WO2011111577A1 - 吸着炭及び吸着剤 - Google Patents

吸着炭及び吸着剤 Download PDF

Info

Publication number
WO2011111577A1
WO2011111577A1 PCT/JP2011/054714 JP2011054714W WO2011111577A1 WO 2011111577 A1 WO2011111577 A1 WO 2011111577A1 JP 2011054714 W JP2011054714 W JP 2011054714W WO 2011111577 A1 WO2011111577 A1 WO 2011111577A1
Authority
WO
WIPO (PCT)
Prior art keywords
charcoal
adsorbed
adsorbed charcoal
adsorbent
temperature
Prior art date
Application number
PCT/JP2011/054714
Other languages
English (en)
French (fr)
Inventor
樋口 正人
孝夫 木村
正義 竹内
喜三郎 出口
Original Assignee
株式会社ダステック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダステック filed Critical 株式会社ダステック
Priority to US13/583,181 priority Critical patent/US9034789B2/en
Priority to KR1020127025163A priority patent/KR101748413B1/ko
Priority to CN201180012656XA priority patent/CN102791275A/zh
Priority to EP11753236.6A priority patent/EP2545927A4/en
Publication of WO2011111577A1 publication Critical patent/WO2011111577A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/44Elemental carbon, e.g. charcoal, carbon black
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/02Antidotes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/2808Pore diameter being less than 2 nm, i.e. micropores or nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing

Definitions

  • the present invention relates to an adsorbent charcoal that can effectively adsorb endotoxin and an adsorbent containing such adsorbent charcoal as an active ingredient.
  • endotoxins are produced and absorbed in the intestine and transferred into the blood, causing organ damage.
  • endotoxins are detoxified in the liver and excreted in the kidney.
  • patients with impaired renal function or liver function may have severe symptoms such as uremia and impaired consciousness because they cannot excrete toxins and accumulate in the body due to these organ dysfunctions. is there.
  • the number of patients with renal and liver dysfunction is increasing year by year due to an increase in lifestyle-related diseases such as diabetes.
  • Organ replacement devices or treatments that compensate for these organ functions and remove endotoxins from the body.
  • the development of drugs and the development of therapeutic drugs or foods that suppress the absorption of endotoxins from the intestine into the blood are important issues.
  • hemodialysis is the most widely used method for removing endotoxin, but basically it is removed by size fractionation, which causes endotoxin adsorbed on albumin and causes of diseases such as ⁇ 2 microglobulin. It was difficult to remove molecules that could become In recent years, dialysis treatment methods and wearable dialysis methods that purify and use hemodialysis dialysate have attracted attention. The spread of these treatment methods requires a technique for efficiently removing endotoxin that has migrated from blood to dialysate during hemodialysis.
  • activated charcoal for oral administration is also listed in the Japanese Pharmacopoeia as medicinal charcoal etc.
  • the purpose of adsorbing toxic substances in the digestive tract organs during drug poisoning or food poisoning and excreting it as feces Has been used in.
  • the burden on the kidneys can be reduced and the introduction time to hemodialysis can be delayed to reduce dialysis frequency. be able to. Since hemodialysis has a great mental, physical, and economic burden on patients, an activated carbon preparation that can be administered orally has great advantages.
  • the present invention has been made in view of such conventional problems, and adsorbed charcoal capable of effectively adsorbing endotoxins such as saccharified end products, and adsorption containing such adsorbed charcoal as an active ingredient.
  • the purpose is to provide an agent.
  • the present invention has made extensive studies to solve the above problems. As a result, the present inventors have found that an adsorbed charcoal that can solve the above-mentioned problems can be obtained by examining the firing conditions and controlling the pore structure and the like of the adsorbed charcoal. More specifically, the present invention is as follows.
  • the total pore volume is 0.10 to 1.0 mL / g, the average pore diameter is 1.0 to 2.0 nm, and the absorbance of the infrared absorption band at 1650-1800 cm ⁇ 1 is 0.005 or more.
  • Adsorbed charcoal (2) The adsorbed charcoal according to (1), obtained by firing a carbon raw material in an electric furnace. (3) The adsorbed charcoal according to (2), wherein the carbon raw material is high-purity cellulose having a purity of 90% or more. (4) The adsorbed charcoal according to (2) or (3), wherein the carbon raw material is cellulose fine particles or cellulose nonwoven fabric. (5) An adsorbent containing the adsorbed charcoal according to any one of (1) to (4) as an active ingredient.
  • an adsorbent charcoal that can effectively adsorb endotoxin such as a terminal saccharification product, and an adsorbent containing such an adsorbent charcoal as an active ingredient.
  • FIG. 1 It is a figure which shows the infrared absorption spectrum of the adsorbed charcoal of Example 2. It is a figure which shows the result of the adsorption experiment with respect to the terminal saccharification product using the adsorption charcoal of Example 1 and Comparative Example 1.
  • FIG. It is a figure which shows the result of the adsorption experiment with respect to indoxyl sulfuric acid using the adsorption charcoal of Example 4 and Comparative Example 1. It is a figure which shows the result of the adsorption experiment with respect to ammonia using the adsorption charcoal of Example 2.
  • the adsorbed charcoal according to the present invention has a total pore volume of 0.10 to 1.0 mL / g, an average pore diameter of 1.0 to 2.0 nm, and the absorbance of the infrared absorption band at 1650-1800 cm ⁇ 1 . Is 0.005 or more.
  • the total pore volume can be calculated from the N 2 adsorption amount substituted with liquid nitrogen at a relative pressure of 0.98 by applying the Gurbitsch law.
  • the average pore diameter can be calculated from the BET specific surface area and the total pore volume according to the following formula.
  • carbon raw material used as the raw material for the adsorbed coal As the carbon raw material used as the raw material for the adsorbed coal according to the present invention, known raw materials such as sawdust, wood, coconut grain, oil carbon, phenol resin, cellulose, acrylonitrile, coal pitch, and petroleum pitch can be used.
  • high-purity cellulose having a purity of 90% or more that does not substantially contain phosphorus or potassium is preferable, and high-purity cellulose having a purity of 95% or more is more preferable.
  • Known materials such as copper ammonia rayon, viscose rayon, cotton, pulp, linter, polynosic, and lyocell (Tencel) can be used as the high purity cellulose material.
  • the adsorbed charcoal according to the present invention it is preferable to use cellulose fine particles as the carbon raw material, and it is more preferable to use cellulose fine particles having a particle size of 0.1 to 1000 ⁇ m.
  • the adsorbed charcoal according to the present invention is used for purification of blood or dialysate
  • string-like or woven cellulose can also be suitably used.
  • the above carbon raw material is fired in an electric furnace or the like.
  • the carbon raw material is generally fired with an incombustible gas.
  • the gas is not used but is fired with an electric furnace or the like.
  • the adsorption charcoal which has the above pore structures etc. can be obtained.
  • no gas is used, even if the above-mentioned nonwoven fabric, string, or woven cellulose is used as the carbon material, it is possible to obtain adsorbed charcoal that maintains its structure. Therefore, it is useful when adsorbed charcoal is used for purification of blood or dialysate.
  • the firing temperature is preferably 300 to 1500 ° C.
  • the temperature is not raised continuously to the firing temperature, but stepwise. Specifically, the temperature is first raised to 300 to 500 ° C. at a rate of 10 to 100 ° C. per hour and maintained at that temperature for 1 to 6 hours. Thereafter, the temperature is raised at a rate of 10 to 100 ° C. per hour and maintained for 1 to 6 hours every time the temperature rises by 100 to 500 ° C.
  • the adsorbed charcoal thus obtained can effectively adsorb and remove endotoxins.
  • In vivo toxins that can be removed by adsorption include those that are metabolized from carbohydrates and proteins in the body, and those that are taken orally with food. Specific examples include end glycation products, indole, indoxyl sulfate, Examples thereof include hydrogen sulfide, ammonia, p-cresol, dioxin, urea, creatinine and the like.
  • the adsorbent according to the present invention contains the adsorbed charcoal according to the present invention as an active ingredient.
  • This adsorbent may be used for medical purposes or may be used for other uses such as health supplements.
  • the form can be powder, granule, tablet, dragee, capsule, suspension, stick, sachet, emulsion and the like.
  • additives such as a binder, an excipient, a lubricant, a colorant, a disintegrant, and an oxygen scavenger are added to the adsorbed charcoal according to the present invention and molded by a conventional method.
  • the dose and dose of the adsorbent vary depending on whether the subject is a human or other animal, and also depends on age, individual differences, medical conditions, etc., but generally the oral dose for human subjects Can be taken 1 to 20 g per day divided into 3 to 4 times, and the dosage can be adjusted according to the symptoms.
