WO2011108611A1 - 光電変換素子及び光電気化学電池 - Google Patents

光電変換素子及び光電気化学電池 Download PDF

Info

Publication number
WO2011108611A1
WO2011108611A1 PCT/JP2011/054811 JP2011054811W WO2011108611A1 WO 2011108611 A1 WO2011108611 A1 WO 2011108611A1 JP 2011054811 W JP2011054811 W JP 2011054811W WO 2011108611 A1 WO2011108611 A1 WO 2011108611A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
photoelectric conversion
ring
dye
Prior art date
Application number
PCT/JP2011/054811
Other languages
English (en)
French (fr)
Inventor
達也 薄
小林 克
木村 桂三
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2011108611A1 publication Critical patent/WO2011108611A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/60Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/04Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups one >CH- group, e.g. cyanines, isocyanines, pseudocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/102The polymethine chain containing an even number of >CH- groups two heterocyclic rings linked carbon-to-carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the present invention relates to a photoelectric conversion element and a photoelectrochemical cell having high conversion efficiency and excellent durability.
  • Photoelectric conversion elements are used in various optical sensors, copiers, solar cells and the like.
  • Various types of photoelectric conversion elements have been put to practical use, such as those using metals, semiconductors, organic pigments and dyes, or combinations thereof.
  • a solar cell using non-depleting solar energy does not require fuel, and its full-scale practical use is expected greatly as it uses inexhaustible clean energy.
  • silicon solar cells have been researched and developed for a long time. It is spreading due to the policy considerations of each country. However, silicon is an inorganic material, and its throughput and molecular modification are naturally limited.
  • Patent Document 1 describes a dye-sensitized photoelectric conversion element using semiconductor fine particles sensitized with a ruthenium complex dye by applying this technique.
  • ruthenium complex dyes are very expensive.
  • ruthenium has concerns about supply, and it is not yet enough to respond in earnest as a technology that supports the next generation of clean energy. Therefore, it is desired to develop a photoelectric conversion element having sufficient conversion efficiency using an inexpensive organic dye as a sensitizer, and a report using an organic dye as a sensitizer has been reported. (See Patent Document 2).
  • the photoelectric conversion element is required to have high initial conversion efficiency, low decrease in conversion efficiency even after use, and excellent durability.
  • the photoelectric conversion element described in Patent Document 2 is not sufficient.
  • An object of the present invention is to provide a photoelectric conversion element and a photoelectrochemical cell having high conversion efficiency and excellent durability.
  • the present inventors have obtained a photosensitive member having a porous semiconductor fine particle layer in which a specific dye (dye compound) is adsorbed on a conductive support, and an electrolyte composition containing the specific compound. It has been found that a photoelectric conversion element having a stacked structure including a charge transfer body having a counter electrode and a counter electrode and a photoelectrochemical cell using the photoelectric conversion element have high conversion efficiency and excellent durability. The present invention has been made based on this finding. The object of the present invention has been achieved by the following means.
  • a photoelectric conversion element having a laminated structure including a photoconductor having a semiconductor fine particle layer having a dye adsorbed on a conductive support, a charge transfer body, and a counter electrode, wherein the dye is represented by the following general formula (1)
  • a photoelectric conversion element, wherein the charge transfer body has an electrolyte composition containing a heterocyclic quaternary salt compound.
  • a 1 represents a five-membered, six-membered or seven-membered nitrogen-containing heterocycle formed by linking with a benzene ring.
  • L 1 represents an electron-transporting linking group containing at least one heterocyclic ring selected from a thiophene ring, a furan ring, a pyrrole ring, a selenophene ring, and a heterocyclic ring condensed with these.
  • R 1 and R 3 each independently represents a hydrogen atom or a substituent.
  • R 2 represents a hydrogen atom or a substituent.
  • B 1 represents a heterocyclic acidic nucleus or a methylene group substituted with an electron withdrawing group, and B 1 has at least one acidic group.
  • n1 represents an integer of 1 to 12.
  • X represents a nonmetallic atom group necessary to form a six-membered or seven-membered nitrogen-containing heterocycle by linking with a benzene ring.
  • L 1 , R 1 , R 2 , R 3 , B 1 and n1 have the same meaning as in general formula (1).
  • R 4 to R 7 each independently represents at least one substituent selected from an alkyl group, an alkoxy group, and an aryl group.
  • n3 represents an integer of 1 or 2.
  • X is a nonmetallic atom group necessary for forming a seven-membered nitrogen-containing heterocycle by linking with a benzene ring.
  • Photoelectric conversion element. ⁇ 4> The photoelectric conversion element according to ⁇ 2> or ⁇ 3>, wherein in the general formula (3), X is methylene and n3 is 2.
  • ⁇ 5> The photoelectric conversion element according to ⁇ 2>, wherein the dye having a structure represented by the general formula (1) is represented by the general formula (4).
  • B 1 is represented by the following general formula (5) or the general formula, characterized by being represented by (6) ⁇ 1> to photoelectric conversion element according to any one of ⁇ 5>.
  • R 9 and R 10 each independently represents an aliphatic group, an aromatic group, or a heterocyclic group (at least one functional group may have an acidic group).
  • m represents 0 or 1;
  • the carbon-carbon double bond in the general formula (5) may be either E-type or Z-type.
  • R 8 in general formula (5) represents a sulfur atom or general formula (7), and the carbon-carbon double bond in general formula (7) may be either E-type or Z-type.
  • R 11 and R 12 each independently represent a cyano group or an acidic group, and may be the same as or different from each other.
  • the carbon-carbon double bond in the general formula (6) may be either E-type or Z-type.
  • R 13 and R 14 each independently represent a cyano group or an acidic group, and may be the same as or different from each other.
  • the carbon-carbon double bond in the general formula (7) may be either E-type or Z-type.
  • R 9 represents an aliphatic group, an aromatic group, or a heterocyclic group (these groups may have an acidic group).
  • the carbon-carbon double bond in the general formula (8) may be either E type or Z type.
  • R X represents — (CR 31 R 32 —CR 33 R 34 —O) a — bond
  • R 31 to R 34 each independently represents a hydrogen atom or an alkyl group
  • a represents 2 to Q represents an atomic group that can form a 5- or 6-membered aromatic cation with a nitrogen atom, and may have a substituent
  • Z X ⁇ Represents an anion.
  • R 55 represents a — (CR 51 R 52 —CR 53 R 54 —O) b — bond
  • R 51 to R 54 each independently represents a hydrogen atom or an alkyl group
  • b represents an integer of 2 to 20
  • R 56 to R 60 each independently represents a hydrogen atom or a substituent
  • Z X — represents an anion
  • R 55 to R 60 Two or more may be connected to each other to form a ring structure.
  • Z X ⁇ represents I ⁇ , N (CF 3 SO 2 ) 2 ⁇ , BF 4 ⁇ , R Y —COO ⁇ (R Y represents a hydrogen atom, an alkyl group, a perfluoroalkyl group or an aryl group. ), R Z —SO 3 — (R Z represents an alkyl group, a perfluoroalkyl group, or an aryl group) or SCN — ,
  • the photoelectric conversion device according to ⁇ 10> or ⁇ 11>, ⁇ 13> A photoelectrochemical cell comprising the photoelectric conversion element according to any one of ⁇ 1> to ⁇ 12>.
  • FIG. 1 is a cross-sectional view schematically showing one embodiment of a photoelectric conversion element manufactured according to the present invention.
  • the inventors of the present invention have a photoconductor having a semiconductor fine particle layer in which a specific dye (dye compound) is adsorbed on a conductive support, and an electric charge having an electrolyte composition containing the specific compound. It has been found that a photoelectric conversion element having a laminated structure including a moving body and a counter electrode and a photoelectrochemical cell using the photoelectric conversion element have high conversion efficiency and durability, and particularly a decrease in conversion efficiency is small. The present invention has been made based on this finding.
  • the photoelectric conversion element 10 includes a conductive support 1, a photoconductor 2 having semiconductor fine particles having a dye adsorbed on the conductive support 1, a charge transfer body 3, and a counter electrode 4.
  • the conductive support 1 on which the photoreceptor 2 is formed functions as a working electrode in the photoelectric conversion element 10.
  • the photoelectric conversion element 10 can be used as a battery for causing the external circuit 6 to perform work, and can be operated as a photoelectrochemical cell (not shown).
  • the light-receiving electrode 5 is an electrode composed of a conductive support 1 and a photosensitive layer (semiconductor film) 2 of semiconductor fine particles 22 adsorbed with a dye 21 coated on the conductive support.
  • the light incident on the photoreceptor (semiconductor film) 2 excites the dye.
  • the excited dye has high energy electrons. Therefore, the electrons are transferred from the dye 21 to the conduction band of the semiconductor fine particles 22 and further reach the conductive support 1 by diffusion.
  • the molecule of the dye 21 is an oxidant.
  • the electrons on the electrode return to the oxidized dye while working in an external circuit, thereby acting as a photoelectrochemical cell.
  • the light receiving electrode 5 functions as a negative electrode of the battery.
  • the photoelectric conversion element of the present invention has a photoreceptor having a porous semiconductor fine particle layer in which a dye described later is adsorbed on a conductive support.
  • the photoreceptor is designed according to the purpose, and may have a single layer structure or a multilayer structure.
  • the dye in the photoreceptor may be one kind or a mixture of many kinds of dyes, but at least one of them uses a dye described later.
  • the photoconductor of the photoelectric conversion element of the present invention contains semiconductor fine particles adsorbed with the dye, has high sensitivity, and can be used as a photoelectrochemical cell, and high conversion efficiency can be obtained.
  • a dye (pigment compound) adsorbed on the porous semiconductor fine particles constituting the photoreceptor has a structure represented by the following general formula (1).
  • a 1 is a 5-membered, 6-membered or 7-membered nitrogen-containing heterocycle formed by linking with a benzene ring.
  • a 1 is preferably a six-membered or seven-membered nitrogen-containing heterocycle formed by linking with a benzene ring.
  • Five-membered ring represented by A 1 six-membered ring, as the atoms forming the nitrogen-containing heterocyclic seven-membered ring, in addition to carbon atoms of the nitrogen atom, a sulfur atom, and at least one selected from an oxygen atom Is preferably formed.
  • the six-membered ring or seven-membered ring represented by A 1 is preferably formed of at least one selected from a carbon atom, a sulfur atom, and an oxygen atom in addition to a nitrogen atom. More preferred examples include a 6-membered or 7-membered nitrogen-containing heterocycle formed of at least one selected from a carbon atom and a sulfur atom in addition to a nitrogen atom.
  • a seven-membered nitrogen-containing heterocycle formed by only carbon atoms in addition to nitrogen atoms.
  • a 1 may be condensed or may be substituted. Furthermore, you may have a substituent. Examples of the ring condensed to the ring formed by A 1 include a benzene ring, a pyridine ring, a pyrrole ring, a furan ring, and a thiophene ring.
  • L 1 is an electron-transporting linking group containing at least one heterocyclic ring selected from a thiophene ring, a furan ring, a pyrrole ring, a selenophene ring, and a heterocyclic ring condensed with these.
  • it is an electron transfer linking group containing at least one heterocyclic ring selected from a thiophene ring, a pyrrole ring or a heterocyclic ring condensed with these, more preferably a thiophene ring or a condensed heterocyclic thereof.
  • Examples of the condensed ring include a benzene ring, a pyridine ring, a pyrrole ring, a furan ring, and a thiophene ring.
  • L 1 is, for example, a bivalent thiophene ring group, or a divalent polythiophene ring group in which two or more thiophene rings are bonded, as exemplified by an electron-transporting linking group containing a thiophene ring and a heterocyclic ring condensed thereto.
  • Examples include a divalent benzothieno [3,2-b] benzothiophene ring group and a divalent naphthothieno [3,2-b] naphthothiophene ring group.
  • R 1 and R 3 each independently represents a hydrogen atom or a substituent.
  • R 1 and R 3 are each independently at least one substituent selected from a hydrogen atom, an alkyl group, an alkoxy group, and an aryl group. More preferably, it is at least one selected from an alkyl group, an alkoxy group, and an aryl group. More preferred is at least one selected from an alkyl group and an aryl group, and particularly preferred is an alkyl group.
  • preferred alkyl groups include linear, branched, and cyclic substituted or unsubstituted alkyl groups.
  • alkyl groups preferably alkyl groups having 1 to 30 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, t-butyl, n-hexyl, n-octyl, eicosyl, 2-chloroethyl, 2-cyanoethyl, 2-ethylhexyl
  • a cycloalkyl group preferably a substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms, such as cyclohexyl, cyclopentyl, 4-n-dodecylcyclohexyl
  • a bicycloalkyl group preferably a carbon number 5 to 30 substituted or unsubstituted bicycloalkyl groups, that is, monovalent groups in which one hydrogen atom has been removed from a bicycloalkane having 5 to 30 carbon atoms, for example, bicyclo [1,2,2] hept
  • alkyl groups include alkyl groups having 1 to 30 carbon atoms (for example, methyl, ethyl, n-propyl, isopropyl, t-butyl, n-hexyl, n-octyl, eicosyl, 2-chloroethyl, 2-cyanoethyl, 2-ethylhexyl) or a cycloalkyl group (preferably a substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms, such as cyclohexyl, cyclopentyl, 4-n-dodecylcyclohexyl), particularly preferably carbon.
  • alkyl groups having 1 to 30 carbon atoms for example, methyl, ethyl, n-propyl, isopropyl, t-butyl, n-hexyl, n-octyl, eicosyl, 2-chloroethyl
  • Examples thereof include alkyl groups of 1 to 20, such as methyl, ethyl, n-propyl, isopropyl, t-butyl, n-hexyl, n-octyl, eicosyl, 2-chloroethyl, 2-cyanoethyl and 2-ethylhexyl.
  • R 1 and R 3 represent an aryl group
  • preferred aryl groups include phenyl, naphthyl, thienyl, furyl, pyryl or a group in which these are condensed, and particularly preferably phenyl, thienyl or these in a condensed ring. Group.
  • condensed ring examples include a benzene ring, a pyridine ring, a pyrrole ring, a furan ring, and a thiophene ring.
  • preferred alkoxy groups include substituted or unsubstituted alkoxy groups having 1 to 30 carbon atoms such as methoxy, ethoxy, isopropoxy, t-butoxy, n-octyloxy, 2-methoxyethoxy is preferred, and more preferred is a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, such as methoxy, ethoxy, isopropoxy, t-butoxy, n-octyloxy, 2-methoxyethoxy. Particularly preferred is a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms.
  • R 2 represents a hydrogen atom or a substituent. Preferably, it is a hydrogen atom.
  • R 2 represents a substituent
  • examples of the substituent include a group represented by the substituent W described later.
  • the substituent is preferably a halogen atom, an alkyl group, an alkenyl group, an alkynyl group, or an aromatic group.
  • B 1 represents a heterocyclic acidic nucleus or a methylene group substituted with an electron withdrawing group, and B 1 has at least one acidic group.
  • a heterocyclic acid nucleus T.C. H. "The Theory of the photographic process. Forth edition.” By James, published in 1977, published by Macmillan publishing, Inc.
  • the heterocyclic acid nucleus is preferably rhodanine, hydantoin, thiohydantoin, barbituric acid, thiobarbituric acid, pyrazolidinedione, pyrazolone, indandione, isoxazolone, more preferably rhodanine, hydantoin, thiohydantoin, barbitur Acid, thiobarbituric acid, particularly preferably rhodanine.
  • examples of the electron withdrawing group include substituents having the following effects.
  • an electron withdrawing group attenuates the electron density at a specific position of the molecule.
  • the electron withdrawing property or electron donating property cannot be explained simply by the difference in electronegativity.
  • Hammett's rule is known as an empirical rule for quantitatively evaluating and predicting these effects based on the acid dissociation constants of para- and meta-substituted benzoic acids.
  • the electron withdrawing effect is represented as -I effect
  • the electron donating property is represented as + I effect
  • An atom having a higher electronegativity than carbon exhibits an -I effect.
  • An anion shows a + I effect
  • a cation shows a -I effect.
  • the electron withdrawing property is represented as -M effect
  • the electron donating property is represented as + M effect.
  • Examples of electron withdrawing groups include the following. Induced effect (-I effect) -O + R 2 > -N + R 3 -N + R 3 > -P + R 3 > ... -O + R 2 > -S + R 2 > ...
  • the electron withdrawing group is preferably a cyano group, a nitro group, a sulfonyl group, a sulfoxy group, an acyl group, an alkoxycarbonyl group or a carbamoyl group, more preferably a cyano group, a nitro group or a sulfonyl group, particularly preferably a cyano group. .
  • the methylene group substituted with a heterocyclic acidic nucleus or an electron withdrawing group represented by B 1 has at least one acidic group.
  • An acidic group is a group in which the pKa of the most acidic hydrogen atom constituting the group is 13 or less.
  • acidic groups include carboxylic acid groups, sulfonic acid groups, phosphonic acid groups, phenolic hydroxyl groups, alkylsulfonylcarbamoyl groups, and phosphoric acid groups, preferably carboxylic acid groups, sulfonic acid groups, phosphonic acid groups, and phenols.
  • n1 represents an integer of 1 to 12.
  • n1 is preferably an integer of 1 to 10, more preferably an integer of 2 to 8, and particularly preferably an integer of 2 to 6.
  • the general formula (1) is more preferably represented by the general formula (3) or the general formula (4).
  • X represents a group of nonmetallic atoms necessary to form a six-membered or seven-membered nitrogen-containing group by linking with a benzene ring.
  • the nonmetallic atom group refers to an atomic group in which at least one selected from the group consisting of a carbon atom, an oxygen atom, a nitrogen atom and a sulfur atom is bonded.
  • X is a nonmetallic atom group which forms a seven-membered nitrogen-containing heterocycle by linking with a benzene ring.
  • the atom forming the six-membered or seven-membered nitrogen-containing heterocycle represented by X is preferably at least one selected from the group consisting of a carbon atom, a sulfur atom, and an oxygen atom in addition to a nitrogen atom. Mention may be made of the six-membered or seven-membered nitrogen-containing heterocycle formed. More preferred examples include a 6-membered or 7-membered nitrogen-containing heterocycle formed by at least one atom selected from a carbon atom, a sulfur atom and an oxygen atom in addition to a nitrogen atom.
  • a 6-membered or 7-membered nitrogen-containing heterocycle formed by at least one atom selected from a carbon atom and a sulfur atom in addition to a nitrogen atom. More preferred examples include a seven-membered nitrogen-containing heterocycle formed by a carbon atom and a sulfur atom in addition to a nitrogen atom. Particularly preferred is a seven-membered nitrogen-containing heterocycle formed by only carbon atoms in addition to nitrogen atoms.
  • X may be condensed or substituted. Furthermore, you may have a substituent. Examples of the condensed ring include a benzene ring, a pyridine ring, a pyrrole ring, a furan ring, and a thiophene ring.
  • R 4 to R 7 represent at least one substituent selected from a hydrogen atom, an alkyl group, an alkoxy group, and an aryl group.
  • R 4 to R 7 are preferably a hydrogen atom or an alkyl group.
  • a preferred alkyl group represents a linear, branched, or cyclic substituted or unsubstituted alkyl group.
  • alkyl groups preferably alkyl groups having 1 to 30 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, t-butyl, n-hexyl, n-octyl, eicosyl, 2-chloroethyl, 2-cyanoethyl, 2-ethylhexyl
  • a cycloalkyl group preferably a substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms, such as cyclohexyl, cyclopentyl, 4-n-dodecylcyclohexyl
  • a bicycloalkyl group preferably a carbon number 5 to 30 substituted or unsubstituted bicycloalkyl groups, that is, monovalent groups in which one hydrogen atom has been removed from a bicycloalkane having 5 to 30 carbon atoms, for example, bicyclo [1,2,2] hept
  • alkyl groups include alkyl groups having 1 to 30 carbon atoms (for example, methyl, ethyl, n-propyl, isopropyl, t-butyl, n-hexyl, n-octyl, eicosyl, 2-chloroethyl, 2-cyanoethyl, 2-ethylhexyl) or a cycloalkyl group (preferably a substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms, such as cyclohexyl, cyclopentyl, 4-n-dodecylcyclohexyl), particularly preferably carbon.
  • alkyl groups having 1 to 30 carbon atoms for example, methyl, ethyl, n-propyl, isopropyl, t-butyl, n-hexyl, n-octyl, eicosyl, 2-chloroethyl
  • Examples thereof include alkyl groups of 1 to 20, such as methyl, ethyl, n-propyl, isopropyl, t-butyl, n-hexyl, n-octyl, eicosyl, 2-chloroethyl, 2-cyanoethyl and 2-ethylhexyl.
  • R 4 to R 7 represent an aryl group
  • preferred aryl groups include phenyl, naphthyl, thienyl, furyl, pyryl, or a group in which these are condensed, and particularly preferably phenyl, thienyl, or these in a condensed ring. Group.
  • condensed ring examples include a benzene ring, a pyridine ring, a pyrrole ring, a furan ring, and a thiophene ring.
  • preferred alkoxy groups include substituted or unsubstituted alkoxy groups having 1 to 30 carbon atoms such as methoxy, ethoxy, isopropoxy, t-butoxy, n-octyloxy, 2-methoxyethoxy is preferred, and more preferred is a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, such as methoxy, ethoxy, isopropoxy, t-butoxy, n-octyloxy, 2-methoxyethoxy. Particularly preferred is a substituted or unsubstituted alkoxy group having 1 to 10 carbon atoms.
  • n3 represents an integer of 1 or 2.
  • X is
  • B 1 is a group represented by the following general formula (5) or general formula (6).
  • R 9 and R 10 each independently represents an aliphatic group, an aromatic group or a heterocyclic group (at least one functional group may have the acidic group described above). ).
  • An aliphatic group and an aromatic group are preferable. More preferred are aliphatic groups and aromatic groups, and particularly preferred are aliphatic groups.
