WO2011108613A1 - 光電変換素子及び光電気化学電池 - Google Patents

光電変換素子及び光電気化学電池 Download PDF

Info

Publication number
WO2011108613A1
WO2011108613A1 PCT/JP2011/054813 JP2011054813W WO2011108613A1 WO 2011108613 A1 WO2011108613 A1 WO 2011108613A1 JP 2011054813 W JP2011054813 W JP 2011054813W WO 2011108613 A1 WO2011108613 A1 WO 2011108613A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
group
represented
dye
conversion element
Prior art date
Application number
PCT/JP2011/054813
Other languages
English (en)
French (fr)
Inventor
小林 克
寛敬 佐藤
木村 桂三
達也 薄
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2011108613A1 publication Critical patent/WO2011108613A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/04Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D233/28Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D233/30Oxygen or sulfur atoms
    • C07D233/32One oxygen atom
    • C07D233/38One oxygen atom with acyl radicals or hetero atoms directly attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/60Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/61Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms not forming part of a nitro radical, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/005Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof
    • C09B23/0058Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof the substituent being CN
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0091Methine or polymethine dyes, e.g. cyanine dyes having only one heterocyclic ring at one end of the methine chain, e.g. hemicyamines, hemioxonol
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/06Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups three >CH- groups, e.g. carbocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/107The polymethine chain containing an even number of >CH- groups four >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/14Styryl dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • H01M14/005Photoelectrochemical storage cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • An object of the present invention is to provide a photoelectric conversion element and a photoelectrochemical cell having high conversion efficiency and excellent durability.
  • R 20 and R 21 in the general formula (10) each independently represent a cyano group or an acidic group, and may be the same as or different from each other.
  • the carbon-carbon double bond in the general formula (10) may be either E-type or Z-type.
  • R 16 represents an aliphatic group, an aromatic group or a heterocyclic group (these groups may have an acidic group).
  • the carbon-carbon double bond in the general formula (11) may be either E type or Z type.
  • R 12 is represented by the following general formula (12).
  • R 55 represents a — (CR 51 R 52 —CR 53 R 54 —O) b — bond
  • R 51 to R 54 each independently represents a hydrogen atom or an alkyl group; . b is an integer of 2 to 20
  • R 56 ⁇ R 60 each independently represent a hydrogen atom or a substituent
  • Z X - represents an anion, of R 55 ⁇ R 60
  • Two or more may be connected to each other to form a ring structure.
  • the inventors of the present invention have a photoconductor having a semiconductor fine particle layer in which a specific dye (dye compound) is adsorbed on a conductive support, and an electric charge having an electrolyte composition containing the specific compound. It has been found that a photoelectric conversion element having a laminated structure including a moving body and a counter electrode and a photoelectrochemical cell using the photoelectric conversion element have high conversion efficiency and durability, and particularly a decrease in conversion efficiency is small. The present invention has been made based on this finding.
  • X represents a nonmetallic atom group necessary for linking with a benzene ring to form a nitrogen-containing seven-membered ring.
  • the nonmetallic atom group refers to an atomic group in which at least one selected from the group consisting of a carbon atom, an oxygen atom, a nitrogen atom and a sulfur atom is bonded. Note that a hydrogen atom or a substituent may be bonded to each of these atoms.
  • Y represents a pigment residue.
  • the dye residue refers to an atomic group necessary for constituting the dye compound as a whole together with the structure other than Y in the general formula (1). Y is bonded to the benzene ring directly or through a linking group.
  • Examples of the dye compound formed by Y include polymethine dyes such as merocyanine, hemicyanine, styryl, oxonol, and cyanine, diarylmethines including acridine, xanthene, thioxanthene, triarylmethine, coumarin, indoaniline, indophenol, Examples include diazine, oxazine, thiazine, diketopyrrolopyrrole, indigo, anthraquinone, perylene, quinacridone, naphthoquinone, bipyridyl, terpyridyl, tetrapyridyl, and phenanthroline. Preferable examples include polymethine dyes and polyaryl dyes. n represents an integer of 1 or more. A preferable value of n is 1 to 2.
  • Preferred examples include alkyl groups (eg methyl, ethyl, n-butyl, n-hexyl, isobutyl, sec-butyl, t-butyl, n-dodecyl, cyclohexyl, benzyl etc.), substituted aryl groups (eg phenyl, tolyl, naphthyl). Etc.) and alkoxy groups (for example, methoxy, ethoxy, isopropoxy, butoxy, etc.).
  • an electron withdrawing group attenuates the electron density at a specific position of the molecule.
  • the electron withdrawing property or electron donating property cannot be explained simply by the difference in electronegativity.
  • the induced effect and the mesomery effect act in a complex manner, the appearance changes depending on the presence of aromaticity, conjugated system, and topological positional relationship.
  • Hammett's rule is known as an empirical rule for quantitatively evaluating and predicting these effects based on the acid dissociation constants of para- and meta-substituted benzoic acids.
  • the electron withdrawing effect is represented as -I effect
  • the electron donating property is represented as + I effect.
  • An atom having a higher electronegativity than carbon exhibits an -I effect.
  • An anion shows a + I effect
  • a cation shows a -I effect.
  • the electron withdrawing property is represented as -M effect
  • the electron donating property is represented as + M effect. Examples of electron withdrawing groups are shown below. Induced effect (-I effect) -O + R 2 > -N + R 3 -N + R 3 > -P + R 3 > ... -O + R 2 > -S + R 2 > ...
  • the acidic nucleus include rhodanine nucleus, hindantin, thiohydantoin, barbituric acid, pyrazolidinedione, pyrazolone, indandione and the like. These may include those in which two or more acidic nuclei dehydrated and condensed at the carbonyl moiety are linked.
  • Rhodanine, hindantin, thiohydantoin, barbituric acid, and pyrazolidinedione are preferable, and rhodanine is particularly preferable.
  • the acidic group contained in R 12 represents a proton dissociable group having a pKa of 13 or less.
  • General formula (5) is a case where X in general formula (1) is an ethylene group, thereby forming a nitrogen-containing seven-membered ring structure. It also has one dye residue at the para position of one benzene ring that is substituted with a nitrogen atom.
  • an alkyl group eg, methyl, ethyl, n-butyl, n-hexyl, isobutyl, sec-butyl, t-butyl, n-dodecyl, cyclohexyl, benzyl, etc.
  • a substituted aryl group eg, phenyl, tolyl, naphthyl, etc.
  • alkoxy groups for example, methoxy, ethoxy, isopropoxy, butoxy, etc.
  • dye which has a structure represented by the said General formula (1) or General formula (3) is represented by the said General formula (7).
  • the general formula (7) is a case where X in the general formula (1) is an ethylene group, thereby forming a nitrogen-containing seven-membered ring structure.
  • Each of the two benzene rings substituted with a nitrogen atom has one dye residue at each para position.
  • R 1 ⁇ R 13 and r have the general formula (3) and have the same meanings as R 1 ⁇ R 13 and r in the general formula (4), and the preferred range is also the same.
  • the two dye residues corresponding to the general formula (4) may be the same or different.
  • R 15 and R 16 are each independently an aliphatic group, an aromatic group or a heterocyclic group (at least one functional group may have an acidic group).
  • l represents 0 or 1;
  • the carbon-carbon double bond in the general formula (8) may be either E type or Z type.
  • R 17 in the general formula (8) represents a sulfur atom or the general formula (10).
  • R 17 represents a sulfur atom
  • at least one of R 15 and R 16 is preferably an aliphatic group having an acidic group, an aromatic group, or a heterocyclic group, and they may be different.
  • Preferable specific examples of the acidic group include carboxylic acid, sulfonic acid, phosphoric acid, phosphate ester and the like. More preferred examples of the acidic group include carboxylic acid.
  • the carbon-carbon double bond may be either E-type or Z-type.
  • R 18 and R 19 in the general formula (9) each independently represent a cyano group or an acidic group, and may be the same as or different from each other.
  • Preferable specific examples of the acidic group include a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, and a phosphoric ester group. More preferred examples of the acidic group include a carboxylic acid group.
  • the carbon-carbon double bond in the general formula (9) may be either E type or Z type.
  • R 15 is an aliphatic group, an aromatic group or a heterocyclic group (these groups may have an acidic group).
  • R 12 can be represented by the following general formula (13).
  • the maximum absorption wavelength in the solution of the dye of the present invention is preferably in the range of 350 to 1000 nm, more preferably in the range of 370 to 700 nm, and particularly preferably in the range of 390 to 650 nm.
  • the photoelectric conversion device of the present invention has an electrolyte composition containing a heterocyclic quaternary salt compound in the charge transfer body, but the heterocyclic quaternary salt compound is a 5-membered ring. Alternatively, a 6-membered heterocyclic quaternary salt compound is preferable, and an imidazole ring or pyridine ring quaternary salt compound is more preferable.
  • a heterocyclic quaternary salt compound preferable in the present invention is a heterocyclic quaternary salt compound represented by the following general formula (2).
  • the compound represented by the general formula (2) is a low melting point salt, so-called molten salt.
  • the melting point of the compound represented by the general formula (2) is preferably 100 ° C. or less, more preferably 80 ° C. or less, and particularly preferably 60 ° C. or less.
  • This compound includes a compound that is liquid at room temperature (around 25 ° C.), so-called room temperature molten salt.
  • the 6-membered ring formed by Q is preferably a pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring or triazine ring, and particularly preferably a pyridine ring.
  • the compound represented by the general formula (2) is preferably further represented by the general formula (14) or (15).
  • At least one of R 56 to R 59 in the general formula (14) and at least one of R 56 to R 60 in the general formula (15) are each — (CR 51 R 52 —CR 53 R 54 It is preferred that it contains —O) b — bonds.
  • Two or more of R 55 to R 60 may be linked to each other to form a ring structure.
  • This ring is preferably a 5- to 7-membered ring, more preferably a 5-membered ring or a 6-membered ring.
  • Z X - represents an anion, preferred examples of the general formula (2) in the Z X - is the same as.
  • the heterocyclic quaternary salt compound contained in the electrolyte composition of the present invention is particularly preferably general formula (2), general formula (10), or general formula (11), and most preferably general formula (10 And a compound represented by the following general formula (16) are also preferable. Particularly preferred are general formula (2), general formula (10), and general formula (11), and most preferred are general formula (10) and general formula (11).
  • R 101 represents a substituent, and examples of the substituent include a substituent on Q.
  • the cation of the iodine salt is preferably a 5-membered or 6-membered nitrogen-containing aromatic cation.
  • the heterocyclic quaternary salt compound represented by the compound represented by the general formula (2) is not an iodine salt, WO95 / 18456, JP-A-8-259543, Electrochemistry, Vol. 65, 11 No., page 923 (1997) and the like, and iodine salts such as pyridinium salts, imidazolium salts and triazolium salts are preferably used in combination.
  • Such solvents include carbonate compounds (ethylene carbonate, propylene carbonate, etc.), heterocyclic compounds (3-methyl-2-oxazolidinone, etc.), ether compounds (dioxane, diethyl ether, etc.), chain ethers (ethylene glycol dialkyl ether, Propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, etc.), alcohols (methanol, ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, etc.), Polyhydric alcohols (ethylene glycol, propylene glycol, polyethylene glycol , Polypropylene glycol, glycerol, etc.), nitrile compounds (acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, benzonitrile, biscyanoethyl
  • the electrolyte composition used in the photoelectric conversion element of the present invention may be added with a polymer or an oil gelling agent, or may be gelled (solidified) by a technique such as polymerization of polyfunctional monomers or polymer crosslinking reaction. .
  • the gel electrolyte may be formed by polymerization of a mixture containing a monofunctional monomer in addition to the above polyfunctional monomers.
  • Monofunctional monomers include acrylic acid or ⁇ -alkyl acrylic acid (acrylic acid, methacrylic acid, itaconic acid, etc.) or esters or amides thereof (methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n- Butyl acrylate, i-butyl acrylate, t-butyl acrylate, n-pentyl acrylate, 3-pentyl acrylate, t-pentyl acrylate, n-hexyl acrylate, 2,2-dimethylbutyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate 4-methyl-2-propylpentyl acrylate, cetyl acrylate, n-octade
  • the blending amount of the polyfunctional monomer is preferably 0.5 to 70% by mass, and more preferably 1.0 to 50% by mass with respect to the whole monomer.
  • the above-mentioned monomers are commonly used in Takayuki Otsu and Masato Kinoshita “Experimental Methods for Polymer Synthesis” (Chemical Doujin) and Takatsu Otsu “Lecture Polymerization Reaction Theory 1 Radical Polymerization (I)” (Chemical Doujin).
  • Polymerization can be performed by radical polymerization which is a polymer synthesis method.
  • the monomer for gel electrolyte used in the present invention can be radically polymerized by heating, light or electron beam, or electrochemically, and is particularly preferably radically polymerized by heating.
  • J. Am. Ceram. Soc. 80, (12), 3157-3171 (1997), or basic compounds such as 2-picoline and 2,6-lutidine may be added.
  • a preferred concentration range is 0.05 to 2M.
  • a photosensitive member 2 in which a dye 21 is adsorbed on porous semiconductor fine particles 22 is formed on a conductive support 1.
  • a photosensitive layer can be produced by immersing the dispersion of semiconductor fine particles in the dye solution of the present invention after coating and drying on a conductive support.
  • a glass or a polymer material having a conductive film on the surface can be used as the support itself, such as metal. It is preferable that the conductive support is substantially transparent. Substantially transparent means that the light transmittance is 10% or more, preferably 50% or more, and particularly preferably 80% or more.
  • a glass or polymer material coated with a conductive metal oxide can be used as the conductive support.
  • the coating amount of the conductive metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of the support of glass or polymer material.
  • a transparent conductive support it is preferable that light is incident from the support side.
  • polymer materials examples include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polycarbonate (PC), Examples include polyarylate (PAR), polysulfone (PSF), polyester sulfone (PES), polyetherimide (PEI), cyclic polyolefin, and brominated phenoxy.
  • TAC tetraacetyl cellulose
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • SPS syndiotactic polystyrene
  • PPS polyphenylene sulfide
  • PC polycarbonate
  • Examples include polyarylate (PAR), polysulfone (PSF), polyester sulfone (PES), polyetherimide (PEI), cyclic polyolefin, and brominated phenoxy
  • an antireflection film in which high refractive films and low refractive index oxide films described in JP-A-2003-123859 are alternately laminated.
  • a light guide function described in JP-A-2002-260746.
  • a metal support can also be preferably used. Examples thereof include titanium, aluminum, copper, nickel, iron, stainless steel, and copper. These metals may be alloys. More preferably, titanium, aluminum, and copper are preferable, and titanium and aluminum are particularly preferable.
  • a method of allowing a fluorescent material capable of changing ultraviolet light to visible light in the transparent support or on the surface of the transparent support, or a method using an ultraviolet absorber is also included.
  • a function described in JP-A-11-250944 may be further provided on the conductive support.
  • a collecting electrode may be disposed.
  • a gas barrier film and / or an ion diffusion prevention film may be disposed between the support and the transparent conductive film.
  • the gas barrier layer a resin film or an inorganic film can be used.
  • the transparent conductive layer may have a laminated structure, and as a preferable method, for example, FTO can be laminated on ITO.
  • (D) Semiconductor Fine Particles As shown in FIG. 1, in the photoelectric conversion element of the present invention, a photosensitive layer 2 in which a dye 21 is adsorbed on porous semiconductor fine particles 22 is formed on a conductive support 1. . As will be described later, for example, a dispersion of semiconductor fine particles is applied to the conductive support and dried, and then immersed in the dye solution of the present invention to produce a photoreceptor.
  • the semiconductor fine particles metal chalcogenides (for example, oxides, sulfides, selenides, etc.) or perovskite fine particles are preferably used.
  • Preferred examples of the metal chalcogenide include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, tantalum oxide, cadmium sulfide, cadmium selenide, and the like.
  • Preferred perovskites include strontium titanate and calcium titanate. Of these, titanium oxide, zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
  • n-type In semiconductors, there are an n-type in which carriers involved in conduction are electrons and a p-type in which carriers are holes. In the element of the present invention, n-type is preferable in terms of conversion efficiency. In an n-type semiconductor, in addition to an intrinsic semiconductor (or an intrinsic semiconductor) having no impurity level and having the same carrier concentration due to conduction band electrons and valence band holes, the electron carrier concentration is reduced by structural defects derived from impurities. There are high n-type semiconductors.
  • the n-type inorganic semiconductor preferably used in the present invention is TiO 2 , TiSrO 3 , ZnO, Nb 2 O 3 , SnO 2 , WO 3 , Si, CdS, CdSe, V 2 O 5 , ZnS, ZnSe, SnSe, KTaO. 3 , FeS 2 , PbS, InP, GaAs, CuInS 2 , CuInSe 2 and the like.
  • the most preferred n-type semiconductors are TiO 2 , ZnO, SnO 2 , WO 3 , and Nb 2 O 3 .
  • a semiconductor material in which a plurality of these semiconductors are combined is also preferably used.
  • the average particle size of the primary particles is 2 nm to 50 nm, and the average primary particle size is 2 nm to 30 nm. More preferably, it is a fine particle. Two or more kinds of fine particles having different particle size distributions may be mixed. In this case, the average size of the small particles is preferably 5 nm or less. In addition, for the purpose of improving the light capture rate by scattering incident light, large particles having an average particle size exceeding 50 nm can be added to the above ultrafine particles at a low content.
  • the content of the large particles is preferably 50% or less, more preferably 20% or less of the mass of particles having an average particle size of 50 nm or less.
  • the average particle size of the large particles added and mixed for the above purpose is preferably 100 nm or more, and more preferably 250 nm or more.
  • the gel-sol method described in Sakuo Sakuo's “Science of Sol-Gel Method”, Agne Jofu Co., Ltd. (1998) is preferable.
  • a method of producing an oxide by high-temperature hydrolysis of chloride developed by Degussa in an oxyhydrogen salt is preferable.
  • the semiconductor fine particles are titanium oxide
  • the above sol-gel method, gel-sol method, and high-temperature hydrolysis method in oxyhydrogen salt of chloride are all preferred, but Kiyoshi Manabu's “Titanium oxide properties and applied technology”
  • the sulfuric acid method and the chlorine method described in Gihodo Publishing (1997) can also be used.
  • titania examples include anatase type, brookite type, and rutile type, and anatase type and brookite type are preferable. Titania nanotubes, nanowires, and nanorods may be mixed with titania fine particles.
  • titania may be acid-base or redox treated before dye adsorption. Etching, oxidation treatment, hydrogen peroxide treatment, dehydrogenation treatment, UV-ozone, oxygen plasma, or the like may be used.
  • a semiconductor fine particle dispersion in which the solid content other than the semiconductor fine particles is 10% by mass or less of the entire semiconductor fine particle dispersion is applied to the conductive support.
  • the porous semiconductor fine particle coating layer can be obtained by heating to.
  • a method of preparing a semiconductor fine particle dispersion is a method of depositing fine particles in a solvent and using them as they are when synthesizing a semiconductor. Or a method of mechanically pulverizing and grinding using a mill or a mortar.
  • the dispersion solvent water and / or various organic solvents can be used.
  • organic solvent examples include alcohols such as methanol, ethanol, isopropyl alcohol, citronellol and terpineol, ketones such as acetone, esters such as ethyl acetate, dichloromethane, acetonitrile and the like.
  • alcohols such as methanol, ethanol, isopropyl alcohol, citronellol and terpineol
  • ketones such as acetone
  • esters such as ethyl acetate, dichloromethane, acetonitrile and the like.
  • a small amount of, for example, a polymer such as polyethylene glycol, hydroxyethyl cellulose, carboxymethyl cellulose, a surfactant, an acid, or a chelating agent may be used as a dispersion aid.
  • the viscosity of the semiconductor fine particle dispersion is preferably 10 to 300 N ⁇ s / m 2 at 25 ° C. More preferably, it is 50 to 200 N ⁇ s / m 2 at 25 ° C.
  • a preferred film forming method is selected according to the liquid viscosity and the wet thickness.
  • the semiconductor fine particle dispersion of the present invention since it has a high viscosity and has a viscous property, it may have a strong cohesive force and may not be well adapted to the support during coating. In such a case, by performing cleaning and hydrophilization of the surface by UV ozone treatment, the binding force between the applied semiconductor fine particle dispersion and the surface of the conductive support increases, and the semiconductor fine particle dispersion can be easily applied.
  • the preferred thickness of the entire semiconductor fine particle layer is 0.1 to 100 ⁇ m.
  • the thickness of the semiconductor fine particle layer is further preferably 1 to 30 ⁇ m, and more preferably 2 to 25 ⁇ m.
  • the amount of the semiconductor fine particles supported per 1 m 2 of the support is preferably 0.5 g to 400 g, more preferably 5 to 100 g.
  • the impurities adsorbed on the particle surface are decomposed by the activation of the particle surface, and can be brought into a preferable state for the above purpose.
  • heat treatment and ultraviolet light it is preferable that heating be performed at 100 ° C. or higher and 250 ° C. or lower, or preferably 100 ° C. or higher and 150 ° C. or lower, while irradiating the semiconductor fine particles with light absorbed by the fine particles.
  • the semiconductor fine particle dispersion may be applied to the conductive support, and other treatments may be performed in addition to heating and light irradiation.
  • preferred methods include energization and chemical treatment.
  • a pressure may be applied after the application, and a method for applying the pressure includes Japanese Patent Publication No. 2003-500857.
  • Examples of light irradiation include JP-A No. 2001-357896.
  • Examples of plasma, microwave, and energization include JP-A No. 2002-353453.
  • Examples of the chemical treatment include Japanese Patent Application Laid-Open No. 2001-357896.
  • a method of forming a semiconductor film by applying a slurry in which a metal organic oxide (alkoxide, etc.) coexists, and heat treatment, light treatment, etc., a slurry in which an inorganic precursor coexists, titania dispersed in the pH of the slurry The method which specified the property of particle
  • a binder may be added to these slurries in a small amount, and examples of the binder include cellulose, fluoropolymer, crosslinked rubber, polybutyl titanate, carboxymethyl cellulose and the like.
  • Techniques related to the formation of semiconductor fine particles or precursor layers thereof include corona discharge, plasma, a method of hydrophilizing by a physical method such as UV, a chemical treatment with alkali, polyethylenedioxythiophene and polystyrenesulfonic acid, polyaniline, etc. For example, formation of an interlayer film for bonding may be mentioned.
  • Examples of the dry method include vapor deposition, sputtering, and aerosol deposition method. Further, electrophoresis or electrodeposition may be used. Moreover, after producing a coating film once on a heat-resistant board
  • the semiconductor fine particles preferably have a large surface area so that many dyes can be adsorbed.
  • the surface area is preferably 10 times or more, more preferably 100 times or more the projected area.
  • limiting in particular in this upper limit Usually, it is about 5000 times. JP-A-2001-93591 and the like are preferable as the structure of semiconductor fine particles.
  • the thickness of the semiconductor fine particle layer increases, the amount of dye that can be supported per unit area increases, so that the light absorption efficiency increases.
  • the preferred thickness of the semiconductor fine particle layer varies depending on the use of the device, but is typically 0.1 to 100 ⁇ m. When used as a photoelectrochemical cell, the thickness is preferably 1 to 50 ⁇ m, more preferably 3 to 30 ⁇ m.
  • the semiconductor fine particles may be heated at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours in order to bring the particles into close contact after being applied to the support.
  • the film forming temperature is preferably 400 to 600 ° C.
  • a polymer material is used as the support, it is preferably heated after film formation at 250 ° C.
  • the film forming method may be any of (1) a wet method, (2) a dry method, and (3) an electrophoresis method (including an electrodeposition method), and preferably (1) a wet method or ( 2) Dry method, more preferably (1) Wet method.
  • the coating amount of semiconductor fine particles per 1 m 2 of the support is preferably 0.5 to 500 g, more preferably 5 to 100 g.
  • the dye adsorbing dye solution comprising the solution and the dye of the present invention.
  • the solution used for the dye solution for dye adsorption can be used without particular limitation as long as it is a solution that can dissolve the dye of the present invention.
  • ethanol, methanol, isopropanol, toluene, t-butanol, acetonitrile, acetone, n-butanol and the like can be used.
  • ethanol and toluene can be preferably used.
  • a colorless compound may be co-adsorbed for the purpose of reducing the interaction between dyes such as association.
  • the hydrophobic compound to be co-adsorbed include steroid compounds having a carboxyl group (for example, cholic acid and pivaloyl acid).
  • the surface of the semiconductor fine particles may be treated with amines.
  • Preferred amines include 4-tert-butylpyridine, polyvinylpyridine and the like. These may be used as they are in the case of a liquid, or may be used by dissolving in an organic solvent.
  • the counter electrode serves as the positive electrode of the photoelectrochemical cell.
  • the counter electrode is usually synonymous with the conductive support described above, but the support is not necessarily required in a configuration in which the strength is sufficiently maintained. However, having a support is advantageous in terms of hermeticity.
  • the material for the counter electrode include platinum, carbon, conductive polymer, and the like. Preferable examples include platinum, carbon, and conductive polymer.
  • the structure of the counter electrode a structure having a high current collecting effect is preferable.
  • Preferred examples include JP-A-10-505192.
  • a composite electrode such as titanium oxide and tin oxide (TiO 2 / SnO 2 ) may be used, and as a mixed electrode of titania, for example, Japanese Patent Application Laid-Open No. 2000-11913 is cited.
  • mixed electrodes other than titania include Japanese Patent Application Laid-Open Nos. 2001-185243 and 2003-282164.
  • the light receiving electrode may be a tandem type in order to increase the utilization rate of incident light.
  • Examples of preferred tandem type configurations include those described in JP-A-2002-90989.
  • a light management function for efficiently performing light scattering and reflection inside the light receiving electrode layer may be provided.
  • Preferable examples include those described in JP-A-2002-93476.
  • a short-circuit prevention layer is preferably formed between the conductive support and the porous semiconductor fine particle layer in order to prevent a reverse current due to direct contact between the electrolyte and the electrode.
  • Preferable examples include Japanese Patent Application Laid-Open No. 06-507999.
  • a spacer or a separator In order to prevent contact between the light receiving electrode and the counter electrode, it is preferable to use a spacer or a separator.
  • a preferable example is JP-A-2001-283941.
  • the zirconia beads were removed from the obtained dispersion by filtration to obtain a semiconductor fine particle dispersion.
  • the average particle diameter of the titanium dioxide fine particles in the obtained dispersion was 2.5 ⁇ m.
  • the particle size was measured with a master sizer (trade name, manufactured by MALVERN) of a laser diffraction particle size distribution meter.
  • the semiconductor fine particle dispersion prepared in (A) was applied to the conductive surface side of the cut conductive glass (surface resistance of about 30 ⁇ / cm 2 ) using a glass rod, and the coating amount of the semiconductor fine particles was 20 g / m 2.
  • adhesive tape is stretched on a part of the conductive surface side (3 mm from the end) as a spacer, and conductive glass is arranged so that the adhesive tape comes to both ends, and eight semiconductor fine particle dispersions at a time.
  • the adhesive tape was then peeled off and allowed to stand at room temperature for 1 day, and then this conductive glass was placed in an electric furnace (muffle furnace FP-32 type (trade name, manufactured by Yamato Scientific Co., Ltd.)).
  • 450 By baking for 30 minutes at, to obtain a semiconductor fine particle electrode. After the electrode extraction cooling, was immersed for 3 hours in an ethanol solution of the dye shown in Table 1 (3 ⁇ 10 -4 mol / l).
  • This electrode was immersed in 4-t-butylpyridine for 15 minutes, then washed with ethanol and air-dried to obtain a semiconductor fine particle electrode adsorbed with the dye.
  • the sensitivity was selected from the range of 1 to 10 mmol / m 2 so that the sensitization was optimized.
  • the charge transfer body 3, the counter electrode 4 made of platinum, and a transparent glass substrate (not shown) were laminated in this order to produce a photoelectrochemical cell.
  • the edge part was sealed with the epoxy-type sealing agent after introduce
  • the electrolyte composition has a high viscosity and it is difficult to introduce the electrolyte composition into the semiconductor fine particle electrode by utilizing capillary action, the electrolyte composition is heated to 50 ° C., and the semiconductor adsorbed with the dye It applied to the fine particle electrode. Thereafter, the electrode was placed under reduced pressure, the electrolyte composition permeated sufficiently, and the air in the electrode was extracted. Then, a platinum-deposited glass (counter electrode) was overlapped to produce a photoelectrochemical cell in the same manner.
  • Photoelectrochemical cells of Examples 1 to 19 and Comparative Examples 1 to 6 were prepared by changing the electrolyte composition and the dye and using the same process.
  • Table 1 shows the heterocyclic quaternary salt compound contained in the electrolyte composition used for each photoelectrochemical cell and the dye adsorbed on the semiconductor fine particles.
  • 2% by mass of iodine was blended in the electrolyte composition.
  • 70% by mass of ⁇ -butyrolactone and 28% by mass of tetrabutylammonium iodide were blended without blending the heterocyclic quaternary salt compound.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

