WO2011105347A1 - 含フッ素ポリマーラテックスの製造法 - Google Patents

含フッ素ポリマーラテックスの製造法 Download PDF

Info

Publication number
WO2011105347A1
WO2011105347A1 PCT/JP2011/053774 JP2011053774W WO2011105347A1 WO 2011105347 A1 WO2011105347 A1 WO 2011105347A1 JP 2011053774 W JP2011053774 W JP 2011053774W WO 2011105347 A1 WO2011105347 A1 WO 2011105347A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
emulsifier
group
containing polymer
tfe
Prior art date
Application number
PCT/JP2011/053774
Other languages
English (en)
French (fr)
Inventor
大介 村井
前田 満
吉山 金
Original Assignee
ユニマテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニマテック株式会社 filed Critical ユニマテック株式会社
Publication of WO2011105347A1 publication Critical patent/WO2011105347A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1408Monomers containing halogen

Definitions

  • the present invention relates to a method for producing a fluorine-containing polymer latex. More specifically, the present invention relates to a method for producing a fluorine-containing polymer latex capable of significantly reducing the amount of residual emulsifier.
  • Perfluoroalkyl group-containing carboxylic acids are widely used in emulsion polymerization reactions of fluorine-containing monomers as fluorine-based surfactants that act as emulsifiers.
  • perfluorooctanoic acid C 7 F 15 COOH or a salt thereof is known to be a surfactant excellent in monomer emulsification and latex stability.
  • Patent Document 1 includes a general formula F (CF 2 CF 2 ) n CH 2 CH 2 SO 3 M (M: monovalent cation). It is described that a mixture of an aggregate number n of 2 to 8, an average value of 2 to 6 and an aggregate number n of 2 to 6 is used as a dispersant. However, when this perfluoroalkylethanesulfonic acid (salt) is used as the fluorine-containing surfactant, chain transfer occurs during the polymerization reaction, and thus it is inevitable that the resulting polymer has a low molecular weight.
  • F perfluoroalkylethanesulfonic acid
  • Patent Document 2 proposes to use a compound represented by: However, when this compound is used as an emulsifier for the emulsion polymerization of a fluorinated monomer, it is not only inferior to PFOA in terms of monomer emulsification and latex stability, but in the homopolymerization and copolymerization of vinylidene fluoride. In addition, since the micelle solubility of vinylidene fluoride as a monomer is low, the polymerization rate becomes very slow, the stability of the resulting polymer latex is also poor, and precipitates may be observed during the polymerization reaction.
  • the hydrogen-containing fluorine-based surfactant Rf (CH 2 ) m Rf′COOM described in Patent Document 2 is reacted with a base after alkali hydrolysis of the corresponding carboxylic acid ester to give a free carboxylic acid.
  • a carboxylate Alkaline hydrolysis of this carboxylic acid ester is carried out in the presence of an excess amount of alkali, so that the —CH 2 CF 2 — group in the molecule is converted to —CH ⁇ CF— group by deHF reaction There is also a side reaction in which about several percent of is produced.
  • polyether-based carboxylic acid (salt) is easy to foam, not only is the handling of the latex obtained by the polymerization reaction not easy, but there is also a description that the amount of aggregate in the latex is larger than that of PFOA (See Patent Document 3).
  • Patent Document 4 describes a release agent comprising (A) a phosphonate having a fluoroalkyl group or a fluoroalkenyl group and (B) a highly fluorinated organic compound. Is prepared by dissolving or dispersing the component (A) and the component (B) in an organic solvent or an aqueous medium, and the component (A) emulsifier is not used as an emulsifier in the emulsion polymerization reaction.
  • the phosphonate used as component (A) has the general formula RfR 2 PO (OR 1 ) m (OH) n (OM) u RfO (pC 6 H 4 ) CH 2 PO (OR 1 ) m (OH) n (OM) u
  • Rf a fluoroalkyl group having C 4 ⁇ C 20, fluoroalkenyl group M: alkali metal atom, an ammonium group, C 1 ⁇ C 5 Al kills or substituted ammonium group substituted by an alkoxy group
  • R 2 C 1 to C 10 alkylene group, —CH 2 CH (OR 3 ) CH 2 — group (R 3 is H or C 1 to C 10 alkyl group) m: 2, 1, 0 n: 2, 1, 0, (2-m) or smaller number u: 2- (m + n)
  • Specific examples include the following compounds, but no examples of ammonium salts are found.
  • An object of the present invention is to provide a method for producing a fluorine-containing polymer latex that is environmentally degradable and can significantly reduce the amount of residual emulsifier.
  • the object of the present invention is to provide the general formula C n F 2n + 1 C m H 2m P (O) (OM 1 ) (OM 2 )
  • M 1 is a hydrogen atom, an alkali metal or an ammonium group
  • M 2 is an alkali metal or an ammonium salt
  • n is an integer of 2 to 6
  • m is an integer of 1 to 3. This is achieved by emulsion polymerization of a fluorine-containing monomer using a perfluoroalkylalkylphosphonate as an emulsifier to produce a fluorine-containing polymer latex.
  • the perfluoroalkylalkylphosphonate is used as an emulsifier, the following effects are obtained. (1) Since it has a CH 2 group in the hydrophobic group of the emulsifier compound, it has degradability in water or soil even if it is released into the environment. PFOA derivatives are not generated as a product. (2) Even if it has a CH 2 group in the hydrophobic group, it is not chain-transferred during the polymerization reaction, and a high molecular weight fluorine-containing polymer equivalent to the case of using the PFOA emulsifier can be obtained.
  • the fluorine-containing polymer latex obtained by emulsion polymerization shows emulsion stability equal to or better than that of fluorine-containing polymer latex using PFOA emulsifier, but it is considered that it has no affinity for polymers as high as PFOA.
  • the amount of the remaining emulsifier in the polymer obtained by coagulating and washing the latex is much smaller than that of PFOA.
  • the perfluoroalkylalkylphosphonate used as an emulsifier for emulsion polymerization of a fluorine-containing monomer in the method of the present invention is a perfluoroalkylalkylphosphonic acid C n F 2n + 1 C m H 2m P (O ) (OH) 2 And an alkali metal hydroxide or ammonia water.
  • Alkali metal hydroxide or ammonia forms a mono-salt when used in an equimolar amount with respect to perfluoroalkylalkylphosphonic acid, and forms a di-salt when used in a double molar amount.
  • a mixture of a mono salt and a di salt is formed.
  • Examples of the mono- and di-salts of perfluoroalkylalkylphosphonic acid include the following compounds.
  • the value of m in the general formula is not limited to 3 or less, but when an excessively long chain is used in the emulsion polymerization reaction, the emulsifying ability of the fluorine-based monomer is reduced. It will be aroused.
  • M 1 and M 2 may be methyl groups, but monoesters are difficult to isolate, so industrialization is not practical, and diesters are not preferred in that they lack water solubility, while phosphonic acid This is not preferable because it is affected by a buffer during emulsion polymerization.
  • perfluoroalkylalkylphosphonates have a linear fluoroalkyl group, they have better solubility in water than fluoropolyether type emulsifier compounds having the same emulsifying ability, while they were produced. Since the adhesion to fluoropolymers is lower than that of PFOA, the fluoropolymer latex obtained by coagulation of the fluoropolymer latex obtained by emulsion polymerization by various methods such as salting out, acid precipitation, mechanical stirring, etc. The amount of residual emulsifier in the polymer can be significantly reduced.
  • the emulsion polymerization reaction of the fluorine-containing monomer using this emulsifier is performed in the same manner as in the case of using the PFOA emulsifier.
  • the emulsion polymerization reaction is carried out using a water-soluble inorganic peroxide such as ammonium persulfate or a redox system of it and a reducing agent as a catalyst.
  • a water-soluble inorganic peroxide such as ammonium persulfate or a redox system of it and a reducing agent as a catalyst.
  • phosphate Na 2 HPO 4 , NaH 2 PO 4 , KH 2 PO 4, etc.
  • borate Na 2 B 2 O 7, etc.
  • Fluorine-containing monomers to be emulsion-polymerized include vinylidene fluoride [VdF], hexafluoropropylene [HFP], tetrafluoroethylene [TFE], pentafluoropropylene [PFP], monochlorotrifluoroethylene [CTFE], C 1 to C Perfluoro (alkyl vinyl ether) having 3 alkyl groups [FAVE], perfluoro (alkoxyalkyl vinyl ether) [FOAVE], etc.
  • VdF vinylidene fluoride
  • HFP hexafluoropropylene
  • TFE tetrafluoroethylene
  • PFP pentafluoropropylene
  • CTFE monochlorotrifluoroethylene
  • the copolymerization reaction is preferably carried out
  • esters such as ethyl malonate and ethyl acetate
  • alcohols such as methanol, ethanol and isopropanol
  • ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone
  • hydrocarbons such as hexane and octane
  • halogenated hydrocarbons such as chloroform, carbon tetrachloride and dichloroethane are used.
  • iodine-containing perfluoro compounds such as ICF 2 CF 2 I and ICF 2 CF 2 CF 2 CF 2 I
  • iodine-containing bromine perfluoro compounds such as ICF 2 CF 2 Br and ICF 2 CF 2 CF 2 CF 2 Br are linked. It can be used as a transfer agent, and these compounds can also play a role of forming a crosslinking site in peroxide crosslinking.
  • a bromine group-containing vinyl ether represented by the following general formula is used.
  • BrRf-O-CF CF 2 BrRf: bromine group-containing perfluoroalkyl group
  • iodine-containing monomer compound iodotrifluoroethylene, 1,1-difluoro-2-iodoethylene, perfluoro (2-iodoethyl vinyl ether), vinyl iodide or the like is used.
  • bromine-containing or iodine-containing monomer compounds are used in a proportion of about 0.001 to 5 mol%, preferably about 0.01 to 1 mol%, based on the total amount of fluorine-containing monomers. If the ratio is less than this, the compression set characteristics of the resulting vulcanizate are deteriorated. On the other hand, if the ratio is more than this, the elongation of the vulcanizate decreases.
  • Coagulation of the obtained fluoropolymer latex is preferably carried out by salting out, for example, an aqueous calcium chloride solution having a concentration of about 0.1 to 5% by weight, preferably about 0.3 to 3% by weight. Each process of filtration, water washing and drying is applied to the coagulated fluorine-containing polymer.
  • Examples of the polymer of the fluorinated monomer include the following, and a resinous or elastomeric fluorinated polymer can be formed depending on the copolymer composition thereof.
  • fluorinated polymers are vulcanized by organic peroxides when they have bromine groups or iodine groups, and by vulcanization of polyols otherwise.
  • organic peroxide used in the peroxide vulcanization method examples include 2,5-dimethyl-2,5-bis (tertiary butylperoxy) hexane, 2,5-dimethyl-2,5-bis (tertiary (Butylperoxy) hexyne-3, benzoyl peroxide, bis (2,4-dichlorobenzoyl) peroxide, dicumyl peroxide, di-tert-butyl peroxide, tert-butyl cumyl peroxide, tert-butyl peroxybenzene, 1 , 1-Bis (tert-butylperoxy) -3,5,5-trimethylcyclohexane, 2,5-dimethylhexane-2,5-dihydroxyperoxide, ⁇ , ⁇ '-bis (tert-butylperoxy)- p-diisopropylbenzene, 2,5-dimethyl-2,5-di (benzoylperoxy