  • Examples of the aliphatic group include an alkyl group (for example, methyl, ethyl, n-propyl, isopropyl, t-butyl, n-octyl, eicosyl, 2-chloroethyl, 2-cyanoethyl, 2-ethylhexyl), a cycloalkyl group (preferably A substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms (for example, cyclohexyl, cyclopentyl, 4-n-dodecylcyclohexyl).
  • alkyl group for example, methyl, ethyl, n-propyl, isopropyl, t-butyl, n-octyl, eicosyl, 2-chloroethyl, 2-cyanoethyl, 2-ethylhexyl
  • a cycloalkyl group preferably A substitute
  • Preferred aliphatic groups are alkyl groups and alkenyl groups having 1 to 30 carbon atoms, more preferably 1 to 25 carbon atoms, and particularly preferably 1 to 20 carbon atoms, which may have a substituent.
  • aromatic groups include benzene, furan, pyrrole, pyridine, thiophene, imidazole, oxazole, thiazole, pyrazole, isoxazole, isothiazole, pyrimidine, pyrazine and condensed. These are cyclic rings, which may be substituted.
  • a benzene ring, a pyrrole ring, a pyridine ring, and a thiophene ring are preferable, and a benzene ring and a thiophene ring are more preferable. Particularly preferred is a benzene ring. These may be substituted.
  • a 3- to 6-membered substituted or unsubstituted heterocyclic group more preferably a 5- or 6-membered unsubstituted heterocyclic group, particularly preferably a 6-membered heterocyclic group (for example, piperidine, Morpholine). These may have a substituent.
  • m represents 0 or 1. Preferably it is 1.
  • the carbon-carbon double bond in the general formula (5) may be either E-type or Z-type.
  • R 8 in the general formula (5) represents a sulfur atom or the following general formula (7), and the carbon-carbon double bond in the general formula (7) may be either E type or Z type.
  • R 11 and R 12 in the general formula (6) each independently represent a cyano group or an acidic group, and may be the same or different from each other. Further, the carbon-carbon double bond in the general formula (6) may be either E type or Z type.
  • the dye having the structure of the general formula (5) is preferably represented by the following general formula (8).
  • R 9 represents an aliphatic group, an aromatic group or a heterocyclic group (these groups may have an acidic group).
  • the B 1 is preferably represented by the following general formula (9).
  • R 10 represents an aliphatic group, an aromatic group or a heterocyclic group (these groups may have an acidic group).
  • B 1 is preferably represented by the following general formula (10).
  • substituent W 1 examples include those shown below.
  • Halogen atoms for example, fluorine atom, chlorine atom, bromine atom, iodine atom
  • -Alkyl group represents a linear, branched, or cyclic substituted or unsubstituted alkyl group.
  • alkyl groups preferably alkyl groups having 1 to 30 carbon atoms such as methyl, ethyl, n-propyl, isopropyl, t-butyl, n-octyl, eicosyl, 2-chloroethyl, 2-cyanoethyl, 2-ethylhexyl).
  • a cycloalkyl group preferably a substituted or unsubstituted cycloalkyl group having 3 to 30 carbon atoms, such as cyclohexyl, cyclopentyl, 4-n-dodecylcyclohexyl
  • a bicycloalkyl group preferably having 5 to 30 carbon atoms.
  • a substituted or unsubstituted bicycloalkyl group that is, a monovalent group obtained by removing one hydrogen atom from a bicycloalkane having 5 to 30 carbon atoms, for example, bicyclo [1,2,2] heptan-2-yl, bicyclo [2,2,2] octane-3-yl), a tricyclo structure with more ring structures Domo is intended to cover.
  • An alkyl group for example, an alkyl group of an alkylthio group
  • -Alkenyl group [Represents a linear, branched, or cyclic substituted or unsubstituted alkenyl group.
  • alkenyl groups preferably substituted or unsubstituted alkenyl groups having 2 to 30 carbon atoms, such as vinyl, allyl, prenyl, geranyl, oleyl
  • cycloalkenyl groups preferably substituted or substituted groups having 3 to 30 carbon atoms
  • An unsubstituted cycloalkenyl group that is, a monovalent group obtained by removing one hydrogen atom of a cycloalkene having 3 to 30 carbon atoms (for example, 2-cyclopenten-1-yl, 2-cyclohexen-1-yl), Bicycloalkenyl group (a substituted or unsubstituted bicycloalkenyl group, preferably a substituted or unsubstituted bicycloalkenyl group having 5 to 30 carbon atoms, that is, a monovalent group obtained by removing one hydrogen atom of a bicycloalkene having one double bond.
  • bicyclo [2,2,1] hept-2-en-1-yl, bicyclo 2,2,2] oct-2-en-4-yl An alkynyl group (preferably a substituted or unsubstituted alkynyl group having 2 to 30 carbon atoms, such as ethynyl, propargyl, trimethylsilylethynyl group, aryl group (preferably a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, For example, phenyl, p-tolyl, naphthyl, m-chlorophenyl, o-hexadecanoylaminophenyl), Aromatic groups (for example, benzene ring, furan ring, pyrrole ring, pyridine ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, isoxazole
  • the maximum absorption wavelength in the solution of the dye of the present invention is preferably in the range of 350 to 1000 nm, more preferably in the range of 370 to 700 nm, and particularly preferably in the range of 390 to 650 nm.
  • the photoelectric conversion device of the present invention has an electrolyte composition containing a heterocyclic quaternary salt compound in the charge transfer body, but the heterocyclic quaternary salt compound is a 5-membered ring. Alternatively, a 6-membered heterocyclic quaternary salt compound is preferable, and an imidazole ring or pyridine ring quaternary salt compound is more preferable.
  • a heterocyclic quaternary salt compound preferable in the present invention is a heterocyclic quaternary salt compound represented by the following general formula (2).
  • the charge transfer member comprising the electrolyte composition of the present invention can be formed by applying the electrolyte composition onto a photoreceptor having a semiconductor fine particle layer in which a dye is adsorbed on a conductive support described later.
  • the thickness of the charge transfer body is preferably 0.001 to 200 ⁇ m, more preferably 0.1 to 100 ⁇ m, and particularly preferably 0.1 to 50 ⁇ m.
  • the compound represented by the general formula (2) is a low melting point salt, so-called molten salt.
  • the melting point of the compound represented by the general formula (2) is preferably 100 ° C. or less, more preferably 80 ° C. or less, and particularly preferably 60 ° C. or less.
  • This compound includes a compound that is liquid at room temperature (around 25 ° C.), so-called room temperature molten salt.
  • the compound represented by the general formula (2) can often be used as an electrolyte with almost no solvent, and can often be used alone as an electrolyte. Even if it is solid at room temperature, it can be made liquid by adding a small amount of a solvent, an additive or the like, and can be used as an electrolyte.
  • a method of dissolving by heating and infiltrating on the electrode without adding anything a method of infiltrating on the electrode using a low boiling point solvent (methanol, acetonitrile, methylene chloride, etc.), and then removing the solvent by heating Etc. can be incorporated into the photoelectric conversion element.
  • R X represents a substituent containing a — (CR 31 R 32 —CR 33 R 34 —O) a — bond.
  • R 31 to R 34 each independently represents a hydrogen atom or an alkyl group, and the alkyl group preferably has 1 to 4 carbon atoms.
  • R 31 to R 34 are each independently preferably a hydrogen atom or a methyl group, and more preferably a hydrogen atom.
  • A represents an integer of 2 to 20, preferably an integer of 2 to 6, more preferably an integer of 2 to 5, and particularly preferably an integer of 2 to 4.
  • R X is also a branched be linear, or may be cyclic.
  • the compound represented by the general formula (2) contained in the electrolyte composition of the present invention has a substituent containing a repeating substituted or unsubstituted ethyleneoxy group at a specific position. Repeated methyleneoxy groups are difficult to synthesize. Moreover, when a substituent containing an alkyleneoxy group having a trimethyleneoxy group or higher methylene group is introduced into the compound represented by the general formula (2), the ion transport ability of the electrolyte composition is greatly reduced. When used in a photoelectric conversion element, the photoelectric conversion efficiency deteriorates, which is not preferable.
  • Q represents an atomic group capable of forming a 5-membered or 6-membered aromatic cation with a nitrogen atom.
  • Q may have a substituent, and this substituent preferably contains a — (CR 31 R 32 —CR 33 R 34 —O) a — bond.
  • R 31 to R 34 each independently represents a hydrogen atom or an alkyl group, and a represents an integer of 2 to 20.
  • the preferred embodiments of R 31 to R 34 and a are the same as in the case of the — (CR 31 R 32 —CR 33 R 34 —O) a — bond, which is contained in the above R X.
  • the compound represented by the general formula (2) includes a plurality of — (CR 31 R 32 —CR 33 R 34 —O) a — bonds, those R 31 to R 34 and a may be the same. May be different.
  • the compound of the general formula (2) becomes a cation by bonding Q or a substituent in the general formula (2) to a nitrogen atom.
  • Z X below - together become electrically neutral, it has a heterocyclic quaternary salt compound.
  • Q is preferably composed of one or more atoms selected from the group consisting of carbon atom, hydrogen atom, nitrogen atom, oxygen atom and sulfur atom.
  • the 5-membered ring formed by Q is preferably an oxazole ring, thiazole ring, imidazole ring, pyrazole ring, isoxazole ring, thiadiazole ring, oxadiazole ring or triazole ring, and is an oxazole ring, thiazole ring or imidazole ring. Is more preferable, and an imidazole ring is particularly preferable.
  • the 6-membered ring formed by Q is preferably a pyridine ring, pyrimidine ring, pyridazine ring, pyrazine ring or triazine ring, and particularly preferably a pyridine ring.
  • the substituent on Q preferably contains a — (CR 31 R 32 —CR 33 R 34 —O) a — bond.
  • substituents on Q include alkoxy groups (methoxy, ethoxy, etc.), cyano groups, alkoxycarbonyl groups (ethoxycarbonyl, methoxyethoxycarbonyl, etc.), carbonate groups (ethoxycarbonyloxy, etc.), amide groups ( Acetylamino, benzoylamino, etc.), carbamoyl group (N, N-dimethylcarbamoyl, N-phenylcarbamoyl etc.), phosphonyl group (diethylphosphonyl etc.), heterocyclic group (pyridyl, imidazolyl, furanyl, oxazolidinonyl etc.) , Aryloxy groups (phenoxy, etc.), alkylthio groups (methylthio, ethylthio, etc.
  • an alkoxy group, a cyano group, a carbonate ester group, an amide group, a carbamoyl group, a phosphonyl group, a heterocyclic group, an acyl group, a sulfonyl group, an acyloxy group, a sulfonyloxy group, and an alkyl group are more preferable.
  • Particularly preferred are groups, carbonate groups, phosphonyl groups, heterocyclic groups and alkyl groups.
  • Z X - represents an anion.
  • Z X ⁇ are halide ions (I ⁇ , Cl ⁇ , Br ⁇ etc.), N (CF 3 SO 2 ) 2 ⁇ , N (CF 3 CF 2 SO 2 ) 2 ⁇ , C (CF 3 SO 2 3 ⁇ , BF 4 ⁇ , BPh 4 ⁇ , PF 6 ⁇ , ClO 4 ⁇ , R Y —COO ⁇ , R Z —SO 3 ⁇ , SCN ⁇ and the like.
  • Z X ⁇ is preferably I ⁇ , N (CF 3 SO 2 ) 2 ⁇ , BF 4 ⁇ , R Y —COO ⁇ , R Z —SO 3 — or SCN — , and more preferably I ⁇ . . That is, the compound represented by the general formula (2) is more preferably an iodine salt.
  • R Y is a hydrogen atom, a substituted or unsubstituted alkyl group (preferably having 1 to 10 carbon atoms, which may be linear or branched, or cyclic, such as methyl , Ethylpropyl, butyl, isopropyl, pentyl, hexyl, octyl, 2-ethylhexyl, t-octyl, decyl, cyclohexyl, cyclopentyl, etc.), perfluoroalkyl groups (preferably having 1 to 10 carbon atoms, such as trifluoromethyl, penta Fluoroethyl, heptafluoropropyl, etc.) or a substituted or unsubstituted aryl group (preferably having 6 to 12 carbon atoms, such as phenyl, tolyl, naphthyl, etc.).
  • a substituted or unsubstituted alkyl group preferably having 1
  • R Y is more preferably an alkyl group having 1 to 10 carbon atoms or a perfluoroalkyl group, and particularly preferably a perfluoroalkyl group having 1 to 10 carbon atoms.
  • R Y is an alkyl group or an aryl group having a substituent
  • preferred examples of the substituent include those similar to the examples of the substituent on Q.
  • halogen atoms fluorine, chlorine, bromine, iodine, etc.
  • R Z represents a substituted or unsubstituted alkyl group, a perfluoroalkyl group, or a substituted or unsubstituted aryl group (and preferred examples are the same as those for R Y above).
  • R Z is more preferably an alkyl group having 1 to 7 carbon atoms, and particularly preferably an alkyl group having 1 to 5 carbon atoms.
  • the alkyl group or aryl group R Z has a substituent group, those similar to the examples of the substituents on the Q can be cited as a preferred example of the substituent. Of these, an alkoxy group is more preferable.
  • R Y —COO — and R Z —SO 3 — may form a multimer via R Y or R Z. In the case of forming a multimer, a dimer to tetramer is preferable, and a dimer is more preferable.
  • the compound represented by the general formula (2) is preferably further represented by the general formula (11) or (12).
  • R 55 represents a — (CR 51 R 52 —CR 53 R 54 —O) b — bond
  • R 51 to R 54 each independently represents a hydrogen atom or an alkyl group, b Represents an integer of 2 to 20.
  • R 55 has the same meaning as R X in the general formula (2), and the preferred embodiment is also the same as R X.
  • R 56 to R 60 each independently represents a hydrogen atom or a substituent. Preferred examples in the case where R 56 to R 60 are a substituent include the same as the examples of the substituent on Q above. .
  • At least one of R 56 to R 59 in the general formula (11) and at least one of R 56 to R 60 in the general formula (12) are each represented by — (CR 51 R 52 —CR 53 R 54 It is preferred that it contains a —O) b — bond.
  • Two or more of R 55 to R 60 may be linked to each other to form a ring structure.
  • This ring is preferably a 5- to 7-membered ring, more preferably a 5-membered ring or a 6-membered ring, and particularly preferably a 5-membered ring.
  • Z X - represents an anion, preferred examples of the general formula (2) in the Z X - is the same as.
  • the total number of —CR 31 R 32 —CR 33 R 34 —O— bonds (R 31 to R 34 each independently represents a hydrogen atom or an alkyl group) in the compound represented by the general formula (2) is 4 ⁇ 6 are preferred.
  • the compound represented by the general formula (2) may form a multimer through R X or Q.
  • the multimer to be formed is preferably a dimer to tetramer, and more preferably a dimer.
  • the heterocyclic quaternary salt compound contained in the electrolyte composition of the present invention is particularly preferably general formula (2), general formula (11), and general formula (12), and most preferably general formula (11). And a compound represented by the following general formula (13) are also preferable.
  • R 101 represents a substituent, and examples of the substituent include a substituent on Q. Among these, R 101 is preferably an aliphatic group, an aromatic group or a heterocyclic group, more preferably an aliphatic group, still more preferably an alkyl group, and most preferably an alkyl group having 1 to 6 carbon atoms. Of these, a methyl group is preferable.
  • R 102 has the same meaning as R 58 in the general formula (11), and the preferred range is also the same. Of these, an aliphatic group is preferred, an alkyl group is more preferred, and an alkyl group having 1 to 6 carbon atoms (for example, methyl , Ethyl, propyl, butyl, 2-methoxyethyl group) is most preferred. Specific examples of the compound represented by the general formula (13) are shown below.
  • the electrolyte composition used in the photoelectric conversion device of the present invention includes, for example, iodine and iodide (for example, iodine) as a redox pair in addition to the heterocyclic quaternary salt compound represented by the compound represented by the general formula (2).
  • the cation of the iodine salt is preferably a 5-membered or 6-membered nitrogen-containing aromatic cation.
  • the heterocyclic quaternary salt compound represented by the compound represented by the general formula (2) is not an iodine salt, WO95 / 18456, JP-A-8-259543, Electrochemistry, Vol. 65, 11 No., page 923 (1997) and the like, and iodine salts such as pyridinium salts, imidazolium salts and triazolium salts are preferably used in combination.
  • the electrolyte composition contains at least one heterocyclic quaternary salt compound, but preferably contains two or more, and the heterocyclic quaternary salt compound in the present invention is used in combination. Is more preferable.
  • the electrolyte composition used for the photoelectric conversion element of the present invention preferably contains iodine together with the heterocyclic quaternary salt compound.
  • the iodine content is preferably 0.1 to 20% by mass, and more preferably 0.5 to 5% by mass, based on the entire electrolyte composition.
  • the electrolyte composition used for the photoelectric conversion element of the present invention may contain a solvent.
  • the solvent content in the electrolyte composition is preferably 50% by mass or less, more preferably 30% by mass or less, and particularly preferably 10% by mass or less of the entire composition.
  • a solvent having a low viscosity and high ion mobility, a high dielectric constant and capable of increasing the effective carrier concentration, or both is preferable because it exhibits excellent ion conductivity.
  • Such solvents include carbonate compounds (ethylene carbonate, propylene carbonate, etc.), heterocyclic compounds (3-methyl-2-oxazolidinone, etc.), ether compounds (dioxane, diethyl ether, etc.), chain ethers (ethylene glycol dialkyl ether, Propylene glycol dialkyl ether, polyethylene glycol dialkyl ether, polypropylene glycol dialkyl ether, etc.), alcohols (methanol, ethanol, ethylene glycol monoalkyl ether, propylene glycol monoalkyl ether, polyethylene glycol monoalkyl ether, polypropylene glycol monoalkyl ether, etc.), Polyhydric alcohols (ethylene glycol, propylene glycol, polyethylene glycol , Polypropylene glycol, glycerol, etc.), nitrile compounds (acetonitrile, glutarodinitrile, methoxyacetonitrile, propionitrile, benzonitrile, biscyanoethyl
  • the electrolyte composition used in the photoelectric conversion element of the present invention may be added with a polymer or an oil gelling agent, or may be gelled (solidified) by a technique such as polymerization of polyfunctional monomers or polymer crosslinking reaction. .
  • the polyfunctional monomers are preferably compounds having two or more ethylenically unsaturated groups, such as divinylbenzene, ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol Ethylene glycol dimethacrylate, pentaerythritol triacrylate, trimethylolpropane triacrylate and the like are preferable.
  • divinylbenzene ethylene glycol diacrylate, ethylene glycol dimethacrylate, diethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol diacrylate, triethylene glycol Ethylene glycol dimethacrylate, pentaerythritol triacrylate, trimethylolpropane triacrylate and the like are preferable.
  • the gel electrolyte may be formed by polymerization of a mixture containing a monofunctional monomer in addition to the above polyfunctional monomers.
  • Monofunctional monomers include acrylic acid or ⁇ -alkyl acrylic acid (acrylic acid, methacrylic acid, itaconic acid, etc.) or esters or amides thereof (methyl acrylate, ethyl acrylate, n-propyl acrylate, i-propyl acrylate, n- Butyl acrylate, i-butyl acrylate, t-butyl acrylate, n-pentyl acrylate, 3-pentyl acrylate, t-pentyl acrylate, n-hexyl acrylate, 2,2-dimethylbutyl acrylate, n-octyl acrylate, 2-ethylhexyl acrylate 4-methyl-2-propylpentyl acrylate, cetyl acrylate, n-octade
  • the blending amount of the polyfunctional monomer is preferably 0.5 to 70% by mass, and more preferably 1.0 to 50% by mass with respect to the whole monomer.
  • the above-mentioned monomers are commonly used in Takayuki Otsu and Masato Kinoshita “Experimental Methods for Polymer Synthesis” (Chemical Doujin) and Takatsu Otsu “Lecture Polymerization Reaction Theory 1 Radical Polymerization (I)” (Chemical Doujin).
  • Polymerization can be performed by radical polymerization which is a polymer synthesis method.
  • the monomer for gel electrolyte used in the present invention can be radically polymerized by heating, light or electron beam, or electrochemically, and is particularly preferably radically polymerized by heating.
  • polymerization initiators are 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), dimethyl 2,2′-azobis (2-methylpropyl). Pionate), azo initiators such as dimethyl 2,2′-azobisisobutyrate, peroxide initiators such as lauryl peroxide, benzoyl peroxide, and t-butyl peroctoate.
  • a preferable addition amount of the polymerization initiator is 0.01 to 20% by mass, and more preferably 0.1 to 10% by mass with respect to the total amount of monomers.
  • the weight composition range of the monomer in the gel electrolyte is preferably 0.5 to 70% by mass.
  • the content is 1.0 to 50% by mass.
  • a polymer having a reactive group capable of crosslinking is added to the composition and a crosslinking agent.
  • Preferred reactive groups are nitrogen-containing heterocycles such as pyridine ring, imidazole ring, thiazole ring, oxazole ring, triazole ring, morpholine ring, piperidine ring, piperazine ring, and the preferred crosslinking agent is a functional group capable of nucleophilic attack by the nitrogen atom.
  • the electrolyte composition of the present invention metal iodides (LiI, NaI, KI, CsI , CaI 2 , etc.), a metal bromide (LiBr, NaBr, KBr, CsBr , CaBr 2 , etc.), quaternary ammonium bromine salt (tetraalkylammonium Ammonium bromide, pyridinium bromide, etc.), metal complexes (ferrocyanate-ferricyanate, ferrocene-ferricinium ion, etc.), sulfur compounds (sodium polysulfide, alkylthiol-alkyl disulfides, etc.), viologen dye, hydroquinone-quinone Etc. may be added. These may be used as a mixture.
  • J. Am. Ceram. Soc. 80, (12), 3157-3171 (1997), or basic compounds such as 2-picoline and 2,6-lutidine may be added.
  • a preferred concentration range is 0.05 to 2M.
  • a photosensitive member 2 in which a dye 21 is adsorbed on porous semiconductor fine particles 22 is formed on a conductive support 1.
  • a photosensitive layer can be produced by immersing the dispersion of semiconductor fine particles in the dye solution of the present invention after coating and drying on a conductive support.
  • a glass or a polymer material having a conductive film on the surface can be used as the support itself, such as metal. It is preferable that the conductive support is substantially transparent. Substantially transparent means that the light transmittance is 10% or more, preferably 50% or more, and particularly preferably 80% or more.
  • a glass or polymer material coated with a conductive metal oxide can be used as the conductive support.
  • the coating amount of the conductive metal oxide at this time is preferably 0.1 to 100 g per 1 m 2 of the support of glass or polymer material.
  • a transparent conductive support it is preferable that light is incident from the support side.
  • polymer materials examples include tetraacetyl cellulose (TAC), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), syndiotactic polystyrene (SPS), polyphenylene sulfide (PPS), polycarbonate (PC), Examples include polyarylate (PAR), polysulfone (PSF), polyester sulfone (PES), polyetherimide (PEI), cyclic polyolefin, and brominated phenoxy.
  • TAC tetraacetyl cellulose
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • SPS syndiotactic polystyrene
  • PPS polyphenylene sulfide
  • PC polycarbonate
  • Examples include polyarylate (PAR), polysulfone (PSF), polyester sulfone (PES), polyetherimide (PEI), cyclic polyolefin, and brominated phenoxy