  【課題】 本発明の課題は、変換効率が高く、さらに耐久性に優れた光電変換素子および光電気化学電池を提供することにある。 【解決手段】 導電性支持体上に色素が吸着された多孔質半導体微粒子層を有する感光体、電荷移動体、および対極を含む積層構造よりなる光電変換素子であって、前記色素が下記一般式(1)で表される構造を有し、前記電荷移動体がヘテロ環4級塩化合物を含有する電解質組成物を有する光電変換素子。 [一般式(1)中、Xはベンゼン環と連結して七員環の含窒素複素環を形成するのに必要な非金属原子群を表す。Yは色素残基を表し、nは1以上の整数を表す。Zは置換基を表し、mは0又は正の整数を表す。mが2以上の場合、Zは同一でも異なっていてもよい。Rは水素原子、脂肪族基、芳香族基又は炭素原子で結合する複素環基を表す。]

Description

光電変換素子及び光電気化学電池
 本発明は、変換効率が高く、耐久性に優れた光電変換素子及び光電気化学電池に関する。
 光電変換素子は各種の光センサー、複写機、太陽電池等に用いられている。この光電変換素子には金属を用いたもの、半導体を用いたもの、有機顔料や色素を用いたもの、あるいはこれらを組み合わせたものなどの様々な方式が実用化されている。中でも、非枯渇性の太陽エネルギーを利用した太陽電池は、燃料が不要であり、無尽蔵なクリーンエネルギーを利用したものとして、その本格的な実用化が大いに期待されている。この中でも、シリコン系太陽電池は古くから研究開発が進められてきた。各国の政策的な配慮もあって普及が進んでいる。しかし、シリコンは無機材料であり、スループット及び分子修飾には自ずと限界がある。
 そこで色素増感型太陽電池の研究が精力的に行われている。とくに、スイスのローザンヌ工科大学のGraetzel等がポーラス酸化チタン薄膜の表面にルテニウム錯体からなる色素を固定した色素増感型太陽電池を開発し、アモルファスシリコン並の変換効率を実現した。これにより、色素増感型太陽電池が一躍世界の研究者から注目を集めるようになった。
 特許文献1には、この技術を応用し、ルテニウム錯体色素によって増感された半導体微粒子を用いた色素増感光電変換素子が記載されている。
 しかしながら、ルテニウム錯体色素は極めて高価である。その上、ルテニウムは供給性に懸念があり、次世代のクリーンエネルギーを支える技術として本格的に対応するにはまだ十分といえない。そこで、資源的制約が小さく廉価な有機色素を増感剤として用い、十分な変換効率を有する光電変換素子の開発が望まれており、有機色素を増感剤として用いたものが報告されている(特許文献2参照)。
 ところで、光電変換素子には、初期の変換効率が高く、使用後も変換効率の低下が少なく耐久性に優れることが必要とされる。しかし耐久性という点では、特許文献2及び3記載の光電変換素子では十分とはいえない。
 また、特定の化合物を用いた電解質組成物を電荷移動層に使用することにより、電解液の漏洩を低減した光電変換素子が報告されている(特許文献3)。この光電変換素子により電解質の漏洩という点は改善されているものの、さらに耐久性に優れた光電変換素子及び光電気化学電池が必要とされている。
米国特許第5463057号明細書 特許第4148374号公報 特開2001-256828号公報
 本発明の課題は、変換効率が高く、さらに耐久性に優れた光電変換素子および光電気化学電池を提供することにある。
 本発明者等は、鋭意検討を重ねた結果、導電性支持体上に特定の色素(色素化合物)が吸着された多孔質半導体微粒子層を有する感光体、特定の化合物を含有する電解質組成物を有する電荷移動体、及び対極を含む積層構造よりなる光電変換素子とこれを用いた光電気化学電池が、変換効率が高く、耐久性に優れることを見出した。本発明はこの知見に基づきなされたものである。
 本発明の課題は、以下の手段によって達成された。
<1>導電性支持体上に色素が吸着された半導体微粒子層を有する感光体、電荷移動体、および対極を含む積層構造よりなる光電変換素子であって、前記色素が下記一般式(1)で表される構造を有し、前記電荷移動体がヘテロ環4級塩化合物を含有する電解質組成物を有することを特徴とする光電変換素子。
Figure JPOXMLDOC01-appb-C000016
[一般式(1)中、Xはベンゼン環と連結して七員環の含窒素複素環を形成するのに必要な非金属原子群を表す。Yは色素残基を表し、nは1以上の整数を表す。Zは置換基を表し、mは0又は正の整数を表す。mが2以上の場合、Zは同一でも異なっていてもよい。Rは水素原子、脂肪族基、芳香族基又は炭素原子で結合する複素環基を表す。]
<2>前記ヘテロ環4級塩化合物が、下記一般式(2)で表されることを特徴とする<1>記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000017
[一般式(2)中、Rは-(CR3132-CR3334-O)-結合(R31~R34はそれぞれ独立に水素原子又はアルキル基を表し、aは2~20の整数を表す。)を含む置換基を表し、Qは窒素原子と共に5又は6員環の芳香族カチオンを形成しうる原子団を表し、置換基を有していてもよく、Z はアニオンを表す。]
<3>前記一般式(1)で表される色素が、下記一般式(3)で表される構造を有することを特徴とする<1>又は<2>記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
[一般式(3)において、Xはベンゼン環と連結して七員環の含窒素複素環を形成するのに必要な非金属原子群を表す。Rは水素原子、脂肪族基、芳香族基又は炭素原子で結合する複素環基を表す。R~Rは水素原子、又は置換基を表すが、R~Rのうちの少なくとも1つは一般式(4)で示される色素残基を表す。
 一般式(4)においてR10、R11、及びR13は、それぞれ独立して、水素原子、脂肪族基、芳香族基、又は複素環基を表す。rは0以上の整数を示す。一般式(4)における炭素-炭素二重結合は、E型、又はZ型のいずれであってもよい。R12は、酸性基を少なくとも一つ有する基または酸性核を表す。]
<4>前記一般式(1)又は一般式(3)で表される構造を有する色素が、下記一般式(5)で表されることを特徴とする<1>~<3>のいずれか1項記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000020
[一般式(5)において、R~R、R~R13及びrは、それぞれ一般式(3)及び一般式(4)におけるR~R、R~R13及びrと同義である。]
<5>前記一般式(1)又は一般式(3)で表される構造を有する色素が、下記一般式(6)で表されることを特徴とする<1>~<3>のいずれか1項記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000021
[一般式(6)において、R~R13及びrは、それぞれ一般式(3)及び一般式(4)におけるR~R13及びrと同義である。
 一般式(6)において、R14は水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、又は複素環基を表す。]
<6>前記一般式(1)又は一般式(3)で表される構造を有する色素が、下記一般式(7)で表されることを特徴とする<1>~<3>のいずれか1項記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000022
[一般式(7)において、R~R、R、R、R~R13及びrは、それぞれ一般式(3)及び一般式(4)におけるR~R、R、R、R~R13及びrと同義である。]
<7>R12が下記一般式(8)または一般式(9)で表されることを特徴とする<3>~<6>のいずれか1項記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 一般式(8)においてR15、R16は、それぞれ独立に、脂肪族基、芳香族基または複素環基を表す(少なくとも1つの官能基は酸性基を有していてもよい)。lは0又は1を示す。一般式(8)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。一般式(8)中のR17は硫黄原子または一般式(10)を表し、一般式(10)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
 一般式(9)におけるR18、R19は、それぞれ独立に、シアノ基又は酸性基を表し、互いに同一でも異なっていてもよい。一般式(9)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
 一般式(10)におけるR20、R21は、それぞれ独立に、シアノ基又は酸性基を表し、互いに同一でも異なっていてもよい。一般式(10)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
<8>前記一般式(8)で表される基が下記一般式(11)で表されることを特徴とする<7>記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000026
 一般式(11)においてR16は、脂肪族基、芳香族基または複素環基を表す(これらの基は酸性基を有していてもよい)。一般式(11)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
<9>前記R12が下記一般式(12)で表されることを特徴とする<3>~<6>のいずれか1項記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000027
 一般式(12)においてR15は、脂肪族基、芳香族基または複素環基を表す(これらの基は酸性基を有していてもよい)。一般式(12)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
<10>前記R12が下記一般式(13)で表されることを特徴とする<3>~<6>のいずれか1項記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000028
一般式(13)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
<11>前記一般式(2)で表されるヘテロ環4級塩化合物が、下記一般式(14)又は(15)で表されることを特徴とする<2>~<10>のいずれか1項記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
[一般式(14)及び(15)において、R55は-(CR5152-CR5354-O)-結合(R51~R54はそれぞれ独立に水素原子又はアルキル基を表し、bは2~20の整数を表す。)を含む置換基を表し、R56~R60はそれぞれ独立に水素原子又は置換基を表し、Z はアニオンを表し、R55~R60のうち2つ以上が互いに連結して環構造を形成していてもよい。]
<12>前記Z がI、N(CFSO 、BF 、R-COO(Rは水素原子、アルキル基、パーフルオロアルキル基又はアリール基を表す。)、R-SO (Rはアルキル基、パーフルオロアルキル基又はアリール基を表す。)又はSCNであることを特徴とする<2>~<11>のいずれか1項記載の光電変換素子。
<13><1>~<12>のいずれか1項に記載の光電変換素子を備えることを特徴とする光電気化学電池。
 本発明により、変換効率が高く、耐久性に優れた光電変換素子および光電気化学電池を提供することができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、本発明によって製造される光電変換素子の一実施態様について模式的に示した断面図である。
 本発明者等は、鋭意検討を重ねた結果、導電性支持体上に特定の色素(色素化合物)が吸着された半導体微粒子層を有する感光体、特定の化合物を含有する電解質組成物を有する電荷移動体、及び対極を含む積層構造よりなる光電変換素子とこれを用いた光電気化学電池が、変換効率が高く、耐久性、特に変換効率の低下が少ないことを見出した。本発明はこの知見に基づきなされたものである。
 本発明の光電変換素子の好ましい実施態様を、図面を参照して説明する。図1に示すように、光電変換素子10は、導電性支持体1、導電性支持体1上に色素が吸着された多孔質半導体微粒子を有する感光体2、電荷移動体3及び対極4からなる。感光体2が形成された導電性支持体1は光電変換素子10において作用電極として機能する。この光電変換素子10を外部回路6で仕事をさせる電池用途に使用できるようにして、光電気化学電池(図示せず)として作動させることができる。
 受光電極5は、導電性支持体1および導電性支持体上に塗設される色素21の吸着した半導体微粒子22の感光体(半導体膜)2よりなる電極である。感光体(半導体膜)2に入射した光は色素を励起する。励起色素はエネルギーの高い電子を有している。そこでこの電子が色素21から半導体微粒子22の伝導帯に渡され、さらに拡散によって導電性支持体1に到達する。このとき色素21の分子は酸化体となっている。電極上の電子が外部回路で仕事をしながら色素酸化体に戻ることにより、光電気化学電池として作用する。この際、受光電極5はこの電池の負極として働く。
 本発明の光電変換素子は、導電性支持体上に後述の色素が吸着された多孔質半導体微粒子層を有する感光体を有する。感光体は目的に応じて設計され、単層構成でも多層構成でもよい。感光体中の色素は一種類でも多種類の色素が混合されたものでもよいが、このうちの少なくとも1種は、後述の色素を用いる。本発明の光電変換素子の感光体には、この色素が吸着した半導体微粒子を含み、感度が高く、光電気化学電池として使用する場合に、高い変換効率を得ることができる。
 さらに同時に、後述のヘテロ環4級塩化合物を含有する電解質組成物を電荷移動体に用いることにより、変換効率が高いだけでなく、変換効率の低下が少なく耐久性に優れている光電変換素子を得ることができる。
(A)色素
 感光体を構成する多孔質半導体微粒子に吸着される色素(色素化合物)は、下記一般式(1)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000031
 一般式(1)中、Xはベンゼン環と連結して含窒素七員環を形成するのに必要な非金属原子群を表す。ここで非金属原子群とは、炭素原子、酸素原子、窒素原子及び硫黄原子からなる群から選ばれた少なくとも1種が結合した原子群をいう。なお、これらの各原子には水素原子や置換基が結合してもよい。
 Yは色素残基を表す。色素残基とは、一般式(1)のY以外の構造とともに全体として色素化合物を構成するのに必要な原子群を示す。Yは直接又は連結基を介してベンゼン環と結合する。Yによって形成される色素化合物としては、例えば、メロシアニン、ヘミシアニン、スチリル、オキソノール、シアニンなどのポリメチン色素、アクリジン、キサンテン、チオキサンテンなどを含むジアリールメチン、トリアリールメチン、クマリン、インドアニリン、インドフェノール、ジアジン、オキサジン、チアジン、ジケトピロロピロール、インジゴ、アントラキノン、ペリレン、キナクリドン、ナフトキノン、ビピリジル、ターピリジル、テトラピリジル、フェナントロリンなどが挙げられる。好ましくは、ポリメチン色素、ポリアリール色素等が挙げられる。nは1以上の整数を表す。nの好ましい値は1~2である。
 Zは置換基を表し、脂肪族基、芳香族基、複素環基等が挙げられる。置換基の具体的な例としては、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、ヘテロ環等を挙げることができる。好ましい例としては、アルキル基(例えばメチル、エチル、n-ブチル、n-ヘキシル、イソブチル、sec-ブチル、t-ブチル、n-ドデシル、シクロヘキシル、ベンジル等)、置換アリール基(例えばフェニル、トリル、ナフチル等)、アルコキシ基(例えば、メトキシ、エトキシ、イソプロポキシ、ブトキシ等)を挙げることができる。
 mは0、又は正の整数を表す。Zで表される置換基は、mが2以上の場合、同一でも異なっていても良い。