  • polyfunctional unsaturated compounds such as tri (meth) allyl isocyanurate, tri (meth) allyl cyanurate, triallyl trimellitate are usually used as co-crosslinking agents.
  • N, N′-m-phenylenebismaleimide, diallyl phthalate, tris (diallylamine) -s-triazine, triallyl phosphite, 1,2-polybutadiene, ethylene glycol diacrylate, diethylene glycol diacrylate, and the like are used in combination.
  • the tri (meth) allyl group represents a triallyl group or a trimethallyl group.
  • the above components to be blended in the peroxide vulcanizing system generally comprise about 0.1 to 10 parts by weight, preferably about 0.5 to 5 parts by weight of organic peroxide per 100 parts by weight of the fluoropolymer. Are used in a proportion of about 0.1 to 10 parts by weight, preferably about 0.5 to 5 parts by weight.
  • polyol vulcanization 2,2-bis (4-hydroxyphenyl) propane (bisphenol A), 2,2-bis (4-hydroxyphenyl) perfluoropropane (bisphenol AF) as polyol-based crosslinking agents , Hydroquinone, catechol, resorcin, 4,4'-dihydroxydiphenyl, 4-4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenylsulfone, 2,2-bis (4-hydroxyphenyl) butane, etc.
  • bisphenol A 2,2-bis (4-hydroxyphenyl) propane
  • bisphenol AF 2,2-bis (4-hydroxyphenyl) perfluoropropane
  • Hydroquinone catechol
  • resorcin 4,4'-dihydroxydiphenyl
  • 4-4'-dihydroxydiphenylmethane 4,4'-dihydroxydiphenylsulfone
  • 2,2-bis (4-hydroxyphenyl) butane etc.
  • Compounds, or alkali metal salts or alkaline earth metal salts thereof, and these polyol-based crosslinking agents are used at a ratio of about 0.5 to 10 parts by weight, preferably about 1 to 5 parts by weight, per 100 parts by weight of the fluorine-containing elastomer. It is done.
  • a quaternary onium salt such as a quaternary ammonium salt or a quaternary phosphonium salt is about 0.1 to 30 parts by weight, preferably about 0.2 to 20 parts by weight per 100 parts by weight of the fluorine-containing elastomer. It is used in the proportion of parts.
  • a compound obtained by reacting a bisphenol compound with a quaternary phosphonium halide of 2 moles ie, a bisphenol compound having a quaternary phosphonium base at both ends, as a polyol-based crosslinking agent or a quaternary phosphonium salt, or as both of them. It can also be used alone or in combination with other vulcanizing agents.
  • Each of the above vulcanized components may be blended and kneaded with the fluorine-containing elastomer as they are, or diluted with carbon black, silica, clay, talc, diatomaceous earth, barium sulfate, etc. Also used as a masterbatch dispersion.
  • conventionally known fillers or reinforcing agents carbon black, silica, graphite, clay, talc, diatomaceous earth, barium sulfate, titanium oxide, wollastonite, etc.
  • plastic Agents, lubricants, processing aids, pigments and the like can be appropriately blended.
  • Vulcanization is performed by mixing the above components by a commonly used mixing method such as roll mixing, kneader mixing, Banbury mixing, solution mixing, and the like, and then heating. Vulcanization is generally performed by primary vulcanization performed at about 100 to 250 ° C for about 1 to 120 minutes and secondary vulcanization performed at about 150 to 300 ° C for about 0 to 30 hours, but injection molding is also possible. It is.
  • Example 1 In a 10L stainless steel pressure vessel with a stirrer, 20 g of emulsifier compound (monoammonium salt) obtained in Reference Example 1 Buffer (Na 2 HPO 4 ⁇ 12H 2 O) 20g Chain transfer agent (ethyl malonate) 2.6g Ion exchange water 5100g was replaced with nitrogen to remove oxygen in the reaction vessel. Thereafter, 120 g of HFP and 351 g of a mixed gas of VdF / TFE (molar ratio 57.8 / 42.2) were introduced, and the temperature in the reactor was raised to 80 ° C. The pressure inside the reactor when reaching 80 ° C. was 2.14 MPa ⁇ G.
  • the obtained fluoropolymer latex is put into the same amount of 1% by weight calcium chloride aqueous solution, the latex is agglomerated by salting out, filtered, washed five times with ion exchange water 5 times and vacuum dried. As a result, 1630 g of a resinous VdF / TFE / HFP terpolymer was obtained.
  • the amount of residual emulsifier in the ternary copolymer was 15.7 ppm.
  • the emulsifier in the terpolymer powder is Soxhlet extracted with an ethanol / water (volume ratio 95/5) solution, and the resulting extract is subjected to LC-MS / MS measurement under the following conditions.
  • LC-MS / MS measurement Shimadzu Prominence Series LC-20A and Applied Biosystem Japan 4000Q TRAP are used.
  • Mobile phase A; 5mmol / L Ammonium acetate aqueous solution B; acetonitrile gradient is used
  • PHL Residual excess (g) x 100 / Round latex (g)
  • Example 1 a copolymerization reaction was carried out using the same amount of ammonium perfluorooctanoate instead of the emulsifier compound obtained in Reference Example 1 as an emulsifier (polymerization time 228 minutes) to obtain 6740 g of a fluoropolymer latex. It was. Thereafter, 1640 g of a resinous VdF / TFE / HFP terpolymer was obtained in the same manner.
  • Example 2 In Example 1, instead of the emulsifier compound obtained in Reference Example 1 as an emulsifier, the same amount of CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 was used for the copolymerization reaction for 315 minutes, and 6700 g The fluoropolymer latex was obtained. Thereafter, 1580 g of a resinous VdF / TFE / HFP terpolymer was obtained in the same manner.
  • CF 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COONH 4 was used for the copolymerization reaction for 315 minutes, and 6700 g The fluoropolymer latex was obtained. Thereafter, 1580 g of a resinous VdF / TFE / HFP terpolymer was obtained in the same manner.
  • Example 2 In Example 1, instead of the emulsifier compound (monoammonium salt) obtained in Reference Example 1, the same amount (20 g) of the emulsifier compound (diammonium salt) obtained in Reference Example 2 was used for the copolymerization reaction. For 241 minutes to obtain 6690 g of a fluoropolymer latex.
  • This fluoropolymer latex was salted out and agglomerated to obtain 1610 g of a resinous VdF / TFE / HFP terpolymer.
  • Example 3 (1) To a 30L stainless steel pressure vessel equipped with a stirrer, 60 g of emulsifier compound obtained in Reference Example 1 (Monoammonium salt) Buffer (Na 2 HPO 4 ⁇ 12H 2 O) 4g Chain transfer agent (ICF 2 CF 2 CF 2 CF 2 I) 60 g Ion exchange water 15.1kg , Then TFE 315g (11.8mol%) VdF 550g (32.1 mol%) HFP 2250g (56.1mol%) And the temperature in the reaction vessel was raised to 70 ° C. The pressure inside the reactor when the temperature reached 70 ° C. was 3.09 MPa ⁇ G.
  • the obtained fluoropolymer latex (23.4 kg) was put into the same amount of 4 wt% calcium chloride aqueous solution and treated in the same manner as in Example 1 to give an elastomeric VdF / TFE / HFP terpolymer 7.31. kg was obtained.
  • Example 3 (1) a copolymerization reaction was carried out using the same amount of ammonium perfluorooctanoate instead of the emulsifier compound obtained in Reference Example 1 as an emulsifier, and 23.9 kg of a fluoropolymer latex was obtained. Obtained.
  • the amount of aggregate was 0.0028 PHL.
  • Example 3 (2) Using the resulting elastomeric terpolymer, kneading and vulcanization were carried out as in Example 3 (2).
  • the obtained fluoropolymer latex (22.5 kg) was put into the same amount of 4 wt% calcium chloride aqueous solution and treated in the same manner as in Example 1 to obtain an elastomeric VdF / TFE / FMVE terpolymer 7.1. kg was obtained.
  • the ppm and aggregate amount were 0.0011 PHL.
  • Example 4 (1) instead of the emulsifier compound obtained in Reference Example 1, 71 g of ammonium perfluorooctanoate was used for the copolymerization reaction for 720 minutes to obtain 22.4 kg of a fluoropolymer latex. Got.
  • This fluoropolymer latex was salted out and agglomerated to obtain 7.1 kg of a VdF / TFE / FMVE terpolymer.
  • the residual emulsifier amount in the elastomeric terpolymer was 490 ppm, and the aggregate amount was 0.0020 PHL.
  • Example 4 (2) Using the resulting elastomeric terpolymer, kneading and vulcanization were carried out as in Example 4 (2).
  • Example 5 A 10 L stainless steel pressure vessel equipped with a stirrer was evacuated and then the emulsifier compound obtained in Reference Example 120 was added in 120 g. (Monoammonium salt) Buffer (KH 2 PO 4 ) 78g Chain transfer agent (ICF 2 CF 2 Br) 8g Ion exchange water 5.4kg And then TFE 130g (1.30mol%) FMVE 130g (0.76mol%) And the temperature in the reaction vessel was raised to 60 ° C. The pressure inside the reactor when reaching 60 ° C. was 0.84 MPa ⁇ G.
  • the obtained fluoropolymer latex (7.2 kg) was put into the same amount of 4 wt% calcium chloride aqueous solution and treated in the same manner as in Example 1 to obtain 1.6 kg of an elastomeric TFE / FMVE copolymer. It was.
  • Example 5 (1) instead of the emulsifier compound obtained in Reference Example 1, 120 g of ammonium perfluorooctanoate was used for the copolymerization reaction for 990 minutes to obtain 7.3 kg of a fluoropolymer latex. Got.
  • This fluoropolymer latex was salted out and agglomerated to obtain 1.6 kg of an elastomeric TFE / FMVE copolymer.
  • the residual emulsifier amount in the copolymer was 631 ppm, and the aggregate amount was 0.0033 PHL.
  • Example 6 (1) A 10 L stainless steel pressure vessel equipped with a stirrer was evacuated and then 8 g of the emulsifier compound obtained in Reference Example 1 was added. (Monoammonium salt) Buffer (NaH 2 PO 4 ⁇ 12H 2 O) 6g Chain transfer agent (isopropanol) 10.6 g Ion exchange water 5.1kg Then VdF 180g (2.81mol%) HFP 540g (3.6mol%) And the temperature in the reaction vessel was raised to 80 ° C. The pressure in the reactor when reaching 80 ° C. was 2.81 MPa ⁇ G.
  • the obtained fluoropolymer latex (7.3 kg) was put into the same amount of 4 wt% calcium chloride aqueous solution and treated in the same manner as in Example 1 to obtain 2.2 kg of an elastomeric VdF / HFP copolymer. It was.
  • Example 6 (1) instead of the emulsifier compound obtained in Reference Example 1, 8 g of ammonium perfluorooctanoate was used for the copolymerization reaction for 210 minutes, and 7.3 kg of the fluoropolymer latex Got.
  • This fluoropolymer latex was salted out and agglomerated to obtain 2.2 kg of an elastomeric VdF / HFP copolymer.
  • the residual emulsifier amount in the copolymer was 491 ppm, and the aggregate amount was 0.0030 PHL.
  • Example 6 (2) Using the obtained elastomeric copolymer, kneading and vulcanization were carried out as in Example 6 (2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 一般式 CnF2n+1CmH2mP(O)(OM1)(OM2)(M1:水素原子、アルカリ金属またはアンモニウム基、M2:アルカリ金属またはアンモニウム塩、好ましくはアンモニウム基、n:2~6の整数、m:1~3の整数)で表わされるパーフルオロアルキルアルキルホスホン酸塩を乳化剤として、含フッ素モノマーを乳化重合させ、環境分解性を有し、残存乳化剤量を著しく低減させることが可能な含フッ素ポリマーラテックスを製造する。この含フッ素ポリマーラテックスは、パーフルオロオクタン酸(塩)乳化剤を用いた含フッ素ポリマーラテックスと同等以上の乳化安定性を示す。

Description

含フッ素ポリマーラテックスの製造法
 本発明は、含フッ素ポリマーラテックスの製造法に関する。さらに詳しくは、残存乳化剤量を著しく低減させることが可能な含フッ素ポリマーラテックスの製造法に関する。
 パーフルオロアルキル基含有カルボン酸(塩)は、乳化剤として作用するフッ素系界面活性剤として、含フッ素モノマーの乳化重合反応において広く用いられている。中でも、パーフルオロオクタン酸C7F15COOHまたはその塩(〔PFOA〕と総称する)は、モノマー乳化性やラテックス安定性にすぐれた界面活性剤であることが知られている。
 しかしながら、パーフルオロ化された化学物質は、自然環境中では分解され難く、またPFOAによって代表される炭素数8のパーフルオロ化された化合物は、ヒト体内への残留性が著しく強いことが昨今判明している。そこに加えて、PFOAはそれの有するすぐれたポリマーへの親和性のため、乳化重合法で得られたポリマーラテックスの凝集後において、生成した含フッ素ポリマーへのPFOA付着量や残存量が多く、これを低減させることが強く望まれている。
 含フッ素乳化剤に環境分解性を付与する手段として、界面活性剤化合物のパーフルオロ化された疎水性基中に水素化された部分を設けることが考えられる。また、分解物の環境残留性を弱める手段としては、疎水性基中に CnF2n+1CpH2pCqF2q- (n,q:1~7、p:1以上)基のように連続したパーフルオロ化された炭素原子数が8未満となる炭素鎖であることが望ましいと考えられる。
 特許文献1には、一般式
   F(CF2CF2)nCH2CH2SO3M   (M:1価カチオン)
で表わされ、集合数nが2~8で、平均値が2~6のものと集合数nが2~6のものとの混合物を分散剤として使用することが記載されている。しかしながら、含フッ素界面活性剤としてこのパーフルオロアルキルエタンスルホン酸(塩)を用いた場合には、重合反応時に連鎖移動を起こすため、得られるポリマーが低分子量化するのを避けることができない。
 重合反応時の連鎖移動性の低い含水素フッ素系界面活性剤として、一般式
   Rf(CH2)mR′fCOOM
      Rf:C3~C8のパーフルオロアルキル基またはパーフルオロアル
        コキシル基
      R′f:C1~C4のパーフルオロアルキレン基
      M:NH4、Li、Na、K、H
      m:1~3
で表わされる化合物を用いることが、特許文献2で提案されている。しかしながら、この化合物をフッ素系モノマーの乳化重合の乳化剤として用いた場合には、モノマーの乳化性、ラテックスの安定の点でPFOAよりも劣るばかりではなく、フッ化ビニリデンの単独重合および共重合においては、モノマーであるフッ化ビニリデンのミセル溶解性が低いため重合速度が非常に遅くなり、さらに得られるポリマーラテックスの安定性も悪く、重合反応中に析出物がみられる場合もある。
 また、特許文献2に記載される含水素フッ素系界面活性剤Rf(CH2)mRf′COOMは、対応するカルボン酸エステルをアルカリ加水分解して遊離のカルボン酸とした後、塩基と反応させてカルボン酸塩を形成させている。このカルボン酸エステルのアルカリ加水分解は、過剰量のアルカリの存在下で行われるので、分子中の-CH2CF2-基が脱HF化反応して-CH=CF-基に変換されたものを数%程度生成させるという副反応もみられる。
 さらに、従来より含フッ素ポリエーテル系のカルボン酸(塩)を乳化剤として用いる試みもなされているが(特許文献3参照)、この種の化合物は水性媒体への溶解度の低いものが多く、取り扱いが著しく困難であり、凝析後の洗浄も容易ではない。特に、ポリエーテル系カルボン酸(塩)乳化剤の内、側鎖を有するものあるいは長鎖を有するものは、このような傾向が顕著である。
 また、ポリエーテル系のカルボン酸(塩)は泡立ちし易く、重合反応で得られたラテックスの取り扱いも容易ではないばかりではなく、ラテックス中の凝集物量もPFOAと比較して多いという記載もみられる(特許文献3参照)。
 特許文献4には、(A)フルオロアルキル基またはフルオロアルケニル基を有するホスホン酸塩および(B)高度にフッ素化された有機化合物を含有してなる離型剤が記載されており、離型剤は(A)成分および(B)成分を有機溶剤または水性媒体に溶解または分散させて調製されており、(A)成分乳化剤は乳化重合反応の乳化剤として用いられている訳ではない。
なお、(A)成分として用いられるホスホン酸塩は、一般式
      RfR2PO(OR1)m(OH)n(OM)u
      RfO(p-C6H4)CH2PO(OR1)m(OH)n(OM)u
         Rf:C4~C20のフルオロアルキル基、フルオロアルケニル
           基
          M:アルカリ金属原子、アンモニウム基、C1~C5のアル
           キル基またはアルコキシ基で置換された置換アンモ
           ニウム基
         R1:C1~C5のアルキル基
         R2:C1~C10のアルキレン基、-CH2CH(OR3)CH2-基
           (R3はHまたはC1~C10のアルキル基)
          m:2、1、0
          n:2、1、0で、(2-m)またはこれより小さい数
          u:2-(m+n)
で表わされ、具体例としては、次のような化合物が挙げられてるが、アンモニウム塩についての例示はみられない。
      C2F5(CF2CF2)2~8CH2CH2P(O)(OH)2
      C8F17CH2CH2P(O)(OH)2
      (CF3)2CF(CF2CF2)2~4CH2CH2P(O)(OH)2
      C9F17O(p-C6H4)CH2P(O)(OH)(OC3H7)
      C9F17O(p-C6H4)CH2P(O)(OH)(OC2H5)  〔実施例〕
USP4,380,618 特開平10-212261号公報 USP3,271,341 特開平1-285312号公報 特開昭58-210096号公報
 本発明の目的は、環境分解性を有し、残存乳化剤量を著しく低減させることが可能な含フッ素ポリマーラテックスの製造法を提供することにある。
 かかる本発明の目的は、一般式
   CnF2n+1CmH2mP(O)(OM1)(OM2)
(ここで、M1は水素原子、アルカリ金属またはアンモニウム基であり、M2はアルカリ金属またはアンモニウム塩であり、nは2~6の整数、mは1~3の整数である)で表わされるパーフルオロアルキルアルキルホスホン酸塩を乳化剤として、含フッ素モノマーを乳化重合させ、含フッ素ポリマーラテックスを製造することによって達成される。
 本発明に係る含フッ素ポリマーラテックスでは、上記パーフルオロアルキルアルキルホスホン酸塩を乳化剤として用いているため、次のような効果を奏する。
 (1) 乳化剤化合物の疎水性基中にCH2基を有しているため、仮に環境中に放出された場合にあっても、水系または土壌中での分解性を有しており、また分解物としてPFOA誘導体を発生することもない。
 (2) 疎水性基中にCH2基を有していても、重合反応中に連鎖移動されることもなく、PFOA乳化剤を用いた場合と同等の高分子量含フッ素ポリマーを得ることができる。分子中にCH2基を有するということは、環境中での分解性にすぐれていることを示している。また、得られるポリマーの加硫物性においても遜色がない。
 (3) 乳化重合によって得られた含フッ素ポリマーラテックスは、PFOA乳化剤を用いた含フッ素ポリマーラテックスと同等以上の乳化安定性を示すが、PFOA程の高いポリマーへの親和性がないと考えられるため、ラテックスを凝集、水洗して得られるポリマー中の残存乳化剤量は、PFOAに比べてはるかに少ない。
 (4) 残存乳化剤量が多い場合には、加硫速度の遅延、架橋密度の低下などのおそれがあり、架橋密度が低い場合には破断強度や伸びの低下、圧縮永久歪の悪化へとつながるが、残存乳化剤量が少ない場合には、こうした懸念が払拭される。また、乳化剤の最終製品への残存量が減ることで、環境への放出リスクを減らすことができる。
 (5) PFOA乳化剤と同等の使用方法で乳化重合の乳化剤として用いられるので、既存の生産設備や生産プロセスを変更する必要がない。
 本発明方法において含フッ素モノマーの乳化重合の乳化剤として用いられるパーフルオロアルキルアルキルホスホン酸塩は、特許文献5に記載されるパーフルオロアルキルアルキルホスホン酸
   CnF2n+1CmH2mP(O)(OH)2
に、アルカリ金属水酸化物またはアンモニア水を反応させることにより得られる。アルカリ金属水酸化物またはアンモニアは、パーフルオロアルキルアルキルホスホン酸に対して等モル量用いられた場合にはモノ塩を形成させ、また2倍モル量用いられた場合にはジ塩を形成させる。一般には、必要理論モル数以上で用いられ、等モル量以上2倍モル量未満用いられた場合には、モノ塩とジ塩との混合物が形成される。
 パーフルオロアルキルアルキルホスホン酸のモノ塩およびジ塩としては、次のような化合物が例示される。
 C2F5CH2P(O)(ONH4)(OH)       C2F5CH2P(O)(ONH4)2
 C3F7CH2P(O)(ONH4)(OH)       C3F7CH2P(O)(ONH4)2
 C4F9CH2P(O)(ONH4)(OH)       C4F9CH2P(O)(ONH4)2
 C5F11CH2P(O)(ONH4)(OH)      C5F11CH2P(O)(ONH4)2
 C6F13CH2P(O)(ONH4)(OH)      C6F13CH2P(O)(ONH4)2
 C2F5C2H4P(O)(ONH4)(OH)      C2F5C2H4P(O)(ONH4)2
 C3F7C2H4P(O)(ONH4)(OH)      C3F7C2H4P(O)(ONH4)2
 C4F9C2H4P(O)(ONH4)(OH)      C4F9C2H4P(O)(ONH4)2
 C5F11C2H4P(O)(ONH4)(OH)      C5F11C2H4P(O)(ONH4)2
 C6F13C2H4P(O)(ONH4)(OH)      C6F13C2H4P(O)(ONH4)2
 C2F5C3H6P(O)(ONH4)(OH)      C2F5C3H6P(O)(ONH4)2
 C3F7C3H6P(O)(ONH4)(OH)      C3F7C3H6P(O)(ONH4)2
 C4F9C3H6P(O)(ONH4)(OH)      C4F9C3H6P(O)(ONH4)2
 C5F11C3H6P(O)(ONH4)(OH)      C5F11C3H6P(O)(ONH4)2
 C6F13C3H6P(O)(ONH4)(OH)      C6F13C3H6P(O)(ONH4)2
 
 C2F5CH2P(O)(ONa)(OH)       C2F5CH2P(O)(ONa)2
 C3F7CH2P(O)(ONa)(OH)       C3F7CH2P(O)(ONa)2
 C4F9CH2P(O)(ONa)(OH)       C4F9CH2P(O)(ONa)2
 C5F11CH2P(O)(ONa)(OH)       C5F11CH2P(O)(ONa)2
 C6F13CH2P(O)(ONa)(OH)       C6F13CH2P(O)(ONa)2
 C2F5C2H4P(O)(ONa)(OH)       C2F5C2H4P(O)(ONa)2
 C3F7C2H4P(O)(ONa)(OH)       C3F7C2H4P(O)(ONa)2
 C4F9C2H4P(O)(ONa)(OH)       C4F9C2H4P(O)(ONa)2
 C5F11C2H4P(O)(ONa)(OH)      C5F11C2H4P(O)(ONa)2
 C6F13C2H4P(O)(ONa)(OH)      C6F13C2H4P(O)(ONa)2
 C2F5C3H6P(O)(ONa)(OH)       C2F5C3H6P(O)(ONa)2
 C3F7C3H6P(O)(ONa)(OH)       C3F7C3H6P(O)(ONa)2
 C4F9C3H6P(O)(ONa)(OH)       C4F9C3H6P(O)(ONa)2
 C5F11C3H6P(O)(ONa)(OH)      C5F11C3H6P(O)(ONa)2
 C6F13C3H6P(O)(ONa)(OH)      C6F13C3H6P(O)(ONa)2
 ここで前記一般式におけるmの値は、3以下に限定されるものではないが、あまりにも長鎖となったものを乳化重合反応に用いた場合には、フッ素系モノマーの乳化能力の低下をひき起すようになる。また、M1、M2はメチル基であってもよいが、モノエステルは単離が困難であるため工業化は現実的ではなく、ジエステルは水溶性に欠ける点で好ましくなく、一方、ホスホン酸のままでは乳化重合の際に、緩衝剤の影響をうけることから好ましくない。
 これらのパーフルオロアルキルアルキルホスホン酸塩は、直鎖型のフルオロアルキル基を有するため、同等の乳化能を有するフルオロポリエーテル型の乳化剤化合物よりも水への溶解性が良好であり、一方生成した含フッ素ポリマーへの付着性がPFOAよりも低いため、乳化重合で得られた含フッ素ポリマーラテックスを、塩析、酸析、機械的攪拌等の種々の方法で凝析して得られた含フッ素ポリマー中の残存乳化剤量を著しく低減させることができる。
 この乳化剤を用いての含フッ素モノマーの乳化重合反応は、PFOA乳化剤を用いた場合と同様の方法で行われる。乳化重合反応は、過硫酸アンモニウム等の水溶性無機過酸化物またはそれと還元剤とのレドックス系を触媒として行われ、その際重合系内のpHを調節するために、リン酸塩(Na2HPO4、NaH2PO4、KH2PO4等)またはホウ酸塩(Na2B2O7等)などの緩衝能を有する電解質物質あるいはNaOH等を添加して用いてもよい。乳化重合反応は、水に対して約0.001~10重量%、好ましくは約0.01~5重量%の乳化剤を用い、約30~120℃で約1~48時間程加圧条件下で行われる。
 乳化重合される含フッ素モノマーとしては、フッ化ビニリデン〔VdF〕、ヘキサフルオロプロピレン〔HFP〕、テトラフルオロエチレン〔TFE〕、ペンタフルオロプロピレン〔PFP〕、モノクロロトリフルオロエチレン〔CTFE〕、C1~C3のアルキル基を有するパーフルオロ(アルキルビニルエーテル)〔FAVE〕、パーフルオロ(アルコキシアルキルビニルエーテル)〔FOAVE〕等の少くとも1種、一般には2種または3種の共重合反応として行われ、含フッ素モノマー1種のみが用いられる場合には、それの単独重合反応として行われる以外に、エチレン、プロピレン等のα-オレフィンとの共重合反応としても行われる。なお、共重合反応は、得られる含フッ素ポリマー、特に含フッ素共重合体エラストマーの組成の均一性の点からは、分添法として行われることが好ましい。
 共重合反応に際しては、連鎖移動剤としてマロン酸エチル、酢酸エチル等のエステル類、メタノール、エタノール、イソプロパノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、ヘキサン、オクタン等の炭化水素類、クロロホルム、四塩化炭素、ジクロロエタン等のハロゲン化炭化水素類など種々のものが用いられる。さらに、ICF2CF2I、ICF2CF2CF2CF2I等の含ヨウ素パーフルオロ化合物、ICF2CF2Br、ICF2CF2CF2CF2Br等の含ヨウ素臭素パーフルオロ化合物を連鎖移動剤として用いることができ、これらの化合物はパーオキサイド架橋における架橋部位を形成させる役割を担うこともできる。
  架橋部位を形成させるために用いられる含臭素単量体化合物としては、臭化ビニル、ヨウ化ビニル、1-ブロモ-2,2-ジフルオロエチレン、1-ヨード-2,2-ジフルオロエチレン、パーフルオロアリルブロマイド、パーフルオロアリルアイオダイド、4-ブロモ-1,1,2-トリフルオロブテン、4-ヨード-1,1,2-トリフルオロブテン、4-ブロモ-3,3,4,4-テトラフルオロブテン、ブロモトリフルオロエチレン、ヨードトリフルオロエチレン等の臭素化ビニル化合物または臭素化オレフィンを用いることができるが、さらに一般式
   CR1R2=CR3X または CR1R2=CR3(R4-X)
     R1,R2,R3:同一または互いに異なる基であり、H、F、Cl、炭素数1
         ~10のアルキル基、フルオロアルキル基であり、これら
         の基はエーテル結合を含んでいてもよい
        R4:炭素数1~10のアルキル基、フルオロアルキル基であり、
         これらの基はエーテル結合を含んでいてもよい
        X:Br、I
で表される臭素化またはヨウ素化されたビニル化合物またはオレフィン化合物であってもよい。
 好ましくは次の一般式で表わされるような臭素基含有ビニルエーテルが用いられる。
   BrRf-O-CF=CF2
     BrRf:臭素基含有パーフルオロアルキル基
かかる臭素基含有ビニルエーテルとしては、例えば CF2BrCF2OCF=CF2、CF2Br(CF2)2OCF=CF2、CF2Br(CF2)3OCF=CF2、CF3CFBr(CF2)2OCF=CF2、CF2Br(CF2)4OCF=CF2等が用いられる。
  これら以外にも、一般式 ROCF=CFBr または ROCBr=CF2 (R:低級アルキル基またはフルオロアルキル基)で表わされる臭素基含有ビニルエーテル等を用いることもできる。
  また、含ヨウ素単量体化合物としては、ヨードトリフルオロエチレン、1,1-ジフルオロ-2-ヨードエチレン、パーフルオロ(2-ヨードエチルビニルエーテル)、ヨウ化ビニル等が用いられる。
  これらの含臭素または含ヨウ素単量体化合物は、含フッ素モノマーの総量に対して、約0.001~5モル%、好ましくは約0.01~1モル%の割合で用いられる。これ以下の使用割合では、得られる加硫物の圧縮永久歪特性が悪化し、一方これ以上の割合で使用すると、加硫物の伸びが低下するようになる。
 得られた含フッ素ポリマーラテックスの凝析は、好ましくは塩析によって行われ、例えば約0.1~5重量%、好ましくは約0.3~3重量%の濃度の塩化カルシウム水溶液が用いられる。凝析された含フッ素ポリマーには、ロ過、水洗および乾燥の各工程が適用される。
 含フッ素モノマーの重合体としては、次のようなものが例示され、その共重合組成などによって樹脂状またはエラストマー状の含フッ素ポリマーを形成し得る。
     VdF単独重合体
     TFE単独重合体
     VdF-TFE共重合体
     VdF-HFP共重合体
     VdF-TFE-FMVE3元共重合体
     VdF-TFE-HFP3元共重合体
     VdF-TFE-CTFE3元共重合体
     VdF-CTFE共重合体
     VdF-TFE-P 3元共重合体
     TFE-P共重合体
     TFE-E共重合体
     TFE-CTFE共重合体
     TFE-HFP共重合体
     TFE-FMVE共重合体
     TFE-FPVE共重合体
     TFE-FMVE-FPVE3元共重合体
     TFE-FEVE-FPVE3元共重合体
     VdF-TFE-FMVE3元共重合体
好ましくはVdF-HFP共重合体、VdF-TFE-FMVE3元共重合体、VdF-TFE-HFP3元共重合体あるいはTFE-FMVE共重合体が用いられる。
     注)  E:エチレン
         P:プロピレン
       FMVE:パーフルオロ(メチルビニルエーテル)
       FEVE:パーフルオロ(エチルビニルエーテル)
       FPVE:パーフルオロ(プロピルビニルエーテル)
 これらの含フッ素ポリマーの加硫は、臭素基またはヨウ素基を有する場合には有機過酸化物によって、それ以外の場合にはポリオール加硫等によって行われる。
  パーオキサイド加硫法に用いられる有機過酸化物としては、例えば2,5-ジメチル-2,5-ビス(第3ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ビス(第3ブチルパーオキシ)ヘキシン-3、ベンゾイルパーオキシド、ビス(2,4-ジクロロベンゾイル)パーオキシド、ジクミルパーオキシド、ジ第3ブチルパーオキシド、第3ブチルクミルパーオキシド、第3ブチルパーオキシベンゼン、1,1-ビス(第3ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、2,5-ジメチルヘキサン-2,5-ジヒドロキシパーオキシド、α,α´-ビス(第3ブチルパーオキシ)-p-ジイソプロピルベンゼン、2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン、第3ブチルパーオキシイソプロピルカーボネート等が使用される。
  これらの有機過酸化物が用いられるパーオキサイド加硫法では、通常共架橋剤として多官能性不飽和化合物、例えばトリ(メタ)アリルイソシアヌレート、トリ(メタ)アリルシアヌレート、トリアリルトリメリテート、N,N´-m-フェニレンビスマレイミド、ジアリルフタレート、トリス(ジアリルアミン)-s-トリアジン、亜リン酸トリアリル、1,2-ポリブタジエン、エチレングリコールジアクリレート、ジエチレングリコールジアクリレート等が併用される。ここで、トリ(メタ)アリル基は、トリアリル基またはトリメタアリル基を表わしている。
  パーオキサイド加硫系に配合される以上の各成分は、一般に含フッ素ポリマー100重量部当り有機過酸化物が約0.1~10重量部、好ましくは約0.5~5重量部の割合で、共架橋剤が約0.1~10重量部、好ましくは約0.5~5重量部の割合でそれぞれ用いられる。