  • an antireflection film in which a high refractive film and an oxide film having a low refractive index described in JP-A-2003-123859 are alternately laminated.
  • the film include a light guide function described in JP-A-2002-260746.
  • a metal support can also be preferably used. Examples thereof include titanium, aluminum, copper, nickel, iron, stainless steel, and copper. These metals may be alloys. More preferably, titanium, aluminum, and copper are preferable, and titanium and aluminum are particularly preferable.
  • a method of allowing a fluorescent material capable of changing ultraviolet light to visible light in the transparent support or on the surface of the transparent support, or a method using an ultraviolet absorber is also included.
  • a function described in JP-A-11-250944 may be further provided on the conductive support.
  • Preferred conductive films include metals (eg, platinum, gold, silver, copper, aluminum, rhodium, indium, etc.), carbon, or conductive metal oxides (indium-tin composite oxide, tin oxide doped with fluorine, etc.) ).
  • the thickness of the conductive film layer is preferably 0.01 to 30 ⁇ m, more preferably 0.03 to 25 ⁇ m, and particularly preferably 0.05 to 20 ⁇ m.
  • the range of the surface resistance is preferably 50 ⁇ / cm 2 or less, more preferably 10 ⁇ / cm 2 or less. This lower limit is not particularly limited, but is usually about 0.1 ⁇ / cm 2 .
  • a collecting electrode may be disposed.
  • a gas barrier film and / or an ion diffusion prevention film may be disposed between the support and the transparent conductive film.
  • the gas barrier layer a resin film or an inorganic film can be used.
  • the transparent conductive layer may have a laminated structure, and as a preferable method, for example, FTO can be laminated on ITO.
  • (D) Semiconductor Fine Particle As shown in FIG. 1, in the photoelectric conversion element of the present invention, a photosensitive layer 2 in which a dye 21 is adsorbed on a semiconductor fine particle 22 is formed on a conductive support 1. As will be described later, for example, a dispersion of semiconductor fine particles is applied to the conductive support and dried, and then immersed in the dye solution of the present invention to produce a photoreceptor.
  • the semiconductor fine particles metal chalcogenides (for example, oxides, sulfides, selenides, etc.) or perovskite fine particles are preferably used.
  • Preferred examples of the metal chalcogenide include titanium, tin, zinc, tungsten, zirconium, hafnium, strontium, indium, cerium, yttrium, lanthanum, vanadium, niobium, tantalum oxide, cadmium sulfide, cadmium selenide, and the like.
  • Preferred perovskites include strontium titanate and calcium titanate. Of these, titanium oxide, zinc oxide, tin oxide, and tungsten oxide are particularly preferable.
  • n-type In semiconductors, there are an n-type in which carriers involved in conduction are electrons and a p-type in which carriers are holes. In the element of the present invention, n-type is preferable in terms of conversion efficiency. In an n-type semiconductor, in addition to an intrinsic semiconductor (or an intrinsic semiconductor) having no impurity level and having the same carrier concentration due to conduction band electrons and valence band holes, the electron carrier concentration is reduced by structural defects derived from impurities. There are high n-type semiconductors.
  • the n-type inorganic semiconductor preferably used in the present invention is TiO 2 , TiSrO 3 , ZnO, Nb 2 O 3 , SnO 2 , WO 3 , Si, CdS, CdSe, V 2 O 5 , ZnS, ZnSe, SnSe, KTaO. 3 , FeS 2 , PbS, InP, GaAs, CuInS 2 , CuInSe 2 and the like.
  • the most preferred n-type semiconductors are TiO 2 , ZnO, SnO 2 , WO 3 , and Nb 2 O 3 .
  • a semiconductor material in which a plurality of these semiconductors are combined is also preferably used.
  • the average particle size of the primary particles is 2 nm to 50 nm, and the average primary particle size is 2 nm to 30 nm. More preferably, it is a fine particle. Two or more kinds of fine particles having different particle size distributions may be mixed. In this case, the average size of the small particles is preferably 5 nm or less. In addition, for the purpose of improving the light capture rate by scattering incident light, large particles having an average particle size exceeding 50 nm can be added to the above ultrafine particles at a low content.
  • the content of the large particles is preferably 50% or less, more preferably 20% or less of the mass of particles having an average particle size of 50 nm or less.
  • the average particle size of the large particles added and mixed for the above purpose is preferably 100 nm or more, and more preferably 250 nm or more.
  • the gel-sol method described in Sakuo Sakuo's “Science of Sol-Gel Method”, Agne Jofu Co., Ltd. (1998) is preferable.
  • a method of producing an oxide by high-temperature hydrolysis of chloride developed by Degussa in an oxyhydrogen salt is preferable.
  • the sol-gel method, the gel-sol method, and the high-temperature hydrolysis method in oxyhydrogen salt of chloride are all preferable.
  • the sulfuric acid method and the chlorine method described in Gihodo Publishing (1997) can also be used.
  • the sol-gel method the method described in Barbe et al., Journal of American Ceramic Society, Vol. 80, No. 12, pages 3157-3171 (1997), Burnside et al.
  • the method described in Materials, Vol. 10, No. 9, pages 2419-2425 is also preferable.
  • a method for producing semiconductor fine particles for example, as a method for producing titania nanoparticles, preferably, a method by flame hydrolysis of titanium tetrachloride, a combustion method of titanium tetrachloride, hydrolysis of a stable chalcogenide complex, orthotitanic acid Of semiconductor, forming semiconductor fine particles from soluble and insoluble parts, then dissolving and removing soluble parts, hydrothermal synthesis of peroxide aqueous solution, or production of core / shell structured titanium oxide fine particles by sol-gel method A method is mentioned.
  • titania examples include anatase type, brookite type, and rutile type, and anatase type and brookite type are preferable. Titania nanotubes, nanowires, and nanorods may be mixed with titania fine particles.
  • ⁇ Titania may be doped with a nonmetallic element or the like.
  • an additive to the titania may be used as a binder for improving necking or an additive on the surface for preventing reverse electron transfer.
  • preferred additives include ITO, SnO particles, whiskers, fibrous graphite / carbon nanotubes, zinc oxide necking binders, fibrous materials such as cellulose, metals, organic silicon, dodecylbenzenesulfonic acid, silane compounds, etc. Examples thereof include a mobile binding molecule and a potential gradient dendrimer.
  • titania may be acid-base or redox treated before dye adsorption. Etching, oxidation treatment, hydrogen peroxide treatment, dehydrogenation treatment, UV-ozone, oxygen plasma, or the like may be used.
  • a semiconductor fine particle dispersion in which the solid content other than the semiconductor fine particles is 10% by mass or less of the entire semiconductor fine particle dispersion is applied to the conductive support.
  • the porous semiconductor fine particle coating layer can be obtained by heating to.
  • a method of preparing a semiconductor fine particle dispersion is a method of depositing fine particles in a solvent and using them as they are when synthesizing a semiconductor. Or a method of mechanically pulverizing and grinding using a mill or a mortar.
  • the dispersion solvent water and / or various organic solvents can be used.
  • organic solvent examples include alcohols such as methanol, ethanol, isopropyl alcohol, citronellol and terpineol, ketones such as acetone, esters such as ethyl acetate, dichloromethane, acetonitrile and the like.
  • alcohols such as methanol, ethanol, isopropyl alcohol, citronellol and terpineol
  • ketones such as acetone
  • esters such as ethyl acetate, dichloromethane, acetonitrile and the like.
  • a small amount of, for example, a polymer such as polyethylene glycol, hydroxyethyl cellulose, carboxymethyl cellulose, a surfactant, an acid, or a chelating agent may be used as a dispersion aid.
  • the solid content other than the semiconductor fine particles can be 10% by mass or less of the total dispersion. This concentration is preferably 5% or less, more preferably 3% or less, and particularly preferably 1% or less. More preferably, it is 0.5% or less, and particularly preferably 0.2%. That is, in the semiconductor fine particle dispersion, the solid content other than the solvent and the semiconductor fine particles can be 10% by mass or less of the entire semiconductor fine dispersion.
  • the viscosity of the semiconductor fine particle dispersion is preferably 10 to 300 N ⁇ s / m 2 at 25 ° C. More preferably, it is 50 to 200 N ⁇ s / m 2 at 25 ° C.
  • a roller method, a dip method, or the like can be used as an application method.
  • an air knife method, a blade method, etc. can be used as a metering method.
  • the application method and the metering method can be made the same part.
  • a rouge method, a curtain method and the like are preferable.
  • wet printing method intaglio, rubber plate, screen printing and the like are preferred, including the three major printing methods of letterpress, offset and gravure.
  • a preferred film forming method is selected according to the liquid viscosity and the wet thickness.
  • the semiconductor fine particle dispersion of the present invention since it has a high viscosity and has a viscous property, it may have a strong cohesive force and may not be well adapted to the support during coating. In such a case, by performing cleaning and hydrophilization of the surface by UV ozone treatment, the binding force between the applied semiconductor fine particle dispersion and the surface of the conductive support increases, and the semiconductor fine particle dispersion can be easily applied.
  • the preferred thickness of the entire semiconductor fine particle layer is 0.1 to 100 ⁇ m.
  • the thickness of the semiconductor fine particle layer is further preferably 1 to 30 ⁇ m, and more preferably 2 to 25 ⁇ m.
  • the amount of the semiconductor fine particles supported per 1 m 2 of the support is preferably 0.5 g to 400 g, more preferably 5 to 100 g.
  • the applied semiconductor fine particle layer is subjected to heat treatment to enhance the electronic contact between the semiconductor fine particles and to improve the adhesion to the support, and to dry the applied semiconductor fine particle dispersion. .
  • heat treatment By this heat treatment, a porous semiconductor fine particle layer can be formed.
  • light energy can also be used.
  • the surface may be activated by applying light absorbed by the semiconductor fine particles such as ultraviolet light, or only the surface of the semiconductor fine particles may be activated by laser light or the like. Can do.
  • the impurities adsorbed on the particle surface are decomposed by the activation of the particle surface, and can be brought into a preferable state for the above purpose.
  • heat treatment and ultraviolet light it is preferable that heating be performed at 100 ° C. or higher and 250 ° C. or lower, or preferably 100 ° C. or higher and 150 ° C. or lower, while irradiating the semiconductor fine particles with light absorbed by the fine particles.
  • the semiconductor fine particle dispersion may be applied to the conductive support, and other treatments may be performed in addition to heating and light irradiation.
  • preferred methods include energization and chemical treatment.
  • a pressure may be applied after the application, and a method for applying the pressure includes Japanese Patent Publication No. 2003-500857.
  • Examples of light irradiation include JP-A No. 2001-357896.
  • Examples of plasma, microwave, and energization include JP-A No. 2002-353453.
  • Examples of the chemical treatment include Japanese Patent Application Laid-Open No. 2001-357896.
  • the method for coating the above-mentioned semiconductor fine particles on the conductive support is not only the method for applying the above-mentioned semiconductor fine particle dispersion on the conductive support, but also the semiconductor fine particle precursor described in Japanese Patent No. 2664194.
  • a method such as a method of obtaining a semiconductor fine particle film by applying on a conductive support and hydrolyzing with moisture in the air can be used.
  • the precursor include (NH 4 ) 2 TiF 6 , titanium peroxide, metal alkoxide / metal complex / metal organic acid salt, and the like.
  • a method of forming a semiconductor film by applying a slurry in which a metal organic oxide (alkoxide, etc.) coexists, and heat treatment, light treatment, etc., a slurry in which an inorganic precursor coexists, titania dispersed in the pH of the slurry The method which specified the property of particle
  • a binder may be added in a small amount, and examples of the binder include cellulose, fluoropolymer, crosslinked rubber, polybutyl titanate, carboxymethyl cellulose and the like.
  • Techniques related to the formation of semiconductor fine particles or precursor layers thereof include corona discharge, plasma, a method of hydrophilizing by a physical method such as UV, a chemical treatment with alkali, polyethylenedioxythiophene and polystyrenesulfonic acid, polyaniline, etc. For example, formation of an interlayer film for bonding may be mentioned.
  • Examples of the dry method include vapor deposition, sputtering, and aerosol deposition method. Further, electrophoresis or electrodeposition may be used. Moreover, after producing a coating film once on a heat-resistant board
  • the semiconductor fine particles preferably have a large surface area so that many dyes can be adsorbed.
  • the surface area is preferably 10 times or more, more preferably 100 times or more the projected area.
  • limiting in particular in this upper limit Usually, it is about 5000 times. JP-A-2001-93591 and the like are preferable as the structure of semiconductor fine particles.
  • the thickness of the semiconductor fine particle layer increases, the amount of dye that can be supported per unit area increases, so that the light absorption efficiency increases.
  • the preferred thickness of the semiconductor fine particle layer varies depending on the use of the device, but is typically 0.1 to 100 ⁇ m. When used as a photoelectrochemical cell, the thickness is preferably 1 to 50 ⁇ m, more preferably 3 to 30 ⁇ m.
  • the semiconductor fine particles may be heated at a temperature of 100 to 800 ° C. for 10 minutes to 10 hours in order to bring the particles into close contact after being applied to the support.
  • the film forming temperature is preferably 400 to 600 ° C.
  • a polymer material is used as the support, it is preferably heated after film formation at 250 ° C.
  • the film forming method may be any of (1) a wet method, (2) a dry method, and (3) an electrophoresis method (including an electrodeposition method), and preferably (1) a wet method or ( 2) Dry method, more preferably (1) Wet method.
  • the coating amount of semiconductor fine particles per 1 m 2 of the support is preferably 0.5 to 500 g, more preferably 5 to 100 g.
  • the dye adsorbing dye solution comprising the solution and the dye of the present invention.
  • the solution used for the dye solution for dye adsorption can be used without particular limitation as long as it is a solution that can dissolve the dye of the present invention.
  • ethanol, methanol, isopropanol, toluene, t-butanol, acetonitrile, acetone, n-butanol and the like can be used.
  • ethanol and toluene can be preferably used.
  • the dye solution for dye adsorption comprising the solution and the dye of the present invention may be heated to 50 ° C. to 100 ° C. as necessary.
  • the adsorption of the dye may be performed before or after application of the semiconductor fine particles. Further, the semiconductor fine particles and the dye may be applied and adsorbed simultaneously. Unadsorbed dye is removed by washing.
  • One type of dye may be adsorbed or a mixture of several types may be used.
  • dye of this invention may be mixed within the range which does not impair the meaning of this invention.
  • the dye to be mixed is selected so as to make the wavelength range of photoelectric conversion as wide as possible. When mixing the dyes, it is necessary to prepare a dye solution for dye adsorption by dissolving all the dyes.
  • the total amount of the dye used is preferably 0.01 to 100 mmol, more preferably 0.1 to 50 mmol, and particularly preferably 0.1 to 10 mmol per 1 m 2 of the support. In this case, it is preferable that the usage-amount of the pigment
  • the amount of the dye adsorbed on the semiconductor fine particles is preferably 0.001 to 1 mmol, more preferably 0.1 to 0.5 mmol, per 1 g of the semiconductor fine particles.
  • a colorless compound may be co-adsorbed for the purpose of reducing the interaction between dyes such as association.
  • the hydrophobic compound to be co-adsorbed include steroid compounds having a carboxyl group (for example, cholic acid and pivaloyl acid).
  • the surface of the semiconductor fine particles may be treated with amines.
  • Preferred amines include 4-tert-butylpyridine, polyvinylpyridine and the like. These may be used as they are in the case of a liquid, or may be used by dissolving in an organic solvent.
  • the counter electrode serves as the positive electrode of the photoelectrochemical cell.
  • the counter electrode is usually synonymous with the conductive support described above, but the support is not necessarily required in a configuration in which the strength is sufficiently maintained. However, having a support is advantageous in terms of hermeticity.
  • the material for the counter electrode include platinum, carbon, and conductive polymer. Preferable examples include platinum, carbon, and conductive polymer.
  • the structure of the counter electrode a structure having a high current collecting effect is preferable.
  • Preferred examples include JP-A-10-505192.
  • a composite electrode such as titanium oxide and tin oxide (TiO 2 / SnO 2 ) may be used, and as a mixed electrode of titania, for example, Japanese Patent Application Laid-Open No. 2000-11913 is cited.
  • mixed electrodes other than titania include Japanese Patent Application Laid-Open Nos. 2001-185243 and 2003-282164.
  • the light receiving electrode may be a tandem type in order to increase the utilization rate of incident light.
  • Examples of preferred tandem type configurations include those described in JP-A-2002-90989.
  • a light management function for efficiently performing light scattering and reflection inside the light receiving electrode layer may be provided.
  • Preferable examples include those described in JP-A-2002-93476.
  • a short-circuit prevention layer between the conductive support and the porous semiconductor fine particle layer in order to prevent reverse current due to direct contact between the electrolyte and the electrode.
  • Preferable examples include Japanese Patent Application Laid-Open No. 06-507999.
  • a spacer or a separator In order to prevent contact between the light receiving electrode and the counter electrode, it is preferable to use a spacer or a separator.
  • a preferable example is JP-A-2001-283941.
  • the maximum absorption wavelength was 438 nm.
  • heterocyclic quaternary salt compound 4.8 g (0.028 mol) of the following compound XT-1 and 7.32 g (0.03 mol) of compound XT-2 were dissolved in 12 ml of ethyl acetate and heated under reflux for 24 hours. Reacted. Next, ethyl acetate and excess compound XT-2 were distilled off under heating under reduced pressure to obtain 12 g of T-1 shown in Table 1 shown below.
  • the zirconia beads were removed from the obtained dispersion by filtration to obtain a semiconductor fine particle dispersion.
  • the average particle diameter of the titanium dioxide fine particles in the obtained dispersion was 2.5 ⁇ m.
  • the particle size was measured with a master sizer (trade name, manufactured by MALVERN) of a laser diffraction particle size distribution meter.
  • the semiconductor fine particle dispersion prepared in (A) was applied to the conductive surface side of the cut conductive glass (surface resistance of about 30 ⁇ / cm 2 ) using a glass rod, and the coating amount of the semiconductor fine particles was 20 g / m 2.
  • adhesive tape is stretched on a part of the conductive surface side (3 mm from the end) as a spacer, and conductive glass is arranged so that the adhesive tape comes to both ends, and eight semiconductor fine particle dispersions at a time.
  • the adhesive tape was then peeled off and allowed to stand at room temperature for 1 day, and then this conductive glass was placed in an electric furnace (muffle furnace FP-32 type (trade name, manufactured by Yamato Scientific Co., Ltd.)).
  • 450 By baking for 30 minutes at, to obtain a semiconductor fine particle electrode. After the electrode extraction cooling, was immersed for 3 hours in an ethanol solution of the dye shown in Table 1 (3 ⁇ 10 -4 mol / l).
  • This electrode was immersed in 4-t-butylpyridine for 15 minutes, then washed with ethanol and air-dried to obtain a semiconductor fine particle electrode adsorbed with the dye.
  • the sensitivity was selected from the range of 1 to 10 mmol / m 2 so that the sensitization was optimized.
  • the charge transfer body 3, the counter electrode 4 made of platinum, and a transparent glass substrate (not shown) were laminated in this order to produce a photoelectrochemical cell.
  • the edge part was sealed with the epoxy-type sealing agent after introduce
  • the electrolyte composition has a high viscosity and it is difficult to introduce the electrolyte composition into the semiconductor fine particle electrode by utilizing capillary action, the electrolyte composition is heated to 50 ° C., and the semiconductor adsorbed with the dye It applied to the fine particle electrode. Thereafter, the electrode was placed under reduced pressure, the electrolyte composition permeated sufficiently, and the air in the electrode was extracted. Then, a platinum-deposited glass (counter electrode) was overlapped to produce a photoelectrochemical cell in the same manner.
  • the photoelectrochemical cells of Examples 1 to 26 and Comparative Examples 1 to 8 were produced in the same manner by changing the electrolyte composition and the dye.
  • Table 1 shows the heterocyclic quaternary salt compound contained in the electrolyte composition used for each photoelectrochemical cell and the dye adsorbed on the semiconductor fine particles.
  • 2% by mass of iodine was blended in the electrolyte composition.
  • 70% by mass of ⁇ -butyrolactone and 28% by mass of tetrabutylammonium iodide were blended without blending the heterocyclic quaternary salt compound.
  • Comparative Examples 7 and 8 the comparative electrolyte X was used.
  • This simulated sunlight is irradiated to the photoelectrochemical cells of Examples 1 to 26 and Comparative Examples 1 to 8 at 50 ° C., and the generated electricity is measured by a current-voltage measuring device (Keithley SMU238 type (trade name, manufactured by Keithley)) Measured with
  • Table 5 shows the initial value of the conversion efficiency ( ⁇ ) of each photoelectrochemical cell, the decrease rate of the conversion efficiency after storage for 140 hours in the dark, and the decrease rate of the conversion efficiency after 24 hours of continuous light irradiation.
  • a conversion efficiency having an initial value of 3% or more and a conversion efficiency decrease rate of 7% or less was accepted.
  • the comparative dye W was used as a comparative dye. Moreover, said comparative electrolyte X was used as a comparative electrolyte.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