 Rは水素原子、脂肪族基、芳香族基、炭素原子で結合する複素環基を表す。Rの好ましい具体例としては、炭素数1~20の置換もしくは無置換のアルキル基(例えばメチル、エチル、n-ブチル、n-ヘキシル、イソブチル、sec-ブチル、t-ブチル、n-ドデシル、シクロヘキシル、ベンジル等)、置換もしくは無置換のアリール基(例えばフェニル、トリル、ナフチル等)、置換もしくは無置換の複素環残基(例えばピリジル、イミダゾリル、フリル、チエニル、オキサゾリル、チアゾリル、ベンズイミダゾリル、キノリル等)などが挙げられ、より好ましくは炭素数1~20の置換もしくは無置換のアルキル基(例えばメチル、エチル、n-ブチル、n-ヘキシル、イソブチル、sec-ブチル、t-ブチル、n-ドデシル、シクロヘキシル、ベンジル等)が挙げられる。
Figure JPOXMLDOC01-appb-C000032
 一般式(3)において、Xは連結するベンゼン環と含窒素七員環を形成するのに必要な非金属原子群を表す。ここで非金属原子群とは、炭素原子、酸素原子、窒素原子及び硫黄原子からなる群から選ばれた少なくとも1種が結合した原子群をいう。なお、これらの各原子には水素原子や置換基が結合してもよい。Rは水素原子、脂肪族基、芳香族基又は炭素原子で結合する複素環基を表す。Rの好ましい具体例としては、炭素数1~20の置換もしくは無置換のアルキル基(例えばメチル、エチル、n-ブチル、n-ヘキシル、イソブチル、sec-ブチル、t-ブチル、n-ドデシル、シクロヘキシル、ベンジル等)、置換もしくは無置換のアリール基(例えばフェニル、トリル、ナフチル等)、置換もしくは無置換の複素環残基(例えばピリジル、イミダゾリル、フリル、チエニル、オキサゾリル、チアゾリル、ベンズイミダゾリル、キノリル等)などが挙げられ、より好ましくは炭素数1~20の置換もしくは無置換のアルキル基(例えばメチル、エチル、n-ブチル、n-ヘキシル、イソブチル、sec-ブチル、t-ブチル、n-ドデシル、シクロヘキシル、ベンジル等)が挙げられる。R~Rは水素原子、又は置換基を表す。ただし、R~Rのうちの少なくとも1つは一般式(3)で示される色素残基を表す。置換基の具体的な例は、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、複素環基等を示している。好ましい例は、アルキル基(例えばメチル、エチル、n-ブチル、n-ヘキシル、イソブチル、sec-ブチル、t-ブチル、n-ドデシル、シクロヘキシル、ベンジル等)、置換アリール基(例えばフェニル、トリル、ナフチル等)、アルコキシ基(例えば、メトキシ、エトキシ、イソプロポキシ、ブトキシ等)が挙げられる。
Figure JPOXMLDOC01-appb-C000033
 一般式(4)中、R12は、酸性基を少なくとも一つ有する基、または酸性基が少なくとも一つ置換した酸性核を表す。
 酸性核としてT.H.James著「The Theory of the photografic process. forth edition.」Macmillan publishing社,1977年刊の199ページに記載のものが挙げられる。
 R12に酸性基を少なくとも一つ有する場合、R12に同時に電子吸引基を有していることが好ましく、電子吸引基としては後述の効果(-I効果、-M効果)を持つ置換基が挙げられる。R12が酸性基と電子吸引基を同時に有する場合に、色素の励起状態の分子軌道と受光電極との重なりが大きくなるような効果を発揮するように、電子吸引基の種類や結合位置は適宜選択される。
 一般に、電子吸引基は分子の特定の位置について電子密度を減弱させる。電子求引性あるいは電子供与性は単に電気陰性度の差だけでは説明できない。すなわち、誘起効果やメソメリー効果などが複合的に作用するので、芳香性や共役系の存在やトポロジー的な位置関係によって現れ方が変わってくる。これらの効果を、パラ及びメタ置換安息香酸の酸解離定数をもとに定量的に評価、予測する経験則としてハメット則が知られている。誘起効果の場合、電子求引性のものを-I効果、電子供与性のものを+I効果と表すが、炭素よりも電気陰性度の高い原子は-I効果を示す。また、アニオンは+I効果を、カチオンは-I効果を示す。メソメリー効果の場合は、電子求引性のものを-M効果、電子供与性のものを+M効果と表す。電子求引基の例を以下に示す。
 誘起効果
(-I効果)
 ・-O > -N
 ・-N > -P > …
 ・-O > -S > …
 ・-N > -NO > -SOR > -SOR
 ・-SOR > -SO
 ・-N > -NR
 ・-O > -OR
 ・-S > -SR
 ・-F > -Cl > -Br > -I
 ・=O > =NR > =CR
 ・=O > -OR
 ・≡N > ≡CR
 ・≡N > =NR > -NR
 ・-C≡CR > -CR=CR > -CRCR
メソメリー効果
(-M効果)
 ・=N > =NR
 ・=O > =NR > =CR
 ・=S > =O > ≡N
 酸性核として好ましくは、ロダニン核、ヒンダントイン、チオヒダントイン、バルビツール酸、ピラゾリジンジオン、ピラゾロン、インダンジオン等が挙げられる。これらは、カルボニル部分で脱水縮合した二つ以上の酸性核が連結したものを含んでも構わない。好ましくは。ロダニン、ヒンダントイン、チオヒダントイン、バルビツール酸、ピラゾリジンジオンが挙げられ、特に好ましくは、ロダニンが挙げられる。
 R12中に含まれる酸性基とはpKaが13以下のプロトン解離性基を表す。酸性基の好ましい具体例としては、カルボン酸、スルホン酸、リン酸、リン酸エステル等が挙げられる。酸性基のさらに好ましい例は、カルボン酸が挙げられる。炭素-炭素二重結合は、E型、またはZ型のいずれであってもよい。
 一般式(4)においてR10、R11、及びR13は、それぞれ独立して、水素原子、脂肪族基、芳香族基、又は複素環基を表す。rは0以上の整数を示す。一般式(4)における炭素-炭素二重結合は、E型、又はZ型のいずれであってもよい。R10、R11、及びR13は水素原子、脂肪族基、芳香族基が好ましく、脂肪族基、芳香族基がより好ましい。 
 前記一般式(1)又は一般式(3)で表される構造を有する色素が、下記一般式(5)で表されることが好ましい。
 一般式(5)において、R10、R11、R13及びrは、いずれも一般式(4)におけるR10、R11、及びrと同義であり、好ましい範囲も同じである。
Figure JPOXMLDOC01-appb-C000034
 一般式(5)は、一般式(1)中のXがエチレン基の場合であって、それにより含窒素七員環構造が形成されている。また窒素原子で置換されている一方のベンゼン環のパラ位に1つの色素残基を有している。
Figure JPOXMLDOC01-appb-C000035
 前記一般式(1)又は一般式(3)で表される構造を有する色素が、上記一般式(6)で表されることが好ましい。
 一般式(6)は、含窒素七員環に炭素-炭素二重結合を有しており、色素残基を含窒素七員環上に有している。
 一般式(6)中、R14は水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、又は複素環基を表す。好ましくは、アルキル基(例えばメチル、エチル、n-ブチル、n-ヘキシル、イソブチル、sec-ブチル、t-ブチル、n-ドデシル、シクロヘキシル、ベンジル等)、置換アリール基(例えばフェニル、トリル、ナフチル等)、アルコキシ基(例えば、メトキシ、エトキシ、イソプロポキシ、ブトキシ等)を挙げることができる。
 R~R13及びrは、一般式(3)及び一般式(4)におけるR~R13及びrと同義であり、好ましい範囲も同じである。
Figure JPOXMLDOC01-appb-C000036
 前記一般式(1)又は一般式(3)で表される構造を有する色素が、上記一般式(7)で表されることが好ましい。
 一般式(7)は、一般式(1)中のXがエチレン基の場合であって、それにより含窒素七員環構造が形成されている。また窒素原子で置換されている2つのベンゼン環のそれぞれのパラ位にそれぞれ1つずつ色素残基を有している。
 なお、R~R13及びrは、一般式(3)及び一般式(4)におけるR~R13及びrと同義であり、好ましい範囲も同じである。また、2個の一般式(4)に相当する色素残基は互いに同じでも異なっても良い。
 上記一般式(4)~(7)において、R12を下記一般式(8)又は一般式(9)とすることができる。
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
 一般式(8)においてR15、R16は、それぞれ独立に、脂肪族基、芳香族基または複素環基である(少なくとも1つの官能基は酸性基を有していてもよい)。lは0又は1を示す。一般式(8)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。一般式(8)中のR17は硫黄原子または一般式(10)を表す。
 R17が硫黄原子を示す場合、R15、R16の少なくとも一つは、酸性基を有する脂肪族基、芳香族基、複素環基であることが好ましく、それらは異なっていてもよい。酸性基の好ましい具体例としては、カルボン酸、スルホン酸、リン酸、リン酸エステル等が挙げられる。酸性基のさらに好ましい例は、カルボン酸が挙げられる。炭素-炭素二重結合は、E型、またはZ型のいずれであってもよい。
 一般式(10)において、R20、R21は、シアノ基または酸性基を表し互いに同一でも異なっていてもよい。酸性基の好ましい具体例としては、カルボン酸基、スルホン酸基、リン酸基、リン酸エステル基等が挙げられる。酸性基のさらに好ましい例としては、カルボン酸基が挙げられる。一般式(10)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
 一般式(9)におけるR18、R19は、それぞれ独立に、シアノ基又は酸性基を表し、互いに同一でも異なっていてもよい。酸性基の好ましい具体例としては、カルボン酸基、スルホン酸基、リン酸基、リン酸エステル基等が挙げられる。酸性基のさらに好ましい例は、カルボン酸基が挙げられる。一般式(9)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
 一般式(8)において、下記一般式(11)で示すものを使用することができる。ここでR16は、脂肪族基、芳香族基又は複素環基であり、酸性基を有してもよい。
Figure JPOXMLDOC01-appb-C000040
 また一般式(4)~(7)において、R12が下記一般式(12)とすることができる。
Figure JPOXMLDOC01-appb-C000041
 一般式(12)においてR15は、脂肪族基、芳香族基または複素環基である(これらの基は酸性基を有していてもよい)。
 また一般式(4)~(7)において、R12が下記一般式(13)とすることができる。
Figure JPOXMLDOC01-appb-C000042
 以下に、本発明の色素(色素化合物)の好ましい具体例を示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
 本発明の色素は、溶液における最大吸収波長が、好ましくは350~1000nmの範囲であり、より好ましくは370~700nmの範囲であり、特に好ましくは390~650nmの範囲である。
 本発明の色素(色素化合物)は、例えば、F.M.Harmer著「Heterocyclic Compounds-Cynaine Dyes and Related Compounds」John Willey & Sons社,NewYork and London,1994年刊などに記載、引用もしくはこれらに類似の方法により合成することができる。
(B)へテロ環4級塩化合物
 本発明の光電変換素子においては、電荷移動体にヘテロ環4級塩化合物を含有する電解質組成物を有するが、ヘテロ環4級塩化合物としては5員環又は6員環のヘテロ環4級塩化合物が好ましく、イミダゾール環またはピリジン環の4級塩化合物がさらに好ましい。 本発明において好ましいヘテロ環4級塩化合物は下記一般式(2)で表されるヘテロ環4級塩化合物である。
Figure JPOXMLDOC01-appb-C000050
 一般式(2)により表される化合物は低融点の塩、いわゆる溶融塩である。一般式(2)により表される化合物の融点は100℃以下であるのが好ましく、80℃以下であるのがより好ましく、60℃以下であるのが特に好ましい。この化合物には常温(25℃付近)で液体である化合物、いわゆる室温溶融塩が含まれる。
 一般式(2)により表される化合物は溶媒をほとんど用いずに電解質として使用できることが多く、単独で電解質として使用できる場合も多い。常温で固体であっても少量の溶媒や添加剤等を加えることで液状とし、電解質として使用できる。また何も添加しなくても、加熱溶解して電極上に浸透させる方法、低沸点溶媒(メタノール、アセトニトリル、塩化メチレン等)等を用いて電極上に浸透させ、その後溶媒を加熱により除去する方法等により光電変換素子に組み込むことができる。
 一般式(2)中、Rは-(CR3132-CR3334-O)-結合を含む置換基を表す。ここで、R31~R34はそれぞれ独立に水素原子又はアルキル基を表し、このアルキル基の炭素原子数は1~4個であるのが好ましい。R31~R34はそれぞれ独立に水素原子又はメチル基であるのが好ましく、水素原子であるのがより好ましい。また、aは2~20の整数を表し、2~6の整数であるのが好ましく、2~4の整数であるのが特に好ましい。aが小さすぎると光電変換素子に用いたときの開放電圧が低く、aが大きすぎるとイオン輸送能(電流密度)が大きく低下するため好ましくない。なお、Rは直鎖状であっても分岐状であっても、また環状であってもよい。
 本発明の電解質組成物が含有する一般式(2)により表される化合物は、置換又は無置換のエチレンオキシ基の繰り返しを含む置換基を、特定の位置に有する。メチレンオキシ基の繰り返しは合成が困難である。また、一般式(2)により表される化合物に、トリメチレンオキシ基又はそれ以上のメチレン基を有するアルキレンオキシ基の繰り返しを含む置換基を導入すると、電解質組成物のイオン輸送能が大きく低下し、光電変換素子に用いた際に光電変換効率が悪化してしまうため好ましくない。
 一般式(2)中、Qは窒素原子と共に5員環又は6員環の芳香族カチオンを形成しうる原子団を表す。Qは置換基を有していてもよく、この置換基は-(CR3132-CR3334-O)-結合を含むのが好ましい。ここで、R31~R34はそれぞれ独立に水素原子又はアルキル基を表し、aは2~20の整数を表す。R31~R34及びaの好ましい態様は上記Rに含まれる、-(CR3132-CR3334-O)-結合の場合と同様である。なお、一般式(2)により表される化合物が複数の-(CR3132-CR3334-O)-結合を含む場合、それらのR31~R34及びaは、それぞれ同じでも異なっていてもよい。
 Qは炭素原子、水素原子、窒素原子、酸素原子及び硫黄原子からなる群から選ばれる1種以上の原子により構成されるのが好ましい。
 Qが形成する5員環はオキサゾール環、チアゾール環、イミダゾール環、ピラゾール環、イソオキサゾール環、チアジアゾール環、オキサジアゾール環又はトリアゾール環であるのが好ましく、オキサゾール環、チアゾール環又はイミダゾール環であるのがより好ましく、イミダゾール環であるのが特に好ましい。Qが形成する6員環はピリジン環、ピリミジン環、ピリダジン環、ピラジン環又はトリアジン環であるのが好ましく、ピリジン環であるのが特に好ましい。