  • Adsorbed charcoal was prepared by placing 100 g of Ceolus (registered trademark) PH-101 (manufactured by Asahi Kasei Chemicals Co., Ltd., average particle size 50 ⁇ m) in a crucible and firing it in an electric furnace.
  • the firing conditions were as follows. The temperature is raised to 300 ° C. at a rate of 50 ° C. per hour and maintained at 300 ° C. for 1 hour and 30 minutes. Next, the temperature is raised to 600 ° C. at the same rate and maintained at 600 ° C. for 2 hours. Thereafter, the temperature is raised to 800 ° C. at the same rate and maintained at 800 ° C. for 2 hours. Thereafter, the temperature is raised to 1000 ° C.
  • the temperature is raised to 1200 ° C. at a rate of 25 ° C. per hour and maintained at 1200 ° C. for 2 hours. Further, the temperature is raised to 1300 ° C. at a rate of 20 ° C. per hour and maintained at 1300 ° C. for 3 hours. Finally, the temperature is lowered to 1000 ° C. over 7 hours, further lowered to 800 ° C. over 4 hours, and then naturally cooled.
  • the obtained adsorbed coal had a total pore volume of 0.723 mL / g, an average pore diameter of 1.7 nm, and an absorbance of an infrared absorption band at 1650 to 1800 cm ⁇ 1 by Fourier transform infrared spectroscopy was 0.006. there were.
  • Adsorbed charcoal was prepared by placing 100 g of Ceolus (registered trademark) PH-101 (manufactured by Asahi Kasei Chemicals Co., Ltd., average particle size 50 ⁇ m) in a crucible and firing it in an electric furnace.
  • the firing conditions were as follows. The temperature is raised to 300 ° C. at a rate of 20 ° C. per hour and maintained at 300 ° C. for 5 hours and 30 minutes. Next, the temperature is raised to 500 ° C. at a rate of 15 ° C. per hour and maintained at 500 ° C. for 4 hours. Finally, cool naturally.
  • the obtained adsorbed charcoal had a total pore volume of 0.188 mL / g, an average pore diameter of 1.8 nm, and an absorbance of an infrared absorption band at 1650 to 1800 cm ⁇ 1 by Fourier transform infrared spectroscopy was 0.086. there were.
  • the infrared absorption spectrum of the adsorbed charcoal of Example 2 is shown in FIG.
  • Adsorbed charcoal was prepared by placing 100 g of Ceolus (registered trademark) PH-101 (manufactured by Asahi Kasei Chemicals Co., Ltd., average particle size 50 ⁇ m) in a crucible and firing it in an electric furnace.
  • the firing conditions were as follows. The temperature is raised to 300 ° C. at a rate of 25 ° C. per hour and maintained at 300 ° C. for 2 hours and 30 minutes. Next, the temperature is raised to 600 ° C. at the same rate and maintained at 600 ° C. for 4 hours. Thereafter, the temperature is raised to 800 ° C. at the same rate and maintained at 800 ° C. for 3 hours. Further, the temperature is raised to 1000 ° C. at the same rate and maintained at 1000 ° C. for 3 hours. Finally, the temperature is lowered to 800 ° C. over 4 hours, and then naturally cooled.
  • the obtained adsorbed coal had a total pore volume of 0.407 mL / g, an average pore diameter of 1.7 nm, and an absorbance of an infrared absorption band at 1650 to 1800 cm ⁇ 1 by Fourier transform infrared spectroscopy was 0.007. there were.
  • Adsorbed charcoal was prepared by placing 100 g of Benlyse SC282 (manufactured by Asahi Kasei Fibers Co., Ltd., fiber single yarn thickness 1.5 dtex) in a crucible and firing in an electric furnace.
  • the firing conditions were as follows. The temperature is raised to 300 ° C. at a rate of 50 ° C. per hour and maintained at 300 ° C. for 1 hour and 30 minutes. Next, the temperature is raised to 600 ° C. at the same rate and maintained at 600 ° C. for 2 hours. Thereafter, the temperature is raised to 800 ° C. at the same rate and maintained at 800 ° C. for 2 hours. Thereafter, the temperature is raised to 1000 ° C.
  • the temperature is raised to 1200 ° C. at a rate of 25 ° C. per hour and maintained at 1200 ° C. for 3 hours. Finally, the temperature is lowered to 1000 ° C. over 5 hours, further lowered to 800 ° C. over 4 hours, and then naturally cooled.
  • the obtained adsorbed charcoal had a total pore volume of 0.854 mL / g, an average pore diameter of 1.9 nm, and an absorbance of an infrared absorption band at 1650 to 1800 cm ⁇ 1 by Fourier transform infrared spectroscopy was 0.062. there were.
  • Klemedin registered trademark
  • Kureha Chemical Industry Co., Ltd. which is a commercially available adsorbent charcoal
  • the total pore volume was 0.784 mL / g
  • the average pore diameter was 1.9 nm
  • the absorbance of the infrared absorption band at 1650 to 1800 cm ⁇ 1 by Fourier transform infrared spectroscopy was 0.004.
  • AGE-1-BSA is dissolved in the coating solution to 1 ⁇ g / mL, then 100 ⁇ L is added to each well of a 96-well high-binding EIA / RIA microplate, and adsorbed overnight at 4 ° C. Turned into. Then, after washing three times with a washing solution using a plate washer (Auto mini washer, Model AMW-8), 200 ⁇ L of blocking solution was added, and the mixture was incubated at room temperature for 1 hour for blocking.
  • a plate washer Auto mini washer, Model AMW-8
  • composition of the coating solution, blocking solution, and dilution buffer used in the above experiment is as follows.
  • -Coating solution Solution containing sodium carbonate, sodium bicarbonate, 0.05% sodium azide (pH 9.6 to 9.8)
  • Blocking solution phosphate buffered saline (pH 7.4) containing 1% BSA and 0.05% sodium azide
  • Buffer for dilution 50 mM 2-amino-2-hydroxymethyl-1,3-propanediol [Tris (hydroxymethyl) amino containing 0.1% glycerol, 0.1% Tween 20, 0.05% sodium azide Methane] buffer (pH 7.4)
  • FIG. 2 The result using the adsorbed charcoal of Example 1 and Comparative Example 1 is shown in FIG. As shown in FIG. 2, the adsorbed charcoal of Example 1 could adsorb 97.4% of AGE-1, but the adsorbed charcoal of Comparative Example 1 could adsorb only 13.8% of AGE-1. From this, it can be seen that the adsorbed coal of Example 1 can adsorb and remove AGE-1 more effectively than the adsorbed coal of Comparative Example 1.
  • Example 3 The results using the adsorbed charcoal of Example 3 and Comparative Example 1 are shown in Table 1 below.
  • Table 1 the adsorbed charcoal of Example 1 contains urea and creatinine without affecting ALB, Na, K, Cl, IP, T-CHO, and TG involved in the homeostasis. It was removed selectively.
  • the adsorption charcoal of Example 3 has higher characteristics than the adsorption charcoal of Comparative Example 1 in the urea removal characteristics.
  • FIG. 3 The result using the adsorbed charcoal of Example 4 and Comparative Example 1 is shown in FIG. As shown in FIG. 3, in the control, the concentration of indoxyl sulfate in the supernatant was 4.1911 ⁇ g / mL, but when the adsorbed charcoal of Example 4 was used, it decreased to 0.1866 ⁇ g / mL. On the other hand, when the adsorbed charcoal of Comparative Example 1 was used, it decreased only to 2.8487 ⁇ g / mL. From this, it can be seen that the adsorbed charcoal of Example 4 can adsorb and remove indoxyl sulfate more effectively than the adsorbed charcoal of Comparative Example 1.
  • the adsorbed charcoal of the present invention can effectively adsorb endotoxins such as end saccharification products. Therefore, when this adsorbed charcoal is used as an oral adsorbent, the terminal saccharified product and the like can be adsorbed in the digestive tract and discharged out of the body. Thereby, the effect of preventing / delaying various organ disorders can be expected not only for patients with renal dysfunction but also for patients with metabolic syndrome. Moreover, since no gas is used when the carbon raw material is fired, when the cellulose nonwoven fabric is used as the carbon raw material, it is possible to obtain adsorbed charcoal in which the structure of the nonwoven fabric is maintained. Therefore, it can be expected that this adsorbed charcoal is used as it is for plasma exchange therapy (DFPP).
  • DFPP plasma exchange therapy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Urology & Nephrology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • External Artificial Organs (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 終末糖化産物(AGEs)等の生体内毒素を効果的に吸着可能な吸着炭、及びそのような吸着炭を有効成分として含有する吸着剤を提供する。 本発明に係る吸着炭は、全細孔容積が0.10~1.0mL/g、平均細孔直径が1.0~2.0nmであり、1650-1800cm-1における赤外吸収バンドの吸光度が0.005以上である。