【課題】 本発明の課題は、変換効率が高く、さらに耐久性に優れた光電変換素子および光電気化学電池を提供することにある。 【解決手段】 導電性支持体上に色素が吸着された半導体微粒子層を有する感光体、電荷移動体、および対極を含む積層構造よりなる光電変換素子であって、前記色素が下記一般式(1)で表される構造を有し、前記電荷移動体がヘテロ環4級塩化合物を含有する電解質組成物を有することを特徴とする光電変換素子。 [一般式(1)中、A1は、ベンゼン環と連結して形成される五~七員環の含窒素複素環を表す。L1はチオフェン環等の特定の複素環を含む電子伝達性連結基を表す。R及びRはそれぞれ独立に、水素原子又は置換基を表す。Rは水素原子又は置換基を表す。B1は複素環酸性核、または電子求引性基で置換されたメチレン基を表し、B1は少なくとも一つの酸性基を有する。n1は1~12の整数を表す。]

Description

光電変換素子及び光電気化学電池
 本発明は、変換効率が高く、耐久性に優れた光電変換素子及び光電気化学電池に関する。
 光電変換素子は各種の光センサー、複写機、太陽電池等に用いられている。この光電変換素子には金属を用いたもの、半導体を用いたもの、有機顔料や色素を用いたもの、あるいはこれらを組み合わせたものなどの様々な方式が実用化されている。中でも、非枯渇性の太陽エネルギーを利用した太陽電池は、燃料が不要であり、無尽蔵なクリーンエネルギーを利用したものとして、その本格的な実用化が大いに期待されている。この中でも、シリコン系太陽電池は古くから研究開発が進められてきた。各国の政策的な配慮もあって普及が進んでいる。しかし、シリコンは無機材料であり、スループット及び分子修飾には自ずと限界がある。
 そこで色素増感型太陽電池の研究が精力的に行われている。とくに、スイスのローザンヌ工科大学のGraetzel等がポーラス酸化チタン薄膜の表面にルテニウム錯体からなる色素を固定した色素増感型太陽電池を開発し、アモルファスシリコン並の変換効率を実現した。これにより、色素増感型太陽電池が一躍世界の研究者から注目を集めるようになった。
 特許文献1には、この技術を応用し、ルテニウム錯体色素によって増感された半導体微粒子を用いた色素増感光電変換素子が記載されている。
 しかしながら、ルテニウム錯体色素は極めて高価である。その上、ルテニウムは供給性に懸念があり、次世代のクリーンエネルギーを支える技術として本格的に対応するにはまだ十分といえない。そこで、資源的制約が小さく廉価な有機色素を増感剤として用い、十分な変換効率を有する光電変換素子の開発が望まれており、有機色素を増感剤として用いたものが報告されている(特許文献2参照)。
 ところで、光電変換素子には、初期の変換効率が高く、使用後も変換効率の低下が少なく耐久性に優れることが必要とされる。しかし耐久性という点では、特許文献2記載の光電変換素子では十分とはいえない。
 また、特定の化合物を用いた電解質組成物を電荷移動層に使用することにより、電解液の漏洩を低減した光電変換素子が報告されている(特許文献3)。この光電変換素子により電解質の漏洩という点は改善されているものの、さらに耐久性に優れた光電変換素子及び光電気化学電池が必要とされている。
米国特許第5463057号明細書 特許第4148374号公報 特開2001-256828号公報
 本発明の課題は、変換効率が高く、さらに耐久性に優れた光電変換素子および光電気化学電池を提供することにある。
 本発明者等は、鋭意検討を重ねた結果、導電性支持体上に特定の色素(色素化合物)が吸着された多孔質半導体微粒子層を有する感光体、特定の化合物を含有する電解質組成物を有する電荷移動体、及び対極を含む積層構造よりなる光電変換素子とこれを用いた光電気化学電池が、変換効率が高く、耐久性に優れることを見出した。本発明はこの知見に基づきなされたものである。
 本発明の課題は、以下の手段によって達成された。
<1>導電性支持体上に色素が吸着された半導体微粒子層を有する感光体、電荷移動体、および対極を含む積層構造よりなる光電変換素子であって、前記色素が下記一般式(1)で表される構造を有し、前記電荷移動体がヘテロ環4級塩化合物を含有する電解質組成物を有することを特徴とする光電変換素子。
Figure JPOXMLDOC01-appb-C000013
[一般式(1)中、A1は、ベンゼン環と連結して形成される五員環、六員環又は七員環の含窒素複素環を表す。L1はチオフェン環、フラン環、ピロール環、セレノフェン環及びこれらが縮環した複素環の中から選ばれた少なくとも1種の複素環を含む電子伝達性連結基を表す。R及びRはそれぞれ独立に、水素原子又は置換基を表す。Rは水素原子又は置換基を表す。B1は複素環酸性核、または電子求引性基で置換されたメチレン基を表し、B1は少なくとも一つの酸性基を有する。n1は1~12の整数を表す。]
<2>前記一般式(1)で表される構造を有する色素が、下記一般式(3)又は下記一般式(4)で表されることを特徴とする<1>記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
[一般式(3)中、Xはベンゼン環と連結して、六員環又は七員環の含窒素複素環を形成するのに必要な非金属原子群を表す。一般式(3)及び(4)中、L、R1、R、R、B及びn1は、一般式(1)におけるものと同義である。R~Rはそれぞれ独立に、アルキル基、アルコキシ基及びアリール基から選ばれる少なくとも1種の置換基を表す。n3は1又は2の整数を示す。]
<3>前記一般式(3)中、Xがベンゼン環と連結して七員環の含窒素複素環を形成するのに必要な非金属原子群であることを特徴とする<2>記載の光電変換素子。
<4>前記一般式(3)中、Xがメチレンであり、かつn3が2であることを特徴とする<2>又は<3>記載の光電変換素子。
<5>前記一般式(1)で表される構造を有する色素が、前記一般式(4)で表されることを特徴とする<2>記載の光電変換素子。
<6>Bが下記一般式(5)又は一般式(6)で表されることを特徴とする<1>~<5>のいずれか1項に記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
[一般式(5)中、R及びR10は、それぞれ独立に、脂肪族基、芳香族基または複素環基を表す(少なくとも1つの官能基は酸性基を有していてもよい)。mは0又は1を示す。一般式(5)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。一般式(5)中のRは硫黄原子または一般式(7)を表し、一般式(7)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
 一般式(6)中、R11及びR12は、それぞれ独立に、シアノ基又は酸性基を表し、互いに同一でも異なっていてもよい。一般式(6)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
 一般式(7)中、R13及びR14は、それぞれ独立に、シアノ基又は酸性基を表し、互いに同一でも異なっていてもよい。一般式(7)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。]
<7>前記一般式(5)で表される色素が、下記一般式(8)で表されることを特徴とする<6>記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000019
[一般式(8)中、Rは、脂肪族基、芳香族基または複素環基を表す(これらの基は酸性基を有していてもよい)。一般式(8)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。]
<8>前記Bが下記一般式(9)で表されることを特徴とする<1>~<5>のいずれか1項に記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000020
[一般式(9)中、R10は、脂肪族基、芳香族基または複素環基を表す(これらの基は酸性基を有していてもよい)。一般式(9)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。]
<9>前記Bが下記一般式(10)で表されることを特徴とする<1>~<5>のいずれか1項に記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000021
[一般式(10)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。]
<10>前記ヘテロ環4級塩化合物が、下記一般式(2)で表されることを特徴とする<1>~<9>のいずれか1項に記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000022
[一般式(2)中、Rは-(CR3132-CR3334-O)-結合(R31~R34はそれぞれ独立に水素原子又はアルキル基を表し、aは2~20の整数を表す。)を含む置換基を表し、Qは窒素原子と共に5又は6員環の芳香族カチオンを形成しうる原子団を表し、置換基を有していてもよく、Z はアニオンを表す。]
<11>前記一般式(2)で表されるヘテロ環4級塩化合物が、下記一般式(11)又は(12)で表されることを特徴とする<10>記載の光電変換素子。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
[一般式(11)及び(12)中、R55は-(CR5152-CR5354-O)-結合(R51~R54はそれぞれ独立に水素原子又はアルキル基を表し、bは2~20の整数を表す。)を含む置換基を表し、R56~R60はそれぞれ独立に水素原子又は置換基を表し、Z はアニオンを表し、R55~R60のうち2つ以上が互いに連結して環構造を形成していてもよい。]
<12>前記Z がI、N(CFSO 、BF 、R-COO(Rは水素原子、アルキル基、パーフルオロアルキル基又はアリール基を表す。)、R-SO (Rはアルキル基、パーフルオロアルキル基又はアリール基を表す。)又はSCNであることを特徴とする<10>又は<11>に記載の光電変換素子。
<13><1>~<12>のいずれか1項に記載の光電変換素子を備えることを特徴とする光電気化学電池。
 本発明により、変換効率が高く、耐久性に優れた光電変換素子および光電気化学電池を提供することができる。
 本発明の上記及び他の特徴及び利点は、適宜添付の図面を参照して、下記の記載からより明らかになるであろう。
図1は、本発明によって製造される光電変換素子の一実施態様について模式的に示した断面図である。
 本発明者等は、鋭意検討を重ねた結果、導電性支持体上に特定の色素(色素化合物)が吸着された半導体微粒子層を有する感光体、特定の化合物を含有する電解質組成物を有する電荷移動体、及び対極を含む積層構造よりなる光電変換素子とこれを用いた光電気化学電池が、変換効率が高く、耐久性、特に変換効率の低下が少ないことを見出した。本発明はこの知見に基づきなされたものである。
 本発明の光電変換素子の好ましい実施態様を、図面を参照して説明する。図1に示すように、光電変換素子10は、導電性支持体1、導電性支持体1上に色素が吸着された半導体微粒子を有する感光体2、電荷移動体3及び対極4からなる。感光体2が形成された導電性支持体1は光電変換素子10において作用電極として機能する。この光電変換素子10を外部回路6で仕事をさせる電池用途に使用できるようにして、光電気化学電池(図示せず)として作動させることができる。
 受光電極5は、導電性支持体1および導電性支持体上に塗設される色素21の吸着した半導体微粒子22の感光層(半導体膜)2よりなる電極である。感光体(半導体膜)2に入射した光は色素を励起する。励起色素はエネルギーの高い電子を有している。そこでこの電子が色素21から半導体微粒子22の伝導帯に渡され、さらに拡散によって導電性支持体1に到達する。このとき色素21の分子は酸化体となっている。電極上の電子が外部回路で仕事をしながら色素酸化体に戻ることにより、光電気化学電池として作用する。この際、受光電極5はこの電池の負極として働く。
 本発明の光電変換素子は、導電性支持体上に後述の色素が吸着された多孔質半導体微粒子層を有する感光体を有する。感光体は目的に応じて設計され、単層構成でも多層構成でもよい。感光体中の色素は一種類でも多種類の色素が混合されたものでもよいが、このうちの少なくとも1種は、後述の色素を用いる。本発明の光電変換素子の感光体には、この色素が吸着した半導体微粒子を含み、感度が高く、光電気化学電池として使用する場合に、高い変換効率を得ることができる。
 さらに同時に、後述のヘテロ環4級塩化合物を含有する電解質組成物を電荷移動体に用いることにより、変換効率が高いだけでなく、変換効率の低下が少なく、耐久性に優れている光電変換素子を得ることができる。
(A)色素
 感光体を構成する多孔質半導体微粒子に吸着される色素(色素化合物)は、下記一般式(1)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000025
 一般式(1)中、Aは、ベンゼン環と連結して形成される五員環、六員環又は七員環の含窒素複素環である。一般式(1)中、好ましくは、Aは、ベンゼン環と連結して形成される六員環又は七員環の含窒素複素環である。Aで表される五員環、六員環、七員環の含窒素複素環を形成する原子としては、窒素原子のほかに炭素原子、硫黄原子、および酸素原子から選ばれた少なくとも1種で形成されることが好ましい。Aで表される六員環又は七員環としては、窒素原子のほかに炭素原子、硫黄原子、および酸素原子から選ばれた少なくとも1種で形成されることが好ましい。さらに好ましくは、窒素原子のほかに炭素原子及び硫黄原子から選ばれた少なくとも1種で形成される六員環又は七員環の含窒素複素環を挙げることができる。特に好ましくは窒素原子のほかには炭素原子のみによって形成される七員環含窒素複素環を挙げることができる。Aは縮環していてもよく、置換されていてもよい。さらに置換基を有していてもよい。Aで形成された環に縮環する環の例としてベンゼン環、ピリジン環、ピロール環、フラン環、チオフェン環等が挙げられる。
 L1はチオフェン環、フラン環、ピロール環、セレノフェン環及びこれらが縮環した複素環の中から選ばれた少なくとも1種の複素環を含む電子伝達性連結基である。好ましくは、チオフェン環、ピロール環もしくはこれらが縮環した複素環の中から選ばれた少なくとも1種の複素環を含む電子伝達性連結基であり、さらに好ましくは、チオフェン環もしくはこれら縮環した複素環の中から選ばれた少なくとも1種の複素環を含む電子伝達性連結基である。縮環する環の例としてベンゼン環、ピリジン環、ピロール環、フラン環、チオフェン環等が挙げられる。
 Lとしては、例えば、チオフェン環およびこれが縮環した複素環を含む電子伝達性連結基で例示すれば、2価のチオフェン環基、2個以上のチオフェン環が結合した2価のポリチオフェン環基、2価のベンゾチエノ[3,2-b]ベンゾチオフェン環基、2価のナフトチエノ[3,2-b]ナフトチオフェン環基が挙げられる。
 前記一般式(1)中、R及びRはそれぞれ独立に、水素原子又は置換基を表す。好ましくは、R、Rはそれぞれ独立に水素原子、アルキル基、アルコキシ基及びアリール基から選ばれた少なくとも1種の置換基である。より好ましくは、アルキル基、アルコキシ基、及びアリール基から選ばれた少なくとも1種である。さらに好ましくは、アルキル基、及びアリール基から選ばれた少なくとも1種であり、特に好ましくは、アルキル基である。
 R がアルキル基を表すとき、好ましいアルキル基としては、直鎖、分岐、環状の置換もしくは無置換のアルキル基を挙げることができる。それらは、アルキル基(好ましくは炭素数1から30のアルキル基、例えばメチル、エチル、n-プロピル、イソプロピル、t-ブチル、n-ヘキシル、n-オクチル、エイコシル、2-クロロエチル、2-シアノエチル、2―エチルヘキシル)、シクロアルキル基(好ましくは、炭素数3から30の置換または無置換のシクロアルキル基、例えば、シクロヘキシル、シクロペンチル、4-n-ドデシルシクロヘキシル)、ビシクロアルキル基(好ましくは、炭素数5から30の置換もしくは無置換のビシクロアルキル基、つまり、炭素数5から30のビシクロアルカンから水素原子を一個取り去った一価の基である。例えば、ビシクロ[1,2,2]ヘプタン-2-イル、ビシクロ[2,2,2]オクタン-3-イル)、さらに環構造が多いトリシクロ構造なども包含するものである。さらに好ましいアルキル基としては、炭素数1から30のアルキル基、(例えばメチル、エチル、n-プロピル、イソプロピル、t-ブチル、n-ヘキシル、n-オクチル、エイコシル、2-クロロエチル、2-シアノエチル、2―エチルヘキシル)、又は、シクロアルキル基(好ましくは、炭素数3から30の置換または無置換のシクロアルキル基、例えば、シクロヘキシル、シクロペンチル、4-n-ドデシルシクロヘキシル)であり、特に好ましくは、炭素数1から20のアルキル基、例えばメチル、エチル、n-プロピル、イソプロピル、t-ブチル、n-ヘキシル、n-オクチル、エイコシル、2-クロロエチル、2-シアノエチル、2―エチルヘキシルが挙げられる。
 R、Rがアリール基を表すとき、好ましいアリール基としては、フェニル、ナフチル、チエニル、フリル、ピリルもしくはこれらが縮環した基が挙げられ、特に好ましくは、フェニル、チエニルもしくはこれらが縮環した基が挙げられる。縮環する環の例としてベンゼン環、ピリジン環、ピロール環、フラン環、チオフェン環等が挙げられる。
 R、Rがアルコキシ基を表すとき、好ましいアルコキシ基としては、炭素数1から30の置換もしくは無置換のアルコキシ基、例えば、メトキシ、エトキシ、イソプロポキシ、t-ブトキシ、n-オクチルオキシ、2-メトキシエトキシが挙げられ、更に好ましくは、炭素数1から20の置換もしくは無置換のアルコキシ基、例えば、メトキシ、エトキシ、イソプロポキシ、t-ブトキシ、n-オクチルオキシ、2-メトキシエトキシが挙げられ、特に好ましくは、炭素数1から10の置換もしくは無置換のアルコキシ基が挙げられる。
 Rは水素原子又は置換基を表す。好ましくは、水素原子である。Rが置換基を表すとき、置換基としては、後述の置換基Wで表される基が挙げられるが、置換基として好ましくは、ハロゲン原子、アルキル基、アルケニル基、アルキニル基、芳香族基、ヘテロ環基、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルもしくはアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルもしくはアリールスルフィニル基、アルキルもしくはアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、アリールもしくはヘテロ環アゾ基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、シリル基であり、更に好ましくは、アルキル基、アルケニル基、アルキニル基、芳香族基、ヘテロ環基、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルもしくはアリールスルフィニル基、アルキルもしくはアリールスルホニル基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基、シリル基であり、特に好ましくは、アルキル基、アルケニル基、アルキニル基、芳香族基、ヘテロ環基、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基、アリールオキシ基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基である。
 B1は複素環酸性核、または電子求引性基で置換されたメチレン基を表し、B1は少なくとも一つの酸性基を有する。 複素環酸性核として、T.H.James著「The Theory of the photografic process. forth edition.」Macmillan publishing社、1977年刊の199ページに記載のものが挙げられる。複素環酸性核として好ましくは、ロダニン、ヒダントイン、チオヒダントイン、バルビツール酸、チオバルビツール酸、ピラゾリジンジオン、ピラゾロン、インダンジオン、イソオキサゾロン、さらに好ましくは、ロダニン、ヒダントイン、チオヒダントイン、バルビツール酸、チオバルビツール酸、特に好ましくはロダニンである。
 Bが電子吸引基で置換されたメチレン基の場合、電子吸引基としては以下の効果を持つ置換基が挙げられる。
 一般に、電子吸引基は分子の特定の位置について電子密度を減弱させる。電子求引性あるいは電子供与性は単に電気陰性度の差だけでは説明できない。すなわち、誘起効果やメソメリー効果などが複合的に作用するので、芳香性や共役系の存在やトポロジー的な位置関係によって現れ方が変わってくる。これらの効果を、パラ及びメタ置換安息香酸の酸解離定数をもとに定量的に評価、予測する経験則としてハメット則が知られる。誘起効果の場合、電子求引性のものを-I効果、電子供与性のものを+I効果と表すが、炭素よりも電気陰性度の高い原子は-I効果を示す。また、アニオンは+I効果を、カチオンは-I効果を示す。メソメリー効果の場合は、電子求引性のものを-M効果、電子供与性のものを+M効果と表す。電子求引基の例として例えば以下のものが挙げられる。