 前述のようにQ上の置換基は-(CR3132-CR3334-O)-結合を含むのが好ましい。加えて、好ましいQ上の置換基の例としてアルコキシ基(メトキシ、エトキシ等)、シアノ基、アルコキシカルボニル基(エトキシカルボニル、メトキシエトキシカルボニル等)、炭酸エステル基(エトキシカルボニルオキシ等)、アミド基(アセチルアミノ、ベンゾイルアミノ等)、カルバモイル基(N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、ホスホニル基(ジエチルホスホニル等)、複素環基(ピリジル、イミダゾリル、フラニル、オキサゾリジノニル等)、アリーロキシ基(フェノキシ等)、アルキルチオ基(メチルチオ、エチルチオ等)、アシル基(アセチル、プロピオニル、ベンゾイル等)、スルホニル基(メタンスルホニル、ベンゼンスルホニル等)、アシルオキシ基(アセトキシ、ベンゾイルオキシ等)、スルホニルオキシ基(メタンスルホニルオキシ、トルエンスルホニルオキシ等)、アリール基(フェニル、トルイル等)、アリーロキシ基(フェノキシ等)、アルケニル基(ビニル、1-プロペニル等)、アルキル基(メチル、エチル、プロピル、イソプロピル、シクロプロピル、ブチル、2-カルボキシエチル、ベンジル等)等が挙げられる。これらの中ではアルコキシ基、シアノ基、炭酸エステル基、アミド基、カルバモイル基、ホスホニル基、複素環基、アシル基、スルホニル基、アシルオキシ基、スルホニルオキシ基及びアルキル基がより好ましく、アルコキシ基、シアノ基、炭酸エステル基、ホスホニル基、複素環基及びアルキル基が特に好ましい。
 一般式(1)中、Z はアニオンを表す。Z の例としてはハロゲン化物イオン(I、Cl、Br等)、N(CFSO 、N(CFCFSO 、C(CFSO 、BF 、BPh 、PF 、ClO 、R-COO、R-SO 、SCN等が挙げられる。Z はI、N(CFSO 、BF 、R-COO、R-SO 又はSCNであるのが好ましく、Iであるのがより好ましい。すなわち、一般式(2)により表される化合物はヨウ素塩であるのがより好ましい。
 上記Rは水素原子、置換若しくは無置換のアルキル基(好ましくは炭素原子数1~10で、直鎖状であっても分岐状であってもよく、また環状であってもよく、例えばメチル、エチルプロピル、ブチル、イソプロピル、ペンチル、ヘキシル、オクチル、2-エチルヘキシル、t-オクチル、デシル、シクロヘキシル、シクロペンチル等)、パーフルオロアルキル基(好ましくは炭素原子数1~10、例えばトリフルオロメチル、ペンタフルオロエチル、ヘプタフルオロプロピル等)又は置換若しくは無置換のアリール基(好ましくは炭素原子数6~12、例えばフェニル、トリル、ナフチル等)を表す。Rはより好ましくは炭素原子数1~10のアルキル基又はパーフルオロアルキル基であり、特に好ましくは炭素原子数1~10のパーフルオロアルキル基である。
 Rが置換基を有するアルキル基又はアリール基の場合、この置換基の好ましい例としては上記Q上の置換基の例と同様のものが挙げられる。加えて、ハロゲン原子(フッ素、塩素、臭素、ヨウ素等)も好ましい。より好ましくはアルコキシ基又はハロゲン原子である。
 上記Rは置換若しくは無置換のアルキル基、パーフルオロアルキル基又は置換若しくは無置換のアリール基(以上、好ましい例は上記Rと同様)を表す。Rはより好ましくは炭素原子数1~7のアルキル基であり、特に好ましくは炭素原子数1~5のアルキル基である。
 Rが置換基を有するアルキル基又はアリール基の場合、この置換基の好ましい例としては上記Q上の置換基の例と同様のものが挙げられる。中でもアルコキシ基がより好ましい。
 R-COO及びR-SO は、R又はRを介して多量体を形成してもよい。多量体を形成する場合には2~4量体が好ましく、2量体がより好ましい。
 一般式(2)により表される化合物は、更に一般式(14)又は(15)により表されるのが好ましい。
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
 一般式(14)及び(15)中、R55は-(CR5152-CR5354-O)-結合(R51~R54はそれぞれ独立に水素原子又はアルキル基を表し、bは2~20の整数を表す。)を含む置換基を表すが、このR55は上記一般式(2)中のRと同義であり、好ましい態様もRと同様である。R56~R60はそれぞれ独立に水素原子又は置換基を表し、R56~R60が置換基である場合の好ましい例としては、上記Q上の置換基の例と同様のもの等が挙げられる。一般式(14)中のR56~R59のうち少なくとも1つ、及び一般式(15)中のR56~R60のうち少なくとも1つは、それぞれ-(CR5152-CR5354-O)-結合を含むのが好ましい。R55~R60のうち2つ以上が互いに連結して環構造を形成してもよい。この環は5~7員環が好ましく、5員環又は6員環がより好ましい。Z はアニオンを表し、好ましい例は一般式(2)中のZ のそれと同様である。
 一般式(2)により表される化合物中の-CR3132-CR3334-O-結合(R31~R34はそれぞれ独立に水素原子又はアルキル基を表す。)の総数は、4~6が好ましい。
 一般式(2)により表される化合物はR又はQを介して多量体を形成してもよい。形成する多量体は2~4量体が好ましく、2量体がより好ましい。
 本発明の電解質組成物に含有される一般式(2)、一般式(14)又は一般式(15)により表される化合物の具体例を以下に示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-T000056
 本発明の電解質組成物に含有されるヘテロ環4級塩化合物としては、特に好ましくは一般式(2)、一般式(10)、一般式(11)であり、最も好ましくは、一般式(10)及び一般式(11)であるが、下記一般式(16)で表される化合物も好ましい。特に好ましくは一般式(2)、一般式(10)、一般式(11)であり、最も好ましくは、一般式(10)及び一般式(11)であるが、
 一般式(16)は前記一般式(14)において、R56=R57=R59=Hである。R101は置換基を表し、該置換基としてはQ上の置換基が挙げられる。このなかでもR101は脂肪族基、芳香族基または複素環基が好ましく、脂肪族基がより好ましく、アルキル基がさらに好ましく、炭素数1~6のアルキル基が最も好ましい。なかでもメチル基が好ましい。R102は一般式(14)のR58と同義であり、好ましい範囲も同じであるが、このうち脂肪族基が好ましく、アルキル基がさらに好ましく、炭素数1~6のアルキル基(例えば、メチル、エチル、プロピル、ブチル、2ーメトキシエチル基)が最も好ましい。
 以下に一般式(16)で表される化合物の具体例を示す。
。  
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-T000058
 本発明の光電変換素子に用いられる電解質組成物には、一般式(2)で表される化合物を代表とするヘテロ環4級塩化合物以外に酸化還元対として、例えばヨウ素とヨウ化物(例えばヨウ化リチウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム等)との組み合わせ、アルキルビオローゲン(例えばメチルビオローゲンクロリド、ヘキシルビオローゲンブロミド、ベンジルビオローゲンテトラフルオロボレート)とその還元体との組み合わせ、ポリヒドロキシベンゼン類(例えばハイドロキノン、ナフトハイドロキノン等)とその酸化体との組み合わせ、2価と3価の鉄錯体(例えば赤血塩と黄血塩)の組み合わせ等が挙げられる。これらのうちヨウ素とヨウ化物との組み合わせが好ましい。
 ヨウ素塩のカチオンは5員環又は6員環の含窒素芳香族カチオンであるのが好ましい。特に、一般式(2)で表される化合物を代表とするヘテロ環4級塩化合物がヨウ素塩でない場合は、WO95/18456号、特開平8-259543号公報、電気化学,第65巻,11号,923頁(1997年)等に記載されているピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等のヨウ素塩を併用するのが好ましい。
 本発明においては、電解質組成中にヘテロ環4級塩化合物を少なくとも1種含有するものであるが、2種以上含有することが好ましく、本発明におけるヘテロ環4級塩化合物を組み合わせて使用することはさらに好ましい。
 本発明の光電変換素子に使用される電解質組成物中には、ヘテロ環4級塩化合物と共にヨウ素を含有するのが好ましい。ヨウ素の含有量は電解質組成物全体に対して0.1~20質量%であるのが好ましく、0.5~5質量%であるのがより好ましい。
 本発明の光電変換素子に用いられる電解質組成物は溶媒を含んでいてもよい。電解質組成物中の溶媒含有量は組成物全体の50質量%以下であるのが好ましく、30質量%以下であるのがより好ましく、10質量%以下であるのが特に好ましい。
 溶媒としては低粘度でイオン移動度が高いか、高誘電率で有効キャリアー濃度を高めることができるか、あるいはその両方であるために優れたイオン伝導性を発現できるものが好ましい。このような溶媒としてカーボネート化合物(エチレンカーボネート、プロピレンカーボネート等)、複素環化合物(3-メチル-2-オキサゾリジノン等)、エーテル化合物(ジオキサン、ジエチルエーテル等)、鎖状エーテル類(エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等)、アルコール類(メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル等)、多価アルコール類(エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン等)、ニトリル化合物(アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル、ビスシアノエチルエーテル等)、エステル類(カルボン酸エステル、リン酸エステル、ホスホン酸エステル等)、非プロトン性極性溶媒(ジメチルスルホキシド(DMSO)、スルフォラン等)、水、特開2002-110262号公報記載の含水電解液、特開2000-36332号公報、特開2000-243134号公報、及び再公表WO/00-54361号公報記載の電解質溶媒などが挙げられる。これらの溶媒は二種以上を混合して用いてもよい。
 本発明の光電変換素子に用いられる電解質組成物には、ポリマーやオイルゲル化剤を添加したり、多官能モノマー類の重合やポリマーの架橋反応等の手法によりゲル化(固体化)してもよい。
 ポリマーを添加することにより電解質組成物をゲル化させる場合、Polymer Electrolyte Reviews-1及び2(J. R. MacCallumとC. A. Vincentの共編、ELSEVIER APPLIED SCIENCE)に記載された化合物等を添加することができる。この場合、ポリアクリロニトリル又はポリフッ化ビニリデンを用いるのが好ましい。
 オイルゲル化剤を添加することにより電解質組成物をゲル化させる場合は、オイルゲル化剤としてJ. Chem. Soc. Japan, Ind. Chem. Soc., 46779 (1943)、J. Am. Chem. Soc., 111, 5542 (1989)、J. Chem. Soc., Chem. Commun., 390 (1993)、Angew. Chem. Int.Ed. Engl., 35, 1949 (1996)、Chem. Lett., 885, (1996)、J. Chem. Soc., Chem. Commun., 545, (1997)等に記載された化合物を使用することができ、アミド構造を有する化合物を用いるのが好ましい。
 多官能モノマー類の重合によって電解質組成物をゲル化する場合は、多官能モノマー類、重合開始剤、電解質及び溶媒から溶液を調製し、キャスト法、塗布法、浸漬法、含浸法等の方法により色素を担持した電極上にゾル状の電解質層を形成し、その後多官能モノマーのラジカル重合によってゲル化させる方法が好ましい。多官能モノマー類はエチレン性不飽和基を2個以上有する化合物であることが好ましく、ジビニルベンゼン、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート等が好ましい。
 ゲル電解質は上記多官能モノマー類の他に単官能モノマーを含む混合物の重合によって形成してもよい。単官能モノマーとしては、アクリル酸又はα-アルキルアクリル酸(アクリル酸、メタクリル酸、イタコン酸等)或いはそれらのエステル又はアミド(メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、i-プロピルアクリレート、n-ブチルアクリレート、i-ブチルアクリレート、t-ブチルアクリレート、n-ペンチルアクリレート、3-ペンチルアクリレート、t-ペンチルアクリレート、n-ヘキシルアクリレート、2,2-ジメチルブチルアクリレート、n-オクチルアクリレート、2-エチルヘキシルアクリレート、4-メチル-2-プロピルペンチルアクリレート、セチルアクリレート、n-オクタデシルアクリレート、シクロヘキシルアクリレート、シクロペンチルアクリレート、ベンジルアクリレート、ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-メトキシエチルアクリレート、2-エトキシエチルアクリレート、2-メトキシエトキシエチルアクリレート、フェノキシエチルアクリレート、3-メトキシブチルアクリレート、エチルカルビトールアクリレート、2-メチル-2-ニトロプロピルアクリレート、2,2,2-トリフルオロエチルアクリレート、オクタフルオロペンチルアクリレート、ヘプタデカフルオロデシルアクリレート、メチルメタクリレート、n-ブチルメタクリレート、i-ブチルメタクリレート、t-ブチルメタクリレート、t-ペンチルメタクリレート、n-オクタデシルメタクリレート、ベンジルメタクリレート、ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-メトキシエチルメタクリレート、2-エトキシエチルメタクリレート、2-メトキシエトキシエチルメタクリレート、ジメチルアミノエチルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、テトラフルオロプロピルメタクリレート、ヘキサフルオロプロピルメタクリレート、ヘプタデカフルオロデシルメタクリレート、エチレングリコールエチルカーボネートメタクリレート、2-イソボルニルメタクリレート、2-ノルボルニルメチルメタクリレート、5-ノルボルネン-2-イルメチルメタクリレート、3-メチル-2-ノルボニルメチルメタクリレート、アクリルアミド、N-i-プロピルアクリルアミド、N-n-ブチルアクリルアミド、N-t-ブチルアクリルアミド、N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド、2-アクリルアミド-2-メチルプロパンスルホン酸、アクリルアミドプロピルトリメチルアンモニウムクロライド、メタクリルアミド、N-メチルメタクリルアミド、N-メチロールメタクリルアミド等)、ビニルエステル類(酢酸ビニル等)、マレイン酸又はフマル酸或いはそれらから誘導されるエステル類(マレイン酸ジメチル、マレイン酸ジブチル、フマル酸ジエチル等)、p-スチレンスルホン酸のナトリウム塩、アクリロニトリル、メタクリロニトリル、ジエン類(ブタジエン、シクロペンタジエン、イソプレン等)、芳香族ビニル化合物(スチレン、p-クロロスチレン、t-ブチルスチレン、α-メチルスチレン、スチレンスルホン酸ナトリウム等)、N-ビニルホルムアミド、N-ビニル-N-メチルホルムアミド、N-ビニルアセトアミド、N-ビニル-N-メチルアセトアミド、ビニルスルホン酸、ビニルスルホン酸ナトリウム、アリルスルホン酸ナトリウム、メタクリルスルホン酸ナトリウム、ビニリデンフルオライド、ビニリデンクロライド、ビニルアルキルエーテル類(メチルビニルエーテル等)、エチレン、プロピレン、ブテン、イソブテン、N-フェニルマレイミド等が使用可能である。
