WO2011104902A1 - 電流開閉器 - Google Patents

電流開閉器 Download PDF

Info

Publication number
WO2011104902A1
WO2011104902A1 PCT/JP2010/061721 JP2010061721W WO2011104902A1 WO 2011104902 A1 WO2011104902 A1 WO 2011104902A1 JP 2010061721 W JP2010061721 W JP 2010061721W WO 2011104902 A1 WO2011104902 A1 WO 2011104902A1
Authority
WO
WIPO (PCT)
Prior art keywords
fixed
contact
movable
permanent magnets
current switch
Prior art date
Application number
PCT/JP2010/061721
Other languages
English (en)
French (fr)
Inventor
藤田 大輔
紘典 柏木
慎一朗 中内
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/519,506 priority Critical patent/US8902026B2/en
Priority to CN2010800646733A priority patent/CN102770933A/zh
Priority to JP2010536250A priority patent/JP4637296B1/ja
Publication of WO2011104902A1 publication Critical patent/WO2011104902A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/18Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet
    • H01H33/182Means for extinguishing or preventing arc between current-carrying parts using blow-out magnet using permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/12Contacts characterised by the manner in which co-operating contacts engage
    • H01H1/36Contacts characterised by the manner in which co-operating contacts engage by sliding
    • H01H1/38Plug-and-socket contacts
    • H01H1/385Contact arrangements for high voltage gas blast circuit breakers

Definitions

  • the present invention relates to a current switch for switching current, for example, a current switch disposed in a gas insulated switchgear.
  • an insulating gas such as SF 6 (sulfur hexafluoride) gas is sealed in a metal container, and a current switch such as a circuit breaker is disposed.
  • SF 6 sulfur hexafluoride
  • Patent Document 1 describes a gas-insulated switch for cooling and shutting off by rotating an arc using a magnetic field of a permanent magnet for the purpose of improving the shutoff performance.
  • FIG. 11 of the same document shows a configuration in which a single permanent magnet is arranged inside the fixed-side arc contact.
  • JP 2003-346611 A Japanese Patent No. 4212645
  • the present invention has been made in view of the above, and an object thereof is to provide a current switch capable of greatly improving current switching performance.
  • a current switch according to the present invention is configured such that the fixed-side electrode portion and the movable-side electrode portion are arranged to face each other with their central axes aligned with each other,
  • the fixed side electrode part and the movable side electrode part A current switch that opens and closes a current flowing between the fixed side electrode part and the movable side electrode part, and is arranged with the magnetization direction aligned with the central axis direction.
  • the permanent magnet characterized in that it comprises a.
  • the fixed-side electrode portion and the movable-side electrode portion are arranged to face each other with their center axes coinciding with each other, and the movable contact provided on the movable-side electrode portion has the center.
  • a stationary shield disposed around the stationary contact, a movable shield disposed around the movable contact, and at least one of the stationary shield and the movable shield Are arranged with the magnetization direction aligned with the direction of the central axis, and are arranged outside the cylindrical region whose radius is defined by the outer diameter of the movable contact with the central axis as the center.
  • adjacent ones are characterized in that and a plurality of permanent magnets arranged so as matching are opposed to the same polarity to each other to each other.
  • FIG. 1 is a diagram illustrating a cross-sectional configuration of a current switch according to Embodiment 1.
  • FIG. FIG. 2 is a diagram for explaining the operation of the permanent magnet provided in the fixed-side electrode portion in the first embodiment.
  • FIG. 3 is a diagram showing a magnetic flux when a single permanent magnet exists.
  • FIG. 4 is a diagram showing a cross-sectional configuration of the current switching part in the fully turned on state.
  • FIG. 5 is a diagram illustrating a cross-sectional configuration of the current switching unit immediately before the interruption (during the opening operation).
  • FIG. 6 is a diagram showing a cross-sectional configuration of the current switching part immediately after the interruption (during the opening operation).
  • FIG. 7 is a diagram showing a cross-sectional configuration of the current switching portion in the fully open state.
  • FIG. 8 is a diagram illustrating a cross-sectional configuration of the current switch according to the second embodiment.
  • FIG. 9 is a diagram illustrating a cross-sectional configuration of the current switch according to the third embodiment.
  • FIG. 10 is a diagram illustrating a cross-sectional configuration of the current switch according to the fourth embodiment.
  • FIG. 11 is a diagram for explaining the operation of the permanent magnet provided in the fixed electrode portion in the fourth embodiment.
  • FIG. 12 is a diagram showing a cross-sectional configuration of an example of a conventional current switch.
  • FIG. 13 is a diagram showing a cross-sectional configuration of another example of a conventional current switch.
  • FIG. 14 is a diagram illustrating a cross-sectional configuration of the current switch according to the fifth embodiment.
  • FIG. 15 is a diagram showing an enlarged portion B of FIG.
  • FIG. 16 is a cross-sectional view taken along line AA in FIG.
  • FIG. 17 is a side view showing the inclined coil spring in the fifth embodiment.
  • FIG. 18 is a diagram showing a modification of the present embodiment.
  • FIG. 1 is a diagram showing a cross-sectional configuration of a current switch 1 according to the present embodiment.
  • the current switch 1 is, for example, a circuit breaker disposed in a gas-insulated switchgear, a disconnector with a current switching specification, or a grounding switch with a current switching specification. In FIG. It is shown.
  • the current switch 1 is disposed in a metal container (not shown) in which an insulating gas such as SF 6 is enclosed.
  • the current switch 1 includes a movable side electrode portion 2 and a fixed side electrode portion 3 that are arranged to face each other.
  • the movable side electrode portion 2 includes a movable main contact 4 configured in a cylindrical shape, and a movable contact 5 configured to come into contact with the movable main contact 4 and be configured to be reciprocated in the central axis direction.
  • a movable-side arc contact 15 formed in a cylindrical shape at the tip of the movable contact 5 and made of an arc-resistant material, and a movable side for electric field relaxation provided around the movable-side main contact 4 And a shield 6.
  • the arc-resistant material is a metal material having resistance against arc wear.
  • the central axis of the cylindrical movable contact 5 is referred to as the central axis of the movable electrode portion 2.
  • the central axis direction of the movable electrode portion 2 is the reciprocating direction of the movable contact 5 and the opening / closing direction of the current switch 1.
  • the movable contact 5 is connected to a drive mechanism (not shown) and reciprocates linearly by this drive mechanism.
  • the fixed-side electrode portion 3 includes a fixed-side main contact 7 configured in a cylindrical shape, and forms a fixed-side contact with the fixed-side main contact 7 provided inside the fixed-side main contact 7 and is arc resistant.
  • a cylindrical fixed-side arc contact 8 made of a material, permanent magnets 9 and 10 disposed inside the fixed-side arc contact 8, and electric field relaxation provided around the fixed-side main contact 7 And a fixed-side shield 12 for use.
  • the fixed-side arc contact 8 is coaxially arranged inside the fixed-side main contact 7. That is, the central axes of the fixed main contact 7 and the fixed arc contact 8 coincide with each other.
  • the central axis of the fixed main contact 7 is referred to as the central axis of the fixed electrode portion 3.
  • the central axis of the movable electrode portion 2 coincides with the central axis of the fixed electrode portion 3 (the central axis 52 in FIG. 1).
  • the movable contact 5 moves back and forth between the fixed-side main contact 7 and the fixed-side arc contact 8, and is brought into and out of contact with the fixed-side main contact 7 and the fixed-side arc contact 8, respectively. Current flow is opened and closed.
  • the permanent magnets 9 and 10 are arranged, for example, on the central axis of the fixed-side electrode portion 3 and are arranged in close proximity so that the magnetization directions are aligned with the central axis direction, and the same polarities face each other.
  • the end face on the N pole side of the permanent magnet 9 and the end face on the N pole side of the permanent magnet 10 are abutted against each other and arranged on the central axis 52 that is on the same straight line.
  • the S-pole side end face of the permanent magnet 9 and the S-pole side end face of the permanent magnet 10 may be arranged to face each other.