 誘起効果
(-I効果)
 ・-O > -N
 ・-N > -P > …
 ・-O > -S > …
 ・-N > -NO > -SOR > -SOR
 ・-SOR > -SO
 ・-N > -NR
 ・-O > -OR
 ・-S > -SR
 ・-F > -Cl > -Br > -I
 ・=O > =NR > =CR
 ・=O > -OR
 ・≡N > ≡CR
 ・≡N > =NR > -NR
 ・-C≡CR > -CR=CR > -CRCR
メソメリー効果
(-M効果)
 ・=N > =NR
 ・=O > =NR > =CR
 ・=S > =O > ≡N
 電子吸引基として、好ましくはシアノ基、ニトロ基、スルフォニル基、スルフォキシ基、アシル基、アルコキシカルボニル基、カルバモイル基であり、さらに好ましくはシアノ基、ニトロ基、スルフォニル基、特に好ましくはシアノ基である。
 本発明において前記一般式(1)中、Bで表される、複素環酸性核又は電子吸引基で置換されたメチレン基には、少なくとも一つの酸性基を有する。酸性基とは、基を構成する最も酸性の水素原子のpKaが13以下の基である。酸性基の例として、例えばカルボン酸基、スルホン酸基、ホスホン酸基、フェノール性水酸基、アルキルスルフォニルカルバモイル基、リン酸基が挙げられ、好ましくはカルボン酸基、スルホン酸基、ホスホン酸基、フェノール性水酸基、さらに好ましくは、カルボン酸基、スルホン酸基、特に好ましくはカルボン酸基である。
 前記一般式(1)中、n1は1~12の整数を示す。n1として好ましくは、1~10の整数、さらに好ましくは、2~8の整数、特に好ましくは、2~6の整数を表す。
 前記一般式(1)は、一般式(3)又は一般式(4)で表されるときがより好ましい。
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 前記一般式(3)中、Xはベンゼン環と連結して、六員環又は七員環の含窒素を形成するのに必要な非金属原子群を表す。ここで非金属原子群とは、炭素原子、酸素原子、窒素原子及び硫黄原子からなる群から選ばれた少なくとも1種が結合した原子群をいう。さらに好ましくは、Xがベンゼン環と連結して七員環の含窒素複素環を形成する非金属原子群である。
 Xで表される六員環又は七員環の含窒素複素環を形成する原子として、好ましくは窒素原子のほかに炭素原子、硫黄原子、及び酸素原子からなる群から選ばれた少なくとも1種で形成される六員環又は七員環の含窒素複素環を挙げることができる。さらに好ましくは、窒素原子のほかに炭素原子、硫黄原子及び酸素原子から選ばれた少なくとも1種の原子によって形成される六員環又は七員環の含窒素複素環を挙げることができる。特に好ましくは、窒素原子のほかに炭素原子及び硫黄原子から選ばれた少なくとも1種の原子によって形成される六員環又は七員環の含窒素複素環を挙げることができる。さらに好ましくは窒素原子のほかに炭素原子及び硫黄原子で形成される七員環の含窒素複素環を挙げることができる。特に好ましくは、窒素原子のほかには炭素原子のみによって形成される七員環含窒素複素環を挙げることができる。
 Xは縮環していてもよく、置換されていてもよい。さらに置換基を有していてもよい。縮環する環の例としてベンゼン環、ピリジン環、ピロール環、フラン環、チオフェン環等が挙げられる。
 前記一般式(3)中、R~Rは水素原子、アルキル基、アルコキシ基及びアリール基から選ばれる少なくとも1種の置換基を表す。R~Rとして好ましくは、水素原子またはアルキル基である。
 R~Rがアルキル基を表すとき、好ましいアルキル基としては、直鎖、分岐、環状の置換もしくは無置換のアルキル基を表す。それらは、アルキル基(好ましくは炭素数1から30のアルキル基、例えばメチル、エチル、n-プロピル、イソプロピル、t-ブチル、n-ヘキシル、n-オクチル、エイコシル、2-クロロエチル、2-シアノエチル、2―エチルヘキシル)、シクロアルキル基(好ましくは、炭素数3から30の置換または無置換のシクロアルキル基、例えば、シクロヘキシル、シクロペンチル、4-n-ドデシルシクロヘキシル)、ビシクロアルキル基(好ましくは、炭素数5から30の置換もしくは無置換のビシクロアルキル基、つまり、炭素数5から30のビシクロアルカンから水素原子を一個取り去った一価の基である。例えば、ビシクロ[1,2,2]ヘプタン-2-イル、ビシクロ[2,2,2]オクタン-3-イル)、更に環構造が多いトリシクロ構造なども包含するものである。さらに好ましいアルキル基としては、炭素数1から30のアルキル基、(例えばメチル、エチル、n-プロピル、イソプロピル、t-ブチル、n-ヘキシル、n-オクチル、エイコシル、2-クロロエチル、2-シアノエチル、2―エチルヘキシル)、又は、シクロアルキル基(好ましくは、炭素数3から30の置換または無置換のシクロアルキル基、例えば、シクロヘキシル、シクロペンチル、4-n-ドデシルシクロヘキシル)であり、特に好ましくは、炭素数1から20のアルキル基、例えばメチル、エチル、n-プロピル、イソプロピル、t-ブチル、n-ヘキシル、n-オクチル、エイコシル、2-クロロエチル、2-シアノエチル、2―エチルヘキシルが挙げられる。
 R~R 7がアリール基を表すとき、好ましいアリール基としては、フェニル、ナフチル、チエニル、フリル、ピリルもしくはこれらが縮環した基が挙げられ、特に好ましくは、フェニル、チエニルもしくはこれらが縮環した基が挙げられる。縮環する環の例としてベンゼン環、ピリジン環、ピロール環、フラン環、チオフェン環等が挙げられる。
 R~R 7がアルコキシ基を表すとき、好ましいアルコキシ基としては、炭素数1から30の置換もしくは無置換のアルコキシ基、例えば、メトキシ、エトキシ、イソプロポキシ、t-ブトキシ、n-オクチルオキシ、2-メトキシエトキシが挙げられ、更に好ましくは、炭素数1から20の置換もしくは無置換のアルコキシ基、例えば、メトキシ、エトキシ、イソプロポキシ、t-ブトキシ、n-オクチルオキシ、2-メトキシエトキシが挙げられ、特に好ましくは、炭素数1から10の置換もしくは無置換のアルコキシ基が挙げられる。
 前記一般式(3)中、n3は1又は2の整数を示す。好ましくは、2である。Xがメチレンであり、かつn3が2である。
 前記一般式(1)、(3)及び(4)において、Bが下記一般式(5)又は一般式(6)で表される基であるときが好ましい。
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
 前記一般式(5)中、R及びR10は、それぞれ独立に、脂肪族基、芳香族基又は複素環基を表す(少なくとも1つの官能基は前記の酸性基を有していてもよい)。好ましくは脂肪族基、芳香族基である。さらに好ましくは脂肪族基、芳香族基、特に好ましくは脂肪族基である。
 脂肪族基として例えば、アルキル基(例えばメチル、エチル、n-プロピル、イソプロピル、t-ブチル、n-オクチル、エイコシル、2-クロロエチル、2-シアノエチル、2―エチルヘキシル)、シクロアルキル基(好ましくは、炭素数3から30の置換または無置換のシクロアルキル基、例えば、シクロヘキシル、シクロペンチル、4-n-ドデシルシクロヘキシル)が挙げられる。好ましい脂肪族基として、炭素数1から30の、更に好ましくは炭素数1から25の、特に好ましくは炭素数1から20のアルキル基、アルケニル基であり、置換基を有していても良い。
 芳香族基として例えば、ベンゼン環、フラン環、ピロール環、ピリジン環、チオフェン環、イミダゾール環、オキサゾール環、チアゾール環、ピラゾール環、イソオキサゾール環、イソチアゾール環、ピリミジン環、ピラジン環もしくはこれらが縮環した環であり、これらは置換されていてもよい。好ましくはベンゼン環、ピロール環、ピリジン環、チオフェン環、さらに好ましくはベンゼン環、チオフェン環である。特に好ましくはベンゼン環である。これらは置換されていてもよい。
 複素環基としては、3~6員の置換もしくは無置換の複素環基、更に好ましくは5もしくは6員の無置換の複素環基、特に好ましくは6員環の複素環基(例えば、ピペリジン、モルフォリン)である。これらは置換基を有していてもよい。
 前記一般式(5)中、mは0又は1を示す。好ましくは1である。
 一般式(5)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。一般式(5)中のRは硫黄原子または下記一般式(7)を表し、一般式(7)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。一般式(6)におけるR11、R12は、それぞれ独立に、シアノ基又は酸性基を表し、互いに同一でも異なっていてもよい。また一般式(6)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
Figure JPOXMLDOC01-appb-C000030
 前記一般式(5)の構造を有する色素は下記一般式(8)で表されることが好ましい。一般式(8)においてRは、脂肪族基、芳香族基または複素環基を表す(これらの基は酸性基を有していてもよい)。
Figure JPOXMLDOC01-appb-C000031
 前記Bは下記一般式(9)で表されることが好ましい。一般式(9)においてR10は、脂肪族基、芳香族基または複素環基を表す(これらの基は酸性基を有していてもよい)。
 またBは下記一般式(10)で表されることが好ましい。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 本発明における置換基(以下、置換基Wとする。)とは例えば下記に示すものを表すことができる。
・ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、
・アルキル基〔直鎖、分岐、環状の置換もしくは無置換のアルキル基を表す。それらは、アルキル基(好ましくは炭素数1から30のアルキル基、例えばメチル、エチル、n-プロピル、イソプロピル、t-ブチル、n-オクチル、エイコシル、2-クロロエチル、2-シアノエチル、2―エチルヘキシル)、シクロアルキル基(好ましくは、炭素数3から30の置換または無置換のシクロアルキル基、例えば、シクロヘキシル、シクロペンチル、4-n-ドデシルシクロヘキシル)、ビシクロアルキル基(好ましくは、炭素数5から30の置換もしくは無置換のビシクロアルキル基、つまり、炭素数5から30のビシクロアルカンから水素原子を一個取り去った一価の基である。例えば、ビシクロ[1,2,2]ヘプタン-2-イル、ビシクロ[2,2,2]オクタン-3-イル)、更に環構造が多いトリシクロ構造なども包含するものである。以下に説明する置換基の中のアルキル基(例えばアルキルチオ基のアルキル基)もこのような概念のアルキル基を表す。]、
 ・アルケニル基[直鎖、分岐、環状の置換もしくは無置換のアルケニル基を表す。それらは、アルケニル基(好ましくは炭素数2から30の置換または無置換のアルケニル基、例えば、ビニル、アリル、プレニル、ゲラニル、オレイル)、シクロアルケニル基(好ましくは、炭素数3から30の置換もしくは無置換のシクロアルケニル基、つまり、炭素数3から30のシクロアルケンの水素原子を一個取り去った一価の基である。例えば、2-シクロペンテン-1-イル、2-シクロヘキセン-1-イル)、ビシクロアルケニル基(置換もしくは無置換のビシクロアルケニル基、好ましくは、炭素数5から30の置換もしくは無置換のビシクロアルケニル基、つまり二重結合を一個持つビシクロアルケンの水素原子を一個取り去った一価の基である。例えば、ビシクロ[2,2,1]ヘプト-2-エン-1-イル、ビシクロ[2,2,2]オクト-2-エン-4-イル)を包含するものである。
・アルキニル基(好ましくは、炭素数2から30の置換または無置換のアルキニル基、例えば、エチニル、プロパルギル、トリメチルシリルエチニル基、アリール基(好ましくは炭素数6から30の置換もしくは無置換のアリール基、例えばフェニル、p-トリル、ナフチル、m-クロロフェニル、o-ヘキサデカノイルアミノフェニル)、
・芳香族基(例えば、ベンゼン環、フラン環、ピロール環、ピリジン環、チオフェン環、イミダゾール環、オキサゾール環、、チアゾール環、ピラゾール環、イソオキサゾール環、イソチアゾール環、ピリミジン環、ピラジン環もしくはこれらが縮環した環)
・ヘテロ環基(好ましくは5または6員の置換もしくは無置換の、芳香族もしくは非芳香族のヘテロ環化合物から一個の水素原子を取り除いた一価の基であり、更に好ましくは、炭素数3から30の5もしくは6員の芳香族のヘテロ環基である。例えば、2-フリル、2-チエニル、2-ピリミジニル、2-ベンゾチアゾリル)、
・シアノ基、・ヒドロキシル基、・ニトロ基、・カルボキシル基、
・アルコキシ基(好ましくは、炭素数1から30の置換もしくは無置換のアルコキシ基、例えば、メトキシ、エトキシ、イソプロポキシ、t-ブトキシ、n-オクチルオキシ、2-メトキシエトキシ)、
・アリールオキシ基(好ましくは、炭素数6から30の置換もしくは無置換のアリールオキシ基、例えば、フェノキシ、2-メチルフェノキシ、4-t-ブチルフェノキシ、3-ニトロフェノキシ、2-テトラデカノイルアミノフェノキシ)、
・シリルオキシ基(好ましくは、炭素数3から20のシリルオキシ基、例えば、トリメチルシリルオキシ、t-ブチルジメチルシリルオキシ)、
・ヘテロ環オキシ基(好ましくは、炭素数2から30の置換もしくは無置換のヘテロ環オキシ基、1-フェニルテトラゾールー5-オキシ、2-テトラヒドロピラニルオキシ)、
・アシルオキシ基(好ましくはホルミルオキシ基、炭素数2から30の置換もしくは無置換のアルキルカルボニルオキシ基、炭素数6から30の置換もしくは無置換のアリールカルボニルオキシ基、例えば、ホルミルオキシ、アセチルオキシ、ピバロイルオキシ、ステアロイルオキシ、ベンゾイルオキシ、p-メトキシフェニルカルボニルオキシ)、
・カルバモイルオキシ基(好ましくは、炭素数1から30の置換もしくは無置換のカルバモイルオキシ基、例えば、N,N-ジメチルカルバモイルオキシ、N,N-ジエチルカルバモイルオキシ、モルホリノカルボニルオキシ、N,N-ジ-n-オクチルアミノカルボニルオキシ、N-n-オクチルカルバモイルオキシ)、
・アルコキシカルボニルオキシ基(好ましくは、炭素数2から30の置換もしくは無置換アルコキシカルボニルオキシ基、例えばメトキシカルボニルオキシ、エトキシカルボニルオキシ、t-ブトキシカルボニルオキシ、n-オクチルカルボニルオキシ)、
・アリールオキシカルボニルオキシ基(好ましくは、炭素数7から30の置換もしくは無置換のアリールオキシカルボニルオキシ基、例えば、フェノキシカルボニルオキシ、p-メトキシフェノキシカルボニルオキシ、p-n-ヘキサデシルオキシフェノキシカルボニルオキシ)、
・アミノ基(好ましくは、アミノ基、炭素数1から30の置換もしくは無置換のアルキルアミノ基、炭素数6から30の置換もしくは無置換のアニリノ基、例えば、アミノ、メチルアミノ、ジメチルアミノ、アニリノ、N-メチル-アニリノ、ジフェニルアミノ)、
・アシルアミノ基(好ましくは、ホルミルアミノ基、炭素数1から30の置換もしくは無置換のアルキルカルボニルアミノ基、炭素数6から30の置換もしくは無置換のアリールカルボニルアミノ基、例えば、ホルミルアミノ、アセチルアミノ、ピバロイルアミノ、ラウロイルアミノ、ベンゾイルアミノ、3,4,5-トリ-n-オクチルオキシフェニルカルボニルアミノ)、
・アミノカルボニルアミノ基(好ましくは、炭素数1から30の置換もしくは無置換のアミノカルボニルアミノ、例えば、カルバモイルアミノ、N,N-ジメチルアミノカルボニルアミノ、N,N-ジエチルアミノカルボニルアミノ、モルホリノカルボニルアミノ)、
・アルコキシカルボニルアミノ基(好ましくは炭素数2から30の置換もしくは無置換アルコキシカルボニルアミノ基、例えば、メトキシカルボニルアミノ、エトキシカルボニルアミノ、t-ブトキシカルボニルアミノ、n-オクタデシルオキシカルボニルアミノ、N-メチルーメトキシカルボニルアミノ)、
・アリールオキシカルボニルアミノ基(好ましくは、炭素数7から30の置換もしくは無置換のアリールオキシカルボニルアミノ基、例えば、フェノキシカルボニルアミノ、p-クロロフェノキシカルボニルアミノ、m-n-オクチルオキシフェノキシカルボニルアミノ)、
・スルファモイルアミノ基(好ましくは、炭素数0から30の置換もしくは無置換のスルファモイルアミノ基、例えば、スルファモイルアミノ、N,N-ジメチルアミノスルホニルアミノ、N-n-オクチルアミノスルホニルアミノ)、
・アルキルもしくはアリールスルホニルアミノ基(好ましくは炭素数1から30の置換もしくは無置換のアルキルスルホニルアミノ、炭素数6から30の置換もしくは無置換のアリールスルホニルアミノ、例えば、メチルスルホニルアミノ、ブチルスルホニルアミノ、フェニルスルホニルアミノ、2,3,5-トリクロロフェニルスルホニルアミノ、p-メチルフェニルスルホニルアミノ)、
・メルカプト基、
・アルキルチオ基(好ましくは、炭素数1から30の置換もしくは無置換のアルキルチオ基、例えばメチルチオ、エチルチオ、n-ヘキサデシルチオ)、
・アリールチオ基(好ましくは炭素数6から30の置換もしくは無置換のアリールチオ、例えば、フェニルチオ、p-クロロフェニルチオ、m-メトキシフェニルチオ)、
・ヘテロ環チオ基(好ましくは炭素数2から30の置換または無置換のヘテロ環チオ基、例えば、2-ベンゾチアゾリルチオ、1-フェニルテトラゾール-5-イルチオ)、
・スルファモイル基(好ましくは炭素数0から30の置換もしくは無置換のスルファモイル基、例えば、N-エチルスルファモイル、N-(3-ドデシルオキシプロピル)スルファモイル、N,N-ジメチルスルファモイル、N-アセチルスルファモイル、N-ベンゾイルスルファモイル、N-(N’-フェニルカルバモイル)スルファモイル)、
・スルホ基、
・アルキルもしくはアリールスルフィニル基(好ましくは、炭素数1から30の置換または無置換のアルキルスルフィニル基、6から30の置換または無置換のアリールスルフィニル基、例えば、メチルスルフィニル、エチルスルフィニル、フェニルスルフィニル、p-メチルフェニルスルフィニル)、
・アルキルもしくはアリールスルホニル基(好ましくは炭素数1から30の置換または無置換のアルキルスルホニル基、6から30の置換または無置換のアリールスルホニル基、例えば、メチルスルホニル、エチルスルホニル、フェニルスルホニル、p-メチルフェニルスルホニル)、
・アシル基(好ましくはホルミル基、炭素数2から30の置換または無置換のアルキルカルボニル基、炭素数7から30の置換もしくは無置換のアリールカルボニル基、炭素数4から30の置換もしくは無置換の炭素原子でカルボニル基と結合しているヘテロ環カルボニル基、例えば、アセチル、ピバロイル、2-クロロアセチル、ステアロイル、ベンゾイル、p-n-オクチルオキシフェニルカルボニル、2―ピリジルカルボニル、2―フリルカルボニル)、
・アリールオキシカルボニル基(好ましくは、炭素数7から30の置換もしくは無置換のアリールオキシカルボニル基、例えば、フェノキシカルボニル、o-クロロフェノキシカルボニル、m-ニトロフェノキシカルボニル、p-t-ブチルフェノキシカルボニル)、
・アルコキシカルボニル基(好ましくは、炭素数2から30の置換もしくは無置換アルコキシカルボニル基、例えば、メトキシカルボニル、エトキシカルボニル、t-ブトキシカルボニル、n-オクタデシルオキシカルボニル)、
・カルバモイル基(好ましくは、炭素数1から30の置換もしくは無置換のカルバモイル、例えば、カルバモイル、N-メチルカルバモイル、N,N-ジメチルカルバモイル、N,N-ジ-n-オクチルカルバモイル、N-(メチルスルホニル)カルバモイル)、
・アリールもしくはヘテロ環アゾ基(好ましくは炭素数6から30の置換もしくは無置換のアリールアゾ基、炭素数3から30の置換もしくは無置換のヘテロ環アゾ基、例えば、フェニルアゾ、p-クロロフェニルアゾ、5-エチルチオ-1,3,4-チアジアゾール-2-イルアゾ)、
・イミド基(好ましくは、N-スクシンイミド、N-フタルイミド)、
・ホスフィノ基(好ましくは、炭素数2から30の置換もしくは無置換のホスフィノ基、例えば、ジメチルホスフィノ、ジフェニルホスフィノ、メチルフェノキシホスフィノ)、
・ホスフィニル基(好ましくは、炭素数2から30の置換もしくは無置換のホスフィニル基、例えば、ホスフィニル、ジオクチルオキシホスフィニル、ジエトキシホスフィニル)、
・ホスフィニルオキシ基(好ましくは炭素数2から30の置換もしくは無置換のホスフィニルオキシ基、例えば、ジフェノキシホスフィニルオキシ、ジオクチルオキシホスフィニルオキシ)、
・ホスフィニルアミノ基(好ましくは、炭素数2から30の置換もしくは無置換のホスフィニルアミノ基、例えば、ジメトキシホスフィニルアミノ、ジメチルアミノホスフィニルアミノ)、
・シリル基(好ましくは、炭素数3から30の置換もしくは無置換のシリル基、例えば、トリメチルシリル、t-ブチルジメチルシリル、フェニルジメチルシリル)。
また、置換基は更に置換されていても良い。その際、置換基の例としては、上述の置換基Wを挙げることができる。
 以下に、本発明の色素(色素化合物)の好ましい具体例を示すが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 
Figure JPOXMLDOC01-appb-C000041
 
