WO2011105724A2 - 관절연골 재생용 지지체 및 이의 제조방법 - Google Patents

관절연골 재생용 지지체 및 이의 제조방법 Download PDF

Info

Publication number
WO2011105724A2
WO2011105724A2 PCT/KR2011/001133 KR2011001133W WO2011105724A2 WO 2011105724 A2 WO2011105724 A2 WO 2011105724A2 KR 2011001133 W KR2011001133 W KR 2011001133W WO 2011105724 A2 WO2011105724 A2 WO 2011105724A2
Authority
WO
WIPO (PCT)
Prior art keywords
stem cells
walled carbon
mesenchymal stem
articular cartilage
human mesenchymal
Prior art date
Application number
PCT/KR2011/001133
Other languages
English (en)
French (fr)
Other versions
WO2011105724A3 (ko
WO2011105724A9 (ko
Inventor
조 마이클
Original Assignee
주식회사 티이바이오스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 티이바이오스 filed Critical 주식회사 티이바이오스
Priority to US13/700,972 priority Critical patent/US20130084636A1/en
Publication of WO2011105724A2 publication Critical patent/WO2011105724A2/ko
Publication of WO2011105724A9 publication Critical patent/WO2011105724A9/ko
Publication of WO2011105724A3 publication Critical patent/WO2011105724A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30756Cartilage endoprostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/24Collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3817Cartilage-forming cells, e.g. pre-chondrocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0662Stem cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30756Cartilage endoprostheses
    • A61F2002/30766Scaffolds for cartilage ingrowth and regeneration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00365Proteins; Polypeptides; Degradation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/10Mineral substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/30Synthetic polymers
    • C12N2533/40Polyhydroxyacids, e.g. polymers of glycolic or lactic acid (PGA, PLA, PLGA); Bioresorbable polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • C12N2533/54Collagen; Gelatin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/752Multi-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/904Specified use of nanostructure for medical, immunological, body treatment, or diagnosis
    • Y10S977/923Cell culture