 多官能モノマーの配合量は、モノマー全体に対して0.5~70質量%とすることが好ましく、1.0~50質量%であるのがより好ましい。上述のモノマーは、大津隆行・木下雅悦共著「高分子合成の実験法」(化学同人)や大津隆行「講座重合反応論1ラジカル重合(I)」(化学同人)に記載された一般的な高分子合成法であるラジカル重合によって重合することができる。本発明で使用するゲル電解質用モノマーは加熱、光又は電子線によって、或いは電気化学的にラジカル重合させることができるが、特に加熱によってラジカル重合させるのが好ましい。この場合、好ましく使用できる重合開始剤は2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、ジメチル2,2’-アゾビスイソブチレート等のアゾ系開始剤、ラウリルパーオキシド、ベンゾイルパーオキシド、t-ブチルパーオクトエート等の過酸化物系開始剤等である。重合開始剤の好ましい添加量はモノマー総量に対し0.01~20質量%であり、より好ましくは0.1~10質量%である。
 ゲル電解質に占めるモノマーの重量組成範囲は0.5~70質量%であるのが好ましい
。より好ましくは1.0~50質量%である。ポリマーの架橋反応により電解質組成物をゲル化させる場合は、組成物に架橋可能な反応性基を有するポリマー及び架橋剤を添加するのが好ましい。好ましい反応性基はピリジン環、イミダゾール環、チアゾール環、オキサゾール環、トリアゾール環、モルホリン環、ピペリジン環、ピペラジン環等の含窒素複素環であり、好ましい架橋剤は窒素原子が求核攻撃できる官能基を2つ以上有する化合物(求電子剤)であり、例えば2官能以上のハロゲン化アルキル、ハロゲン化アラルキル、スルホン酸エステル、酸無水物、酸クロライド、イソシアネート等である。
 本発明の電解質組成物には、金属ヨウ化物(LiI、NaI、KI、CsI、CaI等)、金属臭化物(LiBr、NaBr、KBr、CsBr、CaBr等)、4級アンモニウム臭素塩(テトラアルキルアンモニウムブロマイド、ピリジニウムブロマイド等)、金属錯体(フェロシアン酸塩-フェリシアン酸塩、フェロセン-フェリシニウムイオン等)、イオウ化合物(ポリ硫化ナトリウム、アルキルチオール-アルキルジスルフィド等)、ビオロゲン色素、ヒドロキノン-キノン等を添加してよい。これらは混合して用いてもよい。
 また、本発明ではJ. Am. Ceram. Soc., 80, (12), 3157-3171 (1997)に記載のt-ブチルピリジンや、2-ピコリン、2,6-ルチジン等の塩基性化合物を添加してもよい。塩基性化合物を添加する場合の好ましい濃度範囲は0.05~2Mである。
(C)導電性支持体
 図1に示すように、本発明の光電変換素子には、導電性支持体1上には多孔質の半導体微粒子22に色素21が吸着された感光体2が形成されている。後述する通り、例えば、半導体微粒子の分散液を導電性支持体に塗布・乾燥後、本発明の色素溶液に浸漬することにより、感光層を製造することができる。
 導電性支持体としては、金属のように支持体そのものに導電性があるものか、または表面に導電膜層を有するガラスや高分子材料を使用することができる。導電性支持体は実質的に透明であることが好ましい。実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることが好ましく、80%以上が特に好ましい。導電性支持体としては、ガラスや高分子材料に導電性の金属酸化物を塗設したものを使用することができる。このときの導電性の金属酸化物の塗布量は、ガラスや高分子材料の支持体1m2当たり、0.1~100gが好ましい。透明導電性支持体を用いる場合、光は支持体側から入射させることが好ましい。好ましく使用される高分子材料の一例として、テトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAR)、ポリスルフォン(PSF)、ポリエステルスルフォン(PES)、ポリエーテルイミド(PEI)、環状ポリオレフィン、ブロム化フェノキシ等を挙げることができる。導電性支持体上には、表面に光マネージメント機能を施してもよく、例えば、特開2003-123859号公報記載の高屈折膜及び低屈性率の酸化物膜を交互に積層した反射防止膜、特開2002-260746号公報記載のライトガイド機能が挙げられる。
 この他にも、金属支持体も好ましく使用することができる。その一例としては、チタン、アルミニウム、銅、ニッケル、鉄、ステンレス、銅を挙げることができる。これらの金属は合金であってもよい。さらに好ましくは、チタン、アルミニウム、銅が好ましく、特に好ましくは、チタンやアルミニウムである。
 導電性支持体上には、紫外光を遮断する機能を持たせることが好ましい。例えば、紫外光を可視光に変えることが出来る蛍光材料を透明支持体中または、透明支持体表面に存在させる方法や紫外線吸収剤を用いる方法も挙げられる。
 導電性支持体上には、さらに特開平11-250944号公報等に記載の機能を付与してもよい。
 好ましい導電膜としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等)、炭素、もしくは導電性の金属酸化物(インジウム-スズ複合酸化物、酸化スズにフッ素をドープしたもの等)が挙げられる。
 導電膜層の厚さは0.01~30μmであることが好ましく、0.03~25μmであることが更に好ましく、特に好ましくは0.05~20μmである。
 導電性支持体は表面抵抗が低い程よい。好ましい表面抵抗の範囲としては50Ω/cm2以下であり、さらに好ましくは10Ω/cm2以下である。この下限に特に制限はないが、通常0.1Ω/cm2程度である。
 導電膜の抵抗値はセル面積が大きくなると大きくなる為、集電電極を配置してもよい。支持体と透明導電膜の間にガスバリア膜及び/又はイオン拡散防止膜を配置しても良い。ガスバリア層としては、樹脂膜や無機膜を使用することができる。
 また、透明電極と多孔質半導体電極光触媒含有層を設けてもよい。透明導電層は積層構造でも良く、好ましい方法としてたとえば、ITO上にFTOを積層することができる。
(D)半導体微粒子
 図1に示すように、本発明の光電変換素子には、導電性支持体1上には多孔質の半導体微粒子22に色素21が吸着された感光層2が形成されている。後述する通り、例えば、半導体微粒子の分散液を前記の導電性支持体に塗布・乾燥後、本発明の色素溶液に浸漬することにより、感光体を製造することができる。
 半導体微粒子としては、好ましくは金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)またはペロブスカイトの微粒子が用いられる。金属のカルコゲニドとしては、好ましくはチタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、もしくはタンタルの酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。ペロブスカイトとしては、好ましくはチタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。これらのうち酸化チタン、酸化亜鉛、酸化スズ、酸化タングステンが特に好ましい。
 半導体には伝導に関わるキャリアーが電子であるn型とキャリアーが正孔であるp型が存在するが、本発明の素子ではn型を用いることが変換効率の点で好ましい。n型半導体には、不純物準位をもたず伝導帯電子と価電子帯正孔によるキャリアーの濃度が等しい固有半導体(あるいは真性半導体)の他に、不純物に由来する構造欠陥により電子キャリアー濃度の高いn型半導体が存在する。本発明で好ましく用いられるn型の無機半導体は、TiO、TiSrO、ZnO、Nb、SnO、WO、Si、CdS、CdSe、V、ZnS、ZnSe、SnSe、KTaO、FeS、PbS、InP、GaAs、CuInS、CuInSeなどである。これらのうち最も好ましいn型半導体はTiO、ZnO、SnO、WO、ならびにNbである。また、これらの半導体の複数を複合させた半導体材料も好ましく用いられる。
 半導体微粒子の粒径は、半導体微粒子分散液の粘度を高く保つ目的で、一次粒子の平均粒径が2nm以上50nm以下であることが好ましく、また一次粒子の平均粒径が2nm以上30nm以下の超微粒子であることがより好ましい。粒径分布の異なる2種類以上の微粒子を混合してもよく、この場合小さい粒子の平均サイズは5nm以下であるのが好ましい。また、入射光を散乱させて光捕獲率を向上させる目的で、上記の超微粒子に対して平均粒径が50nmを越える大きな粒子を、低含率で添加することもできる。この場合、大粒子の含率は、平均粒径が50nm以下の粒子の質量の50%以下であることが好ましく、20%以下であることがより好ましい。上記の目的で添加混合する大粒子の平均粒径は、100nm以上が好ましく、250nm以上がより好ましい。
 半導体微粒子の作製法としては、作花済夫の「ゾル・ゲル法の科学」アグネ承風社(1998年)等に記載のゲル・ゾル法が好ましい。またDegussa社が開発した塩化物を酸水素塩中で高温加水分解により酸化物を作製する方法も好ましい。半導体微粒子が酸化チタンの場合、上記ゾル・ゲル法、ゲル・ゾル法、塩化物の酸水素塩中での高温加水分解法はいずれも好ましいが、さらに清野学の「酸化チタン 物性と応用技術」技報堂出版(1997年)に記載の硫酸法および塩素法を用いることもできる。さらにゾル・ゲル法として、バルべ等のジャーナル・オブ・アメリカン・セラミック・ソサエティー,第80巻,第12号,3157~3171頁(1997年)に記載の方法や、バーンサイドらのケミストリー・オブ・マテリアルズ,第10巻,第9号,2419~2425頁に記載の方法も好ましい。
 この他に、半導体微粒子の製造方法として、例えば、チタニアナノ粒子の製造方法として好ましくは、四塩化チタンの火炎加水分解による方法、四塩化チタンの燃焼法、安定なカルコゲナイド錯体の加水分解、オルトチタン酸の加水分解、可溶部と不溶部から半導体微粒子を形成後可溶部を溶解除去する方法、過酸化物水溶液の水熱合成、またはゾル・ゲル法によるコア/シェル構造の酸化チタン微粒子の製造方法が挙げられる。
 チタニアの結晶構造としては、アナターゼ型、ブルッカイト型、または、ルチル型があげられ、アナターゼ型、ブルッカイト型が好ましい。
 チタニアナノチューブ・ナノワイヤー・ナノロッドをチタニア微粒子に混合してもよい。
 チタニアは、非金属元素などによりドーピングされていても良い。チタニアへの添加剤としてド―パント以外に、ネッキングを改善する為のバインダーや逆電子移動防止の為に表面へ添加剤を用いても良い。好ましい添加剤の例としては、ITO、SnO粒子、ウイスカー、繊維状グラファイト・カーボンナノチューブ、酸化亜鉛ネッキング結合子、セルロース等の繊維状物質、金属、有機シリコン、ドデシルベンゼンスルホン酸、シラン化合物等の電荷移動結合分子、及び電位傾斜型デンドリマーなどが挙げられる。
 チタニア上の表面欠陥を除去するなどの目的で、色素吸着前にチタニアを酸塩基又は酸化還元処理しても良い。エッチング、酸化処理、過酸化水素処理、脱水素処理、UV-オゾン、酸素プラズマなどで処理してもよい。
(C)半導体微粒子分散液
 本発明においては、半導体微粒子以外の固形分の含量が、半導体微粒子分散液全体の10質量%以下よりなる半導体微粒子分散液を前記の導電性支持体に塗布し、適度に加熱することにより、多孔質半導体微粒子塗布層を得ることができる。
 半導体微粒子分散液を作製する方法としては、前述のゾル・ゲル法の他に、半導体を合成する際に溶媒中で微粒子として析出させそのまま使用する方法、微粒子に超音波などを照射して超微粒子に粉砕する方法、あるいはミルや乳鉢などを使って機械的に粉砕しすり潰す方法、等が挙げられる。分散溶媒としては、水および/または各種の有機溶媒を用いることができる。有機溶媒としては、メタノール,エタノール,イソプロピルアルコール,シトロネロール,ターピネオールなどのアルコール類、アセトンなどのケトン類、酢酸エチルなどのエステル類、ジクロロメタン、アセトニトリル等が挙げられる。
 分散の際、必要に応じて例えばポリエチレングリコール、ヒドロキシエチルセルロース、カルボキシメチルセルロースのようなポリマー、界面活性剤、酸、またはキレート剤等を分散助剤として少量用いてもよい。しかし、これらの分散助剤は、導電性支持体上へ製膜する工程の前に、ろ過法や分離膜を用いる方法、あるいは遠心分離法などによって大部分を除去しておくことが好ましい。半導体微粒子分散液は、半導体微粒子以外の固形分の含量が分散液全体の10質量%以下とすることができる。この濃度は好ましくは5%以下であり、さらに好ましくは3%以下であり、特に好ましくは1%以下である。さらに好ましくは0.5%以下であり、特に好ましくは0.2%である。すなわち、半導体微粒子分散液中に、溶媒と半導体微粒子以外の固形分を半導体微分散液全体の10質量%以下とすることができる。実質的に半導体微粒子と分散溶媒のみからなることが好ましい。
 半導体微粒子分散液の粘度が高すぎると分散液が凝集してしまい製膜することができず、逆に半導体微粒子分散液の粘度が低すぎると液が流れてしまい製膜することができないことがある。したがって分散液の粘度は、25℃で10~300N・s/mが好ましい。さらに好ましくは、25℃で50~200N・s/mである。
 半導体微粒子分散液の塗布方法としては、アプリケーション系の方法としてローラ法、ディップ法等を使用することができる。またメータリング系の方法としてエアーナイフ法、ブレード法等を使用することができる。またアプリケーション系の方法とメータリング系の方法を同一部分にできるものとして、特公昭58-4589号公報に開示されているワイヤーバー法、米国特許2681294号明細書等に記載のスライドホッパー法、エクストルージョン法、カーテン法等が好ましい。また汎用機を使用してスピン法やスプレー法で塗布するのも好ましい。湿式印刷方法としては、凸版、オフセットおよびグラビアの3大印刷法をはじめ、凹版、ゴム版、スクリーン印刷等が好ましい。これらの中から、液粘度やウェット厚さに応じて、好ましい製膜方法を選択する。また本発明の半導体微粒子分散液は粘度が高く、粘稠性を有するため、凝集力が強いことがあり、塗布時に支持体とうまく馴染まない場合がある。このような場合に、UVオゾン処理で表面のクリーニングと親水化を行うことにより、塗布した半導体微粒子分散液と導電性支持体表面の結着力が増し、半導体微粒子分散液の塗布が行い易くなる。
 半導体微粒子層全体の好ましい厚さは0.1~100μmである。半導体微粒子層の厚さはさらに1~30μmが好ましく、2~25μmがより好ましい。半導体微粒子の支持体1m当りの担持量は0.5g~400gが好ましく、5~100gがより好ましい。
 塗布した半導体微粒子の層に対し、半導体微粒子同士の電子的接触の強化と、支持体との密着性の向上のため、また塗布した半導体微粒子分散液を乾燥させるために、加熱処理が施される。この加熱処理により多孔質半導体微粒子層を形成することができる。
 また、加熱処理に加えて光のエネルギーを用いることもできる。例えば、半導体微粒子として酸化チタンを用いた場合に、紫外光のような半導体微粒子が吸収する光を与えることで表面を活性化してもよいし、レーザー光などで半導体微粒子表面のみを活性化することができる。半導体微粒子に対して該微粒子が吸収する光を照射することで、粒子表面に吸着した不純物が粒子表面の活性化によって分解され、上記の目的のために好ましい状態とすることができる。加熱処理と紫外光を組み合わせる場合は、半導体微粒子に対して該微粒子が吸収する光を照射しながら、加熱が100℃以上250℃以下あるいは好ましくは100℃以上150℃以下で行われることが好ましい。このように、半導体微粒子を光励起することによって、微粒子層内に混入した不純物を光分解により洗浄するとともに、微粒子の間の物理的接合を強めることができる。
 また、半導体微粒子分散液を前記の導電性支持体に塗布し、加熱や光を照射する以外に他の処理を行ってもよい。好ましい方法として例えば、通電、化学的処理などが挙げられる。
 塗布後に圧力をかけても良く、圧力をかける方法としては、特表2003-500857号公報等が挙げられる。光照射の例としては、特開2001-357896号公報等が挙げられる。プラズマ・マイクロ波・通電の例としては、特開2002-353453号公報等が挙げられる。化学的処理としては、例えば特開2001-357896号公報が挙げられる。