Description

吸着炭及び吸着剤
 本発明は、生体内毒素を効果的に吸着可能な吸着炭、及びそのような吸着炭を有効成分として含有する吸着剤に関する。
 生体内毒素の多くは腸内で産生、吸収されて血液中へ移行し、臓器障害を引き起こす原因となることが知られている。通常、生体内毒素は肝臓で解毒され、腎臓で排泄される。しかしながら、腎機能や肝機能の低下した患者では、これらの臓器機能障害に伴って、生体内毒素を排泄できず体内に蓄積するため、尿毒症や意識障害等の重篤な症状を呈することがある。糖尿病をはじめとする生活習慣病の増加によって、腎機能障害や肝機能障害の患者数は年々増加しているため、これらの臓器機能を代償し生体内毒素を体外へ除去する臓器代用機器あるいは治療薬の開発、腸内から生体内毒素が血液中に吸収されるのを抑制する治療薬あるいは食品の開発が重要な課題となっている。
 生体内毒素の除去方法としては、現在、血液透析が最も普及しているが、基本的にサイズ分画法による除去であり、アルブミンに吸着した生体内毒素や、β2ミクログロブリン等の病気の原因になり得る分子を除去することは困難であった。
 また、近年、血液透析の透析液を浄化再生して使用する透析治療法やウェアラブル透析が注目を集めている。これらの治療法の普及には、血液透析時に血液から透析液に移動した生体内毒素を効率的に除去する技術が必要とされている。
 ところで、経口投与用の活性炭(吸着炭)は、薬用炭等として日本薬局方にも収載されており、薬物中毒時や食中毒時に毒性物質を消化管器官の中で吸着させ、便として排泄させる目的で使用されてきた。また、このような薬物中毒症状の解毒のほかにも、腎機能の低下した患者に活性炭を投与すると、腎臓への負担を軽減できる上に血液透析への導入時期を遅らせ、透析頻度を低減することができる。血液透析は患者にとって精神的、肉体的、及び経済的な負担が大きいことから、経口投与できる活性炭製剤は非常にメリットが大きい。
 このような経口投与用の活性炭製剤としては、石油ピッチ等のピッチ類やフェノール樹脂を炭素原料とし、これを不燃ガスによって焼成して得たものが知られている(特許文献1~7等を参照)。これらの活性炭製剤は、生体に対する安全性や安定性が高く、便秘等の副作用が少ない等の利点を有しており、例えば商品名「クレメジン」(登録商標)として細粒剤、カプセル剤等が市販されている。
特公昭62-11611号公報 特開2002-253649号公報 特開2002-308785号公報 特開2004-244414号公報 特開2004-123673号公報 特開2006-36734号公報 特開2008-303193号公報
Takeuchi M. et al., Mol. Med 5: 393-4405(1999).
 ところで近年、食生活の変化により終末糖化産物(Advanced Glycation End products:AGEs)のような新たな食品由来の毒素が血中に吸収され、様々な臓器障害を引き起こす可能性が示唆されている(非特許文献1等を参照)。
 そこで、このような終末糖化産物についても活性炭製剤によって吸着除去することが望まれるが、クレメジン(登録商標)等の従来の活性炭製剤はこの終末糖化産物に対する吸着能が低かった。
 本発明は、このような従来の課題に鑑みてなされたものであり、終末糖化産物等の生体内毒素を効果的に吸着可能な吸着炭、及びそのような吸着炭を有効成分として含有する吸着剤を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、焼成条件を検討し、吸着炭の細孔構造等を制御することで上記課題を解決可能な吸着炭が得られることを見出し、本発明を完成するに至った。より具体的には、本発明は以下の通りである。
 (1) 全細孔容積が0.10~1.0mL/g、平均細孔直径が1.0~2.0nmであり、1650-1800cm-1における赤外吸収バンドの吸光度が0.005以上である吸着炭。
 (2) 炭素原料を電気炉にて焼成して得られる上記(1)に記載の吸着炭。
 (3) 前記炭素原料が純度90%以上の高純度セルロースである上記(2)に記載の吸着炭。
 (4) 上記炭素原料がセルロース微粒子又はセルロース不織布である上記(2)又は(3)に記載の吸着炭。
 (5) 上記(1)から(4)のいずれか1項に記載の吸着炭を有効成分として含有する吸着剤。
 本発明によれば、終末糖化産物等の生体内毒素を効果的に吸着可能な吸着炭、及びそのような吸着炭を有効成分として含有する吸着剤を提供することができる。
実施例2の吸着炭の赤外吸収スペクトルを示す図である。 実施例1及び比較例1の吸着炭を用いた終末糖化産物に対する吸着実験の結果を示す図である。 実施例4及び比較例1の吸着炭を用いたインドキシル硫酸に対する吸着実験の結果を示す図である。 実施例2の吸着炭を用いたアンモニアに対する吸着実験の結果を示す図である。
[吸着炭]
 本発明に係る吸着炭は、全細孔容積が0.10~1.0mL/g、平均細孔直径が1.0~2.0nmであり、1650-1800cm-1における赤外吸収バンドの吸光度が0.005以上であることを特徴とするものである。
 全細孔容積は、Gurvitschの法則を適用し、相対圧0.98における液体窒素置換したN吸着量から算出することができる。また、平均細孔直径は、BET法比表面積及び全細孔容積から、下記式に従って算出することができる。
Figure JPOXMLDOC01-appb-M000001
 本発明に係る吸着炭の原料となる炭素原料としては、オガ屑、木材、ヤシ穀、オイルカーボン、フェノール樹脂、セルロース、アクリロニトリル、石炭ピッチ、石油ピッチ等の公知の原料を用いることができる。
 この中でも、実質的にリンやカリウムを含まない、純度90%以上の高純度セルロースが好ましく、純度95%以上の高純度セルロースがより好ましい。高純度セルロースの素材としては、銅アンモニアレーヨン、ビスコースレーヨン、コットン、パルプ、リンター、ポリノジック、リヨセル(テンセル)等の公知の素材を用いることができる。
 特に、本発明に係る吸着炭を経口吸着剤に用いる場合、炭素原料としてはセルロース微粒子を用いることが好ましく、粒径が0.1~1000μmであるセルロース微粒子を用いることがより好ましい。
 また、本発明に係る吸着炭を血液や透析液の浄化に用いる場合、炭素原料としてはセルロース不織布を用いることが好ましく、繊維の単糸太さが0.1~3dtexであるセルロース不織布を用いることがより好ましい。なお、血液や透析液の浄化には紐状や織布状のセルロースも好適に使用できる。
 本発明に係る吸着炭を製造するには、上記の炭素原料を電気炉等により焼成する。従来、吸着炭を得るには炭素原料を不燃ガスによって焼成することが一般的であったが、本発明ではガスを用いず、電気炉等によって焼成する。これにより、上記のような細孔構造等を有する吸着炭を得ることができる。