  • the number of permanent magnets arranged in the direction of the central axis is not limited to two in the illustrated example, and may generally be plural. In this case, the plurality of permanent magnets are arranged to face each other with the same polarity butting between adjacent permanent magnets. When the number of permanent magnets is two, the configuration is the most compact.
  • the permanent magnets 9 and 10 can each have a columnar shape, for example.
  • the permanent magnets 9 and 10 have, for example, a cylindrical shape. This is a general-purpose shape, and the gas-insulated switchgear is basically a coaxial cylindrical type. Therefore, the columnar permanent magnets 9 and 10 are suitable for installation on the electrode portion. Further, for example, a prismatic shape can be adopted as the columnar shape.
  • the permanent magnets 9 and 10 can have the same diameter, for example. That is, the cross-sectional shapes of the permanent magnets 9 and 10 can be the same and the same size. By setting the permanent magnets 9 and 10 to have the same diameter, installation on the electrode part is facilitated.
  • the thickness of the permanent magnet 9 in the central axis direction is larger than the thickness of the permanent magnet 10 in the central axis direction.
  • the permanent magnets 9 and 10 are arranged in a space formed inside the fixed-side arc contact 8 and are fixed to the fixed-side electrode unit 3 by being covered with a case 11 made of, for example, a metal member. ing.
  • the material of the permanent magnets 9 and 10 may be a material containing a rare earth such as neodymium or samarium-cobalt, or a general-purpose material such as ferrite or alnico.
  • FIG. 2 is a view for explaining the operation of the permanent magnets 9 and 10 provided in the fixed electrode portion 3.
  • FIG. 2 shows a state immediately after interruption during the opening operation of the current switch 1, and an arc 60 is generated between the fixed-side arc contact 8 and the movable-side arc contact 15.
  • the magnetic flux generated from the permanent magnets 9 and 10 is indicated by a dotted line with an arrow.
  • FIG. 2 the same components as those in FIG. 1 are denoted by the same reference numerals.
  • an arc current I flows between the fixed side arc contact 8 and the movable side arc contact 15. 10 receives a Lorentz force F in a direction perpendicular to the current I and the magnetic flux density B.
  • the Lorentz force F due to the radial direction component among the components of the magnetic flux density B is received. Will be driven around.
  • the radial direction is a direction orthogonal to the central axis direction. Therefore, by increasing the radial component of the magnetic flux density B, the rotational drive of the arc 60 is promoted and effectively cooled, so that the interruption performance is improved.
  • the same polarity of the permanent magnets 9 and 10 are arranged to face each other, thereby increasing the radial component of the magnetic flux density B in the vicinity of the arc generating portion. Furthermore, by arranging the permanent magnets 9 and 10 close to each other, magnetic fluxes generated from the N poles of the permanent magnets 9 and 10 repel each other and are directed in the radial direction, so that the radial component is greatly increased.
  • FIG. 3 is a diagram showing a magnetic flux when a single permanent magnet exists.
  • the magnetic flux R in the vicinity of the corner of the end face on the N pole side of the permanent magnet tends to go in a direction orthogonal to the magnetization direction (that is, the radial direction in FIG. 2).
  • the magnetic flux Q in the vicinity of the center of the end face on the N pole side of the permanent magnet tends to go in the magnetization direction (that is, the central axis direction in FIG. 2). Therefore, as shown in FIG. 2, the magnetic pole corresponding to the magnetic flux Q of FIG. 3 is utilized by making the N pole side of the permanent magnet 10 approach the N pole side of the permanent magnet 9, and using the repulsive force between the opposite poles. Can also be directed in the radial direction to increase the magnetic flux density in the radial direction.
  • the radial component of the magnetic flux density in the vicinity of the corners of the opposing permanent magnets 9 and 10 or in the vicinity of the gap 50 formed between the permanent magnets 9 and 10 is greatly increased. Therefore, it is desirable that the opposing corners or gaps 50 of the permanent magnets 9 and 10 are disposed in the vicinity of the arc 60.
  • the gap 50 is located closer to the movable electrode portion 2 in the central axis direction (opening / closing direction) than the contact / separation point P of the fixed arc contact 8 with the movable contact 5. Since the arc 60 is generated by being pulled from the contact / separation point P to the movable electrode portion 2 side, the gap 50 is arranged in a region directly next to the arc 60 as shown in FIG. 60 interruption performance is improved.
  • the position of the gap 50 in the central axis direction is preferably closer to the contact / separation point P because the arc 60 can be extinguished early.
  • the permanent magnets 9 and 10 are disposed in the fixed shield 12, the position of the gap 50 is also in the fixed shield 12.
  • the contact point of the fixed side main contact 7 with the movable contact 5 is provided on the fixed side electrode portion 3 side with respect to the contact point P, so that the gap 50 is formed between the fixed side main contact 7 and the fixed side main contact 7. Is located closer to the movable electrode portion 2 in the central axis direction than the contact / separation point with respect to the movable contact 5.
  • the distance of the gap 50 between the permanent magnets 9 and 10 is preferably shorter from the viewpoint of increasing the magnetic flux density in the radial direction.
  • the distance of the gap 50 is preferably several mm or more, for example.
  • FIG. 4 is a diagram showing a cross-sectional configuration of the current switching unit in the fully turned on state
  • FIG. 5 is a diagram showing a cross-sectional configuration of the current switching unit immediately before shutting off (during the opening operation)
  • FIG. FIG. 7 is a diagram illustrating a cross-sectional configuration of the current switching unit in the fully open state. Only the magnetic flux is shown in FIG.
  • the movable side arc contact 15 and the fixed side arc contact 8 are separated, and an arc 60 is generated between them.
  • the arc 60 is rotationally driven around the central axis under the Lorentz force by the magnetic field generated by the permanent magnets 9 and 10.
  • the magnetic flux in the vicinity of the surface of the N pole is directed in the radial direction, and the corners or gaps 50 of the permanent magnets 9 and 10 that face each other.
  • the magnetic flux density in the radial direction in the vicinity is greatly improved.
  • the permanent magnets 9 and 10 are provided, for example, on the fixed side electrode portion 3 of the current switch 1, the permanent magnets 9 and 10 are arranged on the central axis of the fixed side electrode portion 3, and Since the same polarities are arranged so as to face each other and face each other, the radial magnetic flux density in the vicinity of the generation location of the arc 60 is greatly increased, and the rotational driving force of the arc 60 due to the radial magnetic flux density is greatly increased. Increase. Thereby, there exists an effect that the interruption
  • the permanent magnets 9 and 10 are disposed, for example, on the fixed side electrode portion 3. Therefore, the permanent magnets 9 and 10 are arranged in a region closer to the arc generating part than in the case where the permanent magnets 9 and 10 are arranged in the movable side electrode part 2, and the magnetic flux density in the radial direction in the vicinity of the arc generating part is increased. Become bigger. Therefore, even when a small magnet is used, a sufficient magnetic flux density in the radial direction can be given.
  • the permanent magnets 9 and 10 each have a main body disposed on the central axis of the fixed electrode portion 3.
  • the permanent magnets 9 and 10 are disposed in the vicinity of the contact / separation point P that is the root of the arc generation part, and the radial magnetic flux density in the vicinity of the arc generation part is further increased. Therefore, even when a small magnet is used, a sufficient magnetic flux density in the radial direction can be given.
  • the permanent magnets 9 and 10 are arranged on the central axis and inside the fixed-side arc contact 8. As a result, all the magnetic fluxes generated from the permanent magnets 9 and 10 in the vicinity of the gap 50 are directed radially outward, and even when a small magnet is used, a sufficient magnitude can be given as the radial magnetic flux density. .
  • an example is shown in which the magnetic flux in the vicinity of the gap between the opposing permanent magnets is divided into a radially outer side and a radially inner side.
  • the thickness of one of the two permanent magnets 9 and 10 is increased. That is, the thickness of the permanent magnet 9 in the central axis direction (magnetization direction) is larger than the thickness of the permanent magnet 10 in the central axis direction (magnetization direction).
  • the thick permanent magnet 9 is disposed on the fixed electrode portion 3 side. This is because the thickness of the permanent magnet 9 on the fixed side electrode portion 3 side is increased because it is difficult to increase the dimension in the central axis direction on the movable side electrode portion 2 side due to the insulation design between the electrode portions. Furthermore, increasing the thickness of the permanent magnet 9 on the fixed electrode portion 3 side is effective because the radial magnetic flux density can be increased near the root of the arc generating portion. Similarly, when three or more permanent magnets are arranged, the thickness in the direction of the central axis of the permanent magnet arranged closest to the fixed-side electrode portion 3 can be maximized. In addition, when arrange
  • FIG. 12 is a diagram illustrating a cross-sectional configuration of an example of a conventional current switch 70.
  • the current switch 70 includes a movable side electrode portion 2 and a fixed side electrode portion 71 that are arranged to face each other.
  • the configuration of the movable electrode portion 2 is the same as that in FIG.
  • a single permanent magnet 80 is disposed inside the fixed-side arc contact 8.
  • Other configurations in FIG. 12 are the same as those in FIG.
  • the arc may commutate to the fixed shield 12.
  • the surface of the fixed shield 12 is worn.
  • the surface of the stationary shield 12 is covered with an arc-resistant material, there is a problem in that the cost increases because the area to be covered covers a wide range.
  • FIG. 10 of patent document 1 while the 1st permanent magnet is arrange
  • a compression spring is attached to the first permanent magnet.
  • the structure becomes complicated, for example, it is necessary to attach a compression spring to one permanent magnet.
  • the load when the movable contactor is put in increases due to the repulsive force between the permanent magnets.
  • the present embodiment has a simple structure without requiring a compression spring or the like, and the load on the movable contact 5 does not increase when the movable contact 5 is inserted.
  • the permanent magnets 9 and 10 are provided on the fixed-side electrode part 3, but these can also be provided on the movable-side electrode part 2.
  • the permanent magnets 9 and 10 can be arranged on the central axis in a space formed inside the movable contact 5, for example.
  • arc-resistant materials are expensive, but since the portion covering the permanent magnets 9 and 10 is small, even when the arc-resistant material is used for such portions, the effect of the cost increase is small.
  • the current switch 1 according to the present embodiment is similarly applied not only to a gas-insulated switch using SF 6 or the like but also to a case of vacuum insulation, air insulation, fluid insulation, or the like. Can do.
  • Other effects of the present embodiment are as described in the description of the configuration and operation.
  • FIG. FIG. 8 is a diagram showing a cross-sectional configuration of the current switch 21 according to the present embodiment.
  • the current switch 21 is, for example, a circuit breaker disposed in a gas-insulated switchgear, a disconnector with a current switching specification, or a grounding switch with a current switching specification. In FIG. It is shown.
  • the current switch 21 is disposed in a metal container (not shown) in which an insulating gas such as SF 6 is enclosed.
  • the current switch 21 includes a movable-side electrode portion 2 and a fixed-side electrode portion 22 that are arranged so as to face each other with their center axes coinciding with each other.
  • the definition of the central axis is the same as in the first embodiment.
  • the configuration of the movable electrode portion 2 is the same as in the case of FIG.
  • permanent magnets 9 and 23 are arranged inside the fixed side arc contact 8.
  • Other configurations in FIG. 8 are the same as those in FIG.
  • the permanent magnets 9 and 23 are arranged such that each main body is arranged on the central axis of the fixed-side electrode portion 22, the magnetization directions are aligned in the central axis direction, and the same polarity is opposed to each other. Closely arranged. Specifically, for example, the end face on the N pole side of the permanent magnet 9 and the end face on the N pole side of the permanent magnet 23 are arranged to face each other.
  • the permanent magnet 23 is disposed on the movable electrode part 2 side, and the permanent magnet 9 is disposed on the fixed electrode part 22 side.
  • the cross section perpendicular to the central axis of the permanent magnet 23 is smaller than the cross section of the permanent magnet 9, and the thickness of the permanent magnet 23 in the central axis direction is smaller than the thickness of the permanent magnet 9 in the central axis direction.
  • the permanent magnets 9 and 23 are covered with the case 11 and fixed to the fixed side electrode portion 22.
  • the permanent magnets 9 and 23 can each have a columnar shape such as a columnar shape or a prismatic shape.
  • the diameter of the permanent magnet 23 is smaller than the diameter of the permanent magnet 9.
  • the gap formed between the permanent magnets 9 and 23 is movable in the central axis direction (opening / closing direction) from the contact point of the fixed-side arc contact 8 with the movable contact 5 as in the first embodiment. It is located on the side electrode part 2 side.
  • the shape of the tip portion of the case 11 covering the permanent magnets 9 and 23 is an R shape having a smooth curvature, it may be difficult to take a space for arranging the permanent magnet at the tip portion. Therefore, in the present embodiment, the size of the permanent magnet 23 is made smaller than that of the permanent magnet 9 with respect to both its cross section and thickness, so that it can be adapted to the shape of the tip of the case 11 and can be easily arranged. .
  • the permanent magnet 23 can be arrange
  • the permanent magnet 9 can be arrange
  • the outer diameter of the permanent magnet closer to the interelectrode gap between the movable electrode portion 2 and the fixed electrode portion 22 can be made smaller.
  • the thickness of the permanent magnet 9 can be increased as compared with the case of the first embodiment because the size of the permanent magnet 23 is reduced according to the shape of the tip of the case 11.
  • the magnetic flux density in the radial direction can be greatly improved by matching the same polarities of the permanent magnets 9 and 23 with each other.
  • the operation of the present embodiment is the same as that of the first embodiment. Further, other effects of the present embodiment are as described in the first embodiment.
  • FIG. 9 is a diagram showing a cross-sectional configuration of the current switch 25 according to the present embodiment.
  • the current switch 25 is, for example, a circuit breaker disposed in a gas-insulated switchgear, a disconnector with a current switching specification, or a grounding switch with a current switching specification. It is shown.
  • the current switch 25 is disposed in a metal container (not shown) in which an insulating gas such as SF 6 is enclosed.
  • the current switch 25 includes a movable-side electrode portion 2 and a fixed-side electrode portion 26 that are disposed so as to face each other with their center axes coinciding with each other.
  • the definition of the central axis is the same as in the first embodiment.
  • the configuration of the movable electrode portion 2 is the same as in the case of FIG.
  • permanent magnets 9, 27, and 28 are disposed inside the fixed-side arc contact 8.
  • Other configurations in FIG. 9 are the same as those in FIG.
  • the permanent magnets 9, 27, and 28 are arranged such that their main bodies are arranged on the central axis of the fixed-side electrode portion 26, and are arranged with their magnetization directions aligned in the central axis direction, and the same polarities face each other. Are arranged close together. Specifically, for example, the end face on the N pole side of the permanent magnet 9 and the end face on the N pole side of the permanent magnet 27 are arranged to face each other, and the end face on the S pole side of the permanent magnet 27 and the permanent magnet 28 are arranged. Are arranged so as to face each other.
  • the permanent magnets 9, 27, 28 are arranged in order from the fixed electrode portion 26 side to the movable electrode portion 2 side. Further, the thickness in the central axis direction is, for example, that the thickness of the permanent magnet 9 on the fixed side electrode portion 26 side is the largest, and the thicknesses of the permanent magnets 27 and 28 are substantially equal.
  • the permanent magnets 9, 27, and 28 can each have a columnar shape such as a columnar shape or a prismatic shape.
  • the permanent magnets 9, 27, and 28 are cylindrical and have the same diameter.
  • the gap formed between the permanent magnets 9 and 27 and the gap formed between the permanent magnets 27 and 28 are both the same as those in the first embodiment with respect to the movable contact 5 in the fixed-side arc contact 8. It is located on the movable electrode part 2 side in the central axis direction (opening / closing direction) from the contact / separation point.
  • the two gaps are arranged in a region directly beside the arc.
  • the magnetic flux density in the radial direction is particularly large in the vicinity of these gaps.
  • the opposite portions of the same polarity, which are particularly strong portions of the radial magnetic flux density are centered.
  • a plurality of locations are provided in the axial direction, and the blocking performance can be further improved.
  • the arc may not be interrupted easily, and the arc may be pulled to a certain length.
  • the arc can be extinguished more quickly because a plurality of locations where the magnetic flux density in the radial direction is particularly strong are provided in the central axis direction. .
  • FIG. 10 is a diagram showing a cross-sectional configuration of the current switch 30 according to the present embodiment.
  • the current switch 30 is, for example, a circuit breaker disposed in a gas-insulated switchgear, a disconnector with a current switching specification, or a grounding switch with a current switching specification. In FIG. It is shown.
  • the current switch 30 is disposed in a metal container (not shown) in which an insulating gas such as SF 6 is sealed.
  • the current switch 30 includes a movable-side electrode portion 2 and a fixed-side electrode portion 31 that are arranged to face each other with their center axes coinciding with each other.
  • the definition of the central axis is the same as in the first embodiment.
  • the configuration of the movable electrode portion 2 is the same as in the case of FIG.
  • the fixed-side electrode part 31 is provided with a fixed-side shield 32 that forms the outer surface of the fixed-side electrode part 31.
  • a fixed-side shield 32 that forms the outer surface of the fixed-side electrode part 31.
  • two permanent magnets 33 and 34 are provided on the inner side (inner surface) of the fixed shield 32.
  • the permanent magnets 33 and 34 each have, for example, a ring shape, are arranged so that the magnetization direction is aligned with the central axis direction, and are arranged close to each other so that the same polarities face each other. Specifically, for example, the end face on the N pole side of the permanent magnet 33 and the end face on the N pole side of the permanent magnet 34 are arranged to face each other.
  • Each main body of the permanent magnets 33 and 34 has a cylindrical region 53 whose radius is defined by the outer diameter of the movable contact 5 around the central axis 52 of the fixed-side electrode portion 31 (or the movable-side electrode portion 2). It is arranged outside.
  • the pair of permanent magnets 33 and 34 is disposed at the end of the fixed side shield 32 on the movable electrode part 2 side. Accordingly, the movable contact 5 is brought into and out of contact with the fixed electrode portion 31 so as to penetrate the permanent magnets 33 and 34.
  • the plurality of permanent magnets are arranged inside the cylindrical region 53 whose radius is defined by the outer diameter of the movable contact 5 with the central axis 52 as the center. Specifically, it is arranged inside the fixed-side arc contact 8, and in particular, each main body is arranged on the central axis 52.
  • the gap formed between the permanent magnets 33 and 34 is movable in the direction of the central axis (opening / closing direction) from the contact / separation point of the fixed-side arc contact 8 with the movable contact 5 as in the first embodiment. It is located on the side electrode part 2 side.
  • FIG. 11 is a diagram for explaining the operation of the permanent magnets 33 and 34 provided in the fixed-side electrode part 31.
  • FIG. 11 shows a state immediately after the interruption during the opening operation of the current switch 30, and an arc 60 is generated between the fixed-side arc contact 8 and the movable-side arc contact 15. Further, the magnetic flux generated from the permanent magnets 33 and 34 is indicated by a dotted line with an arrow. 10 and 11, the same components as those in FIG. 1 are denoted by the same reference numerals.
  • an arc current I flows between the fixed side arc contact 8 and the movable side arc contact 15.
  • the Lorentz force F is received in a direction orthogonal to the current I and the magnetic flux density B by the magnetic flux density B generated by 34.
  • the Lorentz force F due to the radial direction component among the components of the magnetic flux density B is received. Will be driven around. Therefore, by increasing the radial component of the magnetic flux density B, the rotational drive of the arc 60 is promoted and effectively cooled, so that the interruption performance is improved.
  • the radial component of the magnetic flux density B in the vicinity of the arc generating portion is increased. Furthermore, by arranging the permanent magnets 33 and 34 close to each other, the magnetic fluxes generated from the N poles of the permanent magnets 33 and 34 are repelled and directed in the radial direction, so that the radial component is greatly increased.
  • the permanent magnets 33 and 34 which are a plurality of permanent magnets, are arranged on the inner side (on the inner surface) of the fixed shield 32 and on the center axis 52 with the radius being the outer diameter of the movable contact 5. Since the permanent magnets 33 and 34 are arranged outside the defined cylindrical region 53, the arrangement position of the permanent magnets 33 and 34 is close to the fixed-side shield 32, and even when the arc commutates to the fixed-side shield 32, the arc is immediately generated. Can be driven to turn off the arc.
  • the permanent magnets 33 and 34 have, for example, a ring shape.
  • This is a general-purpose shape, and the gas-insulated switchgear is also suitable for installation in the electrode section because the coaxial cylindrical type is the basic shape.
  • the ring shape is suitable for installation on the fixed shield 32 through which the movable contact 5 passes.
  • the permanent magnets 33 and 34 are not in a ring shape, and may be formed by annularly arranging a plurality of divided permanent magnets, for example.
  • each permanent magnet is, for example, a columnar shape, and a plurality of the same polarities butted together are arranged on a circumference around the central axis 52.
  • the permanent magnets 33 and 34 have a ring shape having the same inner and outer diameters. Thereby, installation in the electrode part of the permanent magnets 33 and 34 becomes easy.
  • the distal end portion of the fixed shield 32 has a curved shape toward the fixed main contact 7 side for the installation of the permanent magnets 33 and 34. That is, the fixed-side shield 32 is formed such that the tip portion on the movable-side electrode portion 2 side has a substantially L-shaped cross section. Therefore, the inner diameter of the permanent magnet 34 on the gap side between the electrode portions can be made larger than the inner diameter of the permanent magnet 33, or the outer diameter of the permanent magnet 34 can be made smaller than the outer diameter of the permanent magnet 33. Thereby, the permanent magnets 33 and 34 can be easily installed on the fixed shield 32.
  • the installation form of the permanent magnets 33 and 34 is not limited to the illustrated example, and any other form may be used as long as it is installed on the inner surface of the fixed-side shield 32.
  • FIG. 13 is a diagram showing a cross-sectional configuration of another example of a conventional current switch 90.
  • the current switch 90 includes a movable side electrode portion 2 and a fixed side electrode portion 91 that are arranged to face each other.
  • the configuration of the movable electrode portion 2 is the same as that in FIG.
  • a ring-shaped permanent magnet 92 is independently provided on the inner side (inner surface) of the fixed shield 32.
  • Other configurations in FIG. 13 are the same as those in FIG.
  • the radial magnetic flux density generated from the single permanent magnet 92 is significantly smaller than that in the case of the present embodiment, so that there is a problem that the generated arc is not immediately cut and the interruption performance is low. It was.
  • the permanent magnets 33 and 34 can be arranged inside the movable shield 6 constituting the outer surface of the movable electrode 2. As described above, the permanent magnets 33 and 34 can be provided on the movable side electrode portion 2, but they are provided inside the shield regardless of whether they are provided on the movable side or the fixed side.
  • the permanent magnet is provided in the fixed electrode portion, but it can be configured to be provided in at least one of the fixed electrode portion and the movable electrode portion. That is, a configuration in which a plurality of permanent magnets facing each other with the same polarity between adjacent ones are provided in the fixed side electrode portion, a configuration in which a plurality of permanent magnets having the same polarity facing each other between adjacent ones are provided in the movable side electrode portion, Alternatively, a plurality of first permanent magnets with the same polarity facing each other between adjacent ones are provided on the fixed side electrode portion, and a plurality of second permanent magnets with the same polarity facing each other between the adjacent ones are movable side electrodes.
  • the structure provided in a part is possible. For example, various combinations such as combining the permanent magnets 33 and 34 of the present embodiment with the permanent magnets 9 and 10 of the first embodiment are possible.
  • FIG. 14 is a diagram showing a cross-sectional configuration of the current switch 40 according to the present embodiment.
  • the current switch 40 is, for example, a circuit breaker disposed in a gas-insulated switchgear, a disconnector with a current switching specification, or a grounding switch with a current switching specification. In FIG. It is shown.
  • the current switch 40 is disposed in a metal container (not shown) in which an insulating gas such as SF 6 is sealed.
  • the current switch 40 includes a fixed-side electrode portion 41 and a movable-side electrode portion 42 that are arranged so as to face each other with the center axes coincident with each other (that is, the center axis 52).
  • the movable electrode portion 42 is formed in a cylindrical shape and is movable in a reciprocating manner in the direction of the central axis 52, and is formed in a cylindrical shape at the distal end portion of the movable contact 5, and is made of an arc resistant material.
  • the movable side arc contact 15, a movable side shield 48 for electric field relaxation provided around the movable contact 5, and an annular groove 75 formed along the inner periphery of the movable side shield 48 are installed.
  • an annular coil spring contact 65 that contacts the movable shield 48 and the movable contact 5 and conducts both.
  • the inner circumference of the movable shield 48 means an inner circumference centered on the central axis 52.
  • the coil spring contact 65 is composed of an inclined coil spring 66 having a coil that is spirally wound with respect to the winding axis and having an elliptical cross section, and a ring 67 that is inserted into the inclined coil spring 66.
  • the inclined coil spring 66 is made of, for example, a copper alloy having excellent spring properties.
  • the ring 67 is formed of, for example, an insulating material and has rigidity to maintain the canted coil spring 66 in an annular shape.
  • the fixed-side electrode part 41 is provided around the central axis 52 in a cylindrical shape and is formed of an arc-resistant material, and a fixed-side arc contact 44 and an electric field relaxation provided around the fixed-side arc contact 44.
  • a ring-shaped permanent magnet 47b disposed in an annular groove 81 having a rectangular cross section, for example, formed on the inner periphery of the fixed shield 43.
  • the inner circumference of the fixed shield 43 means an inner circumference centered on the central axis 52.
  • the fixed-side shield 43 is made of a conductor having a fitting hole into which the movable contact 5 can be fitted, and the fixed-side arc contact 44 is disposed in the fitting hole.
  • the coil spring contact 45a has a coil-shaped inclined coil spring 46a that is spirally wound with respect to the winding axis and has an elliptical cross section, and a ring-shaped permanent coil that is inserted into the inclined coil spring 46a. It consists of a magnet 47a.
  • the inclined coil spring 46a is made of, for example, a copper alloy having excellent spring properties.
  • the permanent magnet 47 b is fixed to, for example, the side surface of the annular groove 81, and is supported by a cylindrical metal member from the inside of the fixed shield 43.
  • the installation method of the permanent magnet 47b is not limited to the example of illustration.
  • FIGS. 15 is an enlarged view of a portion B in FIG. 14, FIG. 16 is a cross-sectional view taken along line AA in FIG. 14, and FIG. 17 is a side view showing the inclined coil spring in the present embodiment.
  • the permanent magnet 47a has a rectangular cross section, for example, and the width dimension Wd in the direction of the central axis 52 is larger than the thickness dimension T in the radial direction.
  • the inclined coil spring 46a is elliptically wound in an inclined shape so that the minor axis of the ellipse forms an acute angle with the central axis of the coil, the major axis of the ellipse is directed in the direction of the central axis 52, and the minor axis of the ellipse has a diameter. It is installed in the annular groove 72a toward the direction. Moreover, the permanent magnet 47a is in contact with the inner periphery of the gradient coil spring 46a at both ends in the direction of the central axis 52.
  • both end portions of the permanent magnet 47a in the direction of the central axis 52 prevent deformation of the canted coil spring 46a in the long axis direction and prevent twisting of the canted coil spring 46a in the annular groove 72a. Only axial deformation is allowed.
  • the annular groove 72a since the minor axis is installed in the annular groove 72a with the radial direction facing the radial direction, the annular groove 72a may be a shallow groove, and it is not necessary to perform deep groove processing, increasing the processing cost and energizing the fixed shield 43. The reduction of the cross-sectional area is avoided.
  • the annular groove 72a is formed to have a narrower width toward the bottom, and the inclined coil spring 46a has a gap with the bottom surface 72f of the annular groove 72a, and the top 56a extends from the annular groove 72a. It protrudes and is in contact with and locked to the side surfaces 72d and 72e of the annular groove 72a. That is, the contact coil resistance is reduced by bringing the inclined coil spring 46a into contact with the stationary shield 43 at two points.
  • the above structure is similar to the coil spring contact 65 except that the ring 67 is not a permanent magnet (see Patent Document 2 for details of the coil spring contact).
  • the stationary contact is composed of a coil spring contact 45a and a stationary arc contact 44.
  • the movable contact 5 moves back and forth between the coil spring contact 45a and the fixed side arc contact 44, and contacts and separates from the coil spring contact 45a and the fixed side arc contact 44, respectively.
  • the current flowing between the movable side electrode part 42 is opened and closed.
  • the movable contact 5 comes into contact with the coil spring contact 45a through the coil spring contact 45a and the permanent magnet 47b.
  • the main bodies of the permanent magnets 47 a and 47 b are arranged outside the cylindrical region 53 whose radius is defined by the outer diameter of the movable contact 5 with the central axis 52 as the center. Further, the permanent magnets 47 a and 47 b are disposed inside the fixed shield 43.
  • the permanent magnets 47a and 47b are arranged with their magnetization directions aligned in the direction of the central axis 52, and are arranged so that the same polarities face each other. Specifically, the end face on the S pole side of the permanent magnet 47a and the end face on the S pole side of the permanent magnet 47b are arranged to face each other. The N pole side end surface of the permanent magnet 47a and the B pole side end surface of the permanent magnet 47b may be arranged to face each other.
  • the permanent magnets 47a and 47b are, for example, ring shapes having the same inner and outer diameters.
  • the effect of arranging the same polarities of the permanent magnets to face each other is the same as in the fourth embodiment. That is, by arranging the same polarities of the permanent magnets 47a and 47b to face each other, the radial component of the magnetic flux density in the vicinity of the arc generating portion is increased. Furthermore, by arranging the permanent magnets 47a and 47b close to each other, the magnetic fluxes generated from the S poles of the permanent magnets 47a and 47b repel each other and are directed in the radial direction, so that the radial component is greatly increased.
  • the arc generated between the fixed-side arc contact 44 and the movable-side arc contact 15 during the opening operation is effectively rotated by the magnetic flux density of the permanent magnets 47a and 47b, and the current switch 40 The blocking performance will be improved.
  • the magnetic flux generated from the permanent magnets 47a and 47b is indicated by dotted lines with arrows.
  • the gap formed between the permanent magnets 47a and 47b is substantially the same position as the contact / separation point of the fixed-side arc contactor 44 with the movable contact 5 or movable in the central axis direction (opening / closing direction) from the contact / separation point. It is located on the side electrode part 2 side so as to improve the arc blocking performance.
  • the gap formed between the permanent magnets 47 a and 47 b is substantially at the same position as the contact point of the fixed-side arc contactor 44 with the movable contactor 5.
  • the number of coil spring contacts arranged in the direction of the central axis 52 on the inner surface of the fixed shield 43 may be plural. Further, the permanent magnets having the same configuration as the permanent magnet 47b disposed in the fixed shield 43 can be arranged in the direction of the central axis 52, that is, the number of the permanent magnets 47b can be plural. In this case, it is preferable that the plurality of permanent magnets 47b be arranged on the movable electrode portion 42 side as in FIG. 14 so as to effectively erase the generated arc.
  • a plurality of ring-shaped permanent magnets are arranged inside the fixed shield 43 in the direction of the central axis 52, and adjacent permanent magnets are arranged with the same polarity facing each other. At least one of them may be inserted into the inside of the inclined coil spring and constitute an annular coil spring contactor together with the inclined coil spring. For example, a configuration in which a plurality of permanent magnets are all disposed inside the coil spring contact is also possible. As described above, at least one of the gaps between adjacent permanent magnets in the plurality of permanent magnets is in the direction of the central axis 52 relative to the contact point of the fixed-side arc contactor 44 with the movable contactor 5.
  • FIG. 18 is a view showing a modification of the present embodiment.
  • two coil spring contacts 45a and 45c are arranged in the direction of the central axis 52.
  • FIG. The coil spring contact 45c has a configuration similar to that of the coil spring contact 45a, and the inclined coil spring 46c having an elliptical cross section, the coil being wound spirally with respect to the winding axis, and the inclined coil.