 上述の半導体微粒子を導電性支持体上に塗設する方法は、上述の半導体微粒子分散液を導電性支持体上に塗布する方法のほか、特許第2664194号公報に記載の半導体微粒子の前駆体を導電性支持体上に塗布し空気中の水分によって加水分解して半導体微粒子膜を得る方法などの方法を使用することができる。
 前駆体として例えば、(NHTiF、過酸化チタン、金属アルコキシド・金属錯体・金属有機酸塩等が挙げられる。
 また、金属有機酸化物(アルコキシドなど)を共存させたスラリーを塗布し加熱処理、光処理などで半導体膜を形成する方法、無機系前駆体を共存させたスラリー、スラリーのpHと分散させたチタニア粒子の性状を特定した方法が挙げられる。これらスラリーには、少量であればバインダーを添加しても良く、バインダーとしては、セルロース、フッ素ポリマー、架橋ゴム、ポリブチルチタネート、カルボキシメチルセルロースなどが挙げられる。
 半導体微粒子又はその前駆体層の形成に関する技術としては、コロナ放電、プラズマ、UVなどの物理的な方法で親水化する方法、アルカリやポリエチレンジオキシチオフェンとポリスチレンスルホン酸などによる化学処理、ポリアニリンなどの接合用中間膜の形成などが挙げられる。
 半導体微粒子を導電性支持体上に塗設する方法として、上述の(1)湿式法とともに、(2)乾式法、(3)その他の方法を併用しても良い。
 (2)乾式法として好ましくは、特開2000-231943号公報等が挙げられる。
 (3)その他の方法として、好ましくは、特開2002-134435号公報等が挙げられる。
 乾式法としては、蒸着やスパッタリング、エアロゾルデポジション法などが挙げられる。また、電気泳動法・電析法を用いても良い。
 また、耐熱基板上でいったん塗膜を作製した後、プラスチック等のフィルムに転写する方法を用いても良い。好ましくは、特開2002-184475号公報記載のEVAを介して転写する方法、特開2003-98977号公報記載の紫外線、水系溶媒で除去可能な無機塩を含む犠牲基盤上に半導体層・導電層を形成後、有機基板に転写後、犠牲基板を除去する方法などが挙げられる。
 半導体微粒子は多くの色素を吸着することができるように表面積の大きいものが好ましい。例えば半導体微粒子を支持体上に塗設した状態で、その表面積が投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はないが、通常5000倍程度である。好ましい半導体微粒子の構造としては、特開2001-93591号公報等が挙げられる。
 一般に、半導体微粒子の層の厚みが大きいほど単位面積当たりに担持できる色素の量が増えるため光の吸収効率が高くなるが、発生した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。半導体微粒子層の好ましい厚みは素子の用途によって異なるが、典型的には0.1~100μmである。光電気化学電池として用いる場合は1~50μmであることが好ましく、3~30μmであることがより好ましい。半導体微粒子は、支持体に塗布した後に粒子同士を密着させるために、100~800℃の温度で10分~10時間加熱してもよい。支持体としてガラスを用いる場合、製膜温度は400~600℃が好ましい。
 支持体として高分子材料を用いる場合、250℃以下で製膜後加熱することが好ましい。その場合の製膜方法としては、(1)湿式法、(2)乾式法、(3)電気泳動法(電析法を含む)の何れでも良く、好ましくは、(1)湿式法、又は(2)乾式であり、更に好ましくは、(1)湿式法である。
 なお、半導体微粒子の支持体1m当たりの塗布量は0.5~500g、さらには5~100gが好ましい。
 半導体微粒子に色素を吸着させるには、溶液と本発明の色素よりなる色素吸着用色素溶液の中に、よく乾燥した半導体微粒子を長時間浸漬するのが好ましい。色素吸着用色素溶液に使用される溶液は、本発明の色素が溶解できる溶液なら特に制限なく使用することができる。例えば、エタノール、メタノール、イソプロパノール、トルエン、t-ブタノール、アセトニトリル、アセトン、n-ブタノールなどを使用することができる。その中でも、エタノール、トルエンを好ましく使用することができる。
 溶液と本発明の色素よりなる色素吸着用色素溶液は必要に応じて50℃ないし100℃に加熱してもよい。色素の吸着は半導体微粒子の塗布前に行っても塗布後に行ってもよい。また、半導体微粒子と色素を同時に塗布して吸着させてもよい。未吸着の色素は洗浄によって除去する。塗布膜の焼成を行う場合は色素の吸着は焼成後に行うことが好ましい。焼成後、塗布膜表面に水が吸着する前にすばやく色素を吸着させるのが特に好ましい。吸着する色素は1種類でもよいし、数種混合して用いてもよい。混合する場合、本発明の色素を2種以上混合してもよいし、本発明の趣旨を損なわない範囲内で錯体色素と本発明の色素を混合してもよい。光電変換の波長域をできるだけ広くするように、混合する色素が選ばれる。色素を混合する場合は、すべての色素が溶解するようにして、色素吸着用色素溶液とすることが必要である。
 色素の使用量は、全体で、支持体1m当たり0.01~100ミリモルが好ましく、より好ましくは0.1~50ミリモル、特に好ましくは0.1~10ミリモルである。この場合、本発明の色素の使用量は5モル%以上とすることが好ましい。
 また、色素の半導体微粒子に対する吸着量は半導体微粒子1gに対して0.001~1ミリモルが好ましく、より好ましくは0.1~0.5ミリモルである。
 このような色素量とすることによって、半導体における増感効果が十分に得られる。これに対し、色素量が少ないと増感効果が不十分となり、色素量が多すぎると、半導体に付着していない色素が浮遊し増感効果を低減させる原因となる。
 また、会合など色素同士の相互作用を低減する目的で無色の化合物を共吸着させてもよい。共吸着させる疎水性化合物としてはカルボキシル基を有するステロイド化合物(例えばコール酸、ピバロイル酸)等が挙げられる。
 色素を吸着した後に、アミン類を用いて半導体微粒子の表面を処理してもよい。好ましいアミン類としては4-tert-ブチルピリジン、ポリビニルピリジン等が挙げられる。これらは液体の場合はそのまま用いてもよいし有機溶媒に溶解して用いてもよい。
 対向電極は、光電気化学電池の正極として働くものである。対向電極は、通常前述の導電性支持体と同義であるが、強度が十分に保たれるような構成では支持体は必ずしも必要でない。ただし、支持体を有する方が密閉性の点で有利である。対向電極の材料としては、白金、カーボン、導電性ポリマー、などがあげられる。好ましい例としては、白金、カーボン、導電性ポリマーが挙げられる。
 対極の構造としては、集電効果が高い構造が好ましい。好ましい例としては、特開平10-505192号公報などが挙げられる。
 受光電極は酸化チタンと酸化スズ(TiO/SnO)などの複合電極を用いても良く、チタニアの混合電極として例えば、特開2000-113913号公報等が挙げられる。チタニア以外の混合電極として例えば、特開2001-185243号公報、特開2003-282164号公報等が挙げられる。
 受光電極は、入射光の利用率を高めるなどのためにタンデム型にしても良い。好ましいタンデム型の構成例としては、特開2002-90989号公報等に記載の例が挙げられる。
 受光電極層内部で光散乱、反射を効率的に行う光マネージメント機能を設けてもよい。好ましくは、特開2002-93476号公報に記載のものが挙げられる。
 導電性支持体と多孔質半導体微粒子層の間には、電解液と電極が直接接触することによる逆電流を防止する為、短絡防止層を形成することが好ましい。好ましい例としては、特開平06-507999号公報等が挙げられる。
 受光電極と対極の接触を防ぐ為に、スペーサーやセパレータを用いることが好ましい。好ましい例としては、特開2001-283941号公報が挙げられる。
 以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらに限定されるものではない。
1.色素の調製
 下記の方法により例示色素A-16を調製した。
Figure JPOXMLDOC01-appb-C000059
(1)化合物A-16cの調製
 化合物A-1b 3.1gとヘキシルトリフェニルホスホニウムブロミド5.2gとをDMF20mlに室温で撹拌し、これらを溶解させた後に28%ナトリウムメトキシドのメタノール溶液 2.5gを滴下した。その後、60℃に加温し2時間撹拌した。放冷し室温にした後に反応液に水を加え、さらにヘキサンを加えて分液を行い、有機層を濃縮後カラムクロマトグラフィーで精製することで化合物A-16c 3.3gを得た。
(4)化合物A-16dの調製 
DMF 20mlに氷冷下オキシ塩化リン10mlを加え30分攪拌し、化合物A-16c 3.2gをこれに加え35℃に加温し6時間攪拌した。放冷し室温にした後に反応液に水を加え攪拌し、さらに10%水酸化ナトリウム水溶液を加え、1時間撹拌した。酢酸エチルで抽出、濃縮後、カラム精製を行い化合物A-16d 2.5gを得た。
(5)例示色素A-16の合成
 AcOH 20mlにA-16d 0.75g、前記の中間体B-2 0.60gを加え30分撹拌した後、酢酸アンモニウム 0.44gを加え、90℃に加温し5時間撹拌した。放冷し室温にした後に反応液に水を加え、析出した結晶をろ過した。得られた結晶を再結晶により精製し A-16 0.95gを得た。
2.色素の最大吸収波長の測定
 A-16以外の色素についても、A-16と同様に調製した。また得られた色素の最大吸収波長を測定した。測定は分光光度計(U-4100(商品名、日立ハイテク(株)製))によって行い、溶液はエタノールを用いた。
Figure JPOXMLDOC01-appb-T000060
2.ヘテロ環4級塩化合物の調製
 4.8g(0.028mol)の下記化合物XC-1と7.32g(0.03mol)の化合物XC-2を12mlの酢酸エチルに溶解し、加熱還流下24時間反応させた。次に減圧加熱下、酢酸エチル及び過剰の化合物XC-2を留去し、12gの下記に示す表1記載のB-1を得た。
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
3.光電気化学電池の作製
(A)半導体微粒子分散液の調製
 内側をテフロン(登録商標)コーティングした内容積200mlのステンレス製容器に、二酸化チタン微粒子(Degussa P-25(商品名、日本アエロジル(株)製))15g、水45g、分散剤(Triton X-100(商品名、アルドリッチ社製))1g、直径0.5mmのジルコニアビーズ(ニッカトー社製)30gを入れ、サンドグラインダーミル(アイメックス社製)を用いて1500rpmで2時間分散処理した。得られた分散液からジルコニアビーズをろ過により除去して、半導体微粒子分散液を得た。得られた分散液中の二酸化チタン微粒子の平均粒径は2.5μmであった。なお粒径は、レーザー回折式粒度分布計のマスターサイザー(商品名、MALVERN社製)で測定した。
(B)色素を吸着した半導体微粒子電極の作製
 フッ素をドープした酸化スズ層を有する導電性ガラス(TCOガラス-U(商品名、旭硝子(株)製)を20mm×20mmの大きさに切断した。この切断した導電性ガラス(表面抵抗約30Ω/cm)の導電面側にガラス棒を用いて、(A)で調製した半導体微粒子分散液を塗布した。半導体微粒子の塗布量は20g/mとした。その際、導電面側の一部(端から3mm)に粘着テープを張ってスペーサーとし、該粘着テープが両端に来るように導電性ガラスを並べて一度に8枚ずつ、半導体微粒子分散液を塗布した。その後、該粘着テープを剥離し、室温で1日間放置した。次にこの導電性ガラスを電気炉(マッフル炉FP-32型(商品名、ヤマト科学(株)製))に入れ、450℃にて30分間焼成することにより、半導体微粒子電極を得た。この電極を取り出し冷却した後、表1に示す色素のエタノール溶液(3×10‐4mol/l)に3時間浸漬した。その後、この電極を4‐t‐ブチルピリジンに15分間浸漬した後、エタノールで洗浄し自然乾燥し、色素を吸着した半導体微粒子電極を得た。色素の塗布量は、色素の種類に応じ、適宜0.1~10mmol/mの範囲から増感度が最適になるように選択した。
(C)光電気化学電池の作製
 (B)に記載の通り作製した、色素を吸着した半導体微粒子電極(20mm×20mm)に、これと同じ大きさの白金蒸着ガラスと重ね合わせた。次に、両ガラスの隙間に毛細管現象を利用して電解質組成物を染み込ませ、電解質を半導体微粒子電極中に導入した。これにより、図1に示すように、導電性ガラスからなる導電性支持体1(ガラスの透明基板上に導電層が形成されたもの)、色素が吸着された半導体微粒子層を有する感光体2、電荷移動体3、白金からなる対極4及びガラスの透明基板(図示せず)をこの順に積層して光電気化学電池を作製した。なお電解質組成物を導入後は端部をエポキシ系封止剤で封止した。電解質組成物の粘度が高く毛細管現象を利用して電解質組成物を半導体微粒子電極中に導入することが困難な場合は、電解質組成物を50℃に加温し、これを色素が吸着された半導体微粒子電極に塗布した。その後、この電極を減圧下に置き電解質組成物が十分浸透し電極中の空気を抜いた後、白金蒸着ガラス(対極)を重ね合わせて同様に光電気化学電池を作製した。
 電解質組成物と色素を変更して同様の工程により、実施例1~19及び比較例1~6の光電気化学電池を作製した。各光電気化学電池に用いた電解質組成物中に含まれるヘテロ環4級塩化合物と半導体微粒子に吸着させた色素を併せて表1に示す。なおいずれの実施例及び比較例においても、電解質組成物中に、ヨウ素を2質量%配合した。また比較例5及び6においては、ヘテロ環4級塩化合物を配合せずに、γ-ブチロラクトンを70質量%及びテトラブチルアンモニウムヨージドを28質量%配合した。
4.光電変換効率の測定とその評価
 500Wのキセノンランプ(ウシオ電気(株)製)の光をAM1.5フィルター(Oriel社製)及びシャープカットフィルター( L-42(商品名)、Kenko社製)に通すことにより、紫外線を含まない模擬太陽光を発生させた。この光の強度を測定したところ、70mW/cmであった。この模擬太陽光を、50℃で実施例1~19及び比較例1~6の光電気化学電池に照射し、発生した電気を電流電圧測定装置(ケースレーSMU238型(商品名、ケースレー社製))で測定した。これにより、各光電気化学電池の変換効率(η)の初期値と140時間暗所保存後の変換効率の低下率を表1に示す。
 変換効率の初期値が3%以上で、変換効率低下率が7%以下のものを合格とした。
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-C000065
 比較色素として、上記の比較色素Dを用いた。
 表5からわかるように、比較色素Dを用いた場合は、本発明の化合物を含有する電解質組成物を使用し場合であっても、変換効率の初期値は3%の合格ラインに到達せず、特に変換効率の低下率は14~22%と、耐久性が不合格となった(比較例1~4)。また本発明の色素を用いても、本発明の化合物を含有する電解質組成物を使用しない場合は、変換効率の初期値は3%以上で合格レベルであったが、変換効率の低下率が55~56%ときわめて大きいことがわかった(比較例5、6)。
 これに対して、本発明の色素が吸着され、本発明の化合物を含有する電解質組成物を使用した光電気化学電池1~19では、変換効率の初期値及び変換効率の低下率ともに合格であった。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求項の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであるものと考える。
 本願は、2010年3月5日に日本国で特許出願された特願2010-048749に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 導電性支持体
2 感光体
 21 色素化合物
 22 半導体微粒子
 23 電解質
3 電荷移動体
4 対極
5 受光電極
6 回路
10 光電変換素子