Definitions

  • the present invention relates to a support for articular cartilage regeneration that can be applied to both the interlayer portion of the articular cartilage or the superficial layer and the interlayer portion of the articular cartilage, and a method of manufacturing the same.
  • the cartilage tissue that forms the joints of vertebrates does not normally regenerate in vivo once damaged.
  • severe pain and restriction on daily activities, and when chronicized, fatal degenerative arthritis, etc. are caused to interfere with normal life or professional activities.
  • Examples of treatment for damaged articular cartilage include chondroplasty, osteochondral transplantation, and autologous chondrocyte transplantation.
  • Tissue engineering-based therapies can enhance the effectiveness with autologous chondrocytes.
  • Autologous cartilage cells are relatively well fused between implanted and normal sites, and are likely to regenerate free cartilage required for actual joints.
  • the proliferation and growth of the collected cells are not so strong that it takes a considerable period of time to obtain the number of cells necessary for transplantation in vitro culture of the cells.
  • the chondrocytes are cultured in vitro, there is a problem that the phenotype of the cells is changed.
  • mesenchymal stem cells which are progenitor cells of chondrocytes obtained from mesenchymal tissues such as autologous bone marrow, muscle, and skin, are more undifferentiated cells. This appeared to be somewhat higher.
  • multipotent and non-immune human mesenchymal stem cells hMSCs
  • hMSCs multipotent and non-immune human mesenchymal stem cells
  • multifunctional tissue constructs eg osteochondral tissue.
  • human mesenchymal stem cells can be cultured and expanded in vitro and, using biological and physical stimuli, chondrogenic cells, osteogenic cells, adipogenic cells and myocardiality. Tissue-specific cell phenotypes such as (myogenic) cells are known to cause proliferation and differentiation.
  • human mesenchymal stem cells offer many advantages and potential for articular cartilage tissue engineering and regeneration.
  • the first biomaterials used for articular cartilage tissue engineering include natural biodegradable polymers and synthetic biodegradable polymers.
  • Natural biodegradable polymers include collagen, alginate, hyaluronic acid, gelatin, chitosan, and fibrin.
  • Biodegradable polymers include polyglycolic acid (PGA), polylactic acid (PLA), polylactic acid-glycolic acid copolymer (PLGA), poly- ⁇ -caprolactone (PCL) and derivatives and copolymers thereof.
  • the biomaterial may be used to prepare a support of various structures.
  • Hydrogels, nanofibers, beads, sponges and the like have been steadily studied for the treatment of damaged articular cartilage.
  • the hydrogel facilitates the supply of substances and external nutrients and oxygen from the cells to be transplanted together, and can satisfy the thickness of the damaged area of the articular cartilage.
  • hydrogels made from collagen type II the major extracellular matrix component of cartilage
  • collagen-based hydrogels have a weak mechanical strength. Therefore, in recent years, many studies have been conducted to compensate for this problem by using a crosslinking material such as glutaraldehyde to provide mechanical properties to the hydrogel.
  • these crosslinking materials are toxic and have a limit in increasing mechanical strength.
  • the physical structure of the extracellular matrix has a nanoscale dimension
  • the nanoscale diameter fibers thus prepared may provide optimal conditions for cell adhesion and growth, and may affect cell activity depending on the size of the diameter or the direction of the fibers.
  • the articular cartilage of the natural state is anisotropic tissue, consisting of three layers, the superficial layer, the middle layer, and the deep layer. These separated layers are functionally different from the structure. That is, the surface layer is flattened with oval chondrocytes and polarized nano-scale collagen type II, and despite the relatively thin thickness ( ⁇ 200 ⁇ m) due to the arrangement of the chondrocytes and collagen type II in one direction. It has a high tensile strength and has sufficient shear force and tension on the associated surface.
  • the intermediate layer occupies 40 to 60% of the total thickness of the articular cartilage and has a thickness of 1 mm. Unlike the surface layer, the intermediate layer is composed of chondrocytes and abundant collagen fibers which are not directed.
  • carbon nanotubes have a diameter (200 ⁇ 500nm) small enough to repeat nanoscale natural extracellular matrix well, the strength is 100 times stronger than steel ( ⁇ 1 TPa), the weight of steel 1 / 6 degree, flexible, non-toxic.
  • Carbon nanotubes are also known to be compatible with mammalian cells of natural and synthetic musculoskeletal tissues.
  • carbon nanotubes injected into the bloodstream of a laboratory animal may not immediately undergo reverse health, and may be removed by the liver after circulation or through a renal excretory pathway. It is known to be quickly removed from the body. Therefore, in recent years, there has been increasing interest in applying carbon nanotubes in biomaterials for tissue engineering. For example, several reports have been published on the incorporation of carbon nanotubes into tissue engineering biomaterials such as collagen, chitosan, alginate and hyaluronic acid to enhance the mechanical properties of the substrate.
  • nanofibers and microfiber supports having a certain orientation by using an electrospinning method have been made on the production of nanofibers and microfiber supports having a certain orientation by using an electrospinning method.
  • the cell direction can be controlled using polymer nanofibers having an orientation by electrospinning, thereby optimizing the functionality of the designed tissue.
  • Cells and extracellular matrix small fibers in most natural tissues are not random and exhibit well patterned spatial specific orientation.
  • cell adhesion and proliferation are significantly improved in the oriented nanofiber support than in the randomly oriented nanofiber support. It is also known that oriented fibroblasts cultured on aligned nanofibers secrete more collagen than cultured on randomly oriented nanofibers.
  • the present inventors are studying the support for joint cartilage regeneration that can be applied to both the superficial layer and the middle layer of articular cartilage, and after incorporating multiwall carbon nanotubes into 3D collagen type II-based hydrogel to enhance mechanical properties, Collagen gel can be applied to the intermediate layer of articular cartilage by inoculating chondrocytes or bone cells differentiated from human mesenchymal stem cells or human mesenchymal stem cells, and human mesenchymal stem cells on biodegradable polymer support having an orientation by electrospinning.
  • a composite scaffold for joint cartilage regeneration of double worms was prepared by integrating collagen type II-based hydrogel, and the cell survival rate was excellent in the collagen gel and the double scaffold composite cartilage regeneration complex, and the antioxidant glycosaminoglyph of cells was prepared. It was confirmed that the content of cans (GAGs) is very high, and completed the present invention.
  • the present invention provides a support for articular cartilage regeneration comprising a collagen gel inoculated with chondrocytes or osteocytes differentiated from human mesenchymal stem cells or human mesenchymal stem cells to a 3D collagen type II-based hydrogel mixed with multi-walled carbon nanotubes and its To provide a manufacturing method.
  • the present invention is a 3D collagen type II-based incorporation of multi-walled carbon nanotubes, a support inoculated with chondrocytes or bone cells differentiated from human mesenchymal stem cells or human mesenchymal stem cells to the electrospun biodegradable polymer support
  • the present invention provides a composite support for articular cartilage regeneration comprising a collagen gel inoculated with hydrogels or cartilage cells differentiated from human mesenchymal stem cells or human mesenchymal stem cells.
  • FIG. 1 is a view of an electrospun biodegradable polymer film (A) and an electrospun biodegradable polymer nanofiber (500 nm) (B) observed with a scanning electron microscope (SEM).
  • FIG. 2 is a diagram illustrating a 3D collagen type II-based hydrogel incorporating multi-walled carbon nanotubes of the present invention under confocal microscopy [(A) Collagen fibers in collagen hydrogel (blue), (B) Collagen Multi-walled carbon nanotubes (black) in hydrogels].
  • 3 is a support (A) inoculated with chondrocytes or osteoblasts differentiated from human mesenchymal stem cells or human mesenchymal stem cells to an electrospun biodegradable polymer support according to the present invention, and 3D containing multi-walled carbon nanotubes
  • A inoculated with chondrocytes or osteoblasts differentiated from human mesenchymal stem cells or human mesenchymal stem cells to an electrospun biodegradable polymer support according to the present invention
  • 3D containing multi-walled carbon nanotubes It is a schematic diagram showing the manufacturing process of a composite scaffold consisting of collagen gel (B) inoculated with collagen type II-based hydrogels into cartilage cells or bone cells differentiated from human mesenchymal stem cells or human mesenchymal stem cells.
  • FIG. 4 shows the physical strength of collagen hydrogels, collagen hydrogels crosslinked with EDC (l-ethyl-3- (3-dimethylaminopropyl) carbodiimide), and collagen hydrogels containing multi-walled carbon nanotubes. (a) atomic force microscopy).
  • FIG. 5 is a diagram showing the results of observing cell viability and cell orientation in the electrospun biodegradable polymer support of the present invention.
  • FIG. 6 is a diagram illustrating cell viability and distribution in 3D collagen type II-based hydrogels with multiwalled carbon nanotubes of the present invention.
  • FIG. 7 shows a non-electrospun PCL fiber film (A), an electrospun PCL fiber support (B), a collagen hydrogel (C) in which multiwall carbon nanotubes are not incorporated, and a collagen in which multiwall carbon nanotubes are incorporated
  • Fig. 1 shows the content of antioxidant glycosaminoglycans (GAGs) in hydrogels (D).
  • GAGs antioxidant glycosaminoglycans
  • the present invention provides a support for articular cartilage regeneration comprising a collagen gel inoculated with chondrocytes or osteoblasts differentiated from human mesenchymal stem cells or human mesenchymal stem cells to a 3D collagen type II-based hydrogel mixed with multi-walled carbon nanotubes.
  • the present invention is a 3D collagen type II-based incorporation of multi-walled carbon nanotubes and a support inoculated with chondrocytes or bone cells differentiated from human mesenchymal stem cells or human mesenchymal stem cells to the electrospun biodegradable polymer support
  • a composite scaffold for articular cartilage regeneration comprising a collagen gel inoculated with a hydrogel into human mesenchymal stem cells or cartilage cells or bone cells differentiated from human mesenchymal stem cells.
  • step 2) Insert the electrospun biodegradable polymer support disk prepared in step 1) into the cell culture plate, soak in 50-99% ethanol for 30-100 minutes and remove residual organic solvent in the vacuum chamber for 2-5 days And sterilization,
  • step 2) After immersing the electrospun biodegradable polymer support sterilized in step 2) in a complete cell growth medium (containing 15% FBS) for 48 hours before cell inoculation, cartilage differentiated from human mesenchymal stem cells or human mesenchymal stem cells Pipetting the cells or osteoblasts and incubating in the complete cell growth medium for 24 hours, replacing the complete cell growth medium with cartilage-forming medium and culturing,
  • step 6) inoculating 3D collagen type II-based hydrogel containing the multi-walled carbon nanotubes prepared in step 6) and inoculating chondrocytes or bone cells differentiated from human mesenchymal stem cells or human mesenchymal stem cells and culturing the cells ,
  • the support for articular cartilage regeneration is a collagen gel inoculated with chondrocytes or bone cells differentiated from human mesenchymal stem cells or human mesenchymal stem cells to a 3D collagen type II-based hydrogel containing multi-walled carbon nanotubes. Characterized in that it includes, can be applied to the intermediate layer of articular cartilage.
  • the composite support for articular cartilage regeneration according to the present invention is a human inoculated with 3D collagen type II-based hydrogel in which human mesenchymal stem cells are inoculated on an electrospun biodegradable polymer support, and multi-walled carbon nanotubes are mixed. It is characterized by consisting of collagen gel inoculated mesenchymal stem cells, it can be applied to both the superficial and intermediate layers of articular cartilage.
  • the biodegradable polymers are polyglycolic acid (PGA), polylactic acid (PLA), polylactic acid-glycolic acid copolymer (PLGA), poly- ⁇ -caprolactone (PCL), polyanhydrides, polyorthoesters , Polyvinyl alcohol, polyethylene glycol, polyurethane, polyacrylic acid, poly-N-isopropylacrylamide, poly (ethylene oxide) -poly (propylene oxide) -poly (ethylene oxide) copolymer, derivatives thereof and air thereof Although coalescing is preferable, it is not limited to this.
  • the human mesenchymal stem cells are preferably bone marrow-derived human mesenchymal stem cells, but are not limited thereto.
  • the multi-walled carbon nanotubes are mixed with sulfuric acid and nitric acid, sonicated in ultrasonic water at 30-70 ° C. for 30-100 minutes, neutralized and centrifuged to collect the multi-walled carbon nanotubes, and the solvent solution is removed. After washing with sterile water and sonicating again, the supernatant was removed by centrifugation, and the multi-walled carbon nanotubes were resuspended and dispersed in a phosphate buffer solution to prepare a multi-walled carbon nanotube-phosphate buffer solution.
  • the collagen hydrogel was then mixed with 70% (10 mg / ml in 0.02N acetic acid) collagen type II, 6.5% 10X HBSS, 3.5% 0.4N NaOH, 1% 0.4N acetic acid, 19% sterile water from articular cartilage.
  • the multi-walled carbon nanotube-phosphate buffer solution is mixed in the prepared collagen hydrogel to improve mechanical properties of the collagen hydrogel.
  • 3D collagen type II-based hydrogels containing the multiwalled carbon nanotubes are seeded with chondrocytes or bone cells differentiated from human mesenchymal stem cells or human mesenchymal stem cells and cultured.
  • the multi-walled carbon nanotubes do not interfere with the formation of collagen fibers and are evenly dispersed in the 3D collagen type II-based hydrogel.
  • cell viability of both 3D collagen type II-based hydrogels containing multiwalled carbon nanotubes and 3D collagen type II-based hydrogels containing no multiwall carbon nanotubes is excellent. Therefore, it can be seen that the addition of multi-walled carbon nanotubes to the 3D collagen type II-based hydrogel does not negatively affect cell viability and distribution.
  • the content of the antioxidant glycosaminoglycans (GAGs) of the cells in the collagen hydrogel mixed with the multi-walled carbon nanotubes is higher than that of the collagen hydrogel in which the multi-walled carbon nanotubes are not mixed.
  • Step 1) to 3) is a step of preparing a support inoculated with human mesenchymal stem cells to the electrospun biodegradable polymer support.
  • a biodegradable polymer is dissolved in an organic solvent to prepare a polymer solution of 8-15%, preferably 10%.
  • the polymer solution is then electrospun into a rotating aluminum disk collector placed at a distance of 120 mm at an injection rate of 0.01-5 ml / h, preferably 1 ml / h, to prepare an electrospun biodegradable polymer support.
  • the intensity of the electric field is preferably 0.1 ⁇ 10kV / cm. Insert the prepared electrospun biodegradable polymer support disk into the cell culture plate, soak in 50-99% ethanol for 30-100 minutes, remove the residual organic solvent in a vacuum chamber for 2-5 days and sterilize under UV.
  • the sterilized electrospun biodegradable polymer scaffold was then immersed in complete cell growth medium (containing 15% FBS) for 48 hours prior to cell inoculation, and then chondrocytes or bone cells differentiated from human mesenchymal stem cells or human mesenchymal stem cells. After pipetting and incubating in whole cell growth medium for 24 hours, the whole cell growth medium is replaced with cartilage-forming medium and cultured.
  • complete cell growth medium containing 15% FBS
  • the organic solvent includes one or more selected from the group consisting of methylene chloride, dimethylformamide, hexane, chloroform, acetone, dioxane, tetrahydrofuran and hexafluoroisopropane, but is not limited thereto.
  • the prepared electrospun biodegradable polymer support has a certain orientation, while the non-electrospun biodegradable polymer film is oriented and random.
  • the electrospun biodegradable polymer support has superior cell viability and high content of antioxidant glycosaminoglycans (GAGs) of the cells as compared with the non-electrospun biodegradable polymer films.
  • GAGs antioxidant glycosaminoglycans
  • Steps 4) to 7) prepare collagen gels inoculated with chondrocytes or osteoblasts differentiated from human mesenchymal stem cells or human mesenchymal stem cells to a 3D collagen type II-based hydrogel containing multi-walled carbon nanotubes. It is a step.
  • the manufacturing method of step 4) to 7) is the same as the manufacturing method of the support for articular cartilage regeneration including the collagen gel.
  • Step 8) is a step of preparing a composite support of a bilayer, by pouring the 3D collagen type II-based hydrogel in which the cell cultured multi-walled carbon nanotubes are mixed, on the cell cultured electrospun biodegradable polymer support After flattening, incubation for 30 to 60 minutes at 35 ⁇ 40 °C completely gelled to prepare a bilayer composite support.
  • the composite support of the 3D collagen type II-based hydrogel containing the electrospun biodegradable polymer support / multi-walled carbon nanotubes prepared by the above method has excellent physical properties such as complex viscosity, storage modulus, loss modulus and loss coefficient.
  • the cell viability and the total number of stem cells per area are excellent.
  • the support for articular cartilage regeneration according to the present invention has sufficient mechanical properties for transplantation and regeneration of cartilage tissue, excellent cell viability, high content of antioxidant glycosaminoglycans (GAGs) of cells,
  • GAGs antioxidant glycosaminoglycans
  • the support for regeneration of articular cartilage according to the present invention is effective for regeneration of damaged articular cartilage, and thus can be usefully used for treating articular cartilage injury diseases using stem cells. Can be.
  • the articular cartilage injury diseases may include, but are not limited to, degenerative arthritis, rheumatoid arthritis, fractures, muscle tissue damage, plantar fasciitis, humeral osteomyelitis, calcification myositis, fracture nonunion or trauma due to trauma.
  • Example 1 Preparation of the Inoculation of Human Mesenchymal Stem Cells on Electrospun Poly- ⁇ -caprolactone (PCL) Fiber Support
  • PCL fiber supports were prepared using electrospinning as described in the following paper [Reneker, DH, Yarin, AL, Fong, H., Koombhongse, S .: Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. App. Phys. 87: 4531, 2000 .; Theron, A., Zussman, E., Yarin, AL: Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology , 12: 384, 2001 .; Zussman et al., 2003]. Specifically, PCL (Sigma-Aldrich, St.
  • a non-electrospun porous PCL film was prepared and used. Specifically, a thin 10% PCL solution was poured on a flat surface of about 1 mm in thickness and dried to evaporate the solvent to prepare an electrospun porous PCL film. The porous PCL film was then removed from the substrate for cell culture experiments. All experiments were performed at circulating temperature (about 25 ° C.) in air with 40% relative humidity.
  • the electrospun PCL nanofibers (500 nm in diameter) had a certain orientation, whereas the non-spun PCL films were confirmed to have no orientation.
  • the electrospun PCL fiber support prepared in 1 was cut into discs (about 2 cm 2) and inserted into 24-well plates for cell culture.
  • the support was immersed in 70% ethanol for 1 hour and placed in a vacuum chamber for 3 days to remove residual organic solvent and sterilized for 6 hours under UV.
  • complete cell growth medium containing 15% FBS
  • Human mesenchymal stem cells hMSCs were pipetted directly onto 6 ⁇ 10 4 cells / cm 2 on electrospun PCL fiber supports and non-spun PCL films (control supports) and incubated in complete cell growth medium for 24 hours.
  • growth medium was 10 ng / ml TGF- ⁇ 1 (Research Diagnostics, Inc.), 100 nM dexamethasone (Sigma), 50 ⁇ g / ml ascorbate 2-phosphate (Sigma), 40 ⁇ g / ml proline (Sigma), 1% liquid medium supplement (containing ITS + 1, Sigma, 5 ⁇ g / ml insulin, 5 ⁇ g / ml transferrin, and 5 ng / ml selenious acid), and 1% antibiotic, antifungal (final concentration: penicillin Cartilage-forming medium [4,500 mg / L D-glucose, L-glutamine, and 110 mg / L sodium pyruvate added with 100 units / ml, streptomycin 100 mg / ml and amphotericin B 0.25 mg / ml) ), Invitrogen]. Complete cell growth medium or cartilage constituent medium was replaced every 2-3 days, and the electrospun PCL fiber support and the non-
  • Example 2 Preparation of Collagen Gels Inoculated with Human Mesenchymal Stem Cells in 3D Collagen Type II-Based Hydrogels Containing Multiwalled Carbon Nanotubes
  • MWCNT outer diameter 240-500 nm, length 5-40 ⁇ m, 95 +% purity, prepared by catalytic chemical vapor deposition (CVD), Nanostructured and Amorphous Materials Inc.
  • CVD catalytic chemical vapor deposition
  • Nanostructured and Amorphous Materials Inc. After mixing with sulfuric acid and 5 ml nitric acid and sonicating in ultrasonic water at 50 ° C. for 1 hour, the solution was neutralized with 20 ml ammonium hydroxide. The solution was then centrifuged at 5000 rpm for 10 minutes to collect MWCNT at the bottom of the centrifuge tube, and the solvent solution was removed.
  • MWCNTs were washed four times with sterile water, sonicated for 15 minutes, then the MWCNTs were centrifuged and the supernatant containing the remaining solvent and unwanted amorphous carbon removed. MWCNT was resuspended and dispersed in 4 ml of phosphate buffer solution (PBS) to prepare a 6 mg / ml MWCNT-PBS solution.
  • PBS phosphate buffer solution
  • 3D collagen type II-based hydrogels were similarly prepared by slightly modifying the method described in the following paper [Sun, S., Wise, J., Cho, M .: Human fibroblast migration in three-dimensional collagen gel in response to noninvasive electrical stimulus: characterization of induced three-dimensional cell movement. Tissue Eng. , 10: 1548, 2004.].
  • 3D collagen type II-based hydrogel discs (surface area of 1 cm 2, and thickness of 2 mm) were prepared by pipetting the 3D collagen type II-based hydrogels into sterile well-plates, and the cells Incubate at 37 ° C. for 30 minutes before adding to the culture medium.
  • the multi-walled carbon nanotubes (black) in the 3D collagen type II-based hydrogel do not interfere with the formation of collagen fibers (blue), and evenly in the 3D collagen type II-based hydrogel. It was confirmed to be dispersed.
  • Figure 3 schematically shows the manufacturing process of the composite scaffold consisting of collagen gel (B) inoculated with the cartilage cells or bone cells differentiated from human mesenchymal stem cells or human mesenchymal stem cells based on the hydrogel.
  • Sonicated multi-walled carbon nanotubes were mixed directly into 1 ml of collagen hydrogel adjusted to pH 7.5.
  • the samples were compared to the control collagen hydrogel, collagen hydrogel crosslinked with EDC (l-ethyl-3- (3-dimethylaminopropyl) carbodiimide), collagen hydrogel mixed with multi-walled carbon nanotubes. All samples were finalized to 7 mg / ml collagen. 50 ⁇ l of the mixed sample was injected onto a glass cover slip, and then incubated at 37 ° C. for 30 minutes to form a gel. Collagen hydrogels were hydrated in sterile water prior to AFM analysis.
  • AFM analysis was performed with an atomic force microscope (Novascan Technologies, Ames, IA) equipped with a Nikon inverted microscope.
  • a cantilever of 100 ⁇ m in length with silicon nitride (Si 3 N 4 ) was used. 0.12 N / m (elastic modulus, k) silicon nitride cantilever was used for the collagen gel, and 0.32 N / m (elastic modulus, k) was used for the collagen gel mixed with EDC-crosslinked collagen gel and multi-walled carbon nanotubes. )
  • Silicon nitride cantilever was used, and beads having a diameter of 10 mu m of borosilicate galss were mounted on the cantilever as indenters.
  • the force curve was obtained by measuring the deflection of the cantilever per z axis and analyzed according to the Hertz model.
  • the Young's modulus for each sample was obtained by calculating the force indentation result for the spherical probe according to the Hertz model. The results are shown in FIG.
  • R is the radius of curvature of the spherical indenter
  • the strength of the collagen hydrogel containing 1.2 mg / ml of the multi-walled carbon nanotubes was about 22 times higher than that of the collagen hydrogels in which the multi-walled carbon nanotubes were not incorporated.
  • the strength of the collagen hydrogel in which the multi-walled carbon nanotubes were mixed was approximately twice that of the collagen hydrogel crosslinked with EDC.
  • the support for articular cartilage regeneration comprising a 3D collagen type II-based hydrogel containing the multi-walled carbon nanotubes prepared in Example 2, and the electrospun PCL fiber support prepared in Example 3
  • a composite scaffold for articular cartilage regeneration consisting of a 3D collagen type II-based hydrogel incorporating multi-walled carbon nanotubes was used as a sample.
  • a disk of the sample was placed between two parallel plates of 2 cm diameter and complex viscosity, storage modulus and loss modulus using vibration mode at a frequency of 0.6 Hz or 2 Hz. , And loss factor data were obtained.
  • the linear visco-elastic range of the recommended frequency is approximately 0.01 to 10 Hz.
  • Complex viscosity is the ratio of complex pre-step frequency to frequency (rad / sec).
  • the storage modulus (G ′) is an indication of the elastic properties of the material, and more particularly the ratio of the elastic peak amplitude shear force to peak amplitude shear strain for the torque component in phase with the applied strain being excited.
  • Loss modulus (G ") is the ratio of viscous peak amplitude shear force to peak amplitude shear strain for a torque component with 90 ° apart of the phase, with the applied strain being excised in more detail. Is the ratio of loss modulus to storage modulus as a damping factor, or viscous torque to elastic torque.
  • the complex viscosity, storage modulus, and loss of the composite support for articular cartilage regeneration comprising a 3D collagen type II-based hydrogel incorporating an electrospun PCL fiber support / multi-walled carbon nanotube according to the present invention It was confirmed that the elastic modulus and the loss coefficient were better than those of the support for articular cartilage regeneration including 3D collagen type II-based hydrogel mixed with multi-walled carbon nanotubes. Therefore, it can be seen that the support mimicking the articular cartilage layer has better physical properties when acting as a composite support rather than a single layer.
  • Example 1 Cell viability in the electrospun PCL fiber support prepared in Example 1 was tested by staining the cells (Molecular Probes, Carlsbad, CA). Specifically, the living cells were stained with calcein AM (calcein acetomethylester), a fluorescent substrate, and the dead cells with damaged cell membranes were stained with 4mM ethidium homodimer-1 and observed under a microscope. Calcein AM diffuses across the membranes of living cells and reacts with intracellular esterases to release green phosphors. Ethium homodimer-1, on the other hand, enters only dead cells with damaged cell membranes, releasing red phosphors bound to nucleic acids.
  • calcein AM calcein acetomethylester
  • Ethium homodimer-1 enters only dead cells with damaged cell membranes, releasing red phosphors bound to nucleic acids.
  • the 3D collagen type II-based hydrogel containing the multi-walled carbon nanotubes prepared in Example 2 was incubated for 21 days in a complete growth medium or cartilage composition medium. Complete cell growth medium or chondrogenic medium was replaced every 2-3 days and cultured up to 35 days. Cell viability in the 3D collagen type II-based hydrogel in which the multi-walled carbon nanotubes were incorporated was examined by staining cells. A 3D collagen type II-based hydrogel not containing multi-walled carbon nanotubes was used as a comparison group.
  • Sulfated glycosaminoglycans are markers of cartilage differentiation, the content of which may be the basis for assessing cartilage regeneration. 6 ⁇ 10 4 cells / cm2 for non-electrospun PCL fiber films and PCS fiber supports for electrospun, 8 ⁇ for collagen hydrogels containing multiwall carbon nanotubes and 8 ⁇ for multiwall carbon nanotubes. Inoculated at a density of 10 4 cells / ml and cultured in normal growth medium or cartilage forming medium and compared.
  • the cell-inoculated non-spun PCL fiber film and the electrospun PCL fiber support were measured for the amount of antioxidant glycosaminoglycans (GAGs) and DNA on days 1 and 35, and the cells were inoculated with multi-walled carbon nanoparticles.
  • Collagen hydrogels containing no tube and multi-walled carbon nanotubes were measured for the amount of antioxidant glycosaminoglycans (GAGs) and DNA on days 1 and 21.
  • DNA and GAGs were extracted from all samples for quantitative analysis.
  • a solution of papain, EDTA, PBS, DTT was used. Specifically, 100 ⁇ l of a solution containing 300 ⁇ g / ml of papain in 20 mM PBS, 5 mM EDTA, and 2 mM DTT was treated at 60 ° C. for 18 hours.
  • the Blyscan TM Sulfated Glycosaminoglycan Assay Kit (Biocolor, N. Ireland) was used. That is, 1 ml of DMB (1,9-dimethylmethylene blue) dye reagent was added to 50 ⁇ l of each sample extract and reacted for 30 minutes. At this time, the blue dye binds to GAGs. Centrifugation at 10,000 g gave a precipitate of GAGs with purple dye separated from the unbound dye solution. 200 ⁇ l of dissociation reagent was added to loosen the pellets. Absorbance of GAGs samples was measured spectrophotometrically using a 655 nm filter on a Model 680 microplate reader (Bio-Rad Laboratories, Hercules, Calif.).
  • Total DNA analysis was performed using a fluorescent DNA Quantitation kit (Bio-Rad Laboratories, Hercules, CA, Catalog # 170-2480). That is, 20 ⁇ l of the remaining 50 ⁇ l of DNA / GAGs extract was taken and added to 80 ⁇ l of 1 ⁇ g / ml Hoechst 33258 dye. Fluorescence of the Hoechst 33258-DNA complex was detected at a wavelength of 360 nm (excitation) / 460 nm (emission) on a SpectraMax Gemini Microplate Spectrofluorometer (Molecular Devices, Sunnyvale, Calif.). The ratio of the amount of GAGs to the total amount of DNA measured in each sample inoculated with cells was measured.
  • antioxidant glycosaminoglycans (GAGs) of the cells on the electrospun PCL fiber support was higher than that of the non-spun PCL fiber film, and the multi-walled carbon nanotubes were incorporated.
  • the content of antioxidant glycosaminoglycans (GAGs) in collagen hydrogels was higher than that of collagen hydrogels without multi-walled carbon nanotubes.
  • a single layer of the electrospun PCL fiber support to be applied to the surface layer of articular cartilage and a single layer of collagen hydrogel containing multiwall carbon nanotubes to be applied to the middle layer of articular cartilage are each more effective in cartilage differentiation than the control group. It can be seen that it is effective. Therefore, it is believed that the effect of each monolayer of such a support can exert a synergistic effect when applied as a composite support.
  • Support for articular cartilage regeneration according to the present invention has sufficient mechanical properties for transplantation and regeneration of cartilage tissue, excellent cell viability, high content of antioxidant glycosaminoglycans (GAGs) of the cells, the surface layer of articular cartilage Since it is specifically applied to the site and the intermediate layer, it is possible to easily implement a cell-like surface environment of easy to adhere to the cell and furthermore effective in the growth and differentiation of stem cells. Therefore, the support for regeneration of articular cartilage according to the present invention is effective for regeneration of damaged articular cartilage, and thus can be usefully used for treating articular cartilage injury diseases using stem cells. Can be.
  • GAGs antioxidant glycosaminoglycans