  • the ring-shaped permanent magnet 47 c inserted into the spring 46 c is installed in an annular groove 72 c formed on the inner periphery of the stationary shield 43.
  • the N pole of the permanent magnet 47c of the coil spring contact 45c and the N pole of the permanent magnet 47a of the coil spring contact 45a are opposed to each other. That is, the same polarities are abutted and disposed opposite to each other between adjacent permanent magnets.
  • the movable electrode portion 42 includes annular coil spring contacts 65a and 65b.
  • the coil spring contacts 65a and 65b are installed in annular grooves 75a and 75b formed along the inner circumference of the movable shield 48, respectively, and contact the movable shield 48 and the movable contact 5 to conduct both.
  • the coil spring contact 65a includes a tilt coil spring 66a and a ring 67a inserted into the tilt coil spring 66a.
  • the coil spring contact 65b includes a tilt coil spring 66b and a ring 67b inserted into the tilt coil spring 66b.
  • the coil spring contacts 65a and 65b have the same structure as the coil spring contact 65 of FIG. In FIG. 18, since the number of coil spring contacts of each of the movable side electrode portion 42 and the fixed side electrode portion 41 is two, which is the same as that of FIG. This is suitable when the amount of current flowing between the fixed side electrode portion 41 is large.
  • the coil spring contactor can be held annularly by the permanent magnet. There is an effect that space saving is realized.
  • a tulip-shaped fixed-side main contact 7 and permanent magnets 33 and 34 are arranged in the direction of the central axis 52, and the permanent magnets 33 and 34 are closer to the movable electrode portion 2 than the fixed-side main contact 7.
  • the permanent magnets 47a and 47c are disposed inside the coil spring contacts 45a and 47c, respectively. The length in the 52 direction becomes shorter.
  • the radius is defined by the outer diameter of the movable contact 5 with the permanent magnets 47 a and 47 b inside the fixed shield 43 and centered on the central axis 52. Since the permanent magnets 47a and 47b are arranged close to the fixed-side shield 43 and the arc commutates to the fixed-side shield 43, the arc can be quickly generated. It can be rotated and extinguished.
  • a plurality of permanent magnets are provided on the fixed electrode portion 41, but at least one of the fixed electrode portion 41 and the movable electrode portion 42 is provided.
  • the structure provided in the electrode part of this is possible.
  • the ring 67 of the coil spring contact 65 may be a permanent magnet, and a plurality of such coil spring contacts 65 may be provided on the movable electrode portion 42.
  • the same polarity of the permanent magnets are opposed to each other between adjacent coil spring contacts, and the number of coil spring contacts provided on the fixed side electrode portion 41 is equal to the number of coil spring contacts provided on the movable side electrode portion 42. The same number is preferable.
  • the present invention is useful as a current switch used in, for example, a gas insulated switchgear.

Landscapes

  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

 固定側電極部と可動側電極部とが互いに中心軸を一致させて対向して配置され、前記可動側電極部に設けられた可動接触子が前記中心軸上を往復動作して前記固定側電極部に設けられた固定側接触子と接離することにより、両電極部間を通流する電流を開閉する電流開閉器であって、前記固定側電極部および前記可動側電極部の少なくともいずれか一方に設けられ、それぞれ着磁方向を前記中心軸方向に揃えて各本体が前記中心軸上に配置されるとともに、隣接するもの同士の間では同じ極性同士を互いに対向させ突き合わせるようにして配置された複数個の永久磁石、を備えた電流開閉器を提供する。

Description

電流開閉器
 本発明は、電流の開閉を行う電流開閉器に関し、例えばガス絶縁開閉装置内に配置された電流開閉器に関する。
 ガス絶縁開閉装置では、金属容器内にSF(六フッ化硫黄)ガス等の絶縁性ガスが封入され、遮断器等の電流開閉器が配置されている。
 ところで、近年、環境負荷低減への対応として、SFガスの低ガス圧化または脱SFガス化が望まれている。しかしながら、かかる低ガス圧化またはガスレス化は、電流開閉器の電流開閉性能を低下させることになるため、これを補完するための改善策が必要となる。
 また、近年、ガス絶縁開閉装置の大容量化が進み、これに対応した電流開閉性能の向上も要求されている。
 特許文献1では、遮断性能の改善を図ることを目的として、永久磁石の磁界を用いてアークを回転駆動させ冷却遮断するガス絶縁開閉器が記載されている。同文献の図11では、固定側アーク接触子の内側に単一の永久磁石を配置した構成が示されている。
特開2003-346611号公報 特許第4212645号公報
 しかしながら、単一の永久磁石を用いてアークを回転駆動させる上記従来の技術では、例えば電流仕様が高い場合に遮断性能が十分ではなく、アークの速やかな消弧が困難であった。