 また、ガスを用いないため、炭素材料として上記のような不織布状、紐状、織布状のセルロースを用いた場合であっても、その構造が維持された吸着炭を得ることができる。したがって、吸着炭を血液や透析液の浄化に用いる場合に有用である。
 焼成温度としては300~1500℃が好ましい。この際、焼成温度まで連続的に昇温するのではなく段階的に昇温する。具体的には、まず1時間あたり10~100℃の割合で300~500℃まで昇温し、その温度で1~6時間維持する。その後は、1時間あたり10~100℃の割合で昇温し、100~500℃上昇する毎に1~6時間維持する。
 このようにして得られる吸着炭によれば、生体内毒素を効果的に吸着除去することができる。吸着除去可能な生体内毒素としては、体内で糖質やタンパク質等から代謝産生されるもの、食物と共に経口摂取されるものがあるが、具体的には、終末糖化産物、インドール、インドキシル硫酸、硫化水素、アンモニア、p-クレゾール、ダイオキシン、尿素、クレアチニン等が挙げられる。
[吸着剤]
 本発明に係る吸着剤は、本発明に係る吸着炭を有効成分として含有するものである。この吸着剤は、医療用途に用いられるものであってもよく、健康補助食品等の他の用途に用いられるものであってもよい。その形態は、散剤、顆粒、錠剤、糖衣錠、カプセル剤、懸濁剤、スティック剤、分包包装体、乳剤等とすることができる。
 例えば錠剤の場合、本発明に係る吸着炭に、結合剤、賦形剤、潤沢剤、着色剤、崩壊剤、脱酸素剤等の添加剤が加えられ、定法により成型される。
 吸着剤の投与量、服用量は、対象がヒトであるかその他の動物であるかにより、また、年令、個人差、病状等によっても異なるが、一般にヒトを対象とする場合の経口投与量は1日あたり1~20gを3~4回に分けて服用し、さらに症状によって適宜増減することができる。
 以下、本発明の実施例を説明するが、本発明の範囲はこれらの実施例に限定されるものではない。
 以下の実施例において、吸着炭の全細孔容積、平均細孔直径、吸着炭の赤外吸収スペクトルは以下のようにして測定した。
[全細孔容積、平均細孔直径の測定]
 約0.lgの吸着炭を標準セルに採り、装置の前処理部において、温度約200℃で約15時間の脱ガス処理(減圧乾燥)を行った後、島津-マイクロメトリックスASAP 2010(Nガス吸着法、比表面積/細孔分布測定)を用いて測定した。不織布状の吸着炭については裁断した後に測定した。全細孔容積は相対圧0.98で、平均細孔直径はBET法比表面積及び全細孔容積から算出した。結果は各実施例、比較例に記載する。
[吸着炭の赤外吸収スペクトルの測定]
 フーリエ変換型赤外分光光度計(バリアン・テクノロジーズ・ジャパン・リミテッド社製)にて分析を実施した。顕微IR測定条件は以下の通りである。
 透過法による測定で、アパーチャーサイズ100×100μm、積算回数100回、測定波数範囲4000~650cm-1、MCT検出器、分解能4cm-1にて測定した。顕微IR試料台(Ge結晶板)上に吸着炭を載せ、採取針を用いて、赤外光が透過するように薄く延ばし、赤外吸収スペクトルを測定した。この際、測定波数範囲において赤外吸収スペクトルが飽和していないことを確認した。赤外吸収バンドの吸光度は、無機物に特徴的なベースラインの傾きを利用し、4000cm-1の吸光度を基準とすることにより算出した。ただし、無機物に特徴的なベースラインの形状は、試料の形状により変動する可能性があることから、赤外吸収スペクトルをn=5で測定し、吸光度を算出し、さらに平均化した値をもって測定値とした。結果は各実施例、比較例に記載する。
<実施例1>
 セオラス(登録商標)PH-101(旭化成ケミカルズ社製、平均粒径50μm)100gをるつぼに入れ、電気炉にて焼成することにより、吸着炭を調製した。焼成条件は以下の通りとした。
 1時間あたり50℃の割合で300℃まで昇温し、300℃で1時間30分維持する。
 次に、同様の割合で600℃まで昇温し、600℃で2時間維持する。
 その後、同様の割合で800℃まで昇温し、800℃で2時間維持する。
 その後、1時間あたり30℃の割合で1000℃まで昇温し、1000℃で2時間維持する。
 その後、1時間あたり25℃の割合で1200℃まで昇温し、1200℃で2時間維持する。
 さらに、1時間あたり20℃の割合で1300℃まで昇温し、1300℃で3時間維持する。
 最後に、7時間かけて1000℃まで降温し、さらに4時間かけて800℃まで降温し、その後自然冷却する。
 得られた吸着炭の全細孔容積は0.723mL/g、平均細孔直径は1.7nm、フーリエ変換型赤外分光による1650~1800cm-1における赤外吸収バンドの吸光度は0.006であった。
<実施例2>
 セオラス(登録商標)PH-101(旭化成ケミカルズ社製、平均粒径50μm)100gをるつぼに入れ、電気炉にて焼成することにより、吸着炭を調製した。焼成条件は以下の通りとした。
 1時間あたり20℃の割合で300℃まで昇温し、300℃で5時間30分維持する。
 次に、1時間あたり15℃の割合で500℃まで昇温し、500℃で4時間維持する。
 最後に、自然冷却する。
 得られた吸着炭の全細孔容積は0.188mL/g、平均細孔直径は1.8nm、フーリエ変換型赤外分光による1650~1800cm-1における赤外吸収バンドの吸光度は0.086であった。実施例2の吸着炭の赤外吸収スペクトルを図1に示す。
<実施例3>
 セオラス(登録商標)PH-101(旭化成ケミカルズ社製、平均粒径50μm)100gをるつぼに入れ、電気炉にて焼成することにより、吸着炭を調製した。焼成条件は以下の通りとした。
 1時間あたり25℃の割合で300℃まで昇温し、300℃で2時間30分維持する。
 次に、同様の割合で600℃まで昇温し、600℃で4時間維持する。
 その後、同様の割合で800℃まで昇温し、800℃で3時間維持する。
 さらに、同様の割合で1000℃まで昇温し、1000℃で3時間維持する。
 最後に、4時間かけて800℃まで降温し、その後自然冷却する。
 得られた吸着炭の全細孔容積は0.407mL/g、平均細孔直径は1.7nm、フーリエ変換型赤外分光による1650~1800cm-1における赤外吸収バンドの吸光度は0.007であった。
<実施例4>
 ベンリーゼSC282(旭化成せんい社製、繊維の単糸太さ1.5dtex)100gをるつぼに入れ、電気炉にて焼成することにより、吸着炭を調製した。焼成条件は以下の通りとした。
 1時間あたり50℃の割合で300℃まで昇温し、300℃で1時間30分維持する。
 次に、同様の割合で600℃まで昇温し、600℃で2時間維持する。
 その後、同様の割合で800℃まで昇温し、800℃で2時間維持する。
 その後、1時間あたり30℃の割合で1000℃まで昇温し、1000℃で2時間維持する。
 さらに、1時間あたり25℃の割合で1200℃まで昇温し、1200℃で3時間維持する。
 最後に、5時間かけて1000℃まで降温し、さらに4時間かけて800℃まで降温し、その後自然冷却する。
 得られた吸着炭の全細孔容積は0.854mL/g、平均細孔直径は1.9nm、フーリエ変換型赤外分光による1650~1800cm-1における赤外吸収バンドの吸光度は0.062であった。
<比較例1>
 市販の医療用吸着炭であるクレメジン(登録商標)(呉羽化学工業社製)をそのまま用いた。
 全細孔容積は0.784mL/g、平均細孔直径は1.9nm、フーリエ変換型赤外分光による1650~1800cm-1における赤外吸収バンドの吸光度は0.004であった。
[終末糖化産物(AGEs)に対する吸着実験]
 チューブ中の吸着炭各0.1gに50mMリン酸緩衝液(pH7.4)で希釈したグルコース由来AGE(AGE-1)を1mL(140U)加え、チューブローテーターを用いてチューブを37℃で3時間回転させることにより、各吸着炭にAGE-1を吸着させた。その後、10,000rpmで10分間遠心し、上清を回収した。
 そして、AGE-1-BSA及び抗AGE-1抗体を用いた競合ELISA法により、上清中のAGE-1量を測定し、吸着炭の非存在下及び存在下におけるAGE-1量を比較して吸着率(%)を算出した。
 AGE-1の競合ELISA法による定量は以下の方法に従った。
 まず、AGE-1-BSAをコーティング液に1μg/mLになるように溶解後、96ウェルの高結合性EIA/RIAマイクロプレートの各ウェルに100μLずつ加え、4℃で一晩吸着させて固相化した。そして、プレートウォッシャー(Auto mini washer、Model AMW-8)を用いて洗浄液で3回洗浄後、ブロッキング液200μLを加え、室温で1時間インキュベートしてブロッキングを行った。さらに、洗浄液で3回洗浄後、希釈用緩衝液で希釈した上清50μLと1mg/mL BSAを含む希釈用緩衝液で希釈したAGE-1抗体50μLとを加え、30℃、振盪条件下で2時間インキュベートした。
 その後、洗浄液で3回洗浄し、希釈用緩衝液で希釈したアルカリホスファターゼ(AP)標識ヒツジ抗ウサギIgG抗体100μLを加え、37℃で1時間インキュベートした。洗浄液で3回洗浄後、AP基質キット溶液100μLを加え、37℃で約1時間インキュベート後、マイクロプレートリーダー(Labsystems multiskan ascent、Model No.354)で405nmの吸光度を測定した。AGE-1-BSAの検量線から、各上清中のAGE-1量を算出した。
 なお、1μgのAGE-1-BSA標準品に相当するAGEs量を1Uと定義した。
 上記の実験で使用したコーティング液、ブロッキング液、及び希釈用緩衝液の組成は以下の通りである。
・コーティング液;炭酸ナトリウム、炭酸水素ナトリウム、0.05%アジ化ナトリウムを含む溶液(pH9.6~9.8)
・ブロッキング液:1%BSA、0.05%アジ化ナトリウムを含むリン酸緩衝生理食塩水(pH7.4)
・希釈用緩衝液:0.1%グリセロール、0.1%Tween20、0.05%アジ化ナトリウムを含む50mM 2-アミノ-2-ヒドロキシメチル-1,3-プロパンジオール[トリス(ヒドロキシメチル)アミノメタン]緩衝液(pH7.4)
 実施例1及び比較例1の吸着炭を用いた結果を図2に示す。図2に示すように、実施例1の吸着炭はAGE-1の97.4%を吸着できたものの、比較例1の吸着炭はAGE-1の13.8%しか吸着できなかった。このことから、実施例1の吸着炭は、比較例1の吸着炭よりもAGE-1を効果的に吸着除去できることが分かる。
[生体内毒素を含む血清に対する吸着実験]
 チューブ中の吸着炭各50mgに血液透析患者血清0.5mLを加え、チューブローテーターを用いてチューブを室温にて3時間回転させた。その後、10,000rpmで10分間遠心し、上清を回収した。
 そして、上清中のアルブミン(ALB)、尿素窒素(BUN)、クレアチニン(Cre)、ナトリウム(Na)、カリウム(K)、クロール(Cl)、無機リン(IP)、総コレステロール(T-CHO)、トリグリセライド(TG)の濃度を日立自動分析装置にて測定した。
 実施例3及び比較例1の吸着炭を用いた結果を下記表1に示す。表1に示すように、実施例1の吸着炭は、生体の恒常性に関与しているALB、Na、K、Cl、IP、T-CHO、TGに影響を与えることなく、尿素やクレアチニンを選択的に除去できた。また、尿素の除去特性において、実施例3の吸着炭は比較例1の吸着炭よりも高い特性を有することが示された。
Figure JPOXMLDOC01-appb-T000002
[インドキシル硫酸に対する吸着実験]
 チューブ中の吸着炭各50mgに、インドキシル硫酸を20μg/mLになるように添加した健常人血清0.5mLを加え、チューブローテーターを用いてチューブを室温にて5分間回転させることにより、各吸着炭にインドキシル硫酸を吸着させた。その後、10,000rpmで10分間遠心し、上清を回収した。
 そして、上清を4%トリクロロ酢酸溶液で除タンパクした後、液体クロマトグラフ-質量分析計(LC-MS/MS)にてインドキシル硫酸濃度を測定した。なお、吸着炭を用いないものを対照とした。
 実施例4及び比較例1の吸着炭を用いた結果を図3に示す。図3に示すように、対照では上清中のインドキシル硫酸濃度が4.1911μg/mLであったが、実施例4の吸着炭を用いた場合には0.1866μg/mLまで低下した。一方、比較例1の吸着炭を用いた場合には2.8487μg/mLまでしか低下しなかった。このことから、実施例4の吸着炭は、比較例1の吸着炭よりもインドキシル硫酸を効果的に吸着除去できることが分かる。
[アンモニアに対する吸着実験]
 吸着炭250mgを、500ppmのアンモニアを含む1Lの試料空気中に90分間放置した後に、ガステック社製ガス検知管(アンモニアガス検知管No.3M)で100mlの試料空気を吸引し、アンモニア濃度を測定した。なお、吸着炭を用いないものを対照とし、それぞれ4回測定した。
 実施例2の吸着炭を用いた結果を図4に示す。図4に示すように、対照ではアンモニア濃度が455±50.0ppmであったが、実施例2の吸着炭を用いた場合には138±47.9ppmまで低下した。このことから、実施例2の吸着炭はアンモニアを効果的に吸着除去できることが分かる。
 本発明の吸着炭は、終末糖化産物等の生体内毒素を効果的に吸着することができる。したがって、この吸着炭を経口吸着剤に用いた場合、終末糖化産物等を消化管内で吸着し、体外に排出させることができる。これにより、腎機能障害患者のみならずメタボリックシンドローム患者に対して、各種臓器障害を予防・遅延させる効果が期待できる。
 また、炭素原料を焼成する際にガスを用いないため、炭素原料としてセルロース不織布を用いた場合には、不織布の構造が維持された吸着炭を得ることができる。したがって、この吸着炭をそのまま血漿交換療法(Double Filtration Plasmapheresis:DFPP)に利用することが期待できる。