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Dermatology (AREA)
  • Rheumatology (AREA)
  • Zoology (AREA)
  • Cell Biology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Dispersion Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Botany (AREA)
  • Urology & Nephrology (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Developmental Biology & Embryology (AREA)
  • Materials For Medical Uses (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 관절연골의 중간층 부위 또는 관절연골의 표층 부위 및 중간층 부위에 모두 적용될 수 있는 관절연골 재생용 지지체, 및 이의 제조방법에 관한 것이다. 본 발명에 따른 관절연골 재생용 지지체는 연골조직의 이식 및 재생을 위해 충분한 기계적 특성을 가지며, 세포 생존율이 우수하고, 세포의 항산화 글리코사미노글리칸(GAGs)의 함량이 높으며, 관절연골의 표층 부위와 중간층 부위에 특이적으로 적용되므로, 세포부착을 용이하게 하고 나아가 줄기세포의 성장 및 분화에 효과적인 생체모방형의 표면 환경을 용이하게 구현할 수 있다. 따라서, 본 발명에 따른 관절연골 재생용 지지체는 손상된 관절연골의 재생에 효과적이므로, 줄기세포를 이용한 관절연골손상 질환 치료에 유용하게 활용될 수 있으며, 코 및 귀 등의 성형 보형물로도 유용하게 사용될 수 있다.