 また、ポリオール加硫の場合には、ポリオール系架橋剤として2,2-ビス(4-ヒドロキシフェニル)プロパン〔ビスフェノールA〕、2,2-ビス(4-ヒドロキシフェニル)パーフルオロプロパン〔ビスフェノールAF〕、ヒドロキノン、カテコール、レゾルシン、4,4′-ジヒドロキシジフェニル、4-4′-ジヒドロキシジフェニルメタン、4,4′-ジヒドロキシジフェニルスルホン、2,2-ビス(4-ヒドロキシフェニル)ブタン等のポリヒドロキシ芳香族化合物あるいはそれらのアルカリ金属塩またはアルカリ土類金属塩が用いられ、これらのポリオール系架橋剤は含フッ素エラストマー100重量部当り約0.5~10重量部、好ましくは約1~5重量部の割合で用いられる。
 また、ポリオール架橋反応の加硫促進剤として、4級アンモニウム塩、4級ホスホニウム塩等の4級オニウム塩が、含フッ素エラストマー100重量部当り約0.1~30重量部、好ましくは約0.2~20重量部の割合で用いられている。
 さらに、ポリオール系架橋剤または4級ホスホニウム塩として、あるいはこれら両者を兼ねて、ビスフェノール化合物に2モル量の4級ホスホニウムハライドを反応させた化合物、すなわち両末端に4級ホスホニウム塩基を有するビスフェノール化合物を単独であるいは他の加硫剤と併用して用いることもできる。
 以上の加硫系各成分は、そのまま含フッ素エラストマーに配合し、混練してもよいし、あるいはカーボンブラック、シリカ、クレー、タルク、けいそう土、硫酸バリウム等で希釈し、含フッ素エラストマーとのマスターバッチ分散物としても使用される。組成物中には、上記各成分に加えて、従来公知の充填剤または補強剤(カーボンブラック、シリカ、グラファイト、クレー、タルク、けいそう土、硫酸バリウム、酸化チタン、ウォラストナイト等)、可塑剤、滑剤、加工助剤、顔料などを適宜配合することもできる。
 加硫は、前記各成分をロール混合、ニーダー混合、バンバリー混合、溶液混合など一般に用いられている混合法によって混合した後、加熱することによって行われる。加硫は、一般には約100~250℃で約1~120分間程度行われる一次加硫および約150~300℃で0~30時間程度行われる二次加硫によって行われるが、射出成形でも可能である。
 次に、実施例について本発明を説明する。
 参考例1〔2-(パーフルオロヘキシル)エチルホスホン酸モノアンモニウム塩の合成〕
 攪拌装置および滴下装置を備えた容量200mlの反応容器内に、40℃に加熱された水50gを保温しながら仕込み、そこに2-(パーフルオロヘキシル)エチルホスホン酸(ユニマテック製品CHEMINOX FHP-2-OH)5g(11.7ミリモル)を加えた後、濃度1.4重量%のアンモニア水溶液15.7g(NH3分:12.9ミリモル)を加え、1時間攪拌を続けて中和反応を行った。これによって、pH7.6の2-(パーフルオロヘキシル)エチルホスホン酸アンモニウム塩の水溶液70.6gを得た。この水溶液を50℃の減圧乾燥器(6.666×102Pa)で12時間乾燥し、2-(パーフルオロヘキシル)エチルホスホン酸モノアンモニウム塩5.1g(収率98.1%)を得た。
 参考例2〔2-(パーフルオロヘキシル)エチルホスホン酸ジアンモニウム塩の合成〕
 攪拌装置および滴下装置を備えた容量300mlの反応容器内に、40℃に加熱された水50gを保温しながら仕込み、そこに2-(パーフルオロヘキシル)エチルホスホン酸(CHEMINOX FHP-2-OH)5g(11.7ミリモル)を加えた後、濃度1.4重量%のアンモニア水溶液31.4g(NH3分:25.8ミリモル)を加え、2時間攪拌を続けて中和反応を行った。これによって、pH11.4の2-(パーフルオロヘキシル)エチルホスホン酸ジアンモニウム塩の水溶液86.1gを得た。この水溶液を50℃の減圧乾燥器(6.666×102Pa)で12時間乾燥し、2-(パーフルオロヘキシル)エチルホスホン酸ジアンモニウム塩5.2g(収率96.3%)を得た。
 実施例1
 攪拌機を有する容量10Lのステンレス鋼製圧力容器に、
   参考例1で得られた乳化剤化合物(モノアンモニウム塩)   20g
   緩衝剤(Na2HPO4・12H2O)                  20g
   連鎖移動剤(マロン酸エチル)               2.6g
   イオン交換水                     5100g
を仕込み、窒素置換を行って、反応容器内の酸素を除去した。その後、HFP 120gおよびVdF/TFE(モル比57.8/42.2)混合ガス351gを導入し、反応器内温度を80℃に昇温させた。80℃到達時の反応器内圧力は、2.14MPa・Gであった。
 反応器内温度の安定を確認した後、0.48gの過硫酸アンモニウムを溶解させた水溶液100gを重合開始剤として反応器内に導入し、重合反応を開始させた。重合反応が進行し、反応器内圧力が1.75MPa・Gとなった時点で、VdF/TFE/HFP(モル比54.4/39.7/5.9)混合ガスを導入し、1.85MPa・Gまで昇圧した。重合反応中は、この組成の混合ガスを導入することで、反応圧力を1.75~1.85MPa・Gの範囲に保った。
 分添した混合ガスの合計量が1680gになった時点で、混合ガスの導入を止め、反応器内圧力が1.75MP・Gとなった時点で反応器を冷却し、重合反応を停止した。重合開始剤投入から重合反応停止まで255分を要し、6710gの含フッ素ポリマーラテックスを得た。
 得られた含フッ素ポリマーラテックスを、同量の1重量%塩化カルシウム水溶液中に投入し、塩析によりラテックスを凝集させ、ロ過、5倍量のイオン交換水による5回の洗浄および真空乾燥を経て、樹脂状VdF/TFE/HFP3元共重合体1630gを得た。
 この樹脂状3元共重合体の共重合組成(19F-NMRにより測定)は、VdF/TFE/HFPモル比=55.1/40.8/4.1であり、その重量平均分子量Mw(GPCにより測定)は、約5.5×105であった。
 また、3元共重合体中の残存乳化剤量を、次のような方法にして測定したところ、残存乳化剤量は15.7ppmであった。
   3元共重合体粉体中の乳化剤を、エタノール/水(容積比95/5)溶液でソックスレー抽出し、得られた抽出液を下記条件下でLC-MS/MS測定
   LC-MS/MS測定:島津製作所製プロミネンスシリーズLC-20Aとアプライ          ドバイオシステムジャパン製4000Q TRAPよりなるシス
          テムを使用
   カラム:関東化学製Mightysil RP-18(L)GP100-20 5μmを使用
   移動相:A;5ミリモル/L酢酸アンモニウム水溶液
       B;アセトニトリル
       の2液によるグラジエントを使用
 さらに、含フッ素ポリマーラテックスの安定性を評価するため、重合反応後のラテックス中の凝集物量(PHL)の測定をした。測定は、約1kgのラテックスを、300メッシュのフィルターを用いてロ過し、そのロ過残分を計量することにより行われ、次式によりPHLを算出し、0.0023PHLという値を得た。
       PHL=ロ過残分(g)×100/ロ過ラテックス量(g)
 比較例1
 実施例1において、乳化剤として参考例1で得られた乳化剤化合物の代りに同量のパーフルオロオクタン酸アンモニウムを用いて共重合反応を行い(重合時間228分)、6740gの含フッ素ポリマーラテックスを得た。以下、同様にして、樹脂状VdF/TFE/HFP3元共重合体1640gを得た。
 得られた樹脂状3元共重合体の共重合組成は、VdF/TFE/HFPモル比=55.4/40.6/4.0であり、重量平均分子量Mwは約5.4×105、残存乳化剤量は339ppm、凝集物量は0.0019PHLであった。
 比較例2
 実施例1において、乳化剤として参考例1で得られた乳化剤化合物の代りに同量のCF3OCF(CF3)CF2OCF(CF3)COONH4を用いて共重合反応を315分間行い、6700gの含フッ素ポリマーラテックスを得た。以下、同様にして、樹脂状VdF/TFE/HFP3元共重合体1580gを得た。
 得られた樹脂状3元共重合体の共重合組成は、VdF/TFE/HFPモル比=55.0/41.1/3.9であり、重量平均分子量Mwは約5.5×105、残存乳化剤量は721ppm、凝集物量は0.0121PHLであった。
 実施例2
 実施例1において、参考例1で得られた乳化剤化合物(モノアンモニウム塩)の代りに、同量(20g)の参考例2で得られた乳化剤化合物(ジアンモニウム塩)を用いて、共重合反応を241分間行い、6690gの含フッ素ポリマーラテックスを得た。
 この含フッ素ポリマーラテックスを塩析、凝集させ、樹脂状VdF/TFE/HFP3元共重合体1610gを得た。この樹脂状3元共重合体の共重合組成は、VdF/TFE/HFPモル比=55.4/40.4/4.2であり、重量平均分子量は5.5×105であった。また、3元共重合体中の残存乳化剤量は12.2ppm、凝集物量は0.0025PHLであった。
 実施例3
 (1) 攪拌機を備えた容量30Lのステンレス鋼製圧力容器に、
   参考例1で得られた乳化剤化合物         60g
    (モノアンモニウム塩)
   緩衝剤(Na2HPO4・12H2O)              4g
   連鎖移動剤(ICF2CF2CF2CF2I)           60g
   イオン交換水                15.1kg
を仕込み、次いで
   TFE                     315g(11.8モル%)
   VdF                     550g(32.1モル%)
   HFP                     2250g(56.1モル%)
を導入し、反応容器内温度を70℃に昇温させた。70℃到達時の反応器内圧力は、3.09MPa・Gであった。
 次いで、1.5gの過硫酸アンモニウムを溶解させた水溶液500gを重合開始剤として反応器内に導入し、重合反応を開始させた。重合反応が進行し、反応器内圧力が減少するため、反応器内圧力を2.9~3.0MPa・Gに維持するように、TFE/VdF/HFP(モル比21.7/53.0/25.3)混合ガスを反応器に分添し、分添ガス量が5600gになった時点(約10時間後)で分添を止め、約30~50分間エージングを行った。この時点での反応器内圧力は、1.77MPa・Gであった。
 得られた含フッ素ポリマーラテックス(23.4kg)を、同量の4重量%塩化カルシウム水溶液中に投入し、以下実施例1と同様に処理して、エラストマー状VdF/TFE/HFP3元共重合体7.31kgを得た。
 得られたエラストマー状3元共重合体の共重合組成は、エラストマー状VdF/TFE/HFPモル比=67.3/15.8/16.9であり、ムーニー粘度ML1+5(121℃)は35pts、残存乳化剤量は22.2ppm、凝集物量は0.0022PHLであった。
 (2) 上記(1)で得られた3元共重合体         100重量部
   MTカーボンブラック              20 〃 