Claims (5)

  1.  全細孔容積が0.10~1.0mL/g、平均細孔直径が1.0~2.0nmであり、1650-1800cm-1における赤外吸収バンドの吸光度が0.005以上である吸着炭。
  2.  炭素原料を電気炉にて焼成して得られる請求項1に記載の吸着炭。
  3.  前記炭素原料が純度90%以上の高純度セルロースである請求項2に記載の吸着炭。
  4.  前記炭素原料がセルロース微粒子又はセルロース不織布である請求項2又は3に記載の吸着炭。
  5.  請求項1から4のいずれか1項に記載の吸着炭を有効成分として含有する吸着剤。
PCT/JP2011/054714 2010-03-10 2011-03-02 吸着炭及び吸着剤 WO2011111577A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/583,181 US9034789B2 (en) 2010-03-10 2011-03-02 Adsorption carbon, and adsorbent
KR1020127025163A KR101748413B1 (ko) 2010-03-10 2011-03-02 흡착탄 및 흡착제
CN201180012656XA CN102791275A (zh) 2010-03-10 2011-03-02 吸附炭及吸附剂
EP11753236.6A EP2545927A4 (en) 2010-03-10 2011-03-02 ADSORPTION CARBON AND ADSORPTION AGENTS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-053604 2010-03-10
JP2010053604A JP5765649B2 (ja) 2010-03-10 2010-03-10 吸着炭及び吸着剤

Publications (1)

Publication Number Publication Date
WO2011111577A1 true WO2011111577A1 (ja) 2011-09-15

Family

ID=44563381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054714 WO2011111577A1 (ja) 2010-03-10 2011-03-02 吸着炭及び吸着剤

Country Status (6)

Country Link
US (1) US9034789B2 (ja)
EP (1) EP2545927A4 (ja)
JP (1) JP5765649B2 (ja)
KR (1) KR101748413B1 (ja)
CN (1) CN102791275A (ja)
WO (1) WO2011111577A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107261234A (zh) * 2017-05-18 2017-10-20 李建中 一种透析液的再生方法及血液净化系统
CA3072349A1 (en) * 2017-08-31 2019-03-07 Cytosorbents Corporation Reduction of advanced glycation endproducts from bodily fluids
US10646817B2 (en) * 2017-11-09 2020-05-12 Apache Corporation Porous materials for natural gas liquids separations
CN109046282B (zh) * 2018-08-31 2021-12-31 健帆生物科技集团股份有限公司 血液灌流和水溶液清除内毒素用的吸附剂及其制备方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673542A (en) * 1979-11-22 1981-06-18 Kureha Chem Ind Co Ltd Adsorbent
JP2001122608A (ja) * 1999-10-26 2001-05-08 Tokyo Gas Co Ltd 細孔構造が制御された活性炭およびその製造方法
JP2002104816A (ja) * 1999-11-16 2002-04-10 Kuraray Co Ltd 活性炭及びその製造方法
JP2002253649A (ja) 2001-03-02 2002-09-10 Union Pack Kk 錠剤の製造方法
JP2002308785A (ja) 2001-04-11 2002-10-23 Kureha Chem Ind Co Ltd 経口投与用吸着剤
JP2004123673A (ja) 2002-10-07 2004-04-22 Kureha Chem Ind Co Ltd 経口投与用腎疾患治療又は予防剤
JP2004244414A (ja) 2003-01-22 2004-09-02 Meruku Hoei Kk 医薬用吸着剤及びその製法
WO2005060980A1 (ja) * 2003-12-24 2005-07-07 Masaakira Shonago 疾患治療用医薬及び糖尿病治療用医薬
JP2006036734A (ja) 2004-07-30 2006-02-09 Toa Eiyo Ltd 経口投与用活性炭製剤
JP2006111604A (ja) * 2003-10-22 2006-04-27 Kureha Corp 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
JP2007197338A (ja) * 2006-01-24 2007-08-09 Merck Seiyaku Kk 医薬用吸着剤
JP2008303193A (ja) 2007-06-11 2008-12-18 Teikoku Medix Kk 医療用吸着剤
JP2009013012A (ja) * 2007-07-04 2009-01-22 Nippon Oil Corp 電気二重層キャパシタ電極用活性炭の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2902032B2 (ja) * 1990-02-16 1999-06-07 忠一 平山 球状多孔性炭素粒子及びその製造方法
JP3759372B2 (ja) 1999-09-08 2006-03-22 東京瓦斯株式会社 活性炭の製造方法
JP2003242310A (ja) 2002-02-19 2003-08-29 Webhut Communications Inc スケジュール管理システム
JP2004315242A (ja) * 2003-04-10 2004-11-11 Tokyo Gas Co Ltd 活性炭
WO2004099073A2 (en) 2003-05-09 2004-11-18 Mcgill University Process for the production of activated carbon
US7585132B2 (en) * 2006-06-27 2009-09-08 James Imbrie Method for remediating a contaminated site
DE202006016898U1 (de) * 2006-10-12 2007-11-22 BLüCHER GMBH Hochleistungsadsorbentien auf der Basis von Aktivkohle mit hoher Mikroporosität
CN101730661B (zh) 2007-07-04 2013-03-20 新日本石油株式会社 双电层电容器电极用活性炭的生产方法
US8555896B2 (en) * 2007-12-19 2013-10-15 Philip Morris Usa Inc. Activated carbon from microcrystalline cellulose