 本発明は、上記に鑑みてなされたものであって、電流開閉性能の大幅な向上が可能な電流開閉器を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明に係る電流開閉器は、固定側電極部と可動側電極部とが互いに中心軸を一致させて対向して配置され、前記可動側電極部に設けられた可動接触子が前記中心軸上を往復動作して前記固定側電極部に設けられた固定側接触子と接離することにより、前記固定側電極部と前記可動側電極部の間を通流する電流を開閉する電流開閉器であって、前記固定側電極部および前記可動側電極部の少なくともいずれか一方に設けられ、それぞれ着磁方向を前記中心軸方向に揃えて配置され、前記中心軸を中心として半径が前記可動接触子の外径で規定される円筒状の領域の内側に配置されるとともに、隣接するもの同士の間では同じ極性同士を互いに対向させ突き合わせるようにして配置された複数個の永久磁石、を備えることを特徴とする。
 また、本発明に係る電流開閉器は、固定側電極部と可動側電極部とが互いに中心軸を一致させて対向して配置され、前記可動側電極部に設けられた可動接触子が前記中心軸上を往復動作して前記固定側電極部に設けられた固定側接触子と接離することにより、前記固定側電極部と前記可動側電極部の間を通流する電流を開閉する電流開閉器であって、前記固定側接触子の周囲に配置された固定側シールドと、前記可動接触子の周囲に配置された可動側シールドと、前記固定側シールドおよび前記可動側シールドの少なくともいずれか一方の内側に設けられ、それぞれ着磁方向を前記中心軸方向に揃えて配置され、前記中心軸を中心として半径が前記可動接触子の外径で規定される円筒状の領域の外側に配置されるとともに、隣接するもの同士の間では同じ極性同士を互いに対向させ突き合わせるようにして配置された複数個の永久磁石と、を備えることを特徴とする。
 この発明によれば、電流開閉性能の大幅な向上が可能になる、という効果を奏する。
図1は、実施の形態1に係る電流開閉器の断面構成を示す図である。 図2は、実施の形態1において、固定側電極部に設けられた永久磁石の作用を説明するための図である。 図3は、永久磁石が単一で存在する場合の磁束を表した図である。 図4は、完全投入状態における電流開閉部の断面構成を示す図である。 図5は、遮断直前(開放動作中)における電流開閉部の断面構成を示す図である。 図6は、遮断直後(開放動作中)における電流開閉部の断面構成を示す図である。 図7は、完全開放状態における電流開閉部の断面構成を示す図である。 図8は、実施の形態2に係る電流開閉器の断面構成を示す図である。 図9は、実施の形態3に係る電流開閉器の断面構成を示す図である。 図10は、実施の形態4に係る電流開閉器の断面構成を示す図である。 図11は、実施の形態4において、固定側電極部に設けられた永久磁石の作用を説明するための図である。 図12は、従来の電流開閉器の一例の断面構成を示す図である。 図13は、従来の電流開閉器の別の一例の断面構成を示す図である。 図14は、実施の形態5に係る電流開閉器の断面構成を示す図である。 図15は、図14のB部拡大部を示す図である。 図16は、図14のA-A線に沿う横断面図である。 図17は、実施の形態5における傾斜コイルばねを示す側面図である。 図18は、本実施の形態の変形例を示す図である。
 以下に、本発明に係る電流開閉器の実施の形態を図面に基づいて詳細に説明する。なお、これらの実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本実施の形態に係る電流開閉器1の断面構成を示す図である。電流開閉器1は、例えばガス絶縁開閉装置内に配置される遮断器、電流開閉仕様付きの断路器、または電流開閉仕様付きの接地開閉器であり、図1では、その電流開閉部の断面構成が示されている。
 電流開閉器1は、例えばSFなどの絶縁性ガスが封入された金属容器(図示せず)内に配置される。電流開閉器1は、相互に対向して配置された可動側電極部2と固定側電極部3とからなる。
 可動側電極部2は、筒状に構成された可動側主接触子4と、この可動側主接触子4に接触し筒状に構成されてその中心軸方向に往復動作可能な可動接触子5と、この可動接触子5の先端部にて筒状に設けられ耐アーク材料で形成された可動側アーク接触子15と、可動側主接触子4の周囲に設けられた電界緩和用の可動側シールド6と、を備えている。ここで、耐アーク材料は、アークによる損耗に対する耐性を備えた金属材料である。
 なお、以下では、筒状の可動接触子5の中心軸を可動側電極部2の中心軸という。可動側電極部2の中心軸方向は、可動接触子5の往復動作方向であり、電流開閉器1の開閉方向である。また、可動接触子5は、図示しない駆動機構に連結され、この駆動機構により直線的に往復動作する。
 固定側電極部3は、筒状に構成された固定側主接触子7と、この固定側主接触子7の内側に設けられ固定側主接触子7とともに固定側接触子を構成しかつ耐アーク材料で形成された筒状の固定側アーク接触子8と、この固定側アーク接触子8の内側に配置された永久磁石9,10と、固定側主接触子7の周囲に設けられた電界緩和用の固定側シールド12と、を備えている。
 固定側アーク接触子8は、固定側主接触子7の内側にて同軸的に配置されている。すなわち、固定側主接触子7および固定側アーク接触子8の中心軸は一致している。以下では、固定側主接触子7の中心軸を固定側電極部3の中心軸という。また、可動側電極部2の中心軸は、固定側電極部3の中心軸と一致している(図1の中心軸52)。可動接触子5は、固定側主接触子7と固定側アーク接触子8との間を進退動し、固定側主接触子7および固定側アーク接触子8とそれぞれ接離し、これにより電極部間の通流電流が開閉される。
 永久磁石9,10は、固定側電極部3の例えば中心軸上に配置され、それぞれ着磁方向を中心軸方向に揃えて配置されるとともに、同一の極性同士が互いに対向するようにして近接配置されている。具体的には、永久磁石9のN極側の端面と永久磁石10のN極側の端面とが互いに突き合わされて同一の直線上である中心軸52上に配置されている。なお、永久磁石9のS極側の端面と永久磁石10のS極側の端面とが互いに突き合わされて配置される構成であってもよい。また、中心軸方向に配列する永久磁石の個数は、図示例の2個に限定されず、一般に複数個であればよい。この場合、複数個の永久磁石は、隣接する永久磁石間で同じ極性同士が突き合わされ対向して配置される。永久磁石の個数が2個の場合は、最もコンパクトな構成である。
 また、永久磁石9,10は、それぞれ例えば柱形状とすることができる。図1では、永久磁石9,10は、例えば円柱形状としている。これは汎用的な形状であり、ガス絶縁開閉装置は同軸円筒型が基本形状であるため、円柱形状の永久磁石9,10は、電極部への設置に適している。また、柱形状として例えば角柱形状を採用することもできる。
 また、永久磁石9,10は、例えば互いに同径とすることができる。すなわち、永久磁石9,10の断面形状は、互いに等しく同じ大きさとすることができる。永久磁石9,10を互いに同径とすることで、電極部への設置が容易になる。
 また、図示例では、永久磁石9の中心軸方向の厚みは、永久磁石10の中心軸方向の厚みよりも大きい。
 なお、永久磁石9,10は、固定側アーク接触子8の内側に形成された空間内に配置され、例えば金属などの部材で構成されたケース11により覆われて固定側電極部3に固定されている。
 また、永久磁石9,10の材質は、ネオジム、サマリウム-コバルトなどの希土類を含むものや、フェライト、またはアルニコなどの汎用的なものであってよい。
 図2は、固定側電極部3に設けられた永久磁石9,10の作用を説明するための図である。図2では、電流開閉器1の開放動作中における遮断直後の状態を示しており、固定側アーク接触子8と可動側アーク接触子15との間には、アーク60が発生している。また、永久磁石9,10から発生した磁束は矢印付の点線で示されている。なお、図2では、図1と同一の構成要素には同一の符号を付している。
 図2に示すように、アーク60の発生に伴い、固定側アーク接触子8と可動側アーク接触子15との間にアーク電流Iが流れることになるが、この電流Iは、永久磁石9,10の発生する磁束密度Bにより、電流Iと磁束密度Bに直交する方向にローレンツ力Fを受ける。また、図2に示すように、アーク電流Iの通流方向は概ね中心軸方向であることから、磁束密度Bの成分のうち径方向成分によるローレンツ力Fを受け、これによりアーク60は中心軸の周りに回転駆動されることとなる。ここで、径方向とは、中心軸方向と直交する方向である。したがって、磁束密度Bの径方向成分を大きくすることにより、アーク60の回転駆動が促進され、効果的に冷却されることから、遮断性能が向上することになる。
 そこで、本実施の形態では、永久磁石9,10の同じ極性同士を対向して配置することで、アーク発生部付近での磁束密度Bの径方向成分を大きくしている。さらに、永久磁石9,10を互いに近接配置させることで、永久磁石9,10のN極からそれぞれ発生する磁束が互いに反発して径方向に向けられるため、径方向成分が大幅に増大する。
 この様子を、図3を参照してより具体的に説明する。図3は、永久磁石が単一で存在する場合の磁束を表した図である。図3に示すように、永久磁石のN極側の端面の角部付近における磁束Rは、着磁方向と直交する方向(すなわち、図2の径方向)に向かう傾向にある。一方、永久磁石のN極側の端面の中央付近における磁束Qは、着磁方向(すなわち、図2の中心軸方向)に向かう傾向にある。そこで、図2のように永久磁石9のN極側に永久磁石10のN極側を接近させることで、対向する同極同士の反発力を利用して、図3の磁束Qに相当する磁束も径方向に向かうようにさせ、径方向の磁束密度を増大させることができる。
 このように、対向する永久磁石9,10の角部付近あるいは永久磁石9,10間に形成された間隙50付近における磁束密度の径方向成分が大幅に増大することがわかる。したがって、永久磁石9,10の対向する角部または間隙50は、アーク60の近傍に配置されることが望ましい。