   ZnO                      5 〃 
   トリアリルイソシアヌレート           5 〃 
     (日本化成製品TAIC M60)
   有機過酸化物(日本油脂製品パーヘキサ25B)   3.5 〃 
以上の各成分を8インチオープンロールを用いて混練し、混練物を180℃で10分間プレス加硫し、次いで230℃で22時間オーブン加硫(二次加硫)した。
 比較例3
 (1) 実施例3(1)において、乳化剤として参考例1で得られた乳化剤化合物の代りに同量のパーフルオロオクタン酸アンモニウムを用いて共重合反応を行い、23.9kgの含フッ素ポリマーラテックスを得た。
 得られたエラストマー状3元共重合体の共重合組成は、VdF/TFE/HFPモル比=67/16/17であり、ムーニー粘度ML1+5(121℃)は34pts、残存乳化剤量は511ppm、凝集物量は0.0028PHLであった。
 (2) 得られたエラストマー状3元共重合体を用い、実施例3(2)の如く、混練および加硫が行われた。
 実施例4
 (1) 攪拌機を備えた容量30Lのステンレス鋼製圧力容器を真空にした後、そこに
   参考例1で得られた乳化剤化合物        71g
    (モノアンモニウム塩)
   緩衝剤(Na2HPO4・12H2O)             51g
   CF2=CFOCF2CF2Br                 27g
   連鎖移動剤(ICF2CF2Br)              30g
   イオン交換水                15.5kg
を仕込み、次いで
   TFE                     840g( 8.4モル%)
   VdF                     3780g(59.1モル%)
   FMVE                     2800g(16.9モル%)
を導入し、反応容器内温度を50℃に昇温させた。50℃到達時の反応器内圧力は、3.92MPa・Gであった。
 次いで、10gの過硫酸アンモニウムを溶解させた水溶液500gを重合開始剤として反応器内に導入し、重合反応を開始させた。重合反応が進行するにつれて反応器内圧力が減少し、反応器内圧力が1.2MPa・Gになった時点(約12.5時間後)で反応器を冷却し、重合反応を停止させた。
 得られた含フッ素ポリマーラテックス(22.5kg)を、同量の4重量%塩化カルシウム水溶液中に投入し、以下実施例1と同様に処理して、エラストマー状VdF/TFE/FMVE3元共重合体7.1kgを得た。
 得られたエラストマー状3元共重合体の共重合組成は、VdF/TFE/FMVEモル比=73.2/10.0/16.8であり、ムーニー粘度ML1+5(121℃)は32pts、残存乳化剤量は24.8ppm、凝集物量は0.0011PHLであった。
 (2) 上記(1)で得られた3元共重合体         100重量部
   MTカーボンブラック              30 〃 
   ZnO                      6 〃 
   トリアリルイソシアヌレート          6.7 〃 
     (日本化成製品TAIC M60)
   有機過酸化物(日本油脂製品パーヘキサ25B)   1.3 〃 
以上の各成分を8インチオープンロールを用いて混練し、混練物を180℃で10分間プレス加硫し、次いで230℃で22時間オーブン加硫(二次加硫)した。
 比較例4
 (1) 実施例4(1)において、参考例1で得られた乳化剤化合物の代りに、71gのパーフルオロオクタン酸アンモニウムを用いて、共重合反応を720分間行い、22.4kgの含フッ素ポリマーラテックスを得た。
 この含フッ素ポリマーラテックスを塩析、凝集させ、VdF/TFE/FMVE3元共重合体を7.1kg得た。この3元共重合体の共重合組成は、VdF/TFE/FMVEモル比=73.0/10.1/16.9であり、そのムーニー粘度ML1+5(121℃)は32ptsであった。また、エラストマー状3元共重合体中の残存乳化剤量は490ppm、凝集物量は0.0020PHLであった。
 (2) 得られたエラストマー状3元共重合体を用い、実施例4(2)の如く、混練および加硫が行われた。
 実施例5
 (1) 攪拌機を備えた容量10Lのステンレス鋼製圧力容器を真空にした後、そこに
   参考例1で得られた乳化剤化合物        120g
    (モノアンモニウム塩)  
   緩衝剤(KH2PO4)                  78g
   連鎖移動剤(ICF2CF2Br)              8g
   イオン交換水                 5.4kg
を仕込み、次いで
   TFE                     130g(1.30モル%)
   FMVE                     130g(0.76モル%)
を導入し、反応容器内温度を60℃に昇温させた。60℃到達時の反応器内圧力は、0.84MPa・Gであった。
 次いで、7gの過硫酸アンモニウムを溶解させた水溶液200gを重合開始剤として反応器内内に導入し、重合反応を開始させた。重合反応が進行し、反応器内圧力が減少するため、反応器内圧力を0.75~0.85MPa・Gに維持するように、TFE/FMVE(モル比62.4/37.6)混合ガスを反応器に分添し、分添ガス量が1.72kgになった時点(約18.5時間後)で分添を止め、反応器内圧力が0.75MPa・Gとなった時点から約2時間エージングを行った。
 得られた含フッ素ポリマーラテックス(7.2kg)を、同量の4重量%塩化カルシウム水溶液中に投入し、以下実施例1と同様に処理して、エラストマー状TFE/FMVE共重合体1.6kgを得た。
 得られたエラストマー状共重合体の共重合組成は、TFE/FMVEモル比=68.2/31.8であり、ムーニー粘度ML1+5(121℃)は45pts、残存乳化剤量は29.8ppm、凝集物量は0.0031PHLであった。
 (2) 上記(1)で得られた共重合体          100重量部
   MTカーボンブラック              15 〃 
   ハイドロタルサイト(協和化学製品DHT-4A)     3 〃 
   トリアリルイソシアヌレート(TAIC M60)     3.5 〃 
   有機過酸化物(パーヘキサ25B)         0.8 〃 
以上の各成分を8インチオープンロールを用いて混練し、混練物を180℃で10分間プレス加硫し、次いで230℃で22時間オーブン加硫(二次加硫)した。
 比較例5
 (1) 実施例5(1)において、参考例1で得られた乳化剤化合物の代りに、120gのパーフルオロオクタン酸アンモニウムを用いて、共重合反応を990分間行い、7.3kgの含フッ素ポリマーラテックスを得た。
 この含フッ素ポリマーラテックスを塩析、凝集させ、エラストマー状TFE/FMVE共重合体1.6kgを得た。このエラストマー状共重合体の共重合組成は、TFE/FMVEモル比=68.0/32.0であり、そのムーニー粘度ML1+5(121℃)は47ptsであった。また、共重合体中の残存乳化剤量は631ppm、凝集物量は0.0033PHLであった。
 (2) 得られたエラストマー状共重合体を用い、実施例5(2)の如く、混練および加硫が行われた。
 実施例6
 (1) 攪拌機を備えた容量10Lのステンレス鋼製圧力容器を真空にした後、そこに
   参考例1で得られた乳化剤化合物          8g
    (モノアンモニウム塩) 
   緩衝剤(NaH2PO4・12H2O)              6g
   連鎖移動剤(イソプロパノール)        10.6g
   イオン交換水                 5.1kg
を仕込み、次いで
   VdF                     180g(2.81モル%)
   HFP                     540g(3.6モル%)
を導入し、反応容器内温度を80℃に昇温させた。80℃到達時の反応器内圧力は、2.81MPa・Gであった。
 次いで、6.5gの過硫酸アンモニウムを溶解させた水溶液200gを重合開始剤として反応器内に導入し、重合反応を開始させた。次いで、VdF/HFP(モル比82.4/17.6)混合ガスを分添して、反応器内圧力を3.2MPa・Gとした。重合反応が進行し、反応器内圧力が減少するため、反応器内圧力を3.1~3.2MPa・Gに維持するように、上記組成の混合ガスを反応器に分添し、分添ガス量が2.16kgになった時点で分添を止め、反応器内圧力が3.1MPa・Gとなった時点からエージングを行い、反応器内圧力が1.9MPa・Gとなった時点で反応器を冷却し、反応を停止させた(反応時間約3.5時間)。
 得られた含フッ素ポリマーラテックス(7.3kg)を、同量の4重量%塩化カルシウム水溶液中に投入し、以下実施例1と同様に処理して、エラストマー状VdF/HFP共重合体2.2kgを得た。
 得られたエラストマー状共重合体の共重合組成は、VdF/HFPモル比=78.1/21.9であり、ムーニー粘度ML1+5(121℃)は41pts、残存乳化剤量は24.8ppm、凝集物量は0.0027PHLであった。
 (2) 上記(1)で得られた共重合体           100重量部
   MTカーボンブラック              25 〃 
   MgO                       3 〃 
   2,2-(4-ヒドロキシフェニル)           2 〃 
    ヘキサフルオロプロパン
   ベンジルトリフェニルホスホニウムクロライド  0.3 〃 
以上の各成分を8インチオープンロールを用いて混練し、混練物を180℃で10分間プレス加硫し、次いで230℃で22時間オーブン加硫(二次加硫)した。
 比較例6
 (1) 実施例6(1)において、参考例1で得られた乳化剤化合物の代りに、8gのパーフルオロオクタン酸アンモニウムを用いて、共重合反応を210分間行い、7.3kgの含フッ素ポリマーラテックスを得た。
 この含フッ素ポリマーラテックスを塩析、凝集させ、エラストマー状VdF/HFP共重合体2.2kgを得た。このエラストマー状共重合体の共重合組成は、VdF/HFPモル比=77.9/22.1であり、そのムーニー粘度ML1+5(121℃)は40ptsであった。また、共重合体中の残存乳化剤量は491ppm、凝集物量は0.0030PHLであった。
 (2) 得られたエラストマー状共重合体を用い、実施例6(2)の如く、混練および加硫が行われた。
 以上の各実施例および比較例で得られた加硫物について、下記諸特性を測定し、次のような値を得た。なお、常態物性は、ASTM D412に対応するJIS K6251に準拠し、また圧縮永久歪は、ASTM Method Bに準拠し、P-24 Oリングについて測定された。得られた結果は、次の表に示される。
Figure JPOXMLDOC01-appb-I000001

Claims (7)

  1.  一般式
       CnF2n+1CmH2mP(O)(OM1)(OM2)
    (ここで、M1は水素原子、アルカリ金属またはアンモニウム基であり、M2はアルカリ金属またはアンモニウム塩であり、nは2~6の整数、mは1~3の整数である)で表わされるパーフルオロアルキルアルキルホスホン酸塩を乳化剤として、含フッ素モノマーを乳化重合させることを特徴とする含フッ素ポリマーラテックスの製造法。
  2.  乳化剤としてパーフルオロアルキルアルキルホスホン酸アンモニウム塩が用いられる請求項1記載の含フッ素ポリマーラテックスの製造法。
  3.  請求項1記載の方法で得られた含フッ素ポリマーラテックス。
  4.  請求項3記載の含フッ素ポリマーラテックスを凝析して得られた含フッ素ポリマー。
  5.  含フッ素ポリマーラテックスを塩析して得られた請求項4記載の含フッ素ポリマー。
  6.  ポリマー分子中に、含臭素単量体化合物、含ヨウ素単量体化合物または含ヨウ素臭素パーフルオロ化合物に由来する臭素基および/またはヨウ素基を架橋性基として有する請求項4記載の含フッ素ポリマー。
  7.  ポリマー分子中に、含臭素単量体化合物、含ヨウ素単量体化合物または含ヨウ素臭素パーフルオロ化合物に由来する臭素基および/またはヨウ素基を架橋性基として有する請求項5記載の含フッ素ポリマー。
PCT/JP2011/053774 2010-02-23 2011-02-22 含フッ素ポリマーラテックスの製造法 WO2011105347A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-037439 2010-02-23
JP2010037439A JP2011173959A (ja) 2010-02-23 2010-02-23 含フッ素ポリマーラテックスの製造法

Publications (1)

Publication Number Publication Date
WO2011105347A1 true WO2011105347A1 (ja) 2011-09-01

Family

ID=44506755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053774 WO2011105347A1 (ja) 2010-02-23 2011-02-22 含フッ素ポリマーラテックスの製造法

Country Status (2)

Country Link
JP (1) JP2011173959A (ja)
WO (1) WO2011105347A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140107267A1 (en) * 2012-10-16 2014-04-17 Rohm And Haas Company Fluoroalkyl phosphonate composition
US20140235772A1 (en) * 2013-02-15 2014-08-21 Dow Global Technologies Llc Alkoxylated fluoroalkylphosphate composition
JP2015500377A (ja) * 2011-12-29 2015-01-05 チョンハオ チェングァン リサーチ インスティテュート オブ ケミカル インダストリー カンパニー リミテッドZhonghao Chenguang Research Institute Of Chemical Industry Companylimited 耐低温フッ素含有エラストマー及びその製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343416A (ja) * 1998-06-01 1999-12-14 Pola Chem Ind Inc フルオロ処理シリコーン樹脂粉体
JP2000087013A (ja) * 1998-09-11 2000-03-28 Asahi Glass Co Ltd リン酸エステル系撥水撥油剤組成物
JP2004358397A (ja) * 2003-06-05 2004-12-24 Daikin Ind Ltd 界面活性剤、含フッ素重合体の製造方法及び含フッ素重合体水性分散液
JP2005528446A (ja) * 2002-05-31 2005-09-22 スリーエム イノベイティブ プロパティズ カンパニー フッ素化ホスホン酸
JP2010189289A (ja) * 2009-02-17 2010-09-02 Daito Kasei Kogyo Kk 撥水撥油性顔料およびそれを含有する化粧料
JP2011063708A (ja) * 2009-09-17 2011-03-31 Unimatec Co Ltd 表面処理剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343416A (ja) * 1998-06-01 1999-12-14 Pola Chem Ind Inc フルオロ処理シリコーン樹脂粉体
JP2000087013A (ja) * 1998-09-11 2000-03-28 Asahi Glass Co Ltd リン酸エステル系撥水撥油剤組成物
JP2005528446A (ja) * 2002-05-31 2005-09-22 スリーエム イノベイティブ プロパティズ カンパニー フッ素化ホスホン酸
JP2004358397A (ja) * 2003-06-05 2004-12-24 Daikin Ind Ltd 界面活性剤、含フッ素重合体の製造方法及び含フッ素重合体水性分散液
JP2010189289A (ja) * 2009-02-17 2010-09-02 Daito Kasei Kogyo Kk 撥水撥油性顔料およびそれを含有する化粧料
JP2011063708A (ja) * 2009-09-17 2011-03-31 Unimatec Co Ltd 表面処理剤

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015500377A (ja) * 2011-12-29 2015-01-05 チョンハオ チェングァン リサーチ インスティテュート オブ ケミカル インダストリー カンパニー リミテッドZhonghao Chenguang Research Institute Of Chemical Industry Companylimited 耐低温フッ素含有エラストマー及びその製造方法
US20140107267A1 (en) * 2012-10-16 2014-04-17 Rohm And Haas Company Fluoroalkyl phosphonate composition
US9000078B2 (en) * 2012-10-16 2015-04-07 Dow Global Technologies Llc Fluoroalkyl phosphonate composition
AU2017203514B2 (en) * 2012-10-16 2018-12-06 Dow Global Technologies Llc Fluoroalkyl phosphonate composition
US20140235772A1 (en) * 2013-02-15 2014-08-21 Dow Global Technologies Llc Alkoxylated fluoroalkylphosphate composition
US9006320B2 (en) * 2013-02-15 2015-04-14 Dow Global Technologies Llc Alkoxylated fluoroalkylphosphate composition

Also Published As

Publication number Publication date
JP2011173959A (ja) 2011-09-08

Similar Documents

Publication Publication Date Title
JP4858628B2 (ja) 含フッ素ポリマー水性分散液
JP5197587B2 (ja) (パー)フルオロエラストマー組成物
JP3259317B2 (ja) パ−オキサイド加硫可能な含フッ素エラストマ−の製造方法
JP5778589B2 (ja) 電子部品製造に用いるのに適する超クリーンフルオロエラストマー
US8598290B2 (en) Method for producing fluorine-containing elastomer
JP5075324B2 (ja) 硬化性フルオロエラストマー
KR101703372B1 (ko) 저온 경화성 비정질 플루오로중합체
JP4554879B2 (ja) 硬化性フルオロエラストマー組成物
JPH04288305A (ja) パーオキサイド加硫可能な含フッ素エラストマ−の製造方法
JPH0157126B2 (ja)
JP2006009010A (ja) パーフルオロエラストマー組成物
JP4989860B2 (ja) ペルフルオロエラストマーゲル
US6160051A (en) Process for producing fluorine-containing block copolymer
US20040167290A1 (en) Process for making a fluoroelastomer
EP2221318B1 (en) Process for producing fluoroelastomer
WO2002092687A1 (en) Curable base-resistant fluoroelastomers
WO2011105347A1 (ja) 含フッ素ポリマーラテックスの製造法
JP5725167B2 (ja) 含フッ素エラストマーの製造方法
WO2022025188A1 (ja) 含フッ素エラストマー水性分散液の製造方法、含フッ素エラストマーおよび水性分散液
JP5423763B2 (ja) 含フッ素ポリマーの製造法
EP3046953A1 (en) Methods of making a fluoroelastomer composition and composite article
JP2002128833A (ja) 含フッ素共重合体およびその製造方法
WO2022025111A1 (ja) 含フッ素エラストマー水性分散液の製造方法および含フッ素エラストマー水性分散液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11747308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11747308

Country of ref document: EP

Kind code of ref document: A1