Claims (13)

  1.  導電性支持体上に色素が吸着された多孔質半導体微粒子層を有する感光体、電荷移動体、および対極を含む積層構造よりなる光電変換素子であって、前記色素が下記一般式(1)で表される構造を有し、前記電荷移動体がヘテロ環4級塩化合物を含有する電解質組成物を有することを特徴とする光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中、Xはベンゼン環と連結して七員環の含窒素複素環を形成するのに必要な非金属原子群を表す。Yは色素残基を表し、nは1以上の整数を表す。Zは置換基を表し、mは0又は正の整数を表す。mが2以上の場合、Zは同一でも異なっていてもよい。Rは水素原子、脂肪族基、芳香族基又は炭素原子で結合する複素環基を表す。]
  2.  前記ヘテロ環4級塩化合物が、下記一般式(2)で表されることを特徴とする請求項1記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000002
    [一般式(2)中、Rは-(CR3132-CR3334-O)-結合(R31~R34はそれぞれ独立に水素原子又はアルキル基を表し、aは2~20の整数を表す。)を含む置換基を表し、Qは窒素原子と共に5又は6員環の芳香族カチオンを形成しうる原子団を表し、置換基を有していてもよく、Zはアニオンを表す。]
  3.  前記一般式(1)で表される色素が、下記一般式(3)で表される構造を有することを特徴とする請求項1又は2記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    [一般式(3)において、Xはベンゼン環と連結して七員環の含窒素複素環を形成するのに必要な非金属原子群を表す。Rは水素原子、脂肪族基、芳香族基又は炭素原子で結合する複素環基を表す。R~Rは水素原子、又は置換基を表すが、R~Rのうちの少なくとも1つは一般式(4)で示される色素残基を表す。
     一般式(4)においてR10、R11、及びR13は、それぞれ独立して、水素原子、脂肪族基、芳香族基、又は複素環基を表す。rは0以上の整数を示す。一般式(4)における炭素-炭素二重結合は、E型、又はZ型のいずれであってもよい。R12は、酸性基を少なくとも一つ有する基または酸性核を表す。]
  4.  前記一般式(1)又は一般式(3)で表される構造を有する色素が、下記一般式(5)で表されることを特徴とする請求項1~3のいずれか1項記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000005
    [一般式(5)において、R~R、R~R13及びrは、それぞれ一般式(3)及び一般式(4)におけるR~R、R~R13及びrと同義である。]
  5.  前記一般式(1)又は一般式(3)で表される構造を有する色素が、下記一般式(6)で表されることを特徴とする請求項1~3のいずれか1項記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000006
    [一般式(6)において、R~R13及びrは、それぞれ一般式(3)及び一般式(4)におけるR~R13及びrと同義である。
     一般式(6)において、R14は水素原子、アルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基、又は複素環基を表す。]
  6.  前記一般式(1)又は一般式(3)で表される構造を有する色素が、下記一般式(7)で表されることを特徴とする請求項1~3のいずれか1項記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000007
    [一般式(7)において、R~R、R、R、R~R13及びrは、それぞれ一般式(3)及び一般式(4)におけるR~R、R、R、R~R13及びrと同義である。]
  7.  R12が下記一般式(8)または一般式(9)で表されることを特徴とする請求項3~6のいずれか1項記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000008
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
     一般式(8)においてR15、R16は、それぞれ独立に、脂肪族基、芳香族基または複素環基を表す(少なくとも1つの官能基は酸性基を有していてもよい)。lは0又は1を示す。一般式(8)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。一般式(8)中のR17は硫黄原子または一般式(10)を表し、一般式(10)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
     一般式(9)におけるR18、R19は、それぞれ独立に、シアノ基又は酸性基を表し、互いに同一でも異なっていてもよい。一般式(9)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
     一般式(10)におけるR20、R21は、それぞれ独立に、シアノ基又は酸性基を表し、互いに同一でも異なっていてもよい。一般式(10)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
  8.  前記一般式(8)で表される基が下記一般式(11)で表されることを特徴とする請求項7記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000011
     一般式(11)においてR16は、脂肪族基、芳香族基または複素環基である(酸性基を有していてもよい)。一般式(11)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
  9.  前記R12が下記一般式(12)で表されることを特徴とする請求項3~6のいずれか1項記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000012
     一般式(12)においてR15は、脂肪族基、芳香族基または複素環基を表す(これらの基は酸性基を有していてもよい)。一般式(12)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
  10.  前記R12が下記一般式(13)で表されることを特徴とする請求項3~6のいずれか1項記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000013
    一般式(13)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
  11.  前記一般式(2)で表されるヘテロ環4級塩化合物が、下記一般式(14)又は(15)で表されること特徴とする請求項2~10のいずれか1項記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000014
    Figure JPOXMLDOC01-appb-C000015
    [一般式(14)及び(15)において、R55は-(CR5152-CR5354-O)-結合(R51~R54はそれぞれ独立に水素原子又はアルキル基を表し、bは2~20の整数を表す。)を含む置換基を表し、R56~R60はそれぞれ独立に水素原子又は置換基を表し、Z はアニオンを表し、R55~R60のうち2つ以上が互いに連結して環構造を形成していてもよい。]
  12.  前記Z がI、N(CFSO 、BF 、R-COO(Rは水素原子、アルキル基、パーフルオロアルキル基又はアリール基を表す。)、R-SO (Rはアルキル基、パーフルオロアルキル基又はアリール基を表す。)又はSCNであることを特徴とする請求項2~11のいずれか1項記載の光電変換素子。
  13.  請求項1~12のいずれか1項に記載の光電変換素子を備えることを特徴とする光電気化学電池。
PCT/JP2011/054813 2010-03-05 2011-03-02 光電変換素子及び光電気化学電池 WO2011108613A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-048749 2010-03-05
JP2010048749 2010-03-05