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000063
 本発明の色素は、溶液における最大吸収波長が、好ましくは350~1000nmの範囲であり、より好ましくは370~700nmの範囲であり、特に好ましくは390~650nmの範囲である。
(B)へテロ環4級塩化合物
 本発明の光電変換素子においては、電荷移動体にヘテロ環4級塩化合物を含有する電解質組成物を有するが、ヘテロ環4級塩化合物としては5員環又は6員環のヘテロ環4級塩化合物が好ましく、イミダゾール環またはピリジン環の4級塩化合物がさらに好ましい。 本発明において好ましいヘテロ環4級塩化合物は下記一般式(2)で表されるヘテロ環4級塩化合物である。
 本発明の電解質組成物からなる電荷移動体は、後述の導電性支持体上に色素が吸着された半導体微粒子層を有する感光体上に、電解質組成物を塗布することにより、形成することができる。電荷移動体の厚さは0.001~200μmであるのが好ましく、0.1~100μmであるのがより好ましく、0.1~50μmであるのが特に好ましい。
Figure JPOXMLDOC01-appb-C000064
 一般式(2)により表される化合物は低融点の塩、いわゆる溶融塩である。一般式(2)により表される化合物の融点は100℃以下であるのが好ましく、80℃以下であるのがより好ましく、60℃以下であるのが特に好ましい。この化合物には常温(25℃付近)で液体である化合物、いわゆる室温溶融塩が含まれる。
 一般式(2)により表される化合物は溶媒をほとんど用いずに電解質として使用できることが多く、単独で電解質として使用できる場合も多い。常温で固体であっても少量の溶媒や添加剤等を加えることで液状とし、電解質として使用できる。また何も添加しなくても、加熱溶解して電極上に浸透させる方法、低沸点溶媒(メタノール、アセトニトリル、塩化メチレン等)等を用いて電極上に浸透させ、その後溶媒を加熱により除去する方法等により光電変換素子に組み込むことができる。
 一般式(2)中、Rは-(CR3132-CR3334-O)-結合を含む置換基を表す。ここで、R31~R34はそれぞれ独立に水素原子又はアルキル基を表し、このアルキル基の炭素原子数は1~4個であるのが好ましい。R31~R34はそれぞれ独立に水素原子又はメチル基であるのが好ましく、水素原子であるのがより好ましい。また、aは2~20の整数を表し、2~6の整数であるのが好ましく、さらに好ましくは2~5の整数、特に好ましくは2~4の整数である。aが小さすぎると光電変換素子に用いたときの開放電圧が低く、aが大きすぎるとイオン輸送能(電流密度)が大きく低下するため好ましくない。なお、Rは直鎖状であっても分岐状であっても、また環状であってもよい。
 本発明の電解質組成物が含有する一般式(2)により表される化合物は、置換又は無置換のエチレンオキシ基の繰り返しを含む置換基を、特定の位置に有する。メチレンオキシ基の繰り返しは合成が困難である。また、一般式(2)により表される化合物に、トリメチレンオキシ基又はそれ以上のメチレン基を有するアルキレンオキシ基の繰り返しを含む置換基を導入すると、電解質組成物のイオン輸送能が大きく低下し、光電変換素子に用いた際に光電変換効率が悪化してしまうため好ましくない。
 一般式(2)中、Qは窒素原子と共に5員環又は6員環の芳香族カチオンを形成しうる原子団を表す。Qは置換基を有していてもよく、この置換基は-(CR3132-CR3334-O)-結合を含むのが好ましい。ここで、R31~R34はそれぞれ独立に水素原子又はアルキル基を表し、aは2~20の整数を表す。R31~R34及びaの好ましい態様は上記Rに含まれる、-(CR3132-CR3334-O)-結合の場合と同様である。なお、一般式(2)により表される化合物が複数の-(CR3132-CR3334-O)-結合を含む場合、それらのR31~R34及びaは、それぞれ同じでも異なっていてもよい。
 一般式(2)の化合物は、窒素原子に一般式(2)中のQ又は置換基が結合することによりカチオンとなっている。そのカチオンは、後述のZ とともに、電気的に中性となり、ヘテロ環4級塩化合物となっている。
 Qは炭素原子、水素原子、窒素原子、酸素原子及び硫黄原子からなる群から選ばれる1種以上の原子により構成されるのが好ましい。
 Qが形成する5員環はオキサゾール環、チアゾール環、イミダゾール環、ピラゾール環、イソオキサゾール環、チアジアゾール環、オキサジアゾール環又はトリアゾール環であるのが好ましく、オキサゾール環、チアゾール環又はイミダゾール環であるのがより好ましく、イミダゾール環であるのが特に好ましい。Qが形成する6員環はピリジン環、ピリミジン環、ピリダジン環、ピラジン環又はトリアジン環であるのが好ましく、ピリジン環であるのが特に好ましい。
 前述のようにQ上の置換基は-(CR3132-CR3334-O)-結合を含むのが好ましい。加えて、好ましいQ上の置換基の例としてアルコキシ基(メトキシ、エトキシ等)、シアノ基、アルコキシカルボニル基(エトキシカルボニル、メトキシエトキシカルボニル等)、炭酸エステル基(エトキシカルボニルオキシ等)、アミド基(アセチルアミノ、ベンゾイルアミノ等)、カルバモイル基(N,N-ジメチルカルバモイル、N-フェニルカルバモイル等)、ホスホニル基(ジエチルホスホニル等)、複素環基(ピリジル、イミダゾリル、フラニル、オキサゾリジノニル等)、アリーロキシ基(フェノキシ等)、アルキルチオ基(メチルチオ、エチルチオ等)、アシル基(アセチル、プロピオニル、ベンゾイル等)、スルホニル基(メタンスルホニル、ベンゼンスルホニル等)、アシルオキシ基(アセトキシ、ベンゾイルオキシ等)、スルホニルオキシ基(メタンスルホニルオキシ、トルエンスルホニルオキシ等)、アリール基(フェニル、トルイル等)、アリーロキシ基(フェノキシ等)、アルケニル基(ビニル、1-プロペニル等)、アルキル基(メチル、エチル、プロピル、イソプロピル、シクロプロピル、ブチル、2-カルボキシエチル、ベンジル等)等が挙げられる。これらの中ではアルコキシ基、シアノ基、炭酸エステル基、アミド基、カルバモイル基、ホスホニル基、複素環基、アシル基、スルホニル基、アシルオキシ基、スルホニルオキシ基及びアルキル基がより好ましく、アルコキシ基、シアノ基、炭酸エステル基、ホスホニル基、複素環基及びアルキル基が特に好ましい。
 一般式(2)中、Z はアニオンを表す。Z の例としてはハロゲン化物イオン(I、Cl、Br等)、N(CFSO 、N(CFCFSO 、C(CFSO 、BF 、BPh 、PF 、ClO 、R-COO、R-SO 、SCN等が挙げられる。Z はI、N(CFSO 、BF 、R-COO、R-SO 又はSCNであるのが好ましく、Iであるのがより好ましい。すなわち、一般式(2)により表される化合物はヨウ素塩であるのがより好ましい。
 上記Rは水素原子、置換若しくは無置換のアルキル基(好ましくは炭素原子数1~10で、直鎖状であっても分岐状であってもよく、また環状であってもよく、例えばメチル、エチルプロピル、ブチル、イソプロピル、ペンチル、ヘキシル、オクチル、2-エチルヘキシル、t-オクチル、デシル、シクロヘキシル、シクロペンチル等)、パーフルオロアルキル基(好ましくは炭素原子数1~10、例えばトリフルオロメチル、ペンタフルオロエチル、ヘプタフルオロプロピル等)又は置換若しくは無置換のアリール基(好ましくは炭素原子数6~12、例えばフェニル、トリル、ナフチル等)を表す。Rはより好ましくは炭素原子数1~10のアルキル基又はパーフルオロアルキル基であり、特に好ましくは炭素原子数1~10のパーフルオロアルキル基である。
 Rが置換基を有するアルキル基又はアリール基の場合、この置換基の好ましい例としては上記Q上の置換基の例と同様のものが挙げられる。加えて、ハロゲン原子(フッ素、塩素、臭素、ヨウ素等)も好ましい。より好ましくはアルコキシ基又はハロゲン原子である。
 上記Rは置換若しくは無置換のアルキル基、パーフルオロアルキル基又は置換若しくは無置換のアリール基(以上、好ましい例は上記Rと同様)を表す。Rはより好ましくは炭素原子数1~7のアルキル基であり、特に好ましくは炭素原子数1~5のアルキル基である。
 Rが置換基を有するアルキル基又はアリール基の場合、この置換基の好ましい例としては上記Q上の置換基の例と同様のものが挙げられる。中でもアルコキシ基がより好ましい。
 R-COO及びR-SO は、R又はRを介して多量体を形成してもよい。多量体を形成する場合には2~4量体が好ましく、2量体がより好ましい。
 一般式(2)により表される化合物は、更に一般式(11)又は(12)により表されるのが好ましい。
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000066
 一般式(11)及び(12)中、R55は-(CR5152-CR5354-O)-結合(R51~R54はそれぞれ独立に水素原子又はアルキル基を表し、bは2~20の整数を表す。)を含む置換基を表すが、このR55は上記一般式(2)中のRと同義であり、好ましい態様もRと同様である。R56~R60はそれぞれ独立に水素原子又は置換基を表し、R56~R60が置換基である場合の好ましい例としては、上記Q上の置換基の例と同様のもの等が挙げられる。一般式(11)中のR56~R59のうち少なくとも1つ、及び一般式(12)中のR56~R60のうち少なくとも1つは、それぞれ-(CR5152-CR5354-O)-結合を含むのが好ましい。R55~R60のうち2つ以上が互いに連結して環構造を形成してもよい。この環は5~7員環が好ましく、5員環又は6員環がさらに好ましく、5員環が特に好ましい。Z はアニオンを表し、好ましい例は一般式(2)中のZ のそれと同様である。
 一般式(2)により表される化合物中の-CR3132-CR3334-O-結合(R31~R34はそれぞれ独立に水素原子又はアルキル基を表す。)の総数は、4~6が好ましい。
 一般式(2)により表される化合物はR又はQを介して多量体を形成してもよい。形成する多量体は2~4量体が好ましく、2量体がより好ましい。
 本発明の電解質組成物に含有される一般式(2)、一般式(11)又は一般式(12)により表される化合物の具体例を以下に示すが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-T000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-T000070
 本発明の電解質組成物に含有されるヘテロ環4級塩化合物としては、特に好ましくは一般式(2)、一般式(11)、一般式(12)であり、最も好ましくは、一般式(11)及び一般式(12)であるが、下記一般式(13)で表される化合物も好ましい。
 一般式(13)は前記一般式(11)において、R56=R57=R59=Hである。R101は置換基を表し、該置換基としてはQ上の置換基が挙げられる。このなかでもR101は脂肪族基、芳香族基または複素環基が好ましく、脂肪族基がより好ましく、アルキル基がさらに好ましく、炭素数1~6のアルキル基が最も好ましい。なかでもメチル基が好ましい。R102は一般式(11)のR58と同義であり、好ましい範囲も同じであるが、このうち脂肪族基が好ましく、アルキル基がさらに好ましく、炭素数1~6のアルキル基(例えば、メチル、エチル、プロピル、ブチル、2-メトキシエチル基)が最も好ましい。
 以下に一般式(13)で表される化合物の具体例を示す。
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-T000072
 本発明の光電変換素子に用いられる電解質組成物には、一般式(2)で表される化合物を代表とするヘテロ環4級塩化合物以外に酸化還元対として、例えばヨウ素とヨウ化物(例えばヨウ化リチウム、ヨウ化テトラブチルアンモニウム、ヨウ化テトラプロピルアンモニウム等)との組み合わせ、アルキルビオローゲン(例えばメチルビオローゲンクロリド、ヘキシルビオローゲンブロミド、ベンジルビオローゲンテトラフルオロボレート)とその還元体との組み合わせ、ポリヒドロキシベンゼン類(例えばハイドロキノン、ナフトハイドロキノン等)とその酸化体との組み合わせ、2価と3価の鉄錯体(例えば赤血塩と黄血塩)の組み合わせ等が挙げられる。これらのうちヨウ素とヨウ化物との組み合わせが好ましい。
 ヨウ素塩のカチオンは5員環又は6員環の含窒素芳香族カチオンであるのが好ましい。特に、一般式(2)で表される化合物を代表とするヘテロ環4級塩化合物がヨウ素塩でない場合は、WO95/18456号、特開平8-259543号公報、電気化学,第65巻,11号,923頁(1997年)等に記載されているピリジニウム塩、イミダゾリウム塩、トリアゾリウム塩等のヨウ素塩を併用するのが好ましい。
 本発明においては、電解質組成中にヘテロ環4級塩化合物を少なくとも1種含有するものであるが、2種以上含有することが好ましく、本発明におけるヘテロ環4級塩化合物を組み合わせて使用することはさらに好ましい。
 本発明の光電変換素子に使用される電解質組成物中には、ヘテロ環4級塩化合物と共にヨウ素を含有するのが好ましい。ヨウ素の含有量は電解質組成物全体に対して0.1~20質量%であるのが好ましく、0.5~5質量%であるのがより好ましい。
 本発明の光電変換素子に用いられる電解質組成物は溶媒を含んでいてもよい。電解質組成物中の溶媒含有量は組成物全体の50質量%以下であるのが好ましく、30質量%以下であるのがより好ましく、10質量%以下であるのが特に好ましい。
 溶媒としては低粘度でイオン移動度が高いか、高誘電率で有効キャリアー濃度を高めることができるか、あるいはその両方であるために優れたイオン伝導性を発現できるものが好ましい。このような溶媒としてカーボネート化合物(エチレンカーボネート、プロピレンカーボネート等)、複素環化合物(3-メチル-2-オキサゾリジノン等)、エーテル化合物(ジオキサン、ジエチルエーテル等)、鎖状エーテル類(エチレングリコールジアルキルエーテル、プロピレングリコールジアルキルエーテル、ポリエチレングリコールジアルキルエーテル、ポリプロピレングリコールジアルキルエーテル等)、アルコール類(メタノール、エタノール、エチレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテル、ポリエチレングリコールモノアルキルエーテル、ポリプロピレングリコールモノアルキルエーテル等)、多価アルコール類(エチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリン等)、ニトリル化合物(アセトニトリル、グルタロジニトリル、メトキシアセトニトリル、プロピオニトリル、ベンゾニトリル、ビスシアノエチルエーテル等)、エステル類(カルボン酸エステル、リン酸エステル、ホスホン酸エステル等)、非プロトン性極性溶媒(ジメチルスルホキシド(DMSO)、スルフォラン等)、水、特開2002-110262号公報に記載の含水電解液、特開2000-36332号公報、特開2000-243134号公報、及び再公表WO/00-54361号公報記載の電解質溶媒などが挙げられる。これらの溶媒は二種以上を混合して用いてもよい。
 本発明の光電変換素子に用いられる電解質組成物には、ポリマーやオイルゲル化剤を添加したり、多官能モノマー類の重合やポリマーの架橋反応等の手法によりゲル化(固体化)してもよい。
 ポリマーを添加することにより電解質組成物をゲル化させる場合、Polymer Electrolyte Reviews-1及び2(J. R. MacCallumとC. A. Vincentの共編、ELSEVIER APPLIED SCIENCE)に記載された化合物等を添加することができる。この場合、ポリアクリロニトリル又はポリフッ化ビニリデンを用いるのが好ましい。
 オイルゲル化剤を添加することにより電解質組成物をゲル化させる場合は、オイルゲル化剤としてJ. Chem. Soc. Japan, Ind. Chem. Soc., 46779 (1943)、J. Am. Chem. Soc., 111, 5542 (1989)、J. Chem. Soc., Chem. Commun., 390 (1993)、Angew. Chem. Int.Ed. Engl., 35, 1949 (1996)、Chem. Lett., 885, (1996)、J. Chem. Soc., Chem. Commun., 545, (1997)等に記載された化合物を使用することができ、アミド構造を有する化合物を用いるのが好ましい。
 多官能モノマー類の重合によって電解質組成物をゲル化する場合は、多官能モノマー類、重合開始剤、電解質及び溶媒から溶液を調製し、キャスト法、塗布法、浸漬法、含浸法等の方法により色素を担持した電極上にゾル状の電解質層を形成し、その後多官能モノマーのラジカル重合によってゲル化させる方法が好ましい。多官能モノマー類はエチレン性不飽和基を2個以上有する化合物であることが好ましく、ジビニルベンゼン、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジアクリレート、トリエチレングリコールジメタクリレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアクリレート等が好ましい。
 ゲル電解質は上記多官能モノマー類の他に単官能モノマーを含む混合物の重合によって形成してもよい。単官能モノマーとしては、アクリル酸又はα-アルキルアクリル酸(アクリル酸、メタクリル酸、イタコン酸等)或いはそれらのエステル又はアミド(メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、i-プロピルアクリレート、n-ブチルアクリレート、i-ブチルアクリレート、t-ブチルアクリレート、n-ペンチルアクリレート、3-ペンチルアクリレート、t-ペンチルアクリレート、n-ヘキシルアクリレート、2,2-ジメチルブチルアクリレート、n-オクチルアクリレート、2-エチルヘキシルアクリレート、4-メチル-2-プロピルペンチルアクリレート、セチルアクリレート、n-オクタデシルアクリレート、シクロヘキシルアクリレート、シクロペンチルアクリレート、ベンジルアクリレート、ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-メトキシエチルアクリレート、2-エトキシエチルアクリレート、2-メトキシエトキシエチルアクリレート、フェノキシエチルアクリレート、3-メトキシブチルアクリレート、エチルカルビトールアクリレート、2-メチル-2-ニトロプロピルアクリレート、2,2,2-トリフルオロエチルアクリレート、オクタフルオロペンチルアクリレート、ヘプタデカフルオロデシルアクリレート、メチルメタクリレート、n-ブチルメタクリレート、i-ブチルメタクリレート、t-ブチルメタクリレート、t-ペンチルメタクリレート、n-オクタデシルメタクリレート、ベンジルメタクリレート、ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、2-メトキシエチルメタクリレート、2-エトキシエチルメタクリレート、2-メトキシエトキシエチルメタクリレート、ジメチルアミノエチルメタクリレート、2,2,2-トリフルオロエチルメタクリレート、テトラフルオロプロピルメタクリレート、ヘキサフルオロプロピルメタクリレート、ヘプタデカフルオロデシルメタクリレート、エチレングリコールエチルカーボネートメタクリレート、2-イソボルニルメタクリレート、2-ノルボルニルメチルメタクリレート、5-ノルボルネン-2-イルメチルメタクリレート、3-メチル-2-ノルボニルメチルメタクリレート、アクリルアミド、N-i-プロピルアクリルアミド、N-n-ブチルアクリルアミド、N-t-ブチルアクリルアミド、N,N-ジメチルアクリルアミド、N-メチロールアクリルアミド、ジアセトンアクリルアミド、2-アクリルアミド-2-メチルプロパンスルホン酸、アクリルアミドプロピルトリメチルアンモニウムクロライド、メタクリルアミド、N-メチルメタクリルアミド、N-メチロールメタクリルアミド等)、ビニルエステル類(酢酸ビニル等)、マレイン酸又はフマル酸或いはそれらから誘導されるエステル類(マレイン酸ジメチル、マレイン酸ジブチル、フマル酸ジエチル等)、p-スチレンスルホン酸のナトリウム塩、アクリロニトリル、メタクリロニトリル、ジエン類(ブタジエン、シクロペンタジエン、イソプレン等)、芳香族ビニル化合物(スチレン、p-クロロスチレン、t-ブチルスチレン、α-メチルスチレン、スチレンスルホン酸ナトリウム等)、N-ビニルホルムアミド、N-ビニル-N-メチルホルムアミド、N-ビニルアセトアミド、N-ビニル-N-メチルアセトアミド、ビニルスルホン酸、ビニルスルホン酸ナトリウム、アリルスルホン酸ナトリウム、メタクリルスルホン酸ナトリウム、ビニリデンフルオライド、ビニリデンクロライド、ビニルアルキルエーテル類(メチルビニルエーテル等)、エチレン、プロピレン、ブテン、イソブテン、N-フェニルマレイミド等が使用可能である。
 多官能モノマーの配合量は、モノマー全体に対して0.5~70質量%とすることが好ましく、1.0~50質量%であるのがより好ましい。上述のモノマーは、大津隆行・木下雅悦共著「高分子合成の実験法」(化学同人)や大津隆行「講座重合反応論1ラジカル重合(I)」(化学同人)に記載された一般的な高分子合成法であるラジカル重合によって重合することができる。本発明で使用するゲル電解質用モノマーは加熱、光又は電子線によって、或いは電気化学的にラジカル重合させることができるが、特に加熱によってラジカル重合させるのが好ましい。この場合、好ましく使用できる重合開始剤は2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、ジメチル2,2’-アゾビス(2-メチルプロピオネート)、ジメチル2,2’-アゾビスイソブチレート等のアゾ系開始剤、ラウリルパーオキシド、ベンゾイルパーオキシド、t-ブチルパーオクトエート等の過酸化物系開始剤等である。重合開始剤の好ましい添加量はモノマー総量に対し0.01~20質量%であり、より好ましくは0.1~10質量%である。
 ゲル電解質に占めるモノマーの重量組成範囲は0.5~70質量%であるのが好ましい
。より好ましくは1.0~50質量%である。ポリマーの架橋反応により電解質組成物をゲル化させる場合は、組成物に架橋可能な反応性基を有するポリマー及び架橋剤を添加するのが好ましい。好ましい反応性基はピリジン環、イミダゾール環、チアゾール環、オキサゾール環、トリアゾール環、モルホリン環、ピペリジン環、ピペラジン環等の含窒素複素環であり、好ましい架橋剤は窒素原子が求核攻撃できる官能基を2つ以上有する化合物(求電子剤)であり、例えば2官能以上のハロゲン化アルキル、ハロゲン化アラルキル、スルホン酸エステル、酸無水物、酸クロライド、イソシアネート等である。
 本発明の電解質組成物には、金属ヨウ化物(LiI、NaI、KI、CsI、CaI等)、金属臭化物(LiBr、NaBr、KBr、CsBr、CaBr等)、4級アンモニウム臭素塩(テトラアルキルアンモニウムブロマイド、ピリジニウムブロマイド等)、金属錯体(フェロシアン酸塩-フェリシアン酸塩、フェロセン-フェリシニウムイオン等)、イオウ化合物(ポリ硫化ナトリウム、アルキルチオール-アルキルジスルフィド等)、ビオロゲン色素、ヒドロキノン-キノン等を添加してよい。これらは混合して用いてもよい。
 また、本発明ではJ. Am. Ceram. Soc., 80, (12), 3157-3171 (1997)に記載のt-ブチルピリジンや、2-ピコリン、2,6-ルチジン等の塩基性化合物を添加してもよい。塩基性化合物を添加する場合の好ましい濃度範囲は0.05~2Mである。
(C)導電性支持体
 図1に示すように、本発明の光電変換素子には、導電性支持体1上には多孔質の半導体微粒子22に色素21が吸着された感光体2が形成されている。後述する通り、例えば、半導体微粒子の分散液を導電性支持体に塗布・乾燥後、本発明の色素溶液に浸漬することにより、感光層を製造することができる。
 導電性支持体としては、金属のように支持体そのものに導電性があるものか、または表面に導電膜層を有するガラスや高分子材料を使用することができる。導電性支持体は実質的に透明であることが好ましい。実質的に透明であるとは光の透過率が10%以上であることを意味し、50%以上であることが好ましく、80%以上が特に好ましい。導電性支持体としては、ガラスや高分子材料に導電性の金属酸化物を塗設したものを使用することができる。このときの導電性の金属酸化物の塗布量は、ガラスや高分子材料の支持体1m2当たり、0.1~100gが好ましい。透明導電性支持体を用いる場合、光は支持体側から入射させることが好ましい。好ましく使用される高分子材料の一例として、テトラアセチルセルロース(TAC)、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、シンジオタクチックポリスチレン(SPS)、ポリフェニレンスルフィド(PPS)、ポリカーボネート(PC)、ポリアリレート(PAR)、ポリスルフォン(PSF)、ポリエステルスルフォン(PES)、ポリエーテルイミド(PEI)、環状ポリオレフィン、ブロム化フェノキシ等を挙げることができる。導電性支持体上には、表面に光マネージメント機能を施してもよく、例えば、特開2003-123859号公報に記載の高屈折膜及び低屈性率の酸化物膜を交互に積層した反射防止膜、特開2002-260746号公報に記載のライトガイド機能が挙げられる。
 この他にも、金属支持体も好ましく使用することができる。その一例としては、チタン、アルミニウム、銅、ニッケル、鉄、ステンレス、銅を挙げることができる。これらの金属は合金であってもよい。さらに好ましくは、チタン、アルミニウム、銅が好ましく、特に好ましくは、チタンやアルミニウムである。
 導電性支持体上には、紫外光を遮断する機能を持たせることが好ましい。例えば、紫外光を可視光に変えることが出来る蛍光材料を透明支持体中または、透明支持体表面に存在させる方法や紫外線吸収剤を用いる方法も挙げられる。
 導電性支持体上には、さらに特開平11-250944号公報等に記載の機能を付与してもよい。
 好ましい導電膜としては金属(例えば白金、金、銀、銅、アルミニウム、ロジウム、インジウム等)、炭素、もしくは導電性の金属酸化物(インジウム-スズ複合酸化物、酸化スズにフッ素をドープしたもの等)が挙げられる。
 導電膜層の厚さは0.01~30μmであることが好ましく、0.03~25μmであることが更に好ましく、特に好ましくは0.05~20μmである。
 導電性支持体は表面抵抗が低い程よい。好ましい表面抵抗の範囲としては50Ω/cm2以下であり、さらに好ましくは10Ω/cm2以下である。この下限に特に制限はないが、通常0.1Ω/cm2程度である。
 導電膜の抵抗値はセル面積が大きくなると大きくなる為、集電電極を配置してもよい。支持体と透明導電膜の間にガスバリア膜及び/又はイオン拡散防止膜を配置しても良い。ガスバリア層としては、樹脂膜や無機膜を使用することができる。
 また、透明電極と多孔質半導体電極光触媒含有層を設けてもよい。透明導電層は積層構造でも良く、好ましい方法としてたとえば、ITO上にFTOを積層することができる。
(D)半導体微粒子
 図1に示すように、本発明の光電変換素子には、導電性支持体1上には半導体微粒子22に色素21が吸着された感光層2が形成されている。後述する通り、例えば、半導体微粒子の分散液を前記の導電性支持体に塗布・乾燥後、本発明の色素溶液に浸漬することにより、感光体を製造することができる。
 半導体微粒子としては、好ましくは金属のカルコゲニド(例えば酸化物、硫化物、セレン化物等)またはペロブスカイトの微粒子が用いられる。金属のカルコゲニドとしては、好ましくはチタン、スズ、亜鉛、タングステン、ジルコニウム、ハフニウム、ストロンチウム、インジウム、セリウム、イットリウム、ランタン、バナジウム、ニオブ、もしくはタンタルの酸化物、硫化カドミウム、セレン化カドミウム等が挙げられる。ペロブスカイトとしては、好ましくはチタン酸ストロンチウム、チタン酸カルシウム等が挙げられる。これらのうち酸化チタン、酸化亜鉛、酸化スズ、酸化タングステンが特に好ましい。
 半導体には伝導に関わるキャリアーが電子であるn型とキャリアーが正孔であるp型が存在するが、本発明の素子ではn型を用いることが変換効率の点で好ましい。n型半導体には、不純物準位をもたず伝導帯電子と価電子帯正孔によるキャリアーの濃度が等しい固有半導体(あるいは真性半導体)の他に、不純物に由来する構造欠陥により電子キャリアー濃度の高いn型半導体が存在する。本発明で好ましく用いられるn型の無機半導体は、TiO、TiSrO、ZnO、Nb、SnO、WO、Si、CdS、CdSe、V、ZnS、ZnSe、SnSe、KTaO、FeS、PbS、InP、GaAs、CuInS、CuInSeなどである。これらのうち最も好ましいn型半導体はTiO、ZnO、SnO、WO、ならびにNbである。また、これらの半導体の複数を複合させた半導体材料も好ましく用いられる。
 半導体微粒子の粒径は、半導体微粒子分散液の粘度を高く保つ目的で、一次粒子の平均粒径が2nm以上50nm以下であることが好ましく、また一次粒子の平均粒径が2nm以上30nm以下の超微粒子であることがより好ましい。粒径分布の異なる2種類以上の微粒子を混合してもよく、この場合小さい粒子の平均サイズは5nm以下であるのが好ましい。また、入射光を散乱させて光捕獲率を向上させる目的で、上記の超微粒子に対して平均粒径が50nmを越える大きな粒子を、低含率で添加することもできる。この場合、大粒子の含率は、平均粒径が50nm以下の粒子の質量の50%以下であることが好ましく、20%以下であることがより好ましい。上記の目的で添加混合する大粒子の平均粒径は、100nm以上が好ましく、250nm以上がより好ましい。
 半導体微粒子の作製法としては、作花済夫の「ゾル・ゲル法の科学」アグネ承風社(1998年)等に記載のゲル・ゾル法が好ましい。またDegussa社が開発した塩化物を酸水素塩中で高温加水分解により酸化物を作製する方法も好ましい。半導体微粒子が酸化チタンの場合、上記ゾル・ゲル法、ゲル・ゾル法、塩化物の酸水素塩中での高温加水分解法はいずれも好ましいが、さらに清野学の「酸化チタン 物性と応用技術」技報堂出版(1997年)に記載の硫酸法および塩素法を用いることもできる。さらにゾル・ゲル法として、バルべ等のジャーナル・オブ・アメリカン・セラミック・ソサエティー,第80巻,第12号,3157~3171頁(1997年)に記載の方法や、バーンサイドらのケミストリー・オブ・マテリアルズ,第10巻,第9号,2419~2425頁に記載の方法も好ましい。
 この他に、半導体微粒子の製造方法として、例えば、チタニアナノ粒子の製造方法として好ましくは、四塩化チタンの火炎加水分解による方法、四塩化チタンの燃焼法、安定なカルコゲナイド錯体の加水分解、オルトチタン酸の加水分解、可溶部と不溶部から半導体微粒子を形成後可溶部を溶解除去する方法、過酸化物水溶液の水熱合成、またはゾル・ゲル法によるコア/シェル構造の酸化チタン微粒子の製造方法が挙げられる。
 チタニアの結晶構造としては、アナターゼ型、ブルッカイト型、または、ルチル型があげられ、アナターゼ型、ブルッカイト型が好ましい。
 チタニアナノチューブ・ナノワイヤー・ナノロッドをチタニア微粒子に混合してもよい。
 チタニアは、非金属元素などによりドーピングされていても良い。チタニアへの添加剤としてド―パント以外に、ネッキングを改善する為のバインダーや逆電子移動防止の為に表面へ添加剤を用いても良い。好ましい添加剤の例としては、ITO、SnO粒子、ウイスカー、繊維状グラファイト・カーボンナノチューブ、酸化亜鉛ネッキング結合子、セルロース等の繊維状物質、金属、有機シリコン、ドデシルベンゼンスルホン酸、シラン化合物等の電荷移動結合分子、及び電位傾斜型デンドリマーなどが挙げられる。
 チタニア上の表面欠陥を除去するなどの目的で、色素吸着前にチタニアを酸塩基又は酸化還元処理しても良い。エッチング、酸化処理、過酸化水素処理、脱水素処理、UV-オゾン、酸素プラズマなどで処理してもよい。
(E)半導体微粒子分散液
 本発明においては、半導体微粒子以外の固形分の含量が、半導体微粒子分散液全体の10質量%以下よりなる半導体微粒子分散液を前記の導電性支持体に塗布し、適度に加熱することにより、多孔質半導体微粒子塗布層を得ることができる。
 半導体微粒子分散液を作製する方法としては、前述のゾル・ゲル法の他に、半導体を合成する際に溶媒中で微粒子として析出させそのまま使用する方法、微粒子に超音波などを照射して超微粒子に粉砕する方法、あるいはミルや乳鉢などを使って機械的に粉砕しすり潰す方法、等が挙げられる。分散溶媒としては、水および/または各種の有機溶媒を用いることができる。有機溶媒としては、メタノール,エタノール,イソプロピルアルコール,シトロネロール,ターピネオールなどのアルコール類、アセトンなどのケトン類、酢酸エチルなどのエステル類、ジクロロメタン、アセトニトリル等が挙げられる。
 分散の際、必要に応じて例えばポリエチレングリコール、ヒドロキシエチルセルロース、カルボキシメチルセルロースのようなポリマー、界面活性剤、酸、またはキレート剤等を分散助剤として少量用いてもよい。しかし、これらの分散助剤は、導電性支持体上へ製膜する工程の前に、ろ過法や分離膜を用いる方法、あるいは遠心分離法などによって大部分を除去しておくことが好ましい。半導体微粒子分散液は、半導体微粒子以外の固形分の含量が分散液全体の10質量%以下とすることができる。この濃度は好ましくは5%以下であり、さらに好ましくは3%以下であり、特に好ましくは1%以下である。さらに好ましくは0.5%以下であり、特に好ましくは0.2%である。すなわち、半導体微粒子分散液中に、溶媒と半導体微粒子以外の固形分を半導体微分散液全体の10質量%以下とすることができる。実質的に半導体微粒子と分散溶媒のみからなることが好ましい。
 半導体微粒子分散液の粘度が高すぎると分散液が凝集してしまい製膜することができず、逆に半導体微粒子分散液の粘度が低すぎると液が流れてしまい製膜することができないことがある。したがって分散液の粘度は、25℃で10~300N・s/mが好ましい。さらに好ましくは、25℃で50~200N・s/mである。
 半導体微粒子分散液の塗布方法としては、アプリケーション系の方法としてローラ法、ディップ法等を使用することができる。またメータリング系の方法としてエアーナイフ法、ブレード法等を使用することができる。またアプリケーション系の方法とメータリング系の方法を同一部分にできるものとして、特公昭58-4589号公報に開示されているワイヤーバー法、米国特許2681294号明細書等に記載のスライドホッパー法、エクストルージョン法、カーテン法等が好ましい。また汎用機を使用してスピン法やスプレー法で塗布するのも好ましい。湿式印刷方法としては、凸版、オフセットおよびグラビアの3大印刷法をはじめ、凹版、ゴム版、スクリーン印刷等が好ましい。これらの中から、液粘度やウェット厚さに応じて、好ましい製膜方法を選択する。また本発明の半導体微粒子分散液は粘度が高く、粘稠性を有するため、凝集力が強いことがあり、塗布時に支持体とうまく馴染まない場合がある。このような場合に、UVオゾン処理で表面のクリーニングと親水化を行うことにより、塗布した半導体微粒子分散液と導電性支持体表面の結着力が増し、半導体微粒子分散液の塗布が行い易くなる。
 半導体微粒子層全体の好ましい厚さは0.1~100μmである。半導体微粒子層の厚さはさらに1~30μmが好ましく、2~25μmがより好ましい。半導体微粒子の支持体1m当りの担持量は0.5g~400gが好ましく、5~100gがより好ましい。
 塗布した半導体微粒子の層に対し、半導体微粒子同士の電子的接触の強化と、支持体との密着性の向上のため、また塗布した半導体微粒子分散液を乾燥させるために、加熱処理が施される。この加熱処理により多孔質半導体微粒子層を形成することができる。
 また、加熱処理に加えて光のエネルギーを用いることもできる。例えば、半導体微粒子として酸化チタンを用いた場合に、紫外光のような半導体微粒子が吸収する光を与えることで表面を活性化してもよいし、レーザー光などで半導体微粒子表面のみを活性化することができる。半導体微粒子に対して該微粒子が吸収する光を照射することで、粒子表面に吸着した不純物が粒子表面の活性化によって分解され、上記の目的のために好ましい状態とすることができる。加熱処理と紫外光を組み合わせる場合は、半導体微粒子に対して該微粒子が吸収する光を照射しながら、加熱が100℃以上250℃以下あるいは好ましくは100℃以上150℃以下で行われることが好ましい。このように、半導体微粒子を光励起することによって、微粒子層内に混入した不純物を光分解により洗浄するとともに、微粒子の間の物理的接合を強めることができる。
 また、半導体微粒子分散液を前記の導電性支持体に塗布し、加熱や光を照射する以外に他の処理を行ってもよい。好ましい方法として例えば、通電、化学的処理などが挙げられる。
 塗布後に圧力をかけても良く、圧力をかける方法としては、特表2003-500857号公報等が挙げられる。光照射の例としては、特開2001-357896号公報等が挙げられる。プラズマ・マイクロ波・通電の例としては、特開2002-353453号公報等が挙げられる。化学的処理としては、例えば特開2001-357896号公報が挙げられる。
 上述の半導体微粒子を導電性支持体上に塗設する方法は、上述の半導体微粒子分散液を導電性支持体上に塗布する方法のほか、特許第2664194号公報に記載の半導体微粒子の前駆体を導電性支持体上に塗布し空気中の水分によって加水分解して半導体微粒子膜を得る方法などの方法を使用することができる。
 前駆体として例えば、(NHTiF、過酸化チタン、金属アルコキシド・金属錯体・金属有機酸塩等が挙げられる。
 また、金属有機酸化物(アルコキシドなど)を共存させたスラリーを塗布し加熱処理、光処理などで半導体膜を形成する方法、無機系前駆体を共存させたスラリー、スラリーのpHと分散させたチタニア粒子の性状を特定した方法が挙げられる。これらスラリーには、少量であればバインダーを添加しても良く、バインダーとしては、セルロース、フッ素ポリマー、架橋ゴム、ポリブチルチタネート、カルボキシメチルセルロースなどが挙げられる。
 半導体微粒子又はその前駆体層の形成に関する技術としては、コロナ放電、プラズマ、UVなどの物理的な方法で親水化する方法、アルカリやポリエチレンジオキシチオフェンとポリスチレンスルホン酸などによる化学処理、ポリアニリンなどの接合用中間膜の形成などが挙げられる。
 半導体微粒子を導電性支持体上に塗設する方法として、上述の(1)湿式法とともに、(2)乾式法、(3)その他の方法を併用しても良い。
 (2)乾式法として好ましくは、特開2000-231943号公報等が挙げられる。
 (3)その他の方法として、好ましくは、特開2002-134435号公報等が挙げられる。
 乾式法としては、蒸着やスパッタリング、エアロゾルデポジション法などが挙げられる。また、電気泳動法・電析法を用いても良い。
 また、耐熱基板上でいったん塗膜を作製した後、プラスチック等のフィルムに転写する方法を用いても良い。好ましくは、特開2002-184475号公報記載のEVAを介して転写する方法、特開2003-98977号公報記載の紫外線、水系溶媒で除去可能な無機塩を含む犠牲基盤上に半導体層・導電層を形成後、有機基板に転写後、犠牲基板を除去する方法などが挙げられる。
 半導体微粒子は多くの色素を吸着することができるように表面積の大きいものが好ましい。例えば半導体微粒子を支持体上に塗設した状態で、その表面積が投影面積に対して10倍以上であることが好ましく、100倍以上であることがより好ましい。この上限には特に制限はないが、通常5000倍程度である。好ましい半導体微粒子の構造としては、特開2001-93591号公報等が挙げられる。
 一般に、半導体微粒子の層の厚みが大きいほど単位面積当たりに担持できる色素の量が増えるため光の吸収効率が高くなるが、発生した電子の拡散距離が増すため電荷再結合によるロスも大きくなる。半導体微粒子層の好ましい厚みは素子の用途によって異なるが、典型的には0.1~100μmである。光電気化学電池として用いる場合は1~50μmであることが好ましく、3~30μmであることがより好ましい。半導体微粒子は、支持体に塗布した後に粒子同士を密着させるために、100~800℃の温度で10分~10時間加熱してもよい。支持体としてガラスを用いる場合、製膜温度は400~600℃が好ましい。
 支持体として高分子材料を用いる場合、250℃以下で製膜後加熱することが好ましい。その場合の製膜方法としては、(1)湿式法、(2)乾式法、(3)電気泳動法(電析法を含む)の何れでも良く、好ましくは、(1)湿式法、又は(2)乾式であり、更に好ましくは、(1)湿式法である。
 なお、半導体微粒子の支持体1m当たりの塗布量は0.5~500g、さらには5~100gが好ましい。
 半導体微粒子に色素を吸着させるには、溶液と本発明の色素よりなる色素吸着用色素溶液の中に、よく乾燥した半導体微粒子を長時間浸漬するのが好ましい。色素吸着用色素溶液に使用される溶液は、本発明の色素が溶解できる溶液なら特に制限なく使用することができる。例えば、エタノール、メタノール、イソプロパノール、トルエン、t-ブタノール、アセトニトリル、アセトン、n-ブタノールなどを使用することができる。その中でも、エタノール、トルエンを好ましく使用することができる。
 溶液と本発明の色素よりなる色素吸着用色素溶液は必要に応じて50℃ないし100℃に加熱してもよい。色素の吸着は半導体微粒子の塗布前に行っても塗布後に行ってもよい。また、半導体微粒子と色素を同時に塗布して吸着させてもよい。未吸着の色素は洗浄によって除去する。塗布膜の焼成を行う場合は色素の吸着は焼成後に行うことが好ましい。焼成後、塗布膜表面に水が吸着する前にすばやく色素を吸着させるのが特に好ましい。吸着する色素は1種類でもよいし、数種混合して用いてもよい。混合する場合、本発明の色素を2種以上混合してもよいし、本発明の趣旨を損なわない範囲内で錯体色素と本発明の色素を混合してもよい。光電変換の波長域をできるだけ広くするように、混合する色素が選ばれる。色素を混合する場合は、すべての色素が溶解するようにして、色素吸着用色素溶液とすることが必要である。
 色素の使用量は、全体で、支持体1m当たり0.01~100ミリモルが好ましく、より好ましくは0.1~50ミリモル、特に好ましくは0.1~10ミリモルである。この場合、本発明の色素の使用量は5モル%以上とすることが好ましい。
 また、色素の半導体微粒子に対する吸着量は半導体微粒子1gに対して0.001~1ミリモルが好ましく、より好ましくは0.1~0.5ミリモルである。
 このような色素量とすることによって、半導体における増感効果が十分に得られる。これに対し、色素量が少ないと増感効果が不十分となり、色素量が多すぎると、半導体に付着していない色素が浮遊し増感効果を低減させる原因となる。
 また、会合など色素同士の相互作用を低減する目的で無色の化合物を共吸着させてもよい。共吸着させる疎水性化合物としてはカルボキシル基を有するステロイド化合物(例えばコール酸、ピバロイル酸)等が挙げられる。
 色素を吸着した後に、アミン類を用いて半導体微粒子の表面を処理してもよい。好ましいアミン類としては4-tert-ブチルピリジン、ポリビニルピリジン等が挙げられる。これらは液体の場合はそのまま用いてもよいし有機溶媒に溶解して用いてもよい。
 対向電極は、光電気化学電池の正極として働くものである。対向電極は、通常前述の導電性支持体と同義であるが、強度が十分に保たれるような構成では支持体は必ずしも必要でない。ただし、支持体を有する方が密閉性の点で有利である。対向電極の材料としては、白金、カーボン、導電性ポリマー、などが挙げられる。好ましい例としては、白金、カーボン、導電性ポリマーが挙げられる。
 対極の構造としては、集電効果が高い構造が好ましい。好ましい例としては、特開平10-505192号公報などが挙げられる。
 受光電極は酸化チタンと酸化スズ(TiO/SnO)などの複合電極を用いても良く、チタニアの混合電極として例えば、特開2000-113913号公報等が挙げられる。チタニア以外の混合電極として例えば、特開2001-185243号公報、特開2003-282164号公報等が挙げられる。
 受光電極は、入射光の利用率を高めるなどのためにタンデム型にしても良い。好ましいタンデム型の構成例としては、特開2002-90989号公報等に記載の例が挙げられる。
 受光電極層内部で光散乱、反射を効率的に行う光マネージメント機能を設けてもよい。好ましくは、特開2002-93476号公報に記載のものが挙げられる。
 導電性支持体と多孔質半導体微粒子層の間には、電解液と電極が直接接触することによる逆電流を防止する為、短絡防止層を形成することが好ましい。好ましい例としては、特開平06-507999号公報等が挙げられる。
 受光電極と対極の接触を防ぐ為に、スペーサーやセパレータを用いることが好ましい。好ましい例としては、特開2001-283941号公報が挙げられる。
 以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれらに限定されるものではない。
1.色素の調製
 下記の方法により例示色素A-1を調製した。
(合成例1)例示色素A-1の調製
 下記の方法に従って例示色素A-1を調製した。
Figure JPOXMLDOC01-appb-C000073
(1)化合物A-1aの調製
 10,11-ジヒドロ-5H-ジベンズ[b,f]アゼピン50.0gをDMF130mlに室温で攪拌溶解した後に氷冷し、50~70%水素化ナトリウム18.4gを4分割添加して内温5℃以下で0.5時間攪拌した。そこへ1-ヨードエタン70.3gを20分かけて滴下し、DMF20mlで残量を洗い入れた。その後室温まで昇温し、2.5時間反応を行った。反応終了後、反応液に水を滴下し、酢酸エチルを加えて抽出を行った。分液後、酢酸エチル層を1N塩酸、重曹水、水の順に洗浄し、無水硫酸ナトリウムで予備乾燥を行った。硫酸マグネシウムを除去後、濃縮し、粗生成物をカラムクロマトグラフィー(溶媒:ヘキサン)で精製することで化合物A-1a
41.7gを得た。
(2)化合物A-1bの調製
 化合物A-1a 10.0gをDMF180mlに室温で攪拌溶解した後に氷冷した。この溶液へN-ブロモスクシンイミド10.1gを4分割添加し、そのまま1時間攪拌を行った。反応終了後、反応液へチオ硫酸ナトリウム水溶液および酢酸エチルを加えて抽出、分液を行った後、酢酸エチル層へ水を加えて洗浄した。分液後、酢酸エチル層を無水硫酸ナトリウムで予備乾燥して、濾過および濃縮を行った。粗生成物をカラムクロマトグラフィー(溶媒:ヘキサン)で粗精製後、さらに液体クロマトグラフィーにより精製し、A-1b
6.5gを得た。
(3)化合物A-1cの調製
 化合物A-1b 1.21gおよび4-ヘキシル-2-ボロン酸エステル2.25g、炭酸ナトリウム10wt%溶液6mlをDME40mlへ溶解し、系内を窒素置換した。この溶液へテトラキス(トリフェニルホスフィン)パラジウム234mgを添加し、3.5時間加熱還流を行った。室温に冷却後、酢酸エチルで希釈し、有機層を水で2回洗浄し、硫酸マグネシウムで乾燥後、溶媒を減圧下で留去して粗生成物を得た。この粗生成物をカラムクロマトグラフィー(溶媒:酢酸エチル/ヘキサン=1/15)により精製し、A-1c
1.54gを得た。
(4)化合物A-1dの調製
 化合物A-1c 0.39gをDMF10mlに溶解し、氷冷した。この溶液へ、DMF1.32mlとオキシ塩化リン0.34mlより予め調整したVilsmeier試薬を滴下し、室温で1時間攪拌した。その後70℃へ昇温し、さらに1時間20分攪拌した。 反応終了後、反応液を14wt%酢酸ナトリウム水溶液中へ添加し、室温で30分攪拌した。この溶液を酢酸エチルで2回抽出し、酢酸エチル抽出液を併せて、水で洗浄した。硫酸マグネシウムで乾燥後、溶媒を減圧下で留去し組成生物を得た。この粗生成物をカラムクロマトグラフィー(溶媒:酢酸エチル/ヘキサン=1/10)で粗精製後、さらに液体クロマトグラフィーにより精製し、A-1d
0.28gを得た。
(5)化合物A-1の調製
 化合物A-1d 0.20gをアセトニトリル3.5mlおよびトルエン3mlに溶解した。この溶液へシアノ酢酸81.5mg、ピペリジン2mlを添加し、70℃で8.5時間加熱攪拌した。冷却後、反応液へジクロロメタンを加え、有機層を希塩酸および水で2回洗浄し、硫酸ナトリウムにより乾燥した後、減圧下にて溶媒を留去して粗生成物を得た。粗生成物をメタノール/ジクロロメタンで再結晶し、粗精製を行った後、カラムクロマトグラフィー(溶媒:ジクロロメタン→ジクロロメタン/メタノール=10/1)により精製し、A-1 0.12gを得た。
 この化合物のUV・VISスペクトルをエタノール溶液として測定したところ、最大吸収波長は438nmであった。
(そのほかの例示色素の調製)
 合成例1と同様にして他の例示色素も調製した。
2.色素の最大吸収波長の測定
 色素の最大吸収波長を測定した。測定は分光光度計(U-4100(商品名、日立ハイテク(株)製))によって行い、溶液はエタノールを用いた。
Figure JPOXMLDOC01-appb-T000074
2.ヘテロ環4級塩化合物の調製
 4.8g(0.028mol)の下記化合物XT-1と7.32g(0.03mol)の化合物XT-2を12mlの酢酸エチルに溶解し、加熱還流下24時間反応させた。次に減圧加熱下、酢酸エチル及び過剰の化合物XT-2を留去し、12gの下記に示す表1記載のT-1を得た。
Figure JPOXMLDOC01-appb-C000075
Figure JPOXMLDOC01-appb-C000076
Figure JPOXMLDOC01-appb-C000077
3.光電気化学電池の作製
(A)半導体微粒子分散液の調製
 内側をテフロン(登録商標)コーティングした内容積200mlのステンレス製容器に、二酸化チタン微粒子(Degussa P-25(商品名、日本アエロジル(株)製))15g、水45g、分散剤(Triton X-100(商品名、アルドリッチ社製))1g、直径0.5mmのジルコニアビーズ(ニッカトー社製)30gを入れ、サンドグラインダーミル(アイメックス社製)を用いて1500rpmで2時間分散処理した。得られた分散液からジルコニアビーズをろ過により除去して、半導体微粒子分散液を得た。得られた分散液中の二酸化チタン微粒子の平均粒径は2.5μmであった。なお粒径は、レーザー回折式粒度分布計のマスターサイザー(商品名、MALVERN社製)で測定した。
(B)色素を吸着した半導体微粒子電極の作製
 フッ素をドープした酸化スズ層を有する導電性ガラス(TCOガラス-U(商品名、旭硝子(株)製)を20mm×20mmの大きさに切断した。この切断した導電性ガラス(表面抵抗約30Ω/cm)の導電面側にガラス棒を用いて、(A)で調製した半導体微粒子分散液を塗布した。半導体微粒子の塗布量は20g/mとした。その際、導電面側の一部(端から3mm)に粘着テープを張ってスペーサーとし、該粘着テープが両端に来るように導電性ガラスを並べて一度に8枚ずつ、半導体微粒子分散液を塗布した。その後、該粘着テープを剥離し、室温で1日間放置した。次にこの導電性ガラスを電気炉(マッフル炉FP-32型(商品名、ヤマト科学(株)製))に入れ、450℃にて30分間焼成することにより、半導体微粒子電極を得た。この電極を取り出し冷却した後、表1に示す色素のエタノール溶液(3×10‐4mol/l)に3時間浸漬した。その後、この電極を4‐t‐ブチルピリジンに15分間浸漬した後、エタノールで洗浄し自然乾燥し、色素を吸着した半導体微粒子電極を得た。色素の塗布量は、色素の種類に応じ、適宜0.1~10mmol/mの範囲から増感度が最適になるように選択した。
(C)光電気化学電池の作製
 (B)に記載の通り作製した、色素を吸着した半導体微粒子電極(20mm×20mm)に、これと同じ大きさの白金蒸着ガラスと重ね合わせた。次に、両ガラスの隙間に毛細管現象を利用して電解質組成物を染み込ませ、電解質を半導体微粒子電極中に導入した。これにより、図1に示すように、導電性ガラスからなる導電性支持体1(ガラスの透明基板上に導電層が形成されたもの)、色素が吸着された半導体微粒子層を有する感光体2、電荷移動体3、白金からなる対極4及びガラスの透明基板(図示せず)をこの順に積層して光電気化学電池を作製した。なお電解質組成物を導入後は端部をエポキシ系封止剤で封止した。電解質組成物の粘度が高く毛細管現象を利用して電解質組成物を半導体微粒子電極中に導入することが困難な場合は、電解質組成物を50℃に加温し、これを色素が吸着された半導体微粒子電極に塗布した。その後、この電極を減圧下に置き電解質組成物が十分浸透し電極中の空気を抜いた後、白金蒸着ガラス(対極)を重ね合わせて同様に光電気化学電池を作製した。
 電解質組成物と色素を変更して同様の工程により、実施例1~26及び比較例1~8の光電気化学電池を作製した。各光電気化学電池に用いた電解質組成物中に含まれるヘテロ環4級塩化合物と半導体微粒子に吸着させた色素を併せて表1に示す。なおいずれの実施例及び比較例においても、電解質組成物中に、ヨウ素を2質量%配合した。また比較例5及び6においては、ヘテロ環4級塩化合物を配合せずに、γ-ブチロラクトンを70質量%及びテトラブチルアンモニウムヨージドを28質量%配合した。また、比較例7及び8においては、比較電解質Xを使用した。
4.光電変換効率の測定とその評価
 500Wのキセノンランプ(ウシオ電気(株)製)の光をAM1.5フィルター(Oriel社製)及びシャープカットフィルター( L-42(商品名)、Kenko社製)に通すことにより、紫外線を含まない模擬太陽光を発生させた。この光の強度を測定したところ、70mW/cmであった。この模擬太陽光を、50℃で実施例1~26及び比較例1~8の光電気化学電池に照射し、発生した電気を電流電圧測定装置(ケースレーSMU238型(商品名、ケースレー社製))で測定した。これにより、各光電気化学電池の変換効率(η)の初期値と、140時間暗所保存後の変換効率の低下率及び24時間連続光照射後の変換効率の低下率を表5に示す。
 変換効率の初期値が3%以上で、変換効率の低下率が7%以下のものを合格とした。
Figure JPOXMLDOC01-appb-T000078
Figure JPOXMLDOC01-appb-C000079
 比較色素として、上記の比較色素Wを用いた。
Figure JPOXMLDOC01-appb-C000080
 また比較電解質として、上記の比較電解質Xを用いた。
 表5からわかるように、比較色素Wを用いた場合は、本発明のヘテロ4級塩化合物を含有する電解質組成物を使用し場合であっても、暗所保存後の変換効率の低下率は14~22%と高く、連続光照射後の変換効率低下率も43~51%と高く、耐久性が不合格となった(比較例1~4)。
 また本発明の色素を用いても、本発明のヘテロ4級塩化合物を含有する電解質組成物を使用しない場合は、変換効率の初期値は3%以上で合格レベルであったが、変換効率の低下率が高いことがわかった(比較例5、6)。比較電解質を用いた場合も、やはり変換効率の低下率が高いことがわかった(比較例7、8)。
 これに対して、本発明の色素が吸着され、本発明のヘテロ4級塩化合物を含有する電解質組成物を使用した実施例1~26では、変換効率の初期値及び変換効率の低下率ともに合格であった。
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。
 本願は、2010年3月5日に日本国で特許出願された特願2010-048745に基づく優先権を主張するものであり、これはここに参照してその内容を本明細書の記載の一部として取り込む。
1 導電性支持体
2 感光体
 21 色素化合物
 22 半導体微粒子
 23 電解質
3 電荷移動体
4 対極
5 受光電極
6 回路
10 光電変換素子