Description

관절연골 재생용 지지체 및 이의 제조방법
본 발명은 관절연골의 중간층 부위 또는 관절연골의 표층 부위 및 중간층 부위에 모두 적용될 수 있는 관절연골 재생용 지지체, 및 이의 제조방법에 관한 것이다.
일반적으로 척추동물의 관절을 이루는 연골 조직은 한번 손상되면 정상적으로 생체 내에서 재생되지 않는다. 이러한 관절의 연골조직이 손상될 경우 심한 통증과 함께 일상 활동에 제한을 받게 되며, 만성화될 경우 치명적인 퇴행성 관절염 등이 유발되어 정상적인 생활이나 직업적인 활동을 방해 받게 된다.
손상된 관절연골 치료방법으로는, 연골성형술(chondroplasty), 골연골 이식술(osteochondral transplantation), 자가유래 연골세포 이식술(autologous chondrocyte transplantation) 등이 있다.
최근에는, 손상된 관절 연골의 치료를 위해 조직 공학에 기초를 둔 새로운 치료법이 각광받고 있다. 조직 공학에 기초를 둔 치료법은 자가유래 연골세포를 이용하여 효과를 증대시킬 수 있다. 자가유래 연골세포는 이식된 부위와 정상 부위가 비교적 잘 융합되며, 실제 관절에 필요한 유리 연골을 재생할 가능성이 많다. 그러나, 채취된 연골세포의 대부분은 이미 성장이 다 이루어진 성인으로부터 얻은 것이므로, 채취된 세포의 증식 및 생장이 왕성하지 않아 세포의 체외 배양시 이식에 필요한 만큼의 세포 수를 얻기까지 상당한 기간이 걸리며, 연골세포를 체외 배양할 시 세포의 발현형이 변화되곤 하는 문제점이 있다.
상기 방법을 응용하여 자가유래 골수, 근육, 피부 등의 간엽 조직으로부터 얻은 연골세포의 전구모세포인 간엽줄기세포(mesenchymal stem cell; MSC)는 보다 미분화된 세포로서, 자가유래 연골세포 이식술에 비해 세포증식력이 다소 높아지는 것으로 나타났다. 실제로 분화된 세포를 이용하여 설계된 조직 구조물과는 다르게, 다중분화능 및 비면역성 인간 간엽줄기세포(hMSCs)는 더 높은 세포증식력 및 우수한 재생력을 가지며, 다기능적 조직 구조물(예를 들어, 골연골 조직)을 예측할 수 있고, 조직 거부반응(rejection) 및 부전(failure)을 감소시키거나 제거할 수 있다. 또한, 인간 간엽줄기세포는 체외(in vitro)에서 배양 및 확장될 수 있고, 생물학적 및 물리학적 자극을 이용하여 연골형성(chondrogenic) 세포, 골형성 (osteogenic) 세포, 지방성(adipogenic) 세포 및 심근성(myogenic) 세포와 같은 조직-특이적 세포 표현형으로 증식 및 분화를 일으킬 수 있다고 알려져 있다. 따라서, 인간 간엽줄기세포는 관절연골 조직공학 및 재생에 많은 장점과 잠재성을 제공한다.
또한, 관절연골 치료를 위한 조직 공학적 접근 방법으로는 생체재료를 이용한 지지체의 역할이 중요하다. 관절연골 조직공학을 위해 사용된 최초의 생체재료로는 천연 생분해성 고분자 및 합성 생분해성 고분자가 있으며, 천연 생분해성 고분자로는 콜라겐, 알기네이트, 히알루론산, 젤라틴, 키토산, 피브린 등이 있고, 합성 생분해성 고분자로는 폴리글리콜산(PGA), 폴리락트산(PLA), 폴리락트산-글리콜산 공중합체(PLGA), 폴리-ε-카프로락톤(PCL)과 이들의 유도체 및 공중합체 등이 있다. 상기 생체재료를 이용하여 다양한 구조의 지지체를 제조할 수 있다.
손상된 관절연골의 치료를 위해 하이드로겔, 나노섬유, 구슬형태, 스폰지형태 등의 지지체 유형이 꾸준히 연구되어 왔다. 그 중에서도 하이드로겔은 같이 이식되는 세포로부터 나오는 물질이나 외부의 영양분 및 산소의 공급을 원활하게 하며, 관절연골의 손상부위 두께를 만족시킬 수 있다. 예를 들어, 연골의 주요 세포외기질 성분인 콜라겐 타입 Ⅱ로 제조된 하이드로겔은 생체적합적으로, 관절연골 부위에 적용할 수 있다. 그러나, 콜라겐 기반의 하이드로겔은 기계적 강도가 약하다는 단점이 있다. 따라서, 최근에는 하이드로겔에 기계적 특성을 제공하기 위해 글루타르알데히드와 같은 가교물질을 사용하여 이러한 문제점을 보완하려는 연구가 많이 진행되어 왔다. 그러나, 이러한 가교물질은 독성이 있어 기계적 강도를 높이는데 한계가 있다.
또한, 세포외기질(ECM)의 물리적 구조는 나노규모 차원을 가지므로, 생체재료를 이용하여 높은 표면 대 부피 비율의 나노섬유 지지체를 제조할 수 있다. 이렇게 제조된 나노규모 직경의 섬유는 세포유착 및 성장을 위해 최적의 조건을 제공할 수 있으며, 직경의 크기나 섬유의 방향에 따라 세포활동에 영향을 줄 수 있다.
일반적으로 자연 상태의 관절 연골은 이방성(anisotropic) 조직으로서, 표층, 중간층, 심층의 3가지 층으로 이루어져 있다. 이러한 구분된 층들은 구조와 기능적으로 차이를 가진다. 즉, 상기 표층은 납작한 타원형의 연골세포와 양극화된 나노 규모의 콜라겐 타입 Ⅱ가 많이 밀집되어 있으며, 연골세포와 콜라겐 타입 Ⅱ의 한 방향으로 배열된 상태로 인해 비교적 얇은 두께(~200㎛)에도 불구하고 큰 인장강도를 가져 연계된 표면에 대해 충분한 전단력과 인장력을 갖는다. 상기 중간층은 관절연골 총 두께의 40~60%를 차지하고 1㎜의 두께를 가지며, 표층과는 달리 방향성이 없는 연골 세포와 풍부한 콜라겐 섬유로 구성되어 있다.
종래의 관절연골 재생용 지지체는 관절연골의 단일층, 특히 표층 부위에만 적용되어 왔고, 중간층 부위에는 적용되지 못하는 문제점이 있었다.
한편, 탄소나노튜브는 나노규모의 천연 세포외기질을 잘 반복할 수 있을 정도로 작은 직경(200~500㎚)을 가지며, 강도는 강철(~1 TPa)보다 100배 더 강하고, 무게는 강철의 1/6 정도이며, 유연성이 있고, 무독성이다. 또한, 탄소나노튜브는 천연 및 합성된 근골격 조직의 포유동물 세포와 조화될 수 있다고 알려져 있다. 또한, 탄소나노튜브는 생분해성이 없을지라도, 연구실험동물의 혈류로 주입된 탄소나노튜브는 바로 건강손상(adverse health)이 일어나지 않고, 순환 후에는 간에 의해 제거될 수 있거나 또는 신장 배설 경로를 통하여 신체로부터 빨리 제거된다고 알려져 있다. 따라서, 최근에는 조직공학용 생체재료 내에 탄소나노튜브를 적용하는 것에 관하여 관심이 증가하고 있다. 일 예로, 콜라겐, 키토산, 알기네이트 및 히알루론산과 같은 조직공학용 생체재료 내에 탄소나노튜브를 혼입하여 기질의 기계적 특성을 강화시키는 연구에 관하여 몇몇 보고서가 발표되었다.
또한, 전기방사법을 이용하여 일정한 방향성을 갖는 나노섬유 및 미세섬유 지지체를 제조하는 연구에 관하여 많이 진행되어 왔다. 세포방향은 전기방사하여 배향성을 갖는 고분자 나노섬유를 이용하여 조절될 수 있고, 이에 의해 설계된 조직의 기능성을 최적화할 수 있다. 대부분의 천연 조직에 있는 세포 및 세포외기질 소섬유는 무작위적이지 않고 잘 패턴화된 공간 특이적 방향을 나타낸다. 또한, 세포유착 및 증식은 무작위로 배향된 나노섬유 지지체보다 배향된 나노섬유 지지체에서 유의하게 향상된다. 또한, 정렬된 나노섬유에서 배양된 배향 섬유모세포가 무작위로 배향된 나노섬유에서 배양하는 것보다 콜라겐을 더 분비한다고 알려져 있다.
따라서, 콜라겐과 같은 조직공학용 생체재료 내에 탄소나노튜브를 혼입하여 기계적 특성을 강화시키고, 전기방사법을 이용하여 나노섬유 지지체에 일정한 방향성을 갖도록 조절하면, 관절연골의 표층 부위 및 중간층 부위에 모두 적용될 수 있을 것으로 생각된다. 따라서, 관절연골의 표층 부위 및 중간층 부위에 모두 적용될 수 있는 관절연골 재생용 지지체의 개발의 필요성이 절실히 요구되고 있다.
본 발명자들은 관절연골의 표층 부위 및 중간층 부위에 모두 적용될 수 있는 관절연골 재생용 지지체에 대하여 연구하던 중, 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 다중벽탄소나노튜브를 혼입하여 기계적 특성을 강화시킨 후 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종하여 관절연골의 중간층에 적용될 수 있는 콜라겐 겔을 제조하고, 전기방사에 의해 배향성을 갖는 생분해성 고분자 지지체에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종하여 세포를 한 방향으로 위치시켜 관절연골의 표층에 적용될 수 있는 생분해성 고분자 지지체를 제조한 후, 상기 표층에 적용될 수 있는 생분해성 고분자 지지체 위에 중간층에 적용될 수 있는 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔을 통합시켜 이중충의 관절연골 재생용 복합 지지체를 제조하였으며, 상기 제조된 콜라겐 겔 및 이중충의 관절연골 재생용 복합 지지체에서 세포 생존율이 매우 우수하고 세포의 항산화 글리코사미노글리칸(GAGs)의 함량이 매우 높음을 확인하고, 본 발명을 완성하였다.
본 발명은 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종한 콜라겐 겔로 이루어진 관절연골 재생용 지지체 및 이의 제조방법을 제공하고자 한다.
또한, 본 발명은 전기방사된 생분해성 고분자 지지체에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종한 지지체, 및 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종한 콜라겐 겔로 이루어진 관절연골 재생용 복합 지지체 및 이의 제조방법을 제공하고자 한다.
도 1은 전기방사되지 않은 생분해성 고분자 필름(A)과 전기방사된 생분해성 고분자 나노섬유(직경 500㎚)(B)를 주사전자현미경(SEM)으로 관찰한 도이다.
도 2는 본 발명의 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔을 공초점 현미경으로 관찰한 도이다[(A) 콜라겐 하이드로겔 내 콜라겐 섬유(푸른색), (B) 콜라겐 하이드로겔 내 다중벽탄소나노튜브(검은색)].
도 3은 본 발명에 따른 전기방사된 생분해성 고분자 지지체에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종한 지지체 (A), 및 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종한 콜라겐 겔(B)로 이루어진 복합 지지체의 제조과정을 간략히 나타낸 모식도이다.
도 4는 콜라겐 하이드로겔, EDC(l-ethyl-3-(3-dimethylaminopropyl)carbodiimide)로 가교결합된 콜라겐 하이드로겔, 다중벽 탄소나노튜브가 혼입된 콜라겐 하이드로겔의 물리적인 강도를 원자현미경(AFM; atomic force microscopy)으로 측정하여 비교한 도이다.
도 5는 본 발명의 전기방사된 생분해성 고분자 지지체에서의 세포 생존율 및 세포 방향을 관찰한 결과를 나타낸 도이다.
도 6은 본 발명의 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에서의 세포 생존율 및 분포도를 관찰한 도이다.
도 7은 전기방사되지 않은 PCL 섬유 필름(A), 전기방사된 PCL 섬유 지지체 (B), 다중벽 탄소나노튜브가 혼입되지 않은 콜라겐 하이드로겔(C), 및 다중벽 탄소나노튜브가 혼입된 콜라겐 하이드로겔(D)에서의 항산화 글리코사미노글리칸 (glycosaminoglycans; GAGs)의 함량을 측정한 도이다.
본 발명은 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종한 콜라겐 겔을 포함하는 관절연골 재생용 지지체를 제공한다.
또한, 본 발명은
1) 다중벽 탄소나노튜브를 황산 및 질산과 혼합시키고, 30~100분 동안 30~70℃에서 초음파수에서 초음파 처리한 후 중화하고 원심분리하여 다중벽 탄소나노튜브를 모으고 용매 용액을 제거한 후, 멸균수로 세척한 다음 다시 초음파 처리한 후 원심분리하여 상층액을 제거한 다음, 다중벽 탄소나노튜브를 인산염완충용액에 재현탁 및 분산시켜 다중벽 탄소나노튜브-인산염완충용액을 제조하는 단계,
2) 관절연골로부터의 70% 콜라겐 타입 Ⅱ, 6.5% 10X HBSS, 3.5% 0.4N NaOH, 1% 0.4N 아세트산, 19% 멸균수를 혼합하여 콜라겐 하이드로겔을 제조하는 단계,
3) 상기 2)단계에서 제조한 콜라겐 하이드로겔 내에 상기 1)단계에서 제조한 다중벽 탄소나노튜브-인산염완충용액을 혼합한 후 pH를 7~8로 맞추어, 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔을 제조하는 단계, 및
4) 상기 3)단계에서 제조한 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종하고 세포배양하는 단계를 포함하는, 관절연골 재생용 지지체의 제조방법을 제공한다.
또한, 본 발명은 전기방사된 생분해성 고분자 지지체에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종한 지지체, 및 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종한 콜라겐 겔로 이루어진 관절연골 재생용 복합 지지체를 제공한다.
또한, 본 발명은
1) 생분해성 고분자를 유기용매에 용해시켜 8~15%의 고분자 용액을 제조한 후, 0.01~5㎖/h의 주입속도로 전기방사하여 전기방사된 생분해성 고분자 지지체를 제조하는 단계,
2) 상기 1)단계에서 제조된 전기방사된 생분해성 고분자 지지체 디스크를 세포배양용 플레이트에 삽입하고 30~100분 동안 50~99% 에탄올에 담그고 2~5일 동안 진공 챔버에서 잔류 유기용매를 제거하고, 멸균하는 단계,
3) 상기 2)단계에서 멸균된 전기방사된 생분해성 고분자 지지체를 세포 접종 전에 48시간 동안 완전세포성장배지(15% FBS 함유)에 담군 후, 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 피펫팅하고 24시간 동안 완전세포성장배지에서 배양한 후, 완전세포성장배지를 연골형성분화배지로 대체하고 배양하는 단계,
4) 다중벽 탄소나노튜브를 황산 및 질산과 혼합시키고, 30~100분 동안 30~70℃에서 초음파수에서 초음파 처리한 후 중화하고 원심분리하여 다중벽 탄소나노튜브를 모으고 용매 용액을 제거한 후, 멸균수로 세척한 다음 다시 초음파 처리한 후 원심분리하여 상층액을 제거한 다음, 다중벽 탄소나노튜브를 인산염완충용액에 재현탁 및 분산시켜 다중벽 탄소나노튜브-인산염완충용액을 제조하는 단계,
5) 관절연골로부터의 70% 콜라겐 타입 Ⅱ, 6.5% 10X HBSS, 3.5% 0.4N NaOH, 1% 0.4N 아세트산, 19% 멸균수를 혼합하여 콜라겐 하이드로겔을 제조하는 단계,
6) 상기 5)단계에서 제조한 콜라겐 하이드로겔 내에 상기 4)단계에서 제조한 다중벽 탄소나노튜브-인산염완충용액을 혼합한 후 pH를 7~8로 맞추어, 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔을 제조하는 단계,
7) 상기 6)단계에서 제조한 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종하고 세포배양하는 단계,
8) 상기 7)단계에서 세포배양된 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔을, 상기 3)단계에서 세포배양된 전기방사된 생분해성 고분자 지지체 위에 부어 편평하게 한 후, 35~40℃에서 30~60분 동안 배양하여 완전히 겔화시켜 복합 지지체를 제조하는 단계를 포함하는, 관절연골 재생용 복합 지지체의 제조방법을 제공한다.
이하, 본 발명에 대해 상세히 설명한다.
본 발명에 따른 관절연골 재생용 지지체는, 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종한 콜라겐 겔을 포함하는 것을 특징으로 하며, 관절연골의 중간층에 적용될 수 있다.
또한, 본 발명에 따른 관절연골 재생용 복합 지지체는, 전기방사된 생분해성 고분자 지지체에 인간 간엽줄기세포를 접종한 지지체, 및 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포를 접종한 콜라겐 겔로 이루어진 것을 특징으로 하며, 관절연골의 표층 및 중간층에 모두 적용될 수 있다.
상기 생분해성 고분자는 폴리글리콜산(PGA), 폴리락트산(PLA), 폴리락트산-글리콜산 공중합체(PLGA), 폴리-ε-카프로락톤(PCL), 폴리안하이드리드, 폴리오르토에스터(polyorthoesters), 폴리비닐알콜, 폴리에틸렌글리콜, 폴리우레탄, 폴리아크릴산, 폴리-N-이소프로필아크릴아미드, 폴리(에틸렌옥사이드)-폴리(프로필렌옥사이드)-폴리(에틸렌옥사이드) 공중합체, 이들의 유도체 및 이들의 공중합체 등이 바람직하나, 이에 한정되지 않는다.
상기 인간 간엽줄기세포는 골수 유래 인간 간엽줄기세포가 바람직하나, 이에 한정되지 않는다.
본 발명에 따른 콜라겐 겔을 포함하는 관절연골 재생용 지지체의 제조방법을 상세히 설명하면 다음과 같다. 먼저, 다중벽 탄소나노튜브를 황산 및 질산과 혼합시키고, 30~100분 동안 30~70℃에서 초음파수에서 초음파 처리한 후 중화하고 원심분리하여 다중벽 탄소나노튜브를 모으고 용매 용액을 제거한 후, 멸균수로 세척한 다음 다시 초음파 처리한 후 원심분리하여 상층액을 제거한 다음, 다중벽 탄소나노튜브를 인산염완충용액에 재현탁 및 분산시켜 다중벽 탄소나노튜브-인산염완충용액을 제조한다. 그 다음, 관절연골로부터의 70%(0.02N 아세트산 내 10㎎/㎖) 콜라겐 타입 Ⅱ, 6.5% 10X HBSS, 3.5% 0.4N NaOH, 1% 0.4N 아세트산, 19% 멸균수를 혼합하여 콜라겐 하이드로겔을 제조한다. 상기 제조된 콜라겐 하이드로겔 내에 상기 다중벽 탄소나노튜브-인산염완충용액을 혼합하여 콜라겐 하이드로겔의 기계적 특성을 향상시킨다. 그 다음, 상기 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종하고 세포배양한다.
이렇게 제조된 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에서 다중벽 탄소나노튜브는 콜라겐 섬유의 형성을 방해하지 않고, 3D 콜라겐 타입 Ⅱ-기반 하이드로겔 내에 고르게 분산된다. 또한, 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔과 다중벽 탄소나노튜브가 혼입되지 않은 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에서의 세포 생존율이 모두 우수하게 나타난다. 따라서, 다중벽 탄소나노튜브가 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 첨가되어도 세포 생존율 및 분포도에 부정적인 영향을 미치지 않는다는 것을 알 수 있다. 또한, 다중벽 탄소나노튜브가 혼입된 콜라겐 하이드로겔에서 세포의 항산화 글리코사미노글리칸(GAGs)의 함량은 다중벽 탄소나노튜브가 혼입되지 않은 콜라겐 하이드로겔에 비해 높다.
본 발명에 따른 관절연골 재생용 복합 지지체의 제조방법을 상세히 설명하면 다음과 같다.
상기 1)단계 ~ 3)단계는 전기방사된 생분해성 고분자 지지체에 인간 간엽줄기세포를 접종한 지지체를 제조하는 단계이다.
먼저, 생분해성 고분자를 유기용매에 용해시켜 8~15%, 바람직하게는 10%의 고분자 용액을 제조한다. 그 다음 상기 고분자 용액을 120㎜ 거리에 놓여진 회전 알루미늄 디스크 컬렉터에 0.01~5㎖/h, 바람직하게는 1㎖/h의 주입속도로 전기방사하여 전기방사된 생분해성 고분자 지지체를 제조한다. 이때, 전기장의 세기는 0.1~10kV/cm가 바람직하다. 상기 제조된 전기방사된 생분해성 고분자 지지체 디스크를 세포배양용 플레이트에 삽입하고 30~100분 동안 50~99% 에탄올에 담그고 2~5일 동안 진공 챔버에서 잔류 유기용매를 제거하고 UV 하에서 멸균한다. 그 다음 멸균된 전기방사된 생분해성 고분자 지지체를 세포 접종 전에 48시간 동안 완전세포성장배지(15% FBS 함유)에 담군 후, 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 피펫팅하고 24시간 동안 완전세포성장배지에서 배양한 후, 완전세포성장배지를 연골형성분화배지로 대체하고 배양한다.
상기 유기용매는 메틸렌클로라이드, 디메틸포름아미드, 헥산, 클로로포름, 아세톤, 디옥산, 테트라히드로퓨란 및 헥사플루오로이소프로판으로 이루어진 군으로부터 선택된 1종 이상을 포함하나, 이에 한정되지 않는다.
상기 제조된 전기방사된 생분해성 고분자 지지체는 일정한 방향성을 갖는 반면, 전기방사되지 않은 생분해성 고분자 필름은 방향성이 없고 무작위적이다. 또한, 전기방사된 생분해성 고분자 지지체는 전기방사되지 않은 생분해성 고분자 필름에 비해 세포생존율이 우수하고, 세포의 항산화 글리코사미노글리칸(GAGs)의 함량이 높다.
상기 4)단계 ~ 7)단계는 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종한 콜라겐 겔을 제조하는 단계이다. 상기 4)단계 ~ 7)단계의 제조방법은 상기 콜라겐 겔을 포함하는 관절연골 재생용 지지체의 제조방법과 동일하다.
상기 8)단계는 이중층의 복합 지지체를 제조하는 단계로, 상기 세포배양된 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔을, 상기 세포배양된 전기방사된 생분해성 고분자 지지체 위에 부어 편평하게 한 후, 35~40℃에서 30~60분 동안 배양하여 완전히 겔화시켜 이중층의 복합 지지체를 제조한다.
상기 방법으로 제조된 전기방사된 생분해성 고분자 지지체/다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔의 복합 지지체는, 복소점도, 저장탄성율, 손실탄성율 및 손실계수 등의 물성이 우수하고, 세포 생존율 및 면적당 총 줄기세포의 수가 우수하게 나타난다.
상기한 바와 같이, 본 발명에 따른 관절연골 재생용 지지체는 연골조직의 이식 및 재생을 위해 충분한 기계적 특성을 가지며, 세포 생존율이 우수하고, 세포의 항산화 글리코사미노글리칸(GAGs)의 함량이 높으며, 관절연골의 표층 부위와 중간층 부위에 특이적으로 적용되므로, 세포부착을 용이하게 하고 나아가 줄기세포의 성장 및 분화에 효과적인 생체모방형의 표면 환경을 용이하게 구현할 수 있다. 따라서, 본 발명에 따른 관절연골 재생용 지지체는 손상된 관절연골의 재생에 효과적이므로, 줄기세포를 이용한 관절연골손상 질환 치료에 유용하게 활용될 수 있으며, 코 및 귀 등의 성형 보형물로도 유용하게 사용될 수 있다.
상기 관절연골손상 질환으로는 퇴행성 관절염, 류마티스성 관절염, 골절, 근육조직의 손상, 족저근막염, 상완골외과염, 석회화근염, 골절의 불유합 또는 외상에 의한 관절손상을 포함할 수 있으나, 이에 한정되지 않는다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
실시예 1 : 전기방사된 폴리-ε-카프로락톤(PCL) 섬유 지지체에 인간 간엽줄기세포를 접종한 지지체의 제조
1. 전기방사된 폴리-ε-카프로락톤(PCL) 섬유 지지체의 제조
배향된 PCL 섬유 지지체는 하기 논문에 기재된대로 전기방사법을 이용하여 제조하였다[Reneker, D.H., Yarin, A.L., Fong, H., Koombhongse, S.: Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. App. Phys., 87: 4531, 2000.; Theron, A., Zussman, E., Yarin, A.L.: Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology, 12: 384, 2001.; Zussman et al., 2003]. 구체적으로는, 80kDa의 분자량을 갖는 PCL(Sigma-Aldrich, St. Louis, MO)을 메틸렌클로라이드/디메틸포름아미드(75/25(vol.))의 혼합용매에 용해시켜 10% PCL 용액을 제조하였다. 상기 10% PCL 용액을 피하주사바늘(내부직경 0.1㎜)을 갖는 5㎖ 주사기에 넣고, 120㎜ 거리에 놓여진 회전 알루미늄 디스크 컬렉터에 1㎖/h의 주입속도로 주입하여 전기방사하였다. 이때, 전기장의 세기는 1.1kV/cm 이었고, 회전 알루미늄 디스크 컬렉터의 모서리의 선형 속도는 10m/s이었다. 전기방사 동안, 회전 알루미늄 디스크 컬렉터의 날카로운 모서리 위에 놓인 조그만 회전 테이블(5×4㎜) 위에 섬유가 모여 디스크 회전 방향으로 명백하게 한정된 배향을 갖는 섬유 지지체가 제조되었다.
대조 지지체로는 전기방사되지 않은(non-electrospun) 다공성 PCL 필름을 제조하여 사용하였다. 구체적으로는, 약 1㎜ 두께의 편평한 표면 위에 10% PCL 용액을 얇게 붓고 건조하여 용매를 증발시켜 전기방사되지 않은 다공성 PCL 필름을 제조하였다. 이후 세포배양 실험을 위해 다공성 PCL 필름을 기질로부터 제거하였다. 모든 실험은 40% 상대습도를 갖는 공기에서 순환온도(약 25℃)에서 수행되었다.
전기방사되지 않은 PCL 필름(A)과 상기 방법으로 제조된 전기방사된 PCL 나노섬유(직경 500㎚)(B)를 주사전자현미경(SEM)으로 관찰한 결과는 도 1에 나타내었다.
도 1에 나타난 바와 같이, 전기방사된 PCL 나노섬유(직경 500㎚)는 일정한 방향성을 갖는 반면, 전기방사되지 않은 PCL 필름은 방향성이 없음을 확인하였다.
2. 전기방사된 폴리-ε-카프로락톤(PCL) 섬유 지지체에 인간 간엽줄기세포의 접종
상기 1에서 제조된 전기방사된 PCL 섬유 지지체를 디스크(약 2㎠)로 자르고, 세포배양용 24-웰 플레이트에 삽입하였다. 상기 지지체를 1시간 동안 70% 에탄올에 담그고 3일 동안 진공 챔버에 놓아 잔류 유기용매를 제거하고, UV 하에서 6시간 동안 멸균하였다. 단백질 흡착 및 세포 유착을 촉진시키기 위하여, 세포 접종 전에 PCL 섬유 지지체를 48시간 동안 완전세포성장배지(15% FBS 함유)에 담궜다. 전기방사된 PCL 섬유 지지체 및 전기방사되지 않은 PCL 필름(대조 지지체) 위에 인간간엽줄기세포(hMSCs)를 6×104 cells/㎠으로 직접 피펫팅하고 24시간 동안 완전세포성장배지에서 배양시켰다. 연골형성 동안, 성장배지를 10ng/㎖ TGF-β1(Research Diagnostics, Inc.), 100nM 덱사메타손(Sigma), 50㎍/㎖ 아스코르베이트 2-포스페이트(Sigma), 40㎍/㎖ 프롤린(Sigma), 1% 액체배지 보충물(ITS+1, Sigma, 5㎍/㎖ 인슐린, 5㎍/㎖ 트랜스페린, 및 5ng/㎖ 아셀렌산(selenious acid) 함유), 및 1% 항생제, 항진균제(최종 농도: 페니실린 100units/㎖, 스트렙토마이신 100㎎/㎖ 및 암포테리신 B 0.25㎎/㎖)가 첨가된 연골형성분화배지[4,500㎎/ℓ D-글루코오스, L-글루타민, 및 110㎎/ℓ 피루브산 나트륨(sodium pyruvate), Invitrogen]로 대체하였다. 완전세포성장배지 또는 연골형성분화배지를 2~3일마다 대체하고, 전기방사된 PCL 섬유 지지체 및 전기방사되지 않은 PCL 필름(대조 지지체)을 35일까지 배양하였다.
실시예 2 : 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포를 접종한 콜라겐 겔의 제조
1. 다중벽 탄소나노튜브(MWCNT)-PBS 용액의 제조
50㎎의 MWCNT[외측 직경 240~500㎚, 길이 5~40㎛, 95+% 순도, 촉매화학기상증착(catalytic chemical vapor deposition, CVD)에 의해 제조, Nanostructured and Amorphous Materials Inc.]를 15㎖의 황산 및 5㎖의 질산과 혼합하고, 1시간 동안 50℃에서 초음파수에서 초음파 처리한 후, 용액을 20㎖의 암모늄 히드록사이드로 중화시켰다. 그 다음 용액을 10분 동안 5000rpm에서 원심분리하여 원심분리관의 바닥에 MWCNT를 모으고, 용매 용액을 제거하였다. MWCNT를 멸균수로 4번 세척하고, 15분 동안 초음파 처리한 다음, MWCNT를 원심분리하고, 남아있는 용매 및 원치않는 무정형 탄소를 함유한 상층액을 제거하였다. MWCNT를 4㎖의 인산염완충용액 (PBS)에 재현탁 및 분산시켜 6㎎/㎖의 MWCNT-PBS 용액을 제조하였다.
2. 3D 콜라겐 타입 Ⅱ-기반 하이드로겔의 제조
3D 콜라겐 타입 Ⅱ-기반 하이드로겔을 하기 논문에 기재된 방법을 약간 변형하여 유사하게 제조하였다[Sun, S., Wise, J., Cho, M.: Human fibroblast migration in three-dimensional collagen gel in response to noninvasive electrical stimulus: characterization of induced three-dimensional cell movement. Tissue Eng., 10: 1548, 2004.]. 구체적으로는, 송아지 관절연골로부터의 700㎕의 70%(0.02N 아세트산 내 10㎎/㎖) 콜라겐 타입 Ⅱ(Elastin Products, Inc), 66.5㎕의 6.5% 10X HBSS(Hanks balanced salt solution, Sigma), 33.5㎕의 3.5% 0.4N NaOH(Sigma), 10㎕의 1% 0.4N 아세트산(Sigma), 190㎕의 19% 멸균수 (Sigma)를 혼합하여 1㎖의 콜라겐 하이드로겔을 제조하였다. 그 다음 상기 제조된 콜라겐 하이드로겔에 3㎕의 1N NaOH를 방울방울 가하여 pH를 대략 7.5로 맞추었다. 상기 3D 콜라겐 타입 Ⅱ-기반 하이드로겔의 최종농도는 7㎎/㎖이었다. 세포 실험을 위해, 멸균된 웰-플레이트에 상기 3D 콜라겐 타입 Ⅱ-기반 하이드로겔을 피펫팅하여 3D 콜라겐 타입 Ⅱ-기반 하이드로겔 디스크(1㎠의 표면적, 및 2㎜의 두께)를 제조하였고, 세포배양배지에 첨가하기 전에 37℃에서 30분 동안 배양하였다.
3. 3D 콜라겐 타입 Ⅱ-기반 하이드로겔 내에 다중벽 탄소나노튜브의 혼입
상기 2에서 제조한 1㎖의 하이드로겔 제제(하이드로겔 제제 내에 0.5㎎/㎖의 MWCNT 용액의 최종 농도 산출)에 상기 1에서 제조한 90㎕의 초음파 처리된 6㎎/㎖의 MWCNT-PBS 용액을 혼합한 후, pH를 7.5로 맞추었다. 상기 제조된 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔을 공초점 현미경으로 관찰하였으며, 도 2에 나타내었다.
도 2에 나타난 바와 같이, 3D 콜라겐 타입 Ⅱ-기반 하이드로겔 내에서 다중벽 탄소나노튜브(검은색)는 콜라겐 섬유(푸른색)의 형성을 방해하지 않고, 3D 콜라겐 타입 Ⅱ-기반 하이드로겔 내에 고르게 분산됨을 확인하였다.
4. 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포의 접종
상기 3에서 제조한 1㎖의 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 8×104 cells/㎖의 인간간엽줄기세포(hMSCs)를 첨가하고 배양시킨 후, pH를 7.5로 맞추었다.
실시예 3 : 전기방사된 PCL 섬유 지지체/다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔의 복합 지지체의 제조