Publications (1)

Publication Number Publication Date
WO2011108613A1 true WO2011108613A1 (ja) 2011-09-09

Family

ID=44542260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054813 WO2011108613A1 (ja) 2010-03-05 2011-03-02 光電変換素子及び光電気化学電池

Country Status (2)

Country Link
TW (1) TW201145642A (ja)
WO (1) WO2011108613A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015046582A (ja) * 2013-07-31 2015-03-12 富士フイルム株式会社 光電変換素子および太陽電池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256828A (ja) * 1999-08-04 2001-09-21 Fuji Photo Film Co Ltd 電解質組成物、光電変換素子及び光電気化学電池
WO2009109499A1 (en) * 2008-03-07 2009-09-11 Basf Se Dye sensitised solar cell
JP2010235908A (ja) * 2008-10-29 2010-10-21 Fujifilm Corp 色素、これを用いた光電変換素子及び光電気化学電池
JP2011071071A (ja) * 2009-09-28 2011-04-07 Fujifilm Corp 光電変換素子の製造方法、光電変換素子、および光電気化学電池
JP2011071069A (ja) * 2009-09-28 2011-04-07 Fujifilm Corp 光電変換素子の製造方法、光電変換素子、および光電気化学電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256828A (ja) * 1999-08-04 2001-09-21 Fuji Photo Film Co Ltd 電解質組成物、光電変換素子及び光電気化学電池
WO2009109499A1 (en) * 2008-03-07 2009-09-11 Basf Se Dye sensitised solar cell
JP2010235908A (ja) * 2008-10-29 2010-10-21 Fujifilm Corp 色素、これを用いた光電変換素子及び光電気化学電池
JP2011071071A (ja) * 2009-09-28 2011-04-07 Fujifilm Corp 光電変換素子の製造方法、光電変換素子、および光電気化学電池
JP2011071069A (ja) * 2009-09-28 2011-04-07 Fujifilm Corp 光電変換素子の製造方法、光電変換素子、および光電気化学電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WU, TZI-YI ET AL.: "Synthesis and characterization of organic dyes containing various donors and acceptors", INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 22 January 2010 (2010-01-22), pages 329 - 353, XP055017324, DOI: doi:10.3390/ijms11010329 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015046582A (ja) * 2013-07-31 2015-03-12 富士フイルム株式会社 光電変換素子および太陽電池

Also Published As

Publication number Publication date
TW201145642A (en) 2011-12-16

Similar Documents

Publication Publication Date Title
AU2016262730B2 (en) Dye, photoelectric conversion element using the same, photoelectrochemical cell, and method of producing dye
JP5620314B2 (ja) 光電変換素子、光電気化学電池、光電変換素子用色素及び光電変換素子用色素溶液
WO2012033143A1 (ja) 光電変換素子、光電気化学電池及び色素
JP2011026376A (ja) 色素、これを用いた光電変換素子及び光電気化学電池
JP5771092B2 (ja) 色素、光電変換素子及び光電気化学電池
JP5869481B2 (ja) 金属錯体色素、光電変換素子及び光電気化学電池
JP5689351B2 (ja) 光電変換素子及び光電気化学電池
JP2010235908A (ja) 色素、これを用いた光電変換素子及び光電気化学電池
JP5649368B2 (ja) 光電変換素子及び光電気化学電池
WO2012017868A1 (ja) 金属錯体色素、光電変換素子及び光電気化学電池
JP2011228276A (ja) 光電変換素子及び光電気化学電池
JP5816111B2 (ja) 金属錯体色素組成物、光電変換素子及び光電気化学電池
JP5756772B2 (ja) 光電変換素子及び光電気化学電池
JP2011119205A (ja) 光電変換素子および光電気化学電池
WO2011118580A1 (ja) 光電変換素子及び光電気化学電池
JP5620081B2 (ja) 光電変換素子の製造方法
WO2011108611A1 (ja) 光電変換素子及び光電気化学電池
WO2011108613A1 (ja) 光電変換素子及び光電気化学電池
WO2011108612A1 (ja) 光電変換素子及び光電気化学電池
JP2012038435A (ja) 光電変換素子、光電気化学電池及び光電変換素子用色素溶液
JP5572028B2 (ja) 光電変換素子及びこれを用いた光電気化学電池、光電変換素子用組成物
US20130118570A1 (en) Dye for photoelectric conversion, semiconductor electrode, photoelectric conversion element, solar cell, and novel pyrroline-based compound
WO2012124482A1 (ja) 金属錯体色素、金属錯体色素組成物、光電変換素子及び光電気化学電池
JP5756766B2 (ja) 光電変換素子、光電気化学電池及び色素
JP5572027B2 (ja) 光電変換素子及びこれに用いられる光電変換素子用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP