WO2011114786A1 - ロータリ式シリンダ装置 - Google Patents

ロータリ式シリンダ装置 Download PDF

Info

Publication number
WO2011114786A1
WO2011114786A1 PCT/JP2011/052057 JP2011052057W WO2011114786A1 WO 2011114786 A1 WO2011114786 A1 WO 2011114786A1 JP 2011052057 W JP2011052057 W JP 2011052057W WO 2011114786 A1 WO2011114786 A1 WO 2011114786A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
crankshaft
shaft
virtual
assembled
Prior art date
Application number
PCT/JP2011/052057
Other languages
English (en)
French (fr)
Inventor
洋志 小川
文人 小松
Original Assignee
株式会社医器研
有限会社ケイ・アールアンドデイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社医器研, 有限会社ケイ・アールアンドデイ filed Critical 株式会社医器研
Priority to CN201180014029XA priority Critical patent/CN102803728B/zh
Priority to US13/579,616 priority patent/US8443713B2/en
Publication of WO2011114786A1 publication Critical patent/WO2011114786A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/045Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being eccentrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/04Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement
    • F04B1/047Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the outer ends of the cylinders
    • F04B1/0474Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinders in star- or fan-arrangement with actuating or actuated elements at the outer ends of the cylinders with two or more serially arranged radial piston-cylinder units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/0094Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00 crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/006Crankshafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • F04B53/144Adaptation of piston-rods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/14Pistons, piston-rods or piston-rod connections
    • F04B53/144Adaptation of piston-rods
    • F04B53/147Mounting or detaching of piston rod
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms

Definitions

  • the present invention relates to a rotary cylinder device capable of mutually converting the rotational movement of a shaft and the linear reciprocating movement of a piston in the cylinder, more specifically, various driving devices such as a compressor, a vacuum pump, a fluid rotary machine, an internal combustion engine
  • various driving devices such as a compressor, a vacuum pump, a fluid rotary machine, an internal combustion engine
  • the present invention relates to a rotary cylinder device applicable to the present invention.
  • a swinging piston system that repeatedly sucks in and delivers fluid by reciprocating the piston with a swinging piston linked to a crankshaft.
  • a scroll drive system that rotates and repeats suction and delivery of fluid, a rotary drive system that repeats suction and delivery of fluid by rotational movement of a roller (see Patent Document 1), and various other screw schemes and vane schemes according to applications, etc.
  • a drive scheme is employed.
  • the fluid pump of Patent Document 2 described above will be described with reference to schematic diagrams shown in FIGS. 12 and 13.
  • the rotary cylinder device shown in FIG. 12 has a first crankshaft 53 that rotates around a crankshaft 51 via a first virtual crank arm 52 of radius r, and a second virtual circle of radius r around the first crankshaft 53.
  • a second virtual crankshaft 54 rotating via a crank arm 59, a first piston set 55 rotatably connected to the second virtual crankshaft 54, and a second piston set 56 are provided in four cylinders 57 in a piston body 55a.
  • first piston set 55 and the second piston set 56 are rectilinearly reciprocated while drawing the locus of the inner cycloid while the piston head portions 55b, 56b provided at both ends of the same are inserted.
  • the first piston set 55 and the second piston set 56 are respectively slidably engaged with an eccentric slider rotating about the first crankshaft 53 and linearly reciprocated.
  • FIG. 13 which took out the said 1st piston set 55, and substituted structural principle equivalently.
  • the first crankshaft 53 is rotated via the first virtual crank arm 52
  • the second virtual crankshaft 54 is rotated about the first crankshaft 53 via the second crank arm 59.
  • the first piston set 55 reciprocates linearly along the locus of the inner cycloid.
  • a first virtual crank arm 52 rotating 360 degrees around the crankshaft 51 and a second virtual crank arm 59 rotating 360 degrees around the first crankshaft 53 constitute the piston main body 55 a of the first piston set 55. For example, a state in which each crosses 45 ° with respect to.
  • An object of the present invention is to provide a reaction force received from a sliding surface of a cylinder by a piston head portion of a piston set which is linearly reciprocated by being assembled to a piston complex eccentrically linked to a first crankshaft rotating about a shaft. It is an object of the present invention to provide a small-sized rotary cylinder device which achieves low energy loss and reduced friction loss by reducing the influence of the above.
  • a rotary cylinder device capable of mutually converting the rotational motions of a piston and a shaft reciprocating in a cylinder, which is assembled eccentrically with respect to the axial center of the shaft and having a radius r around the shaft
  • a first crankshaft rotatably assembled via a virtual crank arm, a first cylinder fitted concentrically to the first crankshaft, and an eccentricity with respect to the axis of the first cylinder
  • a second cylindrical body having a plurality of second virtual crankshafts as an axis, and an eccentric cylindrical body formed continuously, wherein the plurality of piston pairs intersect each other in the second cylindrical body;
  • a piston complex which is rotatably fitted about a shaft via a second virtual crank arm of radius r, and the first crankshaft in which the piston complex is fitted; Center First and second balance weights for achieving rotational balance between rotating parts, the first crankshaft and the first and second balance weights rotatably supporting the shaft and rotating about the shaft
  • the first virtual crank arm refers to a portion connecting the shaft and the shaft center of the first crank shaft, and it is possible to recognize the presence of the crank arm structurally even if there is no crank arm as a single component.
  • the second virtual crank arm is a portion connecting the shaft centers of the first crankshaft and the second virtual crankshaft, and even if the crank arm is omitted, a mechanical crank arm is recognized to be present.
  • the second virtual crankshaft refers to a crankshaft in which the presence of an axial center serving as a rotation center is virtually recognized even if there is no crankshaft on the mechanism.
  • a piston assembly is one in which a seal cup, a seal cup holding member and a seal material such as a piston ring are integrally assembled to a piston head portion of a single piston.
  • the guide bearings are disposed on both sides along the moving direction of the piston body of each of the plurality of piston sets assembled so as to cross the second cylindrical body, and guide the linear reciprocation of the respective piston sets. I assume.
  • a guide hole is formed in the piston body of each piston set assembled by crossing a plurality of the second cylindrical bodies in the longitudinal direction, and the guide bearing is a hole facing each guide hole It is characterized in that it abuts on the wall surface to guide the linear reciprocating motion of each piston set.
  • the guide bearing provided in the main body case is configured such that the first crankshaft rotates about the shaft and the piston complex rotates about the first crankshaft. It guides the linear reciprocating motion of a plurality of piston sets linked to two cylinders. Therefore, the piston heads of the plurality of piston sets that linearly reciprocate in the cylinder receive and reduce the reaction force received from the cylinder sliding surface by the guide bearing, thereby reducing the sliding resistance between the piston head and the cylinder to reduce friction. Losses, in particular the power consumption of the drive source, can be reduced.
  • the guide bearings are disposed on both sides along the moving direction of the piston body of each piston set assembled in a plurality crossing the plurality of second cylinders to guide the linear reciprocating motion of each piston set. It is possible to reduce the sliding resistance between the piston head portion and the cylinder by receiving the reaction force that the piston head portion receives from the cylinder sliding surface by the guide bearing on either side.
  • a guide hole is bored in the piston body of each piston set assembled in a plurality crossing the second cylindrical body along the longitudinal direction thereof, and the guide bearing is formed on the wall surface opposite to each guide hole
  • FIG. 5 is a left side view of FIG. 4;
  • FIG. 5 is a cross-sectional view in the direction of arrows AA in FIG. 4;
  • 7A and 7B are a plan view and an axial cross-sectional view of the eccentric cylinder viewed from the axial direction.
  • FIG. 8A to 8L are schematic diagrams showing the relationship between the rotational trajectory of the first crankshaft centered on the shaft, the rotational trajectory of the second virtual crankshaft centered on the first crankshaft, and the linear reciprocation of the plurality of piston sets.
  • FIG. It is the perspective view which removed the 2nd main body case of the rotary type cylinder apparatus concerning other examples. It is the top view seen from the axial direction of the rotary-type cylinder apparatus of FIG.
  • FIG. 10 is a cross-sectional view taken along arrow AA of FIG. 9; It is explanatory drawing which shows arrangement
  • FIGS. 1 to 8A to 8L a description will be made centering on a rotary cylinder device used in a compressor as an example.
  • the rotary cylinder device assumes a device in which the linear reciprocating motion of the piston with respect to the cylinder and the rotational motion of the shaft are mutually converted and output.
  • a shaft 4 (input and output shaft) is rotatably supported by a main body case 3 configured by a first main body case 1 and a second main body case 2.
  • the first body case 1 and the second body case 2 are integrally assembled by screwing the four corners with a bolt not shown.
  • an eccentric cylindrical body 6 rotatable about a first crankshaft 5 and a first piston assembly 7 assembled to the eccentric cylindrical body 6 via a bearing.
  • a second piston set 8 hereinafter, referred to as “piston complex P” are rotatably accommodated. The details will be described below.
  • the first crankshaft 5 is eccentrically connected to the shaft center of the shaft 4.
  • the shaft 4 is integrally formed with the first balance weight 9.
  • a shaft may be formed also on the second balance weight 10 side.
  • the first and second balance weights 9 and 10 are respectively fitted to both shaft end portions of the first crankshaft 5 and fixed by bolts 12a and 12b (see FIG. 6).
  • the shaft 4 connected to the first balance weight 9 is rotatably supported by the first bearing 13a, and the shaft portion formed on the second balance weight 10 is rotatably supported by the second bearing 13b. It is pivotally supported.
  • the first and second balance weights 9 and 10 have, for example, a block shape (see FIG. 1) and are assembled around the shaft 4 and include a first crankshaft 5 and a piston complex P as described later. It is provided to balance the mass among rotating parts centering on 4.
  • the eccentric cylinder 6 has a plurality of second virtual crankshafts 14 a and 14 b eccentric to the axis of the first crankshaft 5.
  • the second virtual crankshafts 14 a and 14 b are formed at positions 180 ° out of phase with respect to the first crankshaft 5.
  • the first and second piston sets 7 and 8 are assembled to the eccentric cylinder 6 so as to intersect each other in a direction perpendicular to the axis of the second virtual crankshafts 14a and 14b.
  • the eccentric cylindrical body 6 has a first cylindrical body 6a through which the first crankshaft 5 serving as the rotation center is inserted, and a second cylindrical body 6b continuously with the first cylindrical body 6a. Are continuously formed on both sides in the axial direction.
  • the first crankshaft 5 is concentrically fitted into the first cylindrical body 6 a, and becomes the rotation center of the eccentric cylindrical body 6.
  • bearing holding parts 6c and 6d are respectively recessedly provided on the inner and outer peripheral parts of the second cylindrical body 6b.
  • the inner bearings 15a and 15b are held by the bearing holding portion 6c on the inner circumferential side, and the outer bearings 16a and 16b are held by the bearing holding portion 6d on the outer circumferential side as shown in FIG. Each is held.
  • the inner bearings 15 a and 15 b rotatably support the first crankshaft 5.
  • the outer bearings 16a and 16b rotatably support the first and second piston sets 7 and 8 while being fitted into the second cylindrical portion 6b in a crossing manner.
  • the length of the second virtual crank arm connecting the first crankshaft 5 and the second virtual crankshafts 14a and 14b is set by the rotation radius r of the second cylindrical body 6b (see FIGS. 8A to 8L).
  • the piston complex P including the eccentric cylinder 6 around the first crankshaft 5 can be compactly assembled in the axial direction and the radial direction.
  • a first piston head 7b and a second piston head 8b are formed at both longitudinal ends of the first and second piston bodies 7a and 8a.
  • Ring-shaped seal cups 7c and 8c and seal cup holding members 7d and 8d are assembled to the first piston head 7b and the second piston head 8b (not shown) by bolts 19, respectively.
  • an oil-free seal material for example, PEEK (polyether ether ketone) resin material or the like.
  • the cylinder 21 is attached to the opening 20 provided in the side surface (four sides) of the main body case 3 (the first main body case 1 and the second main body case 2).
  • the first piston head 7b and the second piston head 8b are slid by seal cups 7c and 8c (not shown) while maintaining the sealing property with the inner wall surface 21a of the cylinder 21.
  • Standing portions 7e are provided on the outer peripheral edge portions of the seal cups 7c and 8c. In the case of the compressor, the rising portions 7e and 8e are assembled outward in the piston sliding direction (see FIG. 6).
  • the first piston head 7b of the first piston body 7a and the second piston body 8a slide along the inner wall surface 21a of the cylinder 21. To be assembled.
  • the guide bearing 1 c includes the first and second piston pairs of the first and second piston sets 7 and 8.
  • the piston bodies 7a and 8a are disposed on both sides along the moving direction of the piston bodies 7a and 8a and are provided to guide the linear reciprocating motion.
  • FIGS. 8A to 8L the relationship between the rotational motions of the first crankshaft 5 and the second virtual crankshafts 14a and 14b centering on the shaft 4 and the linear reciprocation motion of a plurality of pistons (inner cycloidal motion system) is shown in FIGS. 8A to 8L.
  • the center O of the rolling circle 23 coincides with the axial center of the shaft 4.
  • the first crankshaft 5 exists at a position eccentric to the center O, and the second virtual crankshafts 14 a and 14 b rotate as the first crankshaft 5 rotates.
  • the number of second virtual crankshafts 14a, 14b corresponds to the number of pistons.
  • the distance r between the shaft centers of the shaft 4 (center O) and the first crankshaft 5 is taken as the arm length (rotation radius) of the first virtual crank arm and the second virtual crank arm.
  • the first crankshaft 5 is rotated on the rotation track 30 around the axial center (center O) of the shaft 4 with the arm length r of the first virtual crank arm as the rotation radius.
  • the second virtual crankshafts 14a and 14b apparently rotate on a rotation trajectory (virtual circle 24) whose radius of rotation is the arm length r of the second virtual crank arm centered on the first crankshaft 5.
  • the first and second piston sets 7 and 8 reciprocate in the radial direction of the rolling circle 23 whose radius is the diameter R (2r) of the imaginary circle 24 around the center O.
  • a second virtual crankshaft of the second cylindrical body 6b, in which the first and second piston sets 7 and 8 orthogonal to each other are connected is illustrated as 14a and 14b.
  • the second virtual crankshaft 14a is at the intersection (lower end position) of the rolling circle 23 and the diameter R1
  • the second virtual crankshaft 14b is at the center O of the rolling circle 23 (axial center position of the shaft 4).
  • the first crankshaft 5 is assumed to be located at a radius r from the center O of the rolling circle 23.
  • the case where the first crankshaft 5 makes one rotation in the counterclockwise direction around the center O of the rolling circle 23 will be described.
  • the virtual circle 24 rotates in a clockwise direction without slipping along the inner circumference of the rolling circle 23.
  • 8A to 8L show the first crankshaft 5 displaced by 30 degrees.
  • the second virtual crankshaft 14a reciprocates on the diameter R1 of the rolling circle 23, which is the rolling locus of the imaginary circle 24,
  • the second virtual crankshaft 14 b reciprocates on the diameter R 2 of the rolling circle 23.
  • the second virtual crankshaft The first piston set 7 connected to the eccentric cylinder 6 in the second cylindrical portion 6b having the shaft centers 14a and 14b has a diameter R1 on the rolling circle 23 (concentric circle centered on the shaft center of the shaft 4) of radius 2r.
  • the second piston set 8 repeats the reciprocating motion on the diameter R2 of the rolling circle 23 (concentric circle centered on the axial center of the shaft 4) of radius 2r.
  • FIG. 6 shows an example of the assembly configuration of the rotary cylinder device.
  • the inner bearings 15a and 15b are assembled to the bearing holding portion 6c of the eccentric cylinder 6 (see FIG. 7B).
  • the first crankshaft 5 is fitted in the center bearings of the inner bearings 15a and 15b of the eccentric cylindrical body 6 and the first cylindrical body 6a.
  • the seal cups 7c and 8c and the seal cup holding members 7d and 8d are integrally assembled with the first and second piston head portions 7b and 8b of the first and second piston bodies 7a and 8a by bolts 19, respectively.
  • the first and second piston sets 7 and 8 are assembled such that the outer bearings 16a and 16b are fitted.
  • the first and second piston sets 7 and 8 are fitted into the second cylindrical portion 6b so as to intersect with each other via the outer bearings 16a and 16b.
  • first and second balance weights 9 and 10 are fitted into both ends of the first crankshaft 5, the pins 11a and 11b are fitted into the pin holes, and the bolts 12a and 12b are screw fitted to each other. 2) Assemble the balance weights 9, 10 integrally with the first crankshaft 5. Further, the first bearing 13 a is fitted in the first main body case 1, and the second bearing 13 b is fitted in the second main body case 2. Further, the bearing 1 c is assembled to the boss portion 1 b protruding from the inner bottom portion 1 a of the first main body case 1.
  • the shaft 4 is fitted in the first bearing 13a, and the shaft portion of the balance weight 10 is fitted in the second bearing 13b, and the first main case 1 and the second main case 2 are combined by bolting.
  • the eccentric cylindrical body 6 and the first, second, and seventh sets of pistons assembled to cross the eccentric cylindrical body 6 (piston composite body P; see FIG. 1) are accommodated in the main body case 3.
  • the cylinder 21 is fitted into the opening 20 formed in the side surface (four sides) of the main body case 3, and the first piston head 7 b and the second piston head 8 b are respectively inserted into the opening 21 a of the cylinder 21.
  • the rotary cylinder device is assembled by being slidably fitted (see FIG. 1).
  • the shaft center of the first piston set 7 and the shaft center of the second piston set 8 are assembled to the eccentric cylinder 6 in a state of being slightly shifted in the axial direction of the shaft 4.
  • the eccentric cylinder 6 is the first one. Even if it rotates centering on the crankshaft 5, the vibration by the said rotation can be suppressed.
  • the backlash (approximately 30 ⁇ m to 50 ⁇ m or so) generated between the first and second piston heads 7 b and 8 b and the inner wall surface 21 a of the cylinder 21 due to processing errors of component parts is the first and second piston heads. Since the vibration is absorbed by the rising portions 7e and 8e (see FIG. 6) of the seal cups 7c and 8c inserted between the portions 7b and 8b and the inner wall surface 21a of the cylinder 21, no noise is generated.
  • the rotary type cylinder device assembled as described above has a first rotation balance centering on the second virtual crankshafts 14a and 14b of the first and second piston sets 7 and 8 and a first crank of the piston complex P.
  • the second rotation balance about the shaft 5 and the third rotation balance about the first crankshaft 5 and the shaft 4 of the piston complex P are balanced by the first and second balance weights 9 and 10, respectively. It is assembled.
  • the guide bearing 1 c of the first main body case 1 is configured such that the first crankshaft 5 rotates about the shaft 4 and the piston complex P rotates about the first crankshaft 5.
  • First and second piston sets 7, 8 assembled to the cylindrical body 6b guide linear reciprocation along the radial direction of a rolling circle of radius 2r of the second virtual crankshafts 14a, 14b centered on the shaft 4 .
  • the reaction force (see (P / 4) in FIG. 13) received by the first and second piston head portions 7b and 8b of the first and second piston sets 7 and 8 from the cylinder sliding surface is on one side.
  • the sliding resistance between the first and second piston heads 7 b and 8 b and the cylinder 21 can be reduced by receiving them by the guide bearing 1 c. Therefore, the friction loss between the first and second piston sets 7 and 8 and the cylinder 21 can be reduced, and the power consumption of the drive source can be reduced.
  • the clearance between the first and second piston bodies 7a and 8a and the guide bearing 1c receiving the side pressure is set to a minimum so that mechanical interference does not occur in consideration of dimensional errors due to processing errors of components and temperature rise.
  • the first and second pistons 7 and 8 are disposed to be orthogonal to each other, but the present invention is not limited to this.
  • the phase difference is 60 degrees or the like around the first crankshaft 5 It is also possible to arrange.
  • FIG. 9 in the first and second piston sets 7 and 8, guide holes (long holes) 31 and 32 are formed on both sides of the first piston body 7a and the second piston body 8a along the longitudinal direction. Each is drilled. Further, as shown in FIG. 11, in the inner bottom portion 1a of the first main body case 1, four bosses 1b are provided at positions corresponding to the guide holes 31 and 32, respectively. For example, two guide bearings 1c are superimposed on the shaft end of the boss portion 1b, and the guide bearing 1c is assembled to the boss portion 1b by fitting a pin 1d into the shaft hole of the boss portion 1b.
  • FIG. 9 in the first and second piston sets 7 and 8a
  • guide holes 31 and 32 are formed on both sides of the first piston body 7a and the second piston body 8a along the longitudinal direction. Each is drilled.
  • bosses 1b in the inner bottom portion 1a of the first main body case 1, four bosses 1b are provided at positions corresponding to the guide holes 31 and 32, respectively.
  • two guide bearings 1c are
  • each guide bearing 1c is inserted into the guide holes 31 and 32, and the linear reciprocating motion of the first and second piston sets 7 and 8 assembled to the second cylindrical body 6b is performed by the first piston body 7a, It guides in the position which overlaps with the 2nd piston body 8a.
  • the guide bearing 1c abuts the opposed hole wall surfaces 31a and 32a of the guide holes 31 and 32 to guide the linear reciprocating motion of the first and second piston sets 7 and 8.
  • the guide bearing 1c reduces the reaction force that the first and second piston head portions 7b and 8b of the first and second piston sets 7 and 8 receive from the cylinder sliding surface.
  • the sliding resistance between the first and second piston heads 7b and 8b and the cylinder 21 can be reduced. Therefore, the friction loss between the piston set and the cylinder (see (P / 4) in FIG. 13) can be reduced to reduce the power consumption of the drive source. Further, since the number of parts in the main body case 3 is reduced, the assembly becomes easy, and the space in the main body case 3 can be effectively utilized.
  • the guide bearing 1c can use various bearings such as a rolling bearing, a sliding bearing, and a metal bearing.
  • the guide bearing 1c is provided in the first main body case 1, but may be provided in the second main body case 2 or may be provided in both the first and second main body cases 1 and 2 Good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Reciprocating Pumps (AREA)
  • Transmission Devices (AREA)

Abstract

 シャフトを中心に回転する第1クランク軸に偏芯して連繋するピストン複合体に組み付けられて直線往復運動するピストンにシリンダから作用する反力の影響を軽減することで、摩擦損失が少なく、省エネルギー化を実現した小型のロータリ式シリンダ装置を提供する。 ガイド軸受1cは、シャフト4を中心に第1クランク軸5が回転し、当該第1クランク軸5を中心にピストン複合体Pが回転することで、第2筒体6bに組み付けられた第1,第2ピストン組7,8がシャフト4を中心とする第2仮想クランク軸14a,14bの半径2rの転がり円の径方向に沿った直線往復運動をガイドする。

Description

ロータリ式シリンダ装置
 本発明は、シャフトの回転運動とシリンダ内のピストンの直線往復運動を相互に変換可能なロータリ式シリンダ装置、より具体的には圧縮機、真空ポンプ、流体回転機、内燃機関など様々な駆動装置に適用可能なロータリ式シリンダ装置に関する。
 圧縮機、真空ポンプ、流体回転機などの原動機においては、クランクシャフトに連繋した揺動ピストンによるピストンの往復動で流体の吸込みと送出しを繰り返す揺動ピストン方式、固定スクロールに対して旋回スクロールを回転させて流体の吸込みと送出しを繰り返すスクロール駆動方式、ローラーの回転運動で流体の吸込みと送出しを繰り返すロータリ駆動方式(特許文献1参照)、その他スクリュー方式、ベーン方式など用途に応じた各種駆動方式が採用されている。
 中でも、シャフトとクランクピンを連結する第1アームとクランクピンとピストンを連結する第2アームとの長さを揃えることで、クランクアームの長さを1/2にしてピストンのストロークを2倍にした2ピストン4ヘッドの流体ポンプが提案されている(特許文献2参照)。
特開2004-190613号公報 特開昭56-141079号公報
 上述した特許文献2の流体ポンプについて、図12及び図13に示す模式図を参照して説明する。図12に示すロータリ式シリンダ装置は、クランクシャフト51を中心に半径rの第1仮想クランクアーム52を介して回転する第1クランク軸53、第1クランク軸53を中心に半径rの第2仮想クランクアーム59を介して回転する第2仮想クランク軸54、第2仮想クランク軸54を中心に回転可能に連繋する第1ピストン組55,第2ピストン組56が4つのシリンダ57内にピストン本体55a,56aの両端に設けられたピストンヘッド部55b,56bが挿入されたまま内サイクロイドの軌跡を描いて直線往復運動するようになっている。第1ピストン組55,第2ピストン組56は、第1クランク軸53を中心に回転する偏芯スライダに各々滑合して直線往復移動するようになっている。
 上記第1ピストン組55を取り出して、構造原理を等価的に置き換えたのが図13である。クランクシャフト51の回転に伴って第1仮想クランクアーム52を介して第1クランク軸53が回転し、第1クランク軸53を中心として第2クランクアーム59を介して第2仮想クランク軸54が回転して、第1ピストン組55が内サイクロイドの軌跡を描いて直線往復運動する。図13は、クランクシャフト51を中心に360度回転する第1仮想クランクアーム52と第1クランク軸53を中心に360度回転する第2仮想クランクアーム59が、第1ピストン組55のピストン本体55aに対して各々45°に交差した状態を例示している。
 このとき、第1ピストン組55(一方のピストンヘッド部55b)に流体圧Pが作用したとする。このとき、駆動軸であるクランクシャフト51を中心とする回転方向に、流体圧Pに相当する反力Pが作用する。この反力Pが第1クランク軸53に作用していると仮定すると、この外力Pに対する反作用がクランクシャフト51と第2仮想クランク軸54にP/2ずつ作用する。ここで、クランクシャフト51に直交して作用する反力P/2は、第1ピストン本体55aの往復運動に影響を与えない(回転中心であるクランクシャフト51はボールベアリング等により軸支されている)ため、両側のピストンヘッド部55bに対してシリンダ57からにP/4ずつ反力が作用することになる。ピストンヘッド部55bの外周面とシリンダ57の摺動面(内壁面)57aとの摩擦係数をμとすると、摺動抵抗は両側で(P/4)×μ×2となる。
 上記ピストンヘッド部55bと摺動面57aとの摺動抵抗により、ピストンヘッド部55bに設けられるシールカップ61が破損したり、シリンダ57の摺動面57aが偏摩耗したりするうえに、摩擦損失により駆動源のエネルギー損失が増大して消費電力が嵩むおそれがあった。
 本発明の目的は、シャフトを中心に回転する第1クランク軸に偏芯して連繋するピストン複合体に組み付けられて直線往復運動するピストン組のピストンヘッド部がシリンダの摺動面から受ける反力の影響を軽減することで、摩擦損失が少なく、省エネルギー化を実現した小型のロータリ式シリンダ装置を提供することにある。
 上記目的を達成するため本発明は次の構成を有する。
 シリンダ内を往復運動するピストンとシャフトの回転運動を相互に変換可能なロータリ式シリンダ装置であって、前記シャフトの軸芯に対して偏芯して組み付けられ、当該シャフトを中心に半径rの第1仮想クランクアームを介して回転可能に組み付けられた第1クランク軸と、前記第1クランク軸に同芯状に嵌め込まれた第1筒体と該第1筒体の軸芯に対して偏芯した複数の第2仮想クランク軸を軸芯とする第2筒体が連続して形成された偏芯筒体を備え、前記第2筒体に複数のピストン組が互いに交差したまま前記第1クランク軸を中心に半径rの第2仮想クランクアームを介して回転可能に嵌め込まれたピストン複合体と、前記ピストン複合体が嵌め込まれた前記第1クランク軸の両端部に各々組み付けられ、前記シャフトを中心とする回転部品間の回転バランスをとる第1,第2バランスウェイトと、前記シャフトを回転可能に軸支し、当該シャフトを中心に回転する前記第1クランク軸及び前記第1,第2バランスウェイト、前記第1クランク軸を中心に回転する前記ピストン複合体を回転可能に収容する本体ケースと、前記本体ケースに設けられ、前記シャフトを中心に前記第1クランク軸が回転し、当該第1クランク軸を中心に前記ピストン複合体が回転することで、前記第2筒体に組み付けられた前記複数のピストン組が前記シャフトを中心とする前記第2仮想クランク軸の半径2rの転がり円の径方向に沿った直線往復運動をガイドするガイド軸受と、を具備したことを特徴とする。
 ここで、第1仮想クランクアームとは、シャフトと第1クランク軸の軸芯間を連結する部位を言い、部品単体でクランクアームが存在しなくても構造上クランクアームの存在が認められるものを言う。また、第2仮想クランクアームとは、第1クランク軸と第2仮想クランク軸の軸芯間を連結する部位をいい、クランクアームが省略されていても機構上クランクアームの存在が認められるものを言う。また、第2仮想クランク軸とは、機構上のクランク軸が存在しなくとも回転中心となる軸芯の存在が仮想上認められるクランク軸を言う。また、ピストン組とは、ピストン単体のピストンヘッド部にシールカップ及びシールカップ押さえ部材やピストンリングなどのシール材が一体に組み付けられたものを言う。
 また、前記ガイド軸受は、前記第2筒体に複数交差して組み付けられた各ピストン組のピストン本体の移動方向に沿って両側に配置されて各ピストン組の直線往復運動をガイドすることを特徴とする。
 また、前記第2筒体に複数交差して組み付けられた各ピストン組のピストン本体にはその長手方向に沿ってガイド孔が各々穿設されており、前記ガイド軸受は各ガイド孔の対向する孔壁面に当接して各ピストン組の直線往復運動をガイドすることを特徴とする。
 本発明に係るロータリ式シリンダ装置を用いれば、本体ケースに設けられるガイド軸受は、シャフトを中心に第1クランク軸が回転し、該第1クランク軸を中心にピストン複合体が回転する際の第2筒体に連繋する複数のピストン組の直線往復運動をガイドする。
 よって、シリンダ内を直線往復運動する複数のピストン組のピストンヘッド部がシリンダ摺動面から受ける反力をガイド軸受で受け止めて軽減するため、ピストンヘッド部とシリンダとの摺動抵抗を減らして摩擦損失、特に駆動源の消費電力を低減することができる。
 また、ガイド軸受は、第2筒体に複数交差して組み付けられた各ピストン組のピストン本体の移動方向に沿って両側に配置されて各ピストン組の直線往復運動をガイドするので、各ピストン組のピストンヘッド部がシリンダ摺動面から受ける反力をいずれか一方側のガイド軸受で受け止めてピストンヘッド部とシリンダとの摺動抵抗を軽減することができる。
 また、第2筒体に複数交差して組み付けられた各ピストン組のピストン本体にはその長手方向に沿ってガイド孔が各々穿設されており、ガイド軸受は各ガイド孔の対向する孔壁面に当接して各ピストン組の直線往復運動をガイドする場合には、各ピストン組のピストンヘッド部がシリンダ摺動面から受ける反力を少ないガイド軸受で受け止めてピストンヘッド部とシリンダとの摺動抵抗を軽減することができる。よって、ピストン組とシリンダ間の摩擦損失を低減して駆動源の消費電力を低減することができる。また、本体ケース内の部品点数が減るので組み立てが容易になり、本体ケース内のスペースを有効に活用することができる。
ロータリ式シリンダ装置の一部切欠き分解斜視図である。 図1のロータリ式シリンダ装置の第2本体ケースを取り外した一部破断斜視図である。 ロータリ式シリンダ装置の第2本体ケースを取り外した斜視図である。 図3のロータリ式シリンダ装置の軸方向からみた平面図である。 図4の左側面図である。 図4の矢印A-A方向断面図である。 図7A及び図7Bは、偏芯筒体の軸方向から見た平面図及び軸方向断面図である。 図8A~図8Lは、シャフトを中心とする第1クランク軸の回転軌道、第1クランク軸を中心とする第2仮想クランク軸の回転軌道と複数のピストン組の直線往復運動の関係を示す模式図である。 他例にかかるロータリ式シリンダ装置の第2本体ケースを取り外した斜視図である。 図9のロータリ式シリンダ装置の軸方向からみた平面図である。 図9の矢印A-A方向断面図である。 第1,第2ピストン組とシリンダの配置を示す説明図である。 直線往復運動するピストン組とシリンダとの間に作用する外力の模式説明図である。
 以下、発明を実施するための一実施形態について添付図面に基づいて詳細に説明する。
先ず、図1乃至図8A~図8Lを参照して一例として圧縮機に用いられるロータリ式シリンダ装置を中心として説明する。ロータリ式シリンダ装置は、シリンダに対するピストンの直線往復運動とシャフトの回転運動とが相互に変換されて出力される装置を想定している。
 図1において、第1本体ケース1と第2本体ケース2とで構成される本体ケース3にシャフト4(入出力軸)が回転可能に軸支されている。第1本体ケース1と第2本体ケース2とは、図示しないボルトにより四隅をねじ嵌合させて一体に組み付けられる。この本体ケース3内には、図2に示すように第1クランク軸5を中心に回転可能な偏芯筒体6と該偏芯筒体6に軸受を介して組み付けられた第1ピストン組7及び第2ピストン組8(以下、これらを「ピストン複合体P」という)が回転可能に収容されている。以下、具体的に説明する。
 図6において、第1クランク軸5は、シャフト4の軸芯に対して偏芯して連結される。本実施形態では、シャフト4は、第1バランスウェイト9と一体に形成されている。尚、第2バランスウェイト10側にもシャフトが形成されていてもよい。第1,第2バランスウェイト9,10は第1クランク軸5の両軸端部に各々嵌め込まれてボルト12a,12b(図6参照)により固定される。
 図6において、第1バランスウェイト9に連結されたシャフト4は第1軸受13aにより回転可能に軸支されており、第2バランスウェイト10に形成された軸部は第2軸受13bにより回転可能に軸支されている。第1,第2バランスウェイト9,10は、例えばブロック形状をしており(図1参照)、シャフト4の周りに組み付けられ、後述するように第1クランク軸5及びピストン複合体Pを含むシャフト4を中心とした回転部品間の質量バランスをとるために設けられている。
 また、図7A及び図7Bに示すように、偏芯筒体6は、第1クランク軸5の軸芯に対して偏芯した複数の第2仮想クランク軸14a,14bを有する。本実施形態では、交差するピストン組が2本であるため、第2仮想クランク軸14a,14bは第1クランク軸5を中心として180度位相がずれた位置に形成されている。
 第1,第2ピストン組7,8は第2仮想クランク軸14a,14bの軸直角方向に互いに交差して偏芯筒体6に組み付けられている。具体的には、図7Bにおいて、偏芯筒体6は、回転中心となる第1クランク軸5が挿通する第1筒体6aと、該第1筒体6aに連続して第2筒体6bが軸芯方向両側に各々連続して形成されている。第1筒体6aには第1クランク軸5が同芯状に嵌め込まれ、偏芯筒体6の回転中心となる。また、第2筒体6bの軸芯は、第1クランク軸5(第1筒体6a)の軸芯に対して偏芯した第2仮想クランク軸14a,14bと一致するようになっている。図7A及び図7Bにおいて、第2筒体6bの内外周部には、軸受保持部6c,6dが各々凹設されている。
 図7Bに示すように、内周側の軸受保持部6cには、内側軸受15a,15bが保持されており、図6に示すように外周側の軸受保持部6dには外側軸受16a,16bが各々保持されている。内側軸受15a,15bは第1のクランク軸5を回転可能に支持している。また、外側軸受16a,16bは、第1,第2ピストン組7,8が第2円筒部6bに交差して嵌め込まれたまま回転可能に支持している。
 以上の構成により、第1クランク軸5と第2仮想クランク軸14a,14bを結ぶ第2仮想クランクアームの長さを第2円筒体6bの回転半径rにより設定する(図8A~図8L参照)ことで、第1クランク軸5を中心として偏芯筒体6を含むピストン複合体Pを軸方向及び径
方向にコンパクトに組み付けることができる。
 また、図6において、第1,第2ピストン本体7a,8aの長手方向両端部には、第1ピストンヘッド部7b,第2ピストンヘッド部8b(図示せず)が形成されている。第1ピストンヘッド部7b,第2ピストンヘッド部8b(図示せず)には、リング状のシールカップ7c,8c、シールカップ押さえ部材7d,8d(図示せず)が各々ボルト19により組み付けられている。シールカップ7c,8c(図示せず)は、オイルフリーのシール材(例えばPEEK(ポリエーテエーテルケトン)樹脂材等)が用いられる。
 また、図4において、本体ケース3(第1本体ケース1及び第2本体ケース2)の側面部(4面)に設けられた開口部20には、シリンダ21が組み付けられている。第1ピストンヘッド部7b,第2ピストンヘッド部8bは、シールカップ7c,8c(図示せず)によって、シリンダ21の内壁面21aとのシール性を保ちながら摺動するようになっている。シールカップ7c,8cの外周縁部には起立部7e(図6参照),8e(図1参照)が設けられている。圧縮機の場合には、起立部7e,8eは、ピストン摺動方向外側に向けて組み付けられている(図6参照)。
 図1に示すように、第1ピストン本体7a,第2ピストン本体8aの第1ピストンヘッド部7b(図6参照),第2ピストンヘッド部8bは、シリンダ21の内壁面21aに沿って摺動するように組み付けられる。
 また、図1において、第1本体ケース1の内底部1aにはシリンダ21に近傍にボス部1bが8か所に設けられている。このボス部1bの軸端にはガイド軸受1cが2個ずつ重ね合わせ、ガイド軸受1cはボス部1bの軸孔にピン1dが嵌め込まれて組み付けられている。図3に示すように、ガイド軸受1cは、第1,第2ピストン組7,8の第1,第2
ピストン本体7a,8aの移動方向に沿って両側に配置されて直線往復運動をガイドするために設けられている。
 ここで、シャフト4を中心とする第1クランク軸5、第2仮想クランク軸14a,14bの回転運動と複数のピストンの直線往復運動の関係(内サイクロイド運動方式)を図8A~図8Lに示す模式構造原理図を参照して説明する。図8A~図8Lにおいて、転がり円23の中心Oはシャフト4の軸芯と一致する。また、中心Oより偏芯した位置
に第1クランク軸5が存在し、第1クランク軸5の回転に伴い第2仮想クランク軸14a,14bが回転するものとする。第2仮想クランク軸14a,14bの数は、ピストンの数に対応している。
 シャフト4(中心O)と第1クランク軸5との軸芯間距離rを第1仮想クランクアーム及び第2仮想クランクアームのアーム長(回転半径)とする。また、シャフト4の軸芯(中心O)周りに第1仮想クランクアームのアーム長rを回転半径とする回転軌道30上を第1クランク軸5が回転する。更には、第1クランク軸5を中心とする第2仮想クランクアームのアーム長rを回転半径とする回転軌道(仮想円24)上を第2仮想クランク軸14a,14bが見かけ上回転する。これにより、中心Oの周りに仮想円24の直径R(2r)を半径とする転がり円23の径方向に第1,第2ピストン組7,8が各々往復動する
ようになっている。
 本実施例では、互いに直交する第1、第2ピストン組7,8が連繋する第2筒体6bの第2仮想クランク軸を14a,14bとして例示するものとする。図8Aにおいて、第2仮想クランク軸14aは転がり円23と直径R1の交点(下端位置)にあり、第2仮想クランク軸14bは、転がり円23の中心O(シャフト4の軸芯位置)にある。第1ク
ランク軸5は転がり円23の中心Oから半径rの位置にあるものとする。
 第1クランク軸5が転がり円23の中心Oの周りに反時計回り方向に1回転する場合について説明する。仮想円24は時計回り方向に転がり円23の内周に沿って滑らずに回転するものとする。図8A~図8Lは第1クランク軸5が30度ずつ変位した状態を示している。
 第1クランク軸5が図8Aの位置から反時計回り方向に90度回転すると図8Dの位置となる。このとき、第2仮想クランク軸14aは転がり円23の直径R1上を中心Oへ移動し、第2仮想クランク軸14bは直径R1と直交する直径R2と転がり円23との交点(右端位置)まで移動する。
 第1クランク軸5が図8Dの位置から反時計回り方向にさらに90度回転すると図8Gの位置となる。このとき、第2仮想クランク軸14aは転がり円23と直径R1との交点(上端位置)へ移動し、第2仮想クランク軸14bは転がり円23の中心Oへ移動する。
 第1クランク軸5が図8Gの位置から反時計回り方向にさらに90度回転すると図8Jの位置となる。このとき、第2仮想クランク軸14aは転がり円23の中心Oへ移動し、第2仮想クランク軸14bは転がり円23と直径R2との交点(左端位置)へ移動する。
 第1クランク軸5が図8Jの位置から反時計回り方向にさらに90度回転すると図8Aの位置となる。このとき、第2仮想クランク軸14aは転がり円23と直径R1との交点(下端位置)へ移動し、第2仮想クランク軸14bは転がり円23の中心Oへ移動する。
 以上のように、第1クランク軸5が中心O(シャフト4)の周りに回転すると、第2仮想クランク軸14aは仮想円24の転がり軌跡である転がり円23の直径R1上を往復移動し、第2仮想クランク軸14bは転がり円23の直径R2上を往復移動する。
 即ち、シャフト4の軸芯(中心O)を中心とした半径rの回転軌道30に沿った第1クランク軸5及びピストン複合体P(図2参照)の回転移動に伴い、第2仮想クランク軸14a,14bを軸芯に有する第2円筒部6bにおいて偏芯筒体6と連繋する第1ピストン組7が半径2rの転がり円23(シャフト4の軸芯を中心とする同心円)の直径R1上で往復動を繰り返し、第2ピストン組8が半径2rの転がり円23(シャフト4の軸芯を中心とする同心円)の直径R2上で往復運動を繰り返すことになる。
 図6において、ロータリ式シリンダ装置の組立構成の一例を示す。
 偏芯筒体6の軸受保持部6cに内側軸受15a,15bを組み付ける(図7B参照)。また、偏芯筒体6の内側軸受15a,15b、第1円筒体6aの中心孔に第1クランク軸5を嵌め込む。また、第1,第2ピストン本体7a,8aの第1、第2ピストンヘッド部7b,8bに、シールカップ7c,8c及びシールカップ押さえ部材7d,8dをボルト19にて一体に組み付ける。更に、第1,第2ピストン組7,8を外側軸受16a,16bが嵌まり込むように組み付ける。そして、上記第1,第2ピストン組7,8を第2円筒部6bに外側軸受16a,16bを介して交差するように嵌め込む。
 また、第1クランク軸5の両端部に第1,第2バランスウェイト9,10を嵌め込んで、ピン11a,11bをピン孔に嵌め込み、ボルト12a,12bをねじ嵌合させて第1,第2バランスウェイト9,10を第1クランク軸5に一体に組み付ける。また、第1本体ケース1に第1軸受13a、第2本体ケース2に第2軸受13bを各々嵌め込む。また第1本体ケース1の内底部1aに突設されたボス部1bに軸受1cを組み付ける。そして、第1軸受13aにシャフト4を嵌め込み、第2軸受13bにバランスウェイト10の軸部を嵌め込むようにして、第1本体ケース1と第2本体ケース2をボルト締めして組み合わせる。これにより、偏芯筒体6とこれに交差して組み付けられた第1,第2ピストン7,8組(ピストン複合体P;図1参照)が本体ケース3内に収容される。最後に、本体ケース3の側面(4面)に形成される開口部20にシリンダ21を嵌め込んで、第1ピストンヘッド部7b,第2ピストンヘッド部8bがシリンダ21の開口部21a内に各々摺動可能に嵌め込まれて(図1参照)、ロータリ式シリンダ装置が組み立てられる。
 図5において、第1ピストン組7の軸芯と第2ピストン組8の軸芯は、シャフト4の軸方向で僅かにずれた状態で偏芯筒体6に組み付けられている。しかしながら、第1ピストン本体7aと外側軸受16aの軸芯、第2ピストン本体8aと外側軸受16bの軸芯は一致して組み付けられているため(図6参照)、偏芯筒体6が第1クランク軸5を中心として回転しても当該回転による振動を抑えることができる。また、構成部品の加工誤差等によって第1,第2ピストンヘッド部7b,8bとシリンダ21の内壁面21aとの間に発生するガタ(概ね30μm~50μm程度)は、第1,第2ピストンヘッド部7b,8bとシリンダ21の内壁面21aとの間に挿入されるシールカップ7c,8cの起立部7e,8e(図6参照)によって振動が吸収されるため、騒音が発生することはない。
 上述のように組み立てられたロータリ式シリンダ装置は、第1,第2ピストン組7,8の第2仮想クランク軸14a,14bを中心とした第1の回転バランス、ピストン複合体Pの第1クランク軸5を中心とする第2の回転バランス及び第1クランク軸5及びピストン複合体Pのシャフト4を中心とする第3の回転バランスが第1,第2バランスウェイト9,10によりバランス取りされて組み立てられている。
 これにより、後述するようにシャフト4を中心とする第1クランク軸5の回転運動と、第1クランク軸5を中心とするピストン複合体Pの回転運動により、第2筒体6bに組み付けられた第1,第2ピストン組7,8がシャフト4を中心とする第2仮想クランク軸14a,14bの半径2rの転がり円23(図8A参照)の径方向に沿って直線往復運動を行なっても、回転による振動を抑えて静音化を図ることができ、シャフト4を中心とした回転による振動を低減することで機械的な損失が少なくエネルギー変換効率を高めることができる。
 図4において、第1本体ケース1のガイド軸受1cは、シャフト4を中心に第1クランク軸5が回転し、当該第1クランク軸5を中心にピストン複合体Pが回転することで、第2筒体6bに組み付けられた第1,第2ピストン組7,8がシャフト4を中心とする第2仮想クランク軸14a,14bの半径2rの転がり円の径方向に沿った直線往復運動をガイドする。
 このとき、第1,第2ピストン組7,8の第1,第2ピストンヘッド部7b,8bがシリンダ摺動面から受ける反力(図13の(P/4)参照)をいずれか一方側のガイド軸受1cで受け止めて第1,第2ピストンヘッド部7b,8bとシリンダ21との摺動抵抗を軽減することができる。よって、第1,第2ピストン組7,8とシリンダ21間の摩擦損失を低減して、駆動源の消費電力を低減することができる。
 尚、第1,第2ピストン本体7a,8aとその側圧を受けるガイド軸受1cとの隙間は構成部品の加工誤差や温度上昇による寸法変化を考慮して機械的な干渉が生じないように最小となるように設定される。
 また、本実施形態では、第1,第2ピストン7,8は直交するように配置したが、これに限定されるものではなく、第1クランク軸5を中心として例えば位相差が60度等に配置することも可能である。
 次に、ガイド軸受の他の構成例について図9乃至図11を参照して説明する。
 図9に示すように、第1,第2ピストン組7,8において、第1ピストン本体7a,第2ピストン本体8aにはその長手方向に沿ってガイド孔(長孔)31,32が両側に各々穿設されている。また、図11に示すように、第1本体ケース1の内底部1aには、ガイド孔31,32に対応する位置にボス部1bが4か所に突設されている。このボス部1bの軸端にはガイド軸受1cが例えば2個ずつ重ね合わせ、該ガイド軸受1cはボス部1bの軸孔にピン1dが嵌め込まれてボス部1bに組み付けられている。図10において、各ガイド軸受1cは、ガイド孔31,32に嵌め込まれて、第2筒体6bに組み付けられた第1,第2ピストン組7,8の直線往復運動を第1ピストン本体7a,第2ピストン本体8aと重なり合う位置でガイドする。
 図10に示すように、ガイド軸受1cは各ガイド孔31,32の対向する孔壁面31a,32aに当接して第1、第2ピストン組7,8の直線往復運動をガイドする。この構成によれば、第1、第2ピストン組7,8の第1,第2ピストンヘッド部7b,8bがシリンダ摺動面から受ける反力を少ないガイド軸受1c(本実施例では4か所)で受け止めて第1,第2ピストンヘッド部7b,8bとシリンダ21との摺動抵抗を軽減することができる。よって、ピストン組とシリンダ間の摩擦損失(図13の(P/4)参照)を低減して駆動源の消費電力を低減することができる。また、本体ケース3内の部品点数が減るので組み立てが容易になり、本体ケース3内のスペースを有効に活用することができる。
 尚、ガイド軸受1cは転がり軸受、滑り軸受、メタル軸受など様々な軸受を使用することができる。
 また、ガイド軸受1cは第1本体ケース1に設けられているが、第2本体ケース2に設けられていてもよく、第1,第2本体ケース1,2の双方に各々設けられていてもよい。

 

Claims (3)

  1.  シリンダ内を往復運動するピストンとシャフトの回転運動を相互に変換可能なロータリ式シリンダ装置であって、
     前記シャフトの軸芯に対して偏芯して組み付けられ、当該シャフトを中心に半径rの第1仮想クランクアームを介して回転可能に組み付けられた第1クランク軸と、
     前記第1クランク軸に同芯状に嵌め込まれた第1筒体と該第1筒体の軸芯に対して偏芯した複数の第2仮想クランク軸を軸芯とする第2筒体が連続して形成された偏芯筒体を備え、前記第2筒体に複数のピストン組が互いに交差したまま前記第1クランク軸を中心に半径rの第2仮想クランクアームを介して回転可能に嵌め込まれたピストン複合体と、
     前記ピストン複合体が嵌め込まれた前記第1クランク軸の両端部に各々組み付けられ、前記シャフトを中心とする回転部品間の回転バランスをとる第1,第2バランスウェイトと、
     前記シャフトを回転可能に軸支し、当該シャフトを中心に回転する前記第1クランク軸及び前記第1,第2バランスウェイト、前記第1クランク軸を中心に回転する前記ピストン複合体を回転可能に収容する本体ケースと、
     前記本体ケースに設けられ、前記シャフトを中心に前記第1クランク軸が回転し、当該第1クランク軸を中心に前記ピストン複合体が回転することで、前記第2筒体に組み付けられた前記複数のピストン組が前記シャフトを中心とする前記第2仮想クランク軸の半径2rの転がり円の径方向に沿った直線往復運動をガイドするガイド軸受と、を具備したことを特徴とするロータリ式シリンダ装置。
  2.  前記ガイド軸受は、前記第2筒体に複数交差して組み付けられた各ピストン組のピストン本体の移動方向両側に配置されて各ピストン組の直線往復運動をガイドする請求項1記載のロータリ式シリンダ装置。
  3.  前記第2筒体に複数交差して組み付けられた各ピストン組のピストン本体にはその長手方向に沿ってガイド孔が各々穿設されており、前記ガイド軸受は各ガイド孔の対向する孔壁面に当接して各ピストン組の直線往復運動をガイドする請求項1記載のロータリ式シリンダ装置。
PCT/JP2011/052057 2010-03-16 2011-02-01 ロータリ式シリンダ装置 WO2011114786A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201180014029XA CN102803728B (zh) 2010-03-16 2011-02-01 旋转式作动缸装置
US13/579,616 US8443713B2 (en) 2010-03-16 2011-02-01 Rotary cylinder device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010059901A JP5458438B2 (ja) 2010-03-16 2010-03-16 ロータリ式シリンダ装置
JP2010-059901 2010-03-16

Publications (1)

Publication Number Publication Date
WO2011114786A1 true WO2011114786A1 (ja) 2011-09-22

Family

ID=44648894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052057 WO2011114786A1 (ja) 2010-03-16 2011-02-01 ロータリ式シリンダ装置

Country Status (4)

Country Link
US (1) US8443713B2 (ja)
JP (1) JP5458438B2 (ja)
CN (1) CN102803728B (ja)
WO (1) WO2011114786A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014167276A (ja) * 2013-02-28 2014-09-11 Ikiken:Kk ロータリ式シリンダ装置
US20150041695A1 (en) 2013-08-07 2015-02-12 Kyle P. Daniels Shutter valve
JP2015052307A (ja) * 2013-09-09 2015-03-19 有限会社ケイ・アールアンドデイ ロータリ式シリンダ装置
DE102013221410A1 (de) * 2013-10-22 2015-04-23 Robert Bosch Gmbh Antriebseinheit und schnell laufende Maschine mit einer derartigen Antriebseinheit
DE102014203127A1 (de) * 2014-02-21 2015-08-27 Bayerische Motoren Werke Aktiengesellschaft Verdichter
JP6422707B2 (ja) * 2014-09-02 2018-11-14 株式会社神戸製鋼所 液圧ポンプの故障診断装置
USD800870S1 (en) * 2015-06-19 2017-10-24 Clarke Industrial Engineering, Inc. Valve housing
CN107965435A (zh) * 2016-10-20 2018-04-27 上海汽车集团股份有限公司 活塞式空气压缩机、供气系统及车辆
DE102017004086A1 (de) * 2017-04-28 2018-10-31 Wabco Gmbh Verdichteranordnung für eine Druckluftzuführung einer Druckluftversorgungsanlage
CN107165796A (zh) * 2017-06-16 2017-09-15 大庆国世能科学技术有限公司 行星式曲柄驱动圆周多泵流体增压机
JP6281853B1 (ja) * 2017-10-03 2018-02-21 有限会社ケイ・アールアンドデイ ロータリ式シリンダ装置
CN114439732B (zh) * 2020-11-03 2024-06-04 深圳安吉尔饮水产业集团有限公司 隔膜增压泵的泵头、隔膜增压泵、净水机及泵头工作方法
EP4095378A1 (en) * 2021-05-25 2022-11-30 KNORR-BREMSE Systeme für Nutzfahrzeuge GmbH Piston compressor

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141079A (en) * 1980-04-07 1981-11-04 Hitachi Ltd Fluid machine
JPS60167812U (ja) * 1984-04-17 1985-11-07 三菱重工業株式会社 クロスヘツド軸受
JPH08303254A (ja) * 1995-05-02 1996-11-19 Morikawa Sangyo Kk クランク機構とそれを用いた往復動機関並びに圧縮機及びポンプ
JP2000097232A (ja) * 1998-09-21 2000-04-04 Honda Motor Co Ltd フロントフォーク
JP2000249047A (ja) * 1999-02-24 2000-09-12 Sanyo Electric Co Ltd 高圧ガス発生装置
JP2002276829A (ja) * 2001-03-14 2002-09-25 Smc Corp ゲートバルブ
JP2006022796A (ja) * 2004-07-05 2006-01-26 Masahiko Mori ローラー付きピストン
JP2008031908A (ja) * 2006-07-28 2008-02-14 Chuo Giken Kogyo:Kk 往復動ピストン機関における消音構造
JP2008078409A (ja) * 2006-09-21 2008-04-03 Hitachi High-Technologies Corp 基板用ステージ、直動モータの使用方法、及び位置決め治具
JP4553977B1 (ja) * 2009-10-26 2010-09-29 有限会社ケイ・アールアンドデイ ロータリ式シリンダ装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2683422A (en) * 1950-05-19 1954-07-13 Jr Albert Z Richards Rotary engine or compressor
FI2718U1 (fi) * 1996-05-29 1997-01-21 Ismo Haeyrynen Mäntämekanismi
JP2004190613A (ja) 2002-12-12 2004-07-08 Sankyo Seiki Mfg Co Ltd ロータリ式シリンダ装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56141079A (en) * 1980-04-07 1981-11-04 Hitachi Ltd Fluid machine
JPS60167812U (ja) * 1984-04-17 1985-11-07 三菱重工業株式会社 クロスヘツド軸受
JPH08303254A (ja) * 1995-05-02 1996-11-19 Morikawa Sangyo Kk クランク機構とそれを用いた往復動機関並びに圧縮機及びポンプ
JP2000097232A (ja) * 1998-09-21 2000-04-04 Honda Motor Co Ltd フロントフォーク
JP2000249047A (ja) * 1999-02-24 2000-09-12 Sanyo Electric Co Ltd 高圧ガス発生装置
JP2002276829A (ja) * 2001-03-14 2002-09-25 Smc Corp ゲートバルブ
JP2006022796A (ja) * 2004-07-05 2006-01-26 Masahiko Mori ローラー付きピストン
JP2008031908A (ja) * 2006-07-28 2008-02-14 Chuo Giken Kogyo:Kk 往復動ピストン機関における消音構造
JP2008078409A (ja) * 2006-09-21 2008-04-03 Hitachi High-Technologies Corp 基板用ステージ、直動モータの使用方法、及び位置決め治具
JP4553977B1 (ja) * 2009-10-26 2010-09-29 有限会社ケイ・アールアンドデイ ロータリ式シリンダ装置

Also Published As

Publication number Publication date
JP5458438B2 (ja) 2014-04-02
JP2011190780A (ja) 2011-09-29
CN102803728A (zh) 2012-11-28
US20120315176A1 (en) 2012-12-13
US8443713B2 (en) 2013-05-21
CN102803728B (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
WO2011114786A1 (ja) ロータリ式シリンダ装置
JP4553977B1 (ja) ロータリ式シリンダ装置
US20100031916A1 (en) Hypocycloid Engine
EP3636920B1 (en) Rotary cylinder device
JP5161306B2 (ja) 往復回転動力変換装置
JP2018529041A (ja) 流体機械、熱交換装置及び流体機械の運転方法
JP6562296B2 (ja) ピストンの往復運動機構、ポンプ、コンプレッサー、及び真空ポンプ
JP2014202124A (ja) 往復動圧縮機
JP6593945B1 (ja) ロータリ式シリンダ装置
JP6177566B2 (ja) 往復動圧縮機
JP5458439B2 (ja) ロータリ式シリンダ装置
JP6376634B1 (ja) 揺動直線運動機構を備えた駆動装置
JP2015052307A (ja) ロータリ式シリンダ装置
JP2014095334A (ja) 流体吸排ポンプ機構及びこれを用いたエアコンプレッサ
WO2012046417A1 (ja) 駆動装置
JP2016118152A (ja) 往復動型流体機械
JP2014167276A (ja) ロータリ式シリンダ装置
WO2017175431A1 (ja) 往復動式の容積型流体機械
WO2009106840A2 (en) Apparatus for converting between rotational and linear movement
JPH07269481A (ja) ロータリ圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014029.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11755976

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13579616

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11755976

Country of ref document: EP

Kind code of ref document: A1