상기 실시예 2에서 제조한 400㎕의 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔 제제 용액을, 상기 실시예 1에서 제조한 전기방사된 PCL 섬유 지지체 위에 피펫팅하여, 24 웰 플레이트의 웰 바닥에 편평하게 하여 2㎜ 두께로 형성하였다. 그 다음 37℃에서 45분 동안 배양하여 완전히 겔화하여 2㎜ 두께의 완전히 고분자화된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔 디스크의 한쪽 측면 위에 얇은 PCL 섬유 지지체가 확실하게 통합된 이중층의 복합 지지체를 제조하였다. 상기 제조된 복합 지지체를 24 웰 플레이트로부터 제거하고, 멸균수로 채워진 조그만 페트리 디쉬로 옮긴 후, 분석시까지 수화 상태를 유지시켰다. AFM(atomic force microscope) 분석하기 전에 37℃에서 30분 동안 배양하였다.
상기 제조된 전기방사된 생분해성 고분자 지지체에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종한 지지체(A), 및 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종한 콜라겐 겔(B)로 이루어진 복합 지지체의 제조과정을 간략히 나타낸 모식도는 도 3에 나타내었다.
실험예 1 : 3D 콜라겐 타입 Ⅱ-기반 하이드로겔의 물리적 강도 측정
3D 콜라겐 타입 Ⅱ-기반 하이드로겔의 물리적 강도를 확인하기 위하여, 원자현미경(AFM; atomic force microscopy)을 이용하여 측정하였다. AFM으로 분석된 모든 하이드로겔 샘플은 세포를 포함하지 않고 분석하였다.
초음파 처리된 다중벽 탄소나노튜브는 pH 7.5로 맞추어진 1㎖의 콜라겐 하이드로겔 내로 직접 혼합하였다. 샘플은 대조군인 콜라겐 하이드로겔, EDC(l-ethyl-3-(3-dimethylaminopropyl)carbodiimide)로 가교결합된 콜라겐 하이드로겔, 다중벽 탄소나노튜브가 혼입된 콜라겐 하이드로겔을 비교하였다. 모든 샘플은 7㎎/㎖의 콜라겐으로 최종 농도를 맞추었다. 이렇게 혼합된 샘플 50㎕를 유리로 된 커버 슬립 위에 주입 후 37℃에서 30분 동안 배양하여 겔을 형성하였다. AFM 분석 전에 콜라겐 하이드로겔은 멸균수에서 수화상태를 유지시켰다. AFM 분석은 니콘 도립 현미경을 장착한 원자현미경(Novascan Technologies, Ames, IA)으로 수행하였다. 실리콘 질화물(Si3N4)로 된 길이 100㎛의 켄틸레버를 사용하였다. 콜라겐 겔에는 0.12N/m (탄성계수, k)의 실리콘 질화물 켄틸레버가 사용되었고, EDC로 가교결합된 콜라겐 겔과 다중벽 탄소나노튜브가 혼입된 콜라겐 겔은 0.32N/m(탄성계수, k)의 실리콘 질화물 켄틸레버를 사용하였고, 붕규산 유리(borosilicate galss)로 된 직경 10㎛의 비드를 압입자로써 켄틸레버 상에 탑재하였다. 속력곡선(force curve)은 z축 마다 켄틸레버의 편향을 측정하여 얻었고, Hertz 모델에 따라 분석하였다. 각 샘플에 대한 종탄성계수(Young's modulus)는 구형 탐침에 대한 힘의 압입 결과를 Hertz 모델에 따라 하기 식으로 계산하여 얻었다. 결과는 도 4에 나타내었다.
[규칙 제26조에 의한 보정 06.05.2011] 
Figure WO-DOC-MATHS-87
※ F: 제공된 나노 수준의 기계적인 하중,
ν: 주어진 부위에 대해 추정된 프와송비(poisson ratio),
R: 구형 압입자의 곡률 반경,
δ: 샘플에 대한 압입량.
도 4에 나타난 바와 같이, 1.2㎎/㎖의 다중벽 탄소나노튜브가 혼입된 콜라겐 하이드로겔의 강도는 다중벽 탄소나노튜브가 혼입되지 않은 콜라겐 하이드로겔의 강도에 비해 약 22배 정도 높아짐을 확인하였다. 특히, 콜라겐 하이드로겔의 강도를 높이기 위해 EDC로 가교결합된 콜라겐 하이드로겔의 강도보다도 다중벽 탄소나노튜브가 혼입된 콜라겐 하이드로겔의 강도가 약 2배 정도 높게 나타났다.
실험예 2 : 본 발명에 따른 복합 지지체의 물리적 성질 측정
본 발명에 따른 복합 지지체의 물리적 성질을 확인하기 위하여, 2㎝ 직경의 두개의 평행 플레이트를 장착한 HAAKE Rheostress 1 Rotational Rheometer(Thermo Scientific)를 이용하여 측정하였다.
구체적으로는, 상기 실시예 2에서 제조한 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔을 포함하는 관절연골 재생용 지지체, 및 상기 실시예 3에서 제조한 전기방사된 PCL 섬유 지지체/다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔로 이루어진 관절연골 재생용 복합 지지체를 샘플로 사용하였다. 상기 샘플의 디스크를 2㎝ 직경의 두개의 평행 플레이트 사이에 놓고, 0.6㎐ 또는 2㎐의 진동수에서 진동 모드를 이용하여 복소점도(complex viscosity), 저장탄성율(storage modulus), 손실탄성율(loss modulus), 및 손실계수(loss factor)의 데이터를 얻었다. 진동 모드에서, 권장된 진동수의 선형 점성-탄성 범위는 대략 0.01 내지 10㎐이다. 복소점도는 복소전단계수 대 진동수의 비율 (rad/sec)이다. 저장탄성율(G')은 재료의 탄성 특성을 나타내고, 더 상세하게는 여진되는 적용 변형율과 함께 상(phase)에서 토크 성분에 대한 탄성 피크 진폭 전단력 대 피크 진폭 전단 변형율(shear strain)의 비율이다. 손실탄성율(G")은 재료의 점성 특성을 나타내고, 더 상세하게는 여진되는 적용 변형율과 함께 상의 90° 떨어져 있는 토크 성분에 대한 점성 피크 진폭 전단력 대 피크 진폭 전단 변형율의 비율이다. 또한, 손실계수는 감쇠인자(damping factor)로서 손실탄성율 대 저장탄성율의 비율이거나, 또는 점성 토크 대 탄성 토크이다.
결과는 표 1에 나타내었다.
표 1
샘플 진동수(f [㎐]) 복소점도(η* [cP]) 저장탄성율(G' [㎩]) 손실탄성율(G" [㎩]) 손실계수(tan [δ])
다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔을 포함하는 관절연골 재생용 지지체 0.6 16876 68 14 0.20
2 6122 78 3 0.04
전기방사된 PCL 섬유 지지체/다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔로 이루어진 관절연골 재생용 복합 지지체 0.6 53530 211 43 0.20
2 15714 210 52 0.25
표 1에 나타난 바와 같이, 본 발명에 따른 전기방사된 PCL 섬유 지지체/다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔로 이루어진 관절연골 재생용 복합 지지체의 복소점도, 저장탄성율, 손실탄성율 및 손실계수는 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔을 포함하는 관절연골 재생용 지지체보다 우수하게 나타남을 확인하였다. 따라서, 관절연골층을 모방한 지지체가 단일층이 아닌 복합 지지체로 작용할 때 더 우수한 물리적 성질을 갖는다는 것을 알 수 있다.
실험예 3 : 전기방사된 PCL 섬유 지지체에서의 세포 생존율 및 세포 방향
본 발명의 전기방사된 PCL 섬유 지지체에서의 세포 생존율 및 세포 방향을 확인하기 위하여, 하기와 같은 실험을 수행하였다.
1. 전기방사된 PCL 섬유 지지체에서의 세포 생존율
상기 실시예 1에서 제조한 전기방사된 PCL 섬유 지지체에서의 세포 생존율은 세포를 염색(Molecular Probes, Carlsbad, CA)하여 실험하였다. 구체적으로는, 살아있는 세포는 형광기질인 칼세인 AM(calcein acetomethylester)으로 염색하였으며, 손상된 세포막을 갖는 죽은 세포는 4mM 에티디움 호모다이머-1(ethidium homodimer-1)로 염색한 다음 현미경으로 관찰하였다. 칼세인 AM은 살아있는 세포의 막을 가로질러 확산되고 세포내 에스터라제와 반응하여 녹색 형광물질을 방출한다. 반면, 에티디움 호모다이머-1은 손상된 세포막을 갖는 죽은 세포에만 들어가 핵산과 결합한 적색 형광물질을 방출한다.
2. 전기방사된 PCL 섬유 지지체에서의 세포 방향
전기방사된 PCL 섬유 지지체 및 전기방사되지 않은 PCL 필름(대조 지지체)에서 완전세포성장배지 또는 연골형성분화배지에서 배양된 세포의 방향성을 관찰하였다.
전기방사된 PCL 섬유 지지체 및 전기방사되지 않은 PCL 필름(대조 지지체)에서 4일 및 18일 동안 배양된 세포 생존율과 총 줄기세포 수는 표 2에 나타내었으며, 전기방사된 PCL 섬유 지지체 및 전기방사되지 않은 PCL 필름(대조 지지체)에서의 세포 생존율 및 세포 방향을 관찰한 결과는 도 5에 나타내었다.
표 2
배양일 PCL 섬유 지지체 세포 생존율(%) 총 줄기세포 수(cells/㎠)
4일 전기방사 안됨 76 7×104
전기방사됨 80 11.6×104
18일 전기방사 안됨 73 32.9×104
전기방사됨 76 20.2×104
표 2에 나타난 바와 같이, 전기방사된 PCL 섬유 지지체에서의 세포 생존율 및 면적당 총 줄기세포의 수는 전기방사되지 않은 PCL 필름(대조 지지체)에서보다 더 우수하게 나타났다.
또한 도 5에 나타난 바와 같이, 전기방사된 PCL 섬유 지지체에서의 세포 생존율(녹색 형광물질)이 전기방사되지 않은 PCL 필름(대조 지지체)에서보다 더 높게 나타남을 확인하였다. 또한, 전기방사된 PCL 섬유 지지체에서의 세포 방향은 일정한 방향으로 나타나는 반면, 전기방사되지 않은 PCL 필름(대조 지지체)에서의 세포 방향은 무작위로 나타남을 확인하였다. 따라서, 전기방사된 PCL 섬유 지지체는 관절연골의 표층 부위에 잘 적용될 수 있을 것으로 생각된다.
실험예 4 : 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에서의 세포 생존율과 분포도
본 발명의 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에서의 세포 생존율과 분포도를 확인하기 위하여, 하기와 같은 실험을 수행하였다.
상기 실시예 2에서 제조한 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔을 완전성장배지 또는 연골형성분화배지에서 21일 동안 배양하였다. 완전세포성장배지 또는 연골형성분화배지를 2~3일마다 대체하고, 35일까지 배양하였다. 상기 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에서의 세포 생존율은 세포를 염색하여 실험하였다. 다중벽 탄소나노튜브가 혼입되지 않은 3D 콜라겐 타입 Ⅱ-기반 하이드로겔을 비교군으로 사용하였다.
결과는 도 6에 나타내었다.
도 6에 나타난 바와 같이, 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔과 다중벽 탄소나노튜브가 혼입되지 않은 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에서의 세포 생존율(녹색 형광물질)은 모두 우수하게 나타남을 확인하였다. 이러한 결과에 의해, 다중벽 탄소나노튜브가 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 첨가되어도 세포 생존율 및 분포도에 부정적인 영향을 미치지 않는다는 것을 알 수 있다.
실험예 5 : 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에서의 항산화 글리코사미노글리칸(GAGs)의 함량 측정
본 발명의 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에서의 항산화 글리코사미노글리칸(glycosaminoglycans; GAGs)의 함량을 측정하기 위하여, 하기와 같은 실험을 수행하였다.
황산화 글리코사미노글리칸(GAGs)은 연골 분화의 마커로서, 이의 함량은 연골 재생을 평가하는 기준이 될 수 있다. 전기방사되지 않은 PCL 섬유 필름과 전기방사된 PCL 섬유 지지체에는 6×104 cells/㎠, 다중벽 탄소나노튜브가 혼입되지 않은 콜라겐 하이드로겔과 다중벽 탄소나노튜브가 혼입된 콜라겐 하이드로겔에는 8×104 cells/㎖의 밀도로 접종하고 일반성장배지 또는 연골형성배지에서 배양하여 비교하였다. 세포가 접종된 전기방사되지 않은 PCL 섬유 필름과 전기방사된 PCL 섬유 지지체는 1일과 35일째 되는 날 항산화 글리코사미노글리칸(GAGs)과 DNA의 양을 측정하였고, 세포가 접종된 다중벽 탄소나노튜브가 혼입되지 않은 콜라겐 하이드로겔과 다중벽 탄소나노튜브가 혼입된 콜라겐 하이드로겔은 1일과 21일째 되는 날에 항산화 글리코사미노글리칸(GAGs)과 DNA의 양을 측정하였다. 모든 샘플로부터 DNA와 GAGs를 추출하여 양적인 분석을 수행하였다. 샘플로부터 GAGs와 DNA를 추출하기 위해 파파인(Papain), EDTA, PBS, DTT로 된 용액을 사용하였다. 구체적으로는, 각각의 세포가 접종된 지지체에 20mM PBS, 5mM EDTA, 2mM DTT에 300㎍/㎖의 파파인이 포함된 용액 100㎕를 60℃에서 18시간 동안 처리하였다.
GAGs의 총량을 얻기 위해, Blyscan™ Sulfated Glycosaminoglycan Assay Kit (Biocolor, N. Ireland)를 이용하였다. 즉, DMB(1,9-dimethylmethylene blue) 염료 시약의 1㎖를 각 샘플 추출물의 50㎕에 첨가하고 30분 동안 반응시켰다. 이때, 푸른색 염료는 GAGs에 결합한다. 10,000g로 원심분리하여 결합하지 않은 염료 용액과 분리된 보라색 염료를 띠는 GAGs 침전물을 형성하였다. 해리시약 200㎕를 첨가하여 펠렛을 풀어주었다. GAGs 샘플의 흡광도는 모델 680 마이크로플레이트 리더(Bio-Rad Laboratories, Hercules, CA)에서 655㎚ 필터를 이용하여 분광광도법으로 측정하였다.
총 DNA의 분석은 형광 DNA Quantitation kit(Bio-Rad Laboratories, Hercules, CA, Catalog #170-2480)를 이용하였다. 즉, DNA/GAGs 추출물의 나머지 50㎕ 중 20㎕를 취해 1㎍/㎖ Hoechst 33258 염료 80㎕에 첨가하였다. Hoechst 33258-DNA 복합체의 형광은 SpectraMax Gemini Microplate Spectrofluorometer (Molecular Devices, Sunnyvale, CA)에서 360㎚(여기)/460㎚(방출)의 파장에서 검출하였다. 세포가 접종된 각 샘플에서 측정된 총 DNA 양에 대한 GAGs의 양의 비율을 측정하였다.
결과는 도 7에 나타내었다.
도 7에 나타난 바와 같이, 전기방사된 PCL 섬유 지지체 상에서 세포의 항산화 글리코사미노글리칸(GAGs)의 함량은 전기방사되지 않은 PCL 섬유 필름에 비해 높게 나타났으며, 다중벽 탄소나노튜브가 혼입된 콜라겐 하이드로겔에서 세포의 항산화 글리코사미노글리칸(GAGs)의 함량은 다중벽 탄소나노튜브가 혼입되지 않은 콜라겐 하이드로겔에 비해 높게 나타났다. 상기한 바와 같이, 관절연골의 표층에 적용될 전기방사된 PCL 섬유 지지체의 단일층과 관절연골의 중간층에 적용될 다중벽 탄소나노튜브가 혼입된 콜라겐 하이드로겔의 단일층이 각각 대조군에 비해 연골 분화에 더 효과적임을 알 수 있다. 따라서, 이러한 지지체의 각 단일층의 효과는 복합 지지체로 적용되었을 때 시너지 효과를 발휘할 수 있을 것으로 생각한다.
본 발명에 따른 관절연골 재생용 지지체는 연골조직의 이식 및 재생을 위해 충분한 기계적 특성을 가지며, 세포 생존율이 우수하고, 세포의 항산화 글리코사미노글리칸(GAGs)의 함량이 높으며, 관절연골의 표층 부위와 중간층 부위에 특이적으로 적용되므로, 세포부착을 용이하게 하고 나아가 줄기세포의 성장 및 분화에 효과적인 생체모방형의 표면 환경을 용이하게 구현할 수 있다. 따라서, 본 발명에 따른 관절연골 재생용 지지체는 손상된 관절연골의 재생에 효과적이므로, 줄기세포를 이용한 관절연골손상 질환 치료에 유용하게 활용될 수 있으며, 코 및 귀 등의 성형 보형물로도 유용하게 사용될 수 있다.

Claims (11)

  1. 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종한 콜라겐 겔을 포함하는 관절연골 재생용 지지체.
  2. 제 1항에 있어서, 상기 인간 간엽줄기세포는 골수 유래 인간 간엽줄기세포인 것을 특징으로 하는 관절연골 재생용 지지체.
  3. 1) 다중벽 탄소나노튜브를 황산 및 질산과 혼합시키고, 30~100분 동안 30~70℃에서 초음파수에서 초음파 처리한 후 중화하고 원심분리하여 다중벽 탄소나노튜브를 모으고 용매 용액을 제거한 후, 멸균수로 세척한 다음 다시 초음파 처리한 후 원심분리하여 상층액을 제거한 다음, 다중벽 탄소나노튜브를 인산염완충용액에 재현탁 및 분산시켜 다중벽 탄소나노튜브-인산염완충용액을 제조하는 단계,
    2) 관절연골로부터의 70% 콜라겐 타입 Ⅱ, 6.5% 10X HBSS, 3.5% 0.4N NaOH, 1% 0.4N 아세트산, 19% 멸균수를 혼합하여 콜라겐 하이드로겔을 제조하는 단계,
    3) 상기 2)단계에서 제조한 콜라겐 하이드로겔 내에 상기 1)단계에서 제조한 다중벽 탄소나노튜브-인산염완충용액을 혼합한 후 pH를 7~8로 맞추어, 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔을 제조하는 단계, 및
    4) 상기 3)단계에서 제조한 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종하고 세포배양하는 단계를 포함하는, 제 1항의 관절연골 재생용 지지체의 제조방법.
  4. 제 3항에 있어서, 상기 인간 간엽줄기세포는 골수 유래 인간 간엽줄기세포인 것을 특징으로 하는, 관절연골 재생용 지지체의 제조방법.
  5. 전기방사된 생분해성 고분자 지지체에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종한 지지체, 및 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종한 콜라겐 겔로 이루어진 관절연골 재생용 복합 지지체.
  6. 제 5항에 있어서, 상기 생분해성 고분자는 폴리글리콜산(PGA), 폴리락트산 (PLA), 폴리락트산-글리콜산 공중합체(PLGA), 폴리-ε-카프로락톤(PCL), 폴리안하이드리드, 폴리오르토에스터(polyorthoesters), 폴리비닐알콜, 폴리에틸렌글리콜, 폴리우레탄, 폴리아크릴산, 폴리-N-이소프로필아크릴아미드, 폴리(에틸렌옥사이드)-폴리(프로필렌옥사이드)-폴리(에틸렌옥사이드) 공중합체, 이들의 유도체 및 이들의 공중합체로 이루어진 군으로부터 선택된 1종인 것을 특징으로 하는 관절연골 재생용 복합 지지체.
  7. 제 5항에 있어서, 상기 인간 간엽줄기세포는 골수 유래 인간 간엽줄기세포인 것을 특징으로 하는 관절연골 재생용 복합 지지체.
  8. 1) 생분해성 고분자를 유기용매에 용해시켜 8~15%의 고분자 용액을 제조한 후, 0.01~5㎖/h의 주입속도로 전기방사하여 전기방사된 생분해성 고분자 지지체를 제조하는 단계,
    2) 상기 1)단계에서 제조된 전기방사된 생분해성 고분자 지지체 디스크를 세포배양용 플레이트에 삽입하고 30~100분 동안 50~99% 에탄올에 담그고 2~5일 동안 진공 챔버에서 잔류 유기용매를 제거하고, 멸균하는 단계,
    3) 상기 2)단계에서 멸균된 전기방사된 생분해성 고분자 지지체를 세포 접종 전에 48시간 동안 완전세포성장배지(15% FBS 함유)에 담군 후, 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 피펫팅하고 24시간 동안 완전세포성장배지에서 배양한 후, 완전세포성장배지를 연골형성분화배지로 대체하고 배양하는 단계,
    4) 다중벽 탄소나노튜브를 황산 및 질산과 혼합시키고, 30~100분 동안 30~70℃에서 초음파수에서 초음파 처리한 후 중화하고 원심분리하여 다중벽 탄소나노튜브를 모으고 용매 용액을 제거한 후, 멸균수로 세척한 다음 다시 초음파 처리한 후 원심분리하여 상층액을 제거한 다음, 다중벽 탄소나노튜브를 인산염완충용액에 재현탁 및 분산시켜 다중벽 탄소나노튜브-인산염완충용액을 제조하는 단계,
    5) 관절연골로부터의 70% 콜라겐 타입 Ⅱ, 6.5% 10X HBSS, 3.5% 0.4N NaOH, 1% 0.4N 아세트산, 19% 멸균수를 혼합하여 콜라겐 하이드로겔을 제조하는 단계,
    6) 상기 5)단계에서 제조한 콜라겐 하이드로겔 내에 상기 4)단계에서 제조한 다중벽 탄소나노튜브-인산염완충용액을 혼합한 후 pH를 7~8로 맞추어, 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔을 제조하는 단계,
    7) 상기 6)단계에서 제조한 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔에 인간 간엽줄기세포 또는 인간 간엽줄기세포로부터 분화된 연골세포 또는 골세포를 접종하고 세포배양하는 단계,
    8) 상기 7)단계에서 세포배양된 다중벽 탄소나노튜브가 혼입된 3D 콜라겐 타입 Ⅱ-기반 하이드로겔을, 상기 3)단계에서 세포배양된 전기방사된 생분해성 고분자 지지체 위에 부어 편평하게 한 후, 35~40℃에서 30~60분 동안 배양하여 완전히 겔화시켜 복합 지지체를 제조하는 단계를 포함하는, 제 5항의 관절연골 재생용 복합 지지체의 제조방법.
  9. 제 8항에 있어서, 상기 생분해성 고분자는 폴리글리콜산(PGA), 폴리락트산 (PLA), 폴리락트산-글리콜산 공중합체(PLGA), 폴리-ε-카프로락톤(PCL), 폴리안하이드리드, 폴리오르토에스터(polyorthoesters), 폴리비닐알콜, 폴리에틸렌글리콜, 폴리우레탄, 폴리아크릴산, 폴리-N-이소프로필아크릴아미드, 폴리(에틸렌옥사이드)-폴리(프로필렌옥사이드)-폴리(에틸렌옥사이드) 공중합체, 이들의 유도체 및 이들의 공중합체로 이루어진 군으로부터 선택된 1종인 것을 특징으로 하는, 관절연골 재생용 복합 지지체의 제조방법.
  10. 제 8항에 있어서, 상기 인간 간엽줄기세포는 골수 유래 인간 간엽줄기세포인 것을 특징으로 하는, 관절연골 재생용 복합 지지체의 제조방법.
  11. 제 8항에 있어서, 상기 유기용매는 메틸렌클로라이드, 디메틸포름아미드, 헥산, 클로로포름, 아세톤, 디옥산, 테트라히드로퓨란 및 헥사플루오로이소프로판으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는, 관절연골 재생용 복합 지지체의 제조방법.
PCT/KR2011/001133 2010-02-24 2011-02-22 관절연골 재생용 지지체 및 이의 제조방법 WO2011105724A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/700,972 US20130084636A1 (en) 2010-02-24 2011-02-22 Scaffold for articular cartilage regeneration and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0016823 2010-02-24
KR20100016823 2010-02-24

Publications (3)

Publication Number Publication Date
WO2011105724A2 true WO2011105724A2 (ko) 2011-09-01
WO2011105724A9 WO2011105724A9 (ko) 2011-10-27
WO2011105724A3 WO2011105724A3 (ko) 2012-01-12

Family

ID=44507352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001133 WO2011105724A2 (ko) 2010-02-24 2011-02-22 관절연골 재생용 지지체 및 이의 제조방법

Country Status (3)

Country Link
US (1) US20130084636A1 (ko)
KR (1) KR101202839B1 (ko)
WO (1) WO2011105724A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013169374A1 (en) * 2012-05-10 2013-11-14 The Trustees Of The Stevens Institute Of Technology Biphasic osteochondral scaffold for reconstruction of articular cartilage
US10471172B2 (en) * 2012-05-04 2019-11-12 The Johns Hopkins University Methods of making drug loaded microfiber sutures for ophthalmic application
US10874763B2 (en) 2012-07-11 2020-12-29 Osiris Therapeutics, Inc. Porated cartilage products

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015008877A1 (ko) * 2013-07-16 2015-01-22 영남대학교 산학협력단 단일공정에 의한 이중층 스캐폴드의 제조방법 및 상기 제조방법에 의해 얻어진 이중층 스캐폴드를 이용한 조직 재생방법
US9486483B2 (en) * 2013-10-18 2016-11-08 Globus Medical, Inc. Bone grafts including osteogenic stem cells, and methods relating to the same
US9539286B2 (en) 2013-10-18 2017-01-10 Globus Medical, Inc. Bone grafts including osteogenic stem cells, and methods relating to the same
US20150290248A1 (en) * 2014-04-10 2015-10-15 Nanofiber Health, Inc. Fibrous component for health, performance, and aesthetic treatment
KR101644828B1 (ko) * 2014-04-21 2016-08-02 한림대학교 산학협력단 조직 재생용 3차원 구조체의 제조 방법, 제조 장치 및 이에 따른 구조체
KR101665193B1 (ko) * 2014-10-24 2016-10-14 단국대학교 천안캠퍼스 산학협력단 탄소나노튜브를 포함하는 줄기세포 증식 및 분화촉진용 수화겔
KR101902198B1 (ko) * 2016-12-28 2018-09-28 전북대학교산학협력단 오리발 유래 콜라겐이 함유된 하이브리드 골 이식재와 그 제조방법
KR102114300B1 (ko) 2018-04-16 2020-05-22 전남대학교 산학협력단 최소 침습 골연골 재생용 자기 구동 마이크로지지체
US20230130215A1 (en) * 2020-02-17 2023-04-27 JUHAMED s.r.o. Personalized medical device and method of its preparation
KR102184120B1 (ko) 2020-02-26 2020-11-27 윤영묵 연골 지지체를 구비한 시술유닛
KR102416861B1 (ko) * 2020-02-28 2022-07-07 주식회사 엘앤씨바이오 연골 성분을 함유하는 연골 재생용 조성물 및 그 제조방법
KR102611664B1 (ko) * 2021-07-01 2023-12-12 서울과학기술대학교 산학협력단 기계자극 및 생분해성에 의한 연골재생-보호 의료기기
CN114870089B (zh) * 2022-01-17 2023-04-28 中国人民解放军联勤保障部队第九八八医院 载有MSCs的PCL-胶原蛋白/Gelma双径向复合支架及应用
CN114366855B (zh) * 2022-01-25 2023-02-07 中国医学科学院整形外科医院 一种复合仿生体表组织及其一体化构建方法
CN115120774B (zh) * 2022-06-28 2024-05-28 奥精医疗科技股份有限公司 一种碳纳米管强化矿化胶原材料及其制备方法和应用
CN115006589A (zh) * 2022-06-28 2022-09-06 奥精医疗科技股份有限公司 一种碳纳米管改性矿化胶原材料及其制备方法和应用
CN115068687B (zh) * 2022-07-08 2023-12-12 重庆科技学院 梯度纳/微纤维支架及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080013224A (ko) * 2006-08-07 2008-02-13 (주)나노필 생분해성 나노섬유 복합체와 그의 제조방법 및 이의 용도
WO2009004351A2 (en) * 2007-07-05 2009-01-08 Ucl Business Plc Methods for producing biomaterials with variable stiffness
JP2009508540A (ja) * 2005-08-17 2009-03-05 オックスフォード バイオマテリアリルズ リミテッド 移植可能な軟骨組織修復デバイス
US20090069893A1 (en) * 2007-04-19 2009-03-12 Mikhail Vitoldovich Paukshto Oriented Collagen-Based Materials, Films and Methods of Making Same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2447694A1 (en) * 2001-05-25 2002-12-05 Imaging Therapeutics, Inc. Methods and compositions for articular resurfacing
EP1741457A1 (en) * 2002-08-09 2007-01-10 Ottawa Health Research Institute Ocular implant
US20040078090A1 (en) * 2002-10-18 2004-04-22 Francois Binette Biocompatible scaffolds with tissue fragments
DE10349722A1 (de) * 2003-10-23 2005-06-16 Beschorner, Katharina, Dr. Zusammensetzung zur Arthrose-/Arthritisbehandlung, insbesondere von Gelenken
WO2006138718A2 (en) * 2005-06-17 2006-12-28 Drexel University Three-dimensional scaffolds for tissue engineering made by processing complex extracts of natural extracellular matrices
US20080109070A1 (en) * 2006-08-10 2008-05-08 Wagner William R Biodegradable elastomeric scaffolds containing microintegrated cells
WO2008070118A1 (en) * 2006-12-05 2008-06-12 Landec Corporation Drug delivery
US20090028921A1 (en) * 2007-06-18 2009-01-29 New Jersey Institute Of Technology Electrospun Ceramic-Polymer Composite As A Scaffold For Tissue Repair

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009508540A (ja) * 2005-08-17 2009-03-05 オックスフォード バイオマテリアリルズ リミテッド 移植可能な軟骨組織修復デバイス
KR20080013224A (ko) * 2006-08-07 2008-02-13 (주)나노필 생분해성 나노섬유 복합체와 그의 제조방법 및 이의 용도
US20090069893A1 (en) * 2007-04-19 2009-03-12 Mikhail Vitoldovich Paukshto Oriented Collagen-Based Materials, Films and Methods of Making Same
WO2009004351A2 (en) * 2007-07-05 2009-01-08 Ucl Business Plc Methods for producing biomaterials with variable stiffness

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANDER ABARRATEGI ET AL. BIOMATERIALS vol. 29, 2008, pages 94 - 102 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10471172B2 (en) * 2012-05-04 2019-11-12 The Johns Hopkins University Methods of making drug loaded microfiber sutures for ophthalmic application
WO2013169374A1 (en) * 2012-05-10 2013-11-14 The Trustees Of The Stevens Institute Of Technology Biphasic osteochondral scaffold for reconstruction of articular cartilage
US10874763B2 (en) 2012-07-11 2020-12-29 Osiris Therapeutics, Inc. Porated cartilage products
US11406735B2 (en) 2012-07-11 2022-08-09 Osiris Therapeutics, Inc. Methods of manufacturing cartilage products
US11413373B2 (en) 2012-07-11 2022-08-16 Osiris Therapeutics, Inc. Disrupted cartilage products

Also Published As

Publication number Publication date
US20130084636A1 (en) 2013-04-04
KR101202839B1 (ko) 2012-11-20
WO2011105724A3 (ko) 2012-01-12
WO2011105724A9 (ko) 2011-10-27
KR20110097662A (ko) 2011-08-31

Similar Documents

Publication Publication Date Title
WO2011105724A2 (ko) 관절연골 재생용 지지체 및 이의 제조방법
Reardon et al. Mimicking hierarchical complexity of the osteochondral interface using electrospun silk-bioactive glass composites
US10420856B2 (en) Scaffold for tissue growth and repair
US10052412B2 (en) Electrospun electroactive polymers for regenerative medicine applications
WO2020233176A1 (zh) 生长因子缓释微球、组织工程软骨复合支架及制备方法
Kai et al. Biocompatibility evaluation of electrically conductive nanofibrous scaffolds for cardiac tissue engineering
Venugopal et al. Electrospun‐modified nanofibrous scaffolds for the mineralization of osteoblast cells
Bhaarathy et al. Biologically improved nanofibrous scaffolds for cardiac tissue engineering
WO2020204230A1 (ko) 나노섬유 및 하이드로젤의 복합체 및 이를 포함하는 조직 재생용 스캐폴드
Ricotti et al. Adhesion and proliferation of skeletal muscle cells on single layer poly (lactic acid) ultra-thin films
WO2010044577A2 (ko) 동물조직 분말을 이용한 다공성 3차원 지지체의 제조방법 및 이를 이용하여 제조된 다공성 3차원 지지체
Huang et al. Reinforced chitosan membranes by microspheres for guided bone regeneration
Rajasekaran et al. Role of nanofibers on MSCs fate: Influence of fiber morphologies, compositions and external stimuli
Cook et al. Characterization of a novel bioreactor system for 3D cellular mechanobiology studies
Pournaqi et al. Improved proliferation and osteogenic differentiation of mesenchymal stem cells on polyaniline composited by polyethersulfone nanofibers
KR20130040748A (ko) 자기조립 세포외 기질 메트릭스 제조 방법 및 이것의 용도
Zhang et al. Osteogenic differentiation of human placenta-derived mesenchymal stem cells (PMSCs) on electrospun nanofiber meshes
Houshyar et al. Three-dimensional directional nerve guide conduits fabricated by dopamine-functionalized conductive carbon nanofibre-based nanocomposite ink printing
Rodina et al. Migration and proliferative activity of mesenchymal stem cells in 3D polylactide scaffolds depends on cell seeding technique and collagen modification
Kang et al. Evaluations of osteogenic and osteoconductive properties of a non-woven silica gel fabric made by the electrospinning method
Kong et al. Nerve decellularized matrix composite scaffold with high antibacterial activity for nerve regeneration
Keate et al. A collagen-conducting polymer composite with enhanced chondrogenic potential
Samanipour et al. Osteogenic differentiation of pulp stem cells from human permanent teeth on an oxygen-releasing electrospun scaffold
CN106362206A (zh) 一种新型高强度高亲水性氧化石墨烯‑p34hb纳米纤维支架及其制备方法和应用
Yang et al. Research progress on cardiac tissue construction of mesenchymal stem cells for myocardial infarction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747614

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13700972

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11747614

Country of ref document: EP

Kind code of ref document: A2