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673542A (en) * 1979-11-22 1981-06-18 Kureha Chem Ind Co Ltd Adsorbent
JPS6211611B2 (ja) 1979-11-22 1987-03-13 Kureha Chemical Ind Co Ltd
JP2001122608A (ja) * 1999-10-26 2001-05-08 Tokyo Gas Co Ltd 細孔構造が制御された活性炭およびその製造方法
JP2002104816A (ja) * 1999-11-16 2002-04-10 Kuraray Co Ltd 活性炭及びその製造方法
JP2002253649A (ja) 2001-03-02 2002-09-10 Union Pack Kk 錠剤の製造方法
JP2002308785A (ja) 2001-04-11 2002-10-23 Kureha Chem Ind Co Ltd 経口投与用吸着剤
JP2004123673A (ja) 2002-10-07 2004-04-22 Kureha Chem Ind Co Ltd 経口投与用腎疾患治療又は予防剤
JP2004244414A (ja) 2003-01-22 2004-09-02 Meruku Hoei Kk 医薬用吸着剤及びその製法
JP2006111604A (ja) * 2003-10-22 2006-04-27 Kureha Corp 経口投与用吸着剤、並びに腎疾患治療又は予防剤、及び肝疾患治療又は予防剤
WO2005060980A1 (ja) * 2003-12-24 2005-07-07 Masaakira Shonago 疾患治療用医薬及び糖尿病治療用医薬
JP2006036734A (ja) 2004-07-30 2006-02-09 Toa Eiyo Ltd 経口投与用活性炭製剤
JP2007197338A (ja) * 2006-01-24 2007-08-09 Merck Seiyaku Kk 医薬用吸着剤
JP2008303193A (ja) 2007-06-11 2008-12-18 Teikoku Medix Kk 医療用吸着剤
JP2009013012A (ja) * 2007-07-04 2009-01-22 Nippon Oil Corp 電気二重層キャパシタ電極用活性炭の製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HISAYOSHI YOSHIDA ET AL.: "Kasseitan no Fourier Henkan Shigaisen Kyushu Spectrum", TANSO, vol. 10, no. 111, 1982, pages 149 - 153 *
NOBUO ISHIZAKI: "Tokushu Kyuchaku Gijutsu Saikin no Shinpo -Sen'ijo Kasseitan to sono Riyo", CHEMICAL ENGINEERING, vol. 29, no. 7, 1984, pages 496 - 505 *
See also references of EP2545927A4 *
TAKEUCHI M. ET AL., MOL. MED, vol. 5, 1999, pages 393 - 405
YOSHIE FUJITA ET AL.: "Suiyoeki Chu no Nyoso ni Taisuru Kasseitan no Kyuchaku Kassei", JOURNAL OF THE CHEMICAL SOCIETY OF JAPAN, vol. 04, no. 4, 1990, pages 352 - 356 *

Also Published As

Publication number Publication date
CN102791275A (zh) 2012-11-21
US9034789B2 (en) 2015-05-19
EP2545927A4 (en) 2013-08-21
KR101748413B1 (ko) 2017-06-16
KR20130049772A (ko) 2013-05-14
US20130040812A1 (en) 2013-02-14
JP2011184403A (ja) 2011-09-22
EP2545927A1 (en) 2013-01-16
JP5765649B2 (ja) 2015-08-19

Similar Documents

Publication Publication Date Title
CA2851215C (en) Adsorbents for oral administration
TWI319985B (en) Adsorbent for oral administration, agent for treating or preventing renal disease, and agent for treating or preventing liver disease
JP5984352B2 (ja) 経口投与用医薬用吸着剤の製造方法
JP5765649B2 (ja) 吸着炭及び吸着剤
Faria et al. Challenges of reducing protein-bound uremic toxin levels in chronic kidney disease and end stage renal disease
GB2053176A (en) Spherical particles of activated carbon suitable for use in a pharmaceutical composition
Bhogade et al. Effect of Hemodialysis on serum copper and zinc levels in kidney disease patients
JP2006256882A (ja) 活性炭及びその製造方法並びに腎肝疾患治療薬
TWI341732B (en) Adsorbent for oral administration,agent for treating or preventing renal disease, and
US8758775B2 (en) Pharmaceutical composition including clinoptilolite
Hassen et al. Recent developments in the use of activated charcoal in medicine
IT202100015239A1 (it) Preparato in forma solida comprendente carbone attivo e chitosano, metodo di preparazione di detto preparato, composizione comprendente detto preparato e usi di detta composizione
Kucher et al. Inclusion of enterosorbents in anti-inflammatory therapy improve treatment effectiveness in COPD patients during exacerbations
JP4618409B2 (ja) 経口尿毒症毒素吸着剤
JP2016014057A (ja) 経口投与用医薬用吸着剤の製造方法
JP6386571B2 (ja) 強度の増加された経口投与型医薬用吸着剤
WO2018227448A1 (zh) 口服毒物吸附剂及其制造方法
TW201803552A (zh) 口服毒物吸附劑及其製造方法
US20170290856A1 (en) Oral adsorbent and method for producing oral adsorbent
Mamatkulov et al. THE USE OF ACTIVATED MERCURY IN MEDICINE
TWI587878B (zh) Oral toxic adsorbent
CN102988325B (zh) 一种马尼地平缓释片的制备方法
Gordon et al. Adsorption of Cholesterol on Carbon Powders
KR20040032320A (ko) 경구투여용 흡착제 및 상기 경구투여용 흡착제를 포함하는의약조성물
AU2003204621A1 (en) Adsorbent for oral administration

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180012656.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11753236

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13583181

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127025163

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011753236

Country of ref document: EP