Claims (13)

  1.  導電性支持体上に色素が吸着された半導体微粒子層を有する感光体、電荷移動体、および対極を含む積層構造よりなる光電変換素子であって、前記色素が下記一般式(1)で表される構造を有し、前記電荷移動体がヘテロ環4級塩化合物を含有する電解質組成物を有することを特徴とする光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
    [一般式(1)中、A1は、ベンゼン環と連結して形成される五員環、六員環又は七員環の含窒素複素環を表す。L1はチオフェン環、フラン環、ピロール環、セレノフェン環及びこれらが縮環した複素環の中から選ばれた少なくとも1種の複素環を含む電子伝達性連結基を表す。R及びRはそれぞれ独立に、水素原子又は置換基を表す。Rは水素原子又は置換基を表す。B1は複素環酸性核、または電子求引性基で置換されたメチレン基を表し、B1は少なくとも一つの酸性基を有する。n1は1~12の整数を表す。]
  2.  前記一般式(1)で表される構造を有する色素が、下記一般式(3)又は下記一般式(4)で表されることを特徴とする請求項1記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000002
    Figure JPOXMLDOC01-appb-C000003
    [一般式(3)中、Xはベンゼン環と連結して六員環又は七員環の含窒素複素環を形成するのに必要な非金属原子群を表す。一般式(3)及び(4)中、L、R1、R、R、B及びn1は、一般式(1)におけるものと同義である。R~Rはそれぞれ独立に、アルキル基、アルコキシ基及びアリール基から選ばれる少なくとも1種の置換基を表す。n3は1又は2の整数を示す。]
  3.  前記一般式(3)中、Xがベンゼン環と連結して七員環の含窒素複素環を形成する非金属原子群であることを特徴とする請求項2記載の光電変換素子。
  4.  前記一般式(3)中、Xがメチレンであり、かつn3が2であることを特徴とする請求項2又は3記載の光電変換素子。
  5.  前記一般式(1)で表される構造を有する色素が、前記一般式(4)で表されることを特徴とする請求項2記載の光電変換素子。
  6.  Bが下記一般式(5)又は一般式(6)で表されることを特徴とする請求項1~5のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    [一般式(5)中、R10及びRは、それぞれ独立に、脂肪族基、芳香族基または複素環基を表す(少なくとも1つの官能基は酸性基を有していてもよい)。mは0又は1を示す。一般式(5)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。一般式(5)中のRは硫黄原子または一般式(7)を表し、一般式(7)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
     一般式(6)中、R11及びR12は、それぞれ独立に、シアノ基又は酸性基を表し、互いに同一でも異なっていてもよい。一般式(6)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。
     一般式(7)中、R13及びR14は、それぞれ独立に、シアノ基又は酸性基を表し、互いに同一でも異なっていてもよい。一般式(7)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。]
  7.  前記一般式(5)で表される色素が、下記一般式(8)で表されることを特徴とする請求項6記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000007
    [一般式(8)中、Rは、脂肪族基、芳香族基または複素環基を表す(これらの基は酸性基を有していてもよい)。一般式(8)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。]
  8.  前記Bが下記一般式(9)で表されることを特徴とする請求項1~5のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000008
    [一般式(9)中、R10は、脂肪族基、芳香族基または複素環基を表す(これらの基は酸性基を有していてもよい)。一般式(9)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。]
  9.  前記Bが下記一般式(10)で表されることを特徴とする請求項1~5のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000009
    [一般式(10)における炭素-炭素二重結合は、E型又はZ型のいずれであってもよい。]
  10.  前記ヘテロ環4級塩化合物が、下記一般式(2)で表されることを特徴とする請求項1~9のいずれか1項に記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000010
    [一般式(2)中、Rは-(CR3132-CR3334-O)-結合(R31~R34はそれぞれ独立に水素原子又はアルキル基を表し、aは2~20の整数を表す。)を含む置換基を表し、Qは窒素原子と共に5又は6員環の芳香族カチオンを形成しうる原子団を表し、置換基を有していてもよく、Z はアニオンを表す。]
  11.  前記一般式(2)で表されるヘテロ環4級塩化合物が、下記一般式(11)又は(12)で表されることを特徴とする請求項10記載の光電変換素子。
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    [一般式(11)及び(12)中、R55は-(CR5152-CR5354-O)-結合(R51~R54はそれぞれ独立に水素原子又はアルキル基を表し、bは2~20の整数を表す。)を含む置換基を表し、R56~R60はそれぞれ独立に水素原子又は置換基を表し、Z はアニオンを表し、R55~R60のうち2つ以上が互いに連結して環構造を形成していてもよい。]
  12.  前記Z がI、N(CFSO 、BF 、R-COO(Rは水素原子、アルキル基、パーフルオロアルキル基又はアリール基を表す。)、R-SO (Rはアルキル基、パーフルオロアルキル基又はアリール基を表す。)又はSCNであることを特徴とする請求項10又は11に記載の光電変換素子。
  13.  請求項1~12のいずれか1項に記載の光電変換素子を備えることを特徴とする光電気化学電池。
PCT/JP2011/054811 2010-03-05 2011-03-02 光電変換素子及び光電気化学電池 WO2011108611A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010048745 2010-03-05
JP2010-048745 2010-03-05

Publications (1)

Publication Number Publication Date
WO2011108611A1 true WO2011108611A1 (ja) 2011-09-09

Family

ID=44542258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054811 WO2011108611A1 (ja) 2010-03-05 2011-03-02 光電変換素子及び光電気化学電池

Country Status (2)

Country Link
TW (1) TW201136920A (ja)
WO (1) WO2011108611A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175444A (ja) * 2012-01-24 2013-09-05 Hodogaya Chem Co Ltd 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
DE102016125644A1 (de) * 2016-12-23 2018-06-28 Karlsruher Institut für Technologie Organische Halbleiter, Verfahren zu ihrer Herstellung und ihre Verwendung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5881578B2 (ja) * 2011-12-15 2016-03-09 富士フイルム株式会社 金属錯体色素、光電変換素子、色素増感太陽電池および色素溶液

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256828A (ja) * 1999-08-04 2001-09-21 Fuji Photo Film Co Ltd 電解質組成物、光電変換素子及び光電気化学電池
JP2010235908A (ja) * 2008-10-29 2010-10-21 Fujifilm Corp 色素、これを用いた光電変換素子及び光電気化学電池
JP2011071071A (ja) * 2009-09-28 2011-04-07 Fujifilm Corp 光電変換素子の製造方法、光電変換素子、および光電気化学電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001256828A (ja) * 1999-08-04 2001-09-21 Fuji Photo Film Co Ltd 電解質組成物、光電変換素子及び光電気化学電池
JP2010235908A (ja) * 2008-10-29 2010-10-21 Fujifilm Corp 色素、これを用いた光電変換素子及び光電気化学電池
JP2011071071A (ja) * 2009-09-28 2011-04-07 Fujifilm Corp 光電変換素子の製造方法、光電変換素子、および光電気化学電池

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAINING TIAN ET AL.: "Effect of different electron donating groups on the performance of dye-sensitized solar cells", DYES AND PIGMENTS, vol. 84, no. ISS.1, 4 June 2009 (2009-06-04), pages 62 - 68 *
MASANORI MIYASHITA ET AL.: "Interfacial Electron-Transfer Kinetics in Metal-Free Organic Dye-Sensitized Solar Cells: Combined Effects of Molecular Structure of Dyes and Electrolytes", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 130, 12 September 2008 (2008-09-12), pages 17874 - 17881 *
ZHONG-SHENG ET AL.: "Exploitation of Ionic Liquid Electrolyte for Dye-Sensitized Solar Cells by Molecular Modification of Organic-Dye Sensitizers", CHEMISTRY OF MATERIALS, vol. 21, 29 May 2009 (2009-05-29), pages 2810 - 2816 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013175444A (ja) * 2012-01-24 2013-09-05 Hodogaya Chem Co Ltd 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
DE102016125644A1 (de) * 2016-12-23 2018-06-28 Karlsruher Institut für Technologie Organische Halbleiter, Verfahren zu ihrer Herstellung und ihre Verwendung

Also Published As

Publication number Publication date
TW201136920A (en) 2011-11-01

Similar Documents

Publication Publication Date Title
AU2016262730B2 (en) Dye, photoelectric conversion element using the same, photoelectrochemical cell, and method of producing dye
JP2011026376A (ja) 色素、これを用いた光電変換素子及び光電気化学電池
JP5557484B2 (ja) 色素、これを用いた光電変換素子及び光電気化学電池
JP5524557B2 (ja) 光電変換素子の製造方法、光電変換素子、および光電気化学電池
JP5721717B2 (ja) 金属錯体色素、光電変換素子及び光電気化学電池
JP5771092B2 (ja) 色素、光電変換素子及び光電気化学電池
JP5782220B2 (ja) 色素化合物、これを用いた光電変換素子及び色素増感型太陽電池
JP5756772B2 (ja) 光電変換素子及び光電気化学電池
WO2011108611A1 (ja) 光電変換素子及び光電気化学電池
JP2011071070A (ja) 光電変換素子の製造方法、光電変換素子、および光電気化学電池
JP5816111B2 (ja) 金属錯体色素組成物、光電変換素子及び光電気化学電池
WO2011118580A1 (ja) 光電変換素子及び光電気化学電池
JP5607338B2 (ja) 色素、これを用いた光電変換素子、光電気化学電池、および色素の製造方法
WO2011108612A1 (ja) 光電変換素子及び光電気化学電池
JP5662728B2 (ja) 色素、これを用いた光電変換素子及び光電気化学電池
JP5636317B2 (ja) 金属錯体色素、金属錯体色素組成物、光電変換素子及び光電気化学電池
JP2012038435A (ja) 光電変換素子、光電気化学電池及び光電変換素子用色素溶液
JP2012038436A (ja) 光電変換素子及びこれを用いた光電気化学電池、光電変換素子用組成物
JP5572028B2 (ja) 光電変換素子及びこれを用いた光電気化学電池、光電変換素子用組成物
JP5572027B2 (ja) 光電変換素子及びこれに用いられる光電変換素子用組成物
WO2011108613A1 (ja) 光電変換素子及び光電気化学電池
JP2011187202A (ja) 光電変換素子および光電気化学電池
JP2012033443A (ja) 光電変換素子及び光電気化学電池、それに用いられる色素
WO2012132732A1 (ja) 光電変換素子、光電気化学電池及び色素
JP2012038437A (ja) 光電変換素子及びこれを用いた光電気化学電池、光電変換素子用組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11750720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11750720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP