 patent/WO2011115151A1/ja active Application Filing
- 2011-03-16 TR TR2019/02074T patent/TR201902074T4/tr unknown
- 2011-03-16 ES ES11756335T patent/ES2705018T3/es active Active
- 2011-03-16 JP JP2011514969A patent/JP4985874B2/ja active Active
- 2011-03-16 RU RU2012144014/04A patent/RU2560167C2/ru not_active IP Right Cessation
- 2011-03-16 KR KR1020127021623A patent/KR20130004566A/ko not_active Ceased
- 2011-03-16 EP EP11756335.3A patent/EP2551254B1/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62201606A (ja) | 1985-09-20 | 1987-09-05 | Toray Ind Inc | 複合半透膜及びその製造方法 |
JP2006151821A (ja) | 2004-11-25 | 2006-06-15 | Toray Ind Inc | 溶媒の回収方法 |
JP2009539407A (ja) | 2006-06-15 | 2009-11-19 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 溶媒耐性微生物および単離方法 |
US20090226991A1 (en) | 2007-12-23 | 2009-09-10 | Gevo, Inc. | Yeast organism producing isobutanol at a high yield |
WO2009086391A2 (en) | 2007-12-27 | 2009-07-09 | Gevo, Inc. | Recovery of higher alcohols from dilute aqueous solutions |
WO2009113565A1 (ja) * | 2008-03-12 | 2009-09-17 | 東レ株式会社 | ジアミンおよびポリアミドの製造方法 |
US20090305374A1 (en) * | 2008-05-29 | 2009-12-10 | Theodora Retsina | Process for obtaining biochemicals in a zero-liquid discharge plant |
JP2010143888A (ja) * | 2008-12-22 | 2010-07-01 | Toray Ind Inc | ブタノールの製造方法 |
Non-Patent Citations (4)
Title |
---|
"Fermentation Handbook", article "Acetone-butanol Fermentation", pages: 19 |
APPL MICROBIOL BIOTECHNOL, vol. 85, 2010, pages 651 - 657 |
CURRENT OPINION IN BIOTECHNOLOGY, vol. 20, 2009, pages 307 - 315 |
See also references of EP2551254A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014042472A (ja) * | 2012-08-24 | 2014-03-13 | Nippon Shokubai Co Ltd | アルコール製造方法 |
JP2018505664A (ja) * | 2014-12-16 | 2018-03-01 | ニューペック・エセ・アー・デ・セー・ウベ | イソブタノールの酵素的生成方法 |
US10550410B2 (en) | 2014-12-16 | 2020-02-04 | Newpek S.A. De C.V. | Enzymatic methods for isobutanol production |
Also Published As
Publication number | Publication date |
---|---|
AU2011228079B2 (en) | 2015-06-25 |
EP2551254A1 (en) | 2013-01-30 |
AU2011228079A1 (en) | 2012-09-27 |
CA2793200C (en) | 2018-05-01 |
RU2560167C2 (ru) | 2015-08-20 |
EP2551254B1 (en) | 2018-11-14 |
US9056805B2 (en) | 2015-06-16 |
TWI496765B (zh) | 2015-08-21 |
MY158940A (en) | 2016-11-30 |
CN102803190A (zh) | 2012-11-28 |
TR201902074T4 (tr) | 2019-03-21 |
RU2012144014A (ru) | 2014-04-27 |
ES2705018T3 (es) | 2019-03-21 |
KR20130004566A (ko) | 2013-01-11 |
JP4985874B2 (ja) | 2012-07-25 |
SG183982A1 (en) | 2012-10-30 |
CN102803190B (zh) | 2015-03-25 |
TW201139350A (en) | 2011-11-16 |
BR112012022525A2 (pt) | 2019-09-24 |
CA2793200A1 (en) | 2011-09-22 |
EP2551254A4 (en) | 2015-06-17 |
JPWO2011115151A1 (ja) | 2013-07-04 |
US20130041187A1 (en) | 2013-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4985874B2 (ja) | ブタノールの製造方法 | |
CA2706205C (en) | Process for the purification of organic acids | |
US20100190222A1 (en) | Lactic acid production method | |
JP5625334B2 (ja) | ジオールまたはトリオールの製造方法 | |
US9018424B2 (en) | Method of producing diol or triol | |
JP5293157B2 (ja) | ブタノールの製造方法 | |
JP2009034030A5 (ja) | ||
JP2010070474A (ja) | コハク酸の製造方法 | |
JP5458565B2 (ja) | コハク酸塩の製造方法 | |
WO2021060334A1 (ja) | アセトインの製造方法 | |
US8293940B2 (en) | Process for recovery and purification of lactic acid | |
JP2010095450A (ja) | モノカルボン酸の製造方法 | |
US8558037B2 (en) | Method of producing butanol | |
CA2735637C (en) | Method of producing diol or triol | |
CA2735505C (en) | Method of producing butanol | |
CN113614059A (zh) | 羧酸的制造方法 | |
JP2009023960A (ja) | 脂肪族化合物の分離精製方法 | |
JP2012193120A (ja) | 有機酸の製造方法 | |
PL220892B1 (pl) | Sposób rozdzielania i odwadniania roztworów powstających podczas fermentacji glicerolu i układ do rozdzielania i odwadniania roztworów powstających podczas fermentacji glicerolu |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201180014258.1 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011514969 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11756335 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20127021623 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011756335 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011228079 Country of ref document: AU |
|
ENP | Entry into the national phase |
Ref document number: 2793200 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1201004727 Country of ref document: TH |
|
ENP | Entry into the national phase |
Ref document number: 2011228079 Country of ref document: AU Date of ref document: 20110316 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 8580/CHENP/2012 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2012144014 Country of ref document: RU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13635066 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112012022525 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 112012022525 Country of ref document: BR Kind code of ref document: A2 Effective date: 20120906 |