 図1に示すように、間隙50は、固定側アーク接触子8における可動接触子5との接離点Pよりも中心軸方向(開閉方向)の可動側電極部2側に位置している。アーク60は、接離点Pから可動側電極部2側に引っ張られるようにして発生することから、図1のようにアーク60が発生する真横の領域に間隙50が配置されることにより、アーク60の遮断性能が向上する。なお、間隙50の中心軸方向における位置は、接離点Pにより近いほうがアーク60を早期に消弧できることから好ましい。また、永久磁石9,10は固定側シールド12内に配置されるので、間隙50の位置も固定側シールド12内である。なお、固定側主接触子7における可動接触子5との接離点は、上記接離点Pよりも固定側電極部3側に設けられているので、間隙50は、固定側主接触子7における可動接触子5との接離点よりも中心軸方向の可動側電極部2側に位置する。
 また、永久磁石9,10間の間隙50の距離は、径方向の磁束密度を増大させる観点からはより短いほうが好ましいが、近すぎると磁石同士の反発力が過大となり、組立性の悪化にもなる。そのため、間隙50の距離は、例えば数mm以上であることが好ましい。
 次に、本実施の形態の開極時の動作について図4~図7を参照して説明する。図4は、完全投入状態における電流開閉部の断面構成を示す図、図5は、遮断直前(開放動作中)における電流開閉部の断面構成を示す図、図6は、遮断直後(開放動作中)における電流開閉部の断面構成を示す図、図7は、完全開放状態における電流開閉部の断面構成を示す図である。なお、図6のみ磁束も示している。
 まず、図4に示すように、電流開閉器1が完全投入状態(閉極)にあるときには、電流は固定側主接触子7、可動接触子5、および可動側主接触子4を通して通流している。
 次に、電流開閉器1に対して開極指令がなされると、駆動機構(図示せず)により可動接触子5が図5の左方向に駆動される。これにより、固定側主接触子7と可動接触子5とが開離し、可動接触子5は、その先端部に設けられた可動側アーク接触子15を介して固定側アーク接触子8と接触した状態に達する(図5)。
 さらに開極が進むと、可動側アーク接触子15と固定側アーク接触子8とが開離し、これらの間にアーク60が発生する。そして、アーク60は、永久磁石9,10の発生する磁界によりローレンツ力を受けて中心軸の周りに回転駆動される。この際、永久磁石9,10の同極性同士を対向して配置していることから、N極の表面近傍の磁束が径方向に向けられ、永久磁石9,10の対向する角部または間隙50付近における径方向の磁束密度が大幅に向上されている。これにより、アーク60の駆動力が大幅に大きくなり、アーク60を冷却し消弧する性能、すなわち遮断性能が大幅に向上する。そして、アーク60の消弧後、さらに開極が進み、図7に示すように、完全開放状態に至る。
 本実施の形態によれば、電流開閉器1の例えば固定側電極部3に永久磁石9,10を設け、これらの永久磁石9,10を固定側電極部3の中心軸上に配置し、かつ、同じ極性同士を互いに対向させ突き合わせるように配置したので、アーク60の発生箇所近傍における径方向の磁束密度が大幅に増大し、この径方向の磁束密度によるアーク60の回転駆動力が大幅に増大する。これにより、電流開閉器1の遮断性能が大幅に向上するという効果を奏する。
 また、本実施の形態では、永久磁石9,10は、例えば固定側電極部3に配置されている。したがって、永久磁石9,10は、可動側電極部2に配置される場合に比べて、よりアーク発生部に近い領域に配置されることになり、アーク発生部付近での径方向の磁束密度がより大きくなる。よって、小さな磁石を利用した場合でも、径方向の磁束密度として十分な大きさを与え得る。
 また、本実施の形態では、永久磁石9,10は、各本体が固定側電極部3の中心軸上に配置されている。これにより、永久磁石9,10は、アーク発生部の根元である接離点Pの近傍に配置されることになり、アーク発生部付近での径方向の磁束密度がより大きくなる。よって、小さな磁石を利用した場合でも、径方向の磁束密度として十分な大きさを与え得る。
 また、永久磁石9,10は、中心軸上でかつ固定側アーク接触子8の内側に配置されている。これにより、永久磁石9,10から発生した磁束のうち間隙50近傍のものはすべて径方向外側に向かうこととなり、小さな磁石を利用した場合でも、径方向の磁束密度として十分な大きさを与え得る。なお、実施の形態4では、対向する永久磁石間の間隙付近における磁束が径方向外側と径方向内側に分かれて向かう例を示している。
 ところで、一般に、永久磁石の着磁方向の厚みを大きくすることで、永久磁石自身の反磁場を軽減し残留磁束密度を向上させて、永久磁石から発生する磁束密度を大きくすることができる。そこで、本実施の形態では、2個の永久磁石9,10のうちの一方の厚みを大きくしている。すなわち、永久磁石9の中心軸方向(着磁方向)の厚みを、永久磁石10の中心軸方向(着磁方向)の厚みよりも大きくしている。
 また、厚みの大きな永久磁石9は、固定側電極部3側に配置されている。これは、電極部間の絶縁設計上、可動側電極部2側の中心軸方向の寸法を伸ばし難いため、固定側電極部3側の永久磁石9の厚みを大きくしたものである。さらに、固定側電極部3側の永久磁石9の厚みを大きくすることで、アーク発生部の根元付近で、径方向の磁束密度をより大きくすることができるので効果的である。同様にして、3個以上の永久磁石を配列する場合に、最も固定側電極部3側に配置される永久磁石の中心軸方向の厚みを最も大きくすることができる。なお、複数個の永久磁石を中心軸上に配置する場合、他の箇所に配置する場合に比べて、少なくとも1個の永久磁石についてその厚みを大きく設定し易いという利点がある。
 ここで、従来の電流開閉器の一例について説明する(特許文献1の図11参照)。図12は、従来の電流開閉器70の一例の断面構成を示す図である。図12に示すように、電流開閉器70は、相互に対向して配置された可動側電極部2と固定側電極部71とからなる。可動側電極部2の構成は、図1の場合と同様である。固定側電極部71では、固定側アーク接触子8の内側に単一の永久磁石80が配置されている。なお、図12におけるその他の構成は、図1と同様である。
 この従来の電流開閉器70では、電流仕様が高い場合などは径方向の磁束密度の大きさが不十分で、アークの速やかな消弧が困難であった。すなわち、単一の永久磁石80から発生する磁束密度の径方向成分は、本実施の形態の場合と比べて大幅に小さいので、発生したアークがすぐに切れず、アークが可動側電極部2側に長く引っ張られることとなる。そうすると、アークと永久磁石80との間の距離がさらに大きくなるため、磁場作用が弱くなり、さらにアークが回転しにくくなって消弧されにくくなる。また、可動接触子5が固定側シールド12の外側まで駆動された状態でなおアークが消弧されていない場合には、アークが固定側シールド12に転流するおそれがある。そして、アークが固定側シールド12に転流した場合には、固定側シールド12の表面が損耗するという問題点があった。固定側シールド12の表面を耐アーク材料で覆った場合、被覆すべき領域が広範囲に及ぶため、コストが増大するという問題点があった。
 また、特許文献1の図10では、可動接触子の内部に第1の永久磁石が配置されるとともに、固定側アーク接触子の内部に第2の永久磁石が配置された構成が示されている。ここで、この第1の永久磁石には圧縮ばねが取り付けられており、閉成状態では、第1の永久磁石が固定側アーク接触子に押されて圧縮ばねが縮んだ状態になる。しかしながら、この従来の技術では、一方の永久磁石に圧縮ばねを装着する必要があるなど構造が複雑になるという問題点があった。さらに、この従来技術では、永久磁石間の反発力により、可動接触子の投入時の負荷が増大するという問題点があった。これに対し、本実施の形態では、圧縮ばね等を必要とすることなく簡素な構造であるとともに、可動接触子5の投入時に可動接触子5の負荷が増大することもない。
 なお、本実施の形態では、永久磁石9,10は、固定側電極部3に設けられているが、これらを可動側電極部2に設けることもできる。この場合、永久磁石9,10は、例えば可動接触子5の内側に形成された空間内でその中心軸上に配置することができる。
 なお、永久磁石9,10を覆うケース11のうち可動側電極部2側の部分(永久磁石10の可動側電極部2側の端面を覆う部分等)を、耐アーク材料で形成してもよい。これにより、当該部分にアークが転流した場合でも、その損耗を防ぐことができる。なお、耐アーク材料は一般に高コストであるが、永久磁石9,10を覆う部分は小さいので、かかる部分に耐アーク材料を使用した場合でも、コスト上昇の影響は少ない。
 また、本実施の形態に係る電流開閉器1は、SF等を用いたガス絶縁開閉器のみならず、真空絶縁、気中絶縁、または流体絶縁等の場合に対しても同様に適用することができる。本実施の形態のその他の効果は、構成および動作の説明の際に述べた通りである。
実施の形態2.
 図8は、本実施の形態に係る電流開閉器21の断面構成を示す図である。電流開閉器21は、例えばガス絶縁開閉装置内に配置される遮断器、電流開閉仕様付きの断路器、または電流開閉仕様付きの接地開閉器であり、図8では、その電流開閉部の断面構成が示されている。
 電流開閉器21は、例えばSFなどの絶縁性ガスが封入された金属容器(図示せず)内に配置される。電流開閉器21は、相互に中心軸を一致させ対向して配置された可動側電極部2と固定側電極部22とからなる。中心軸の定義は、実施の形態1と同様である。また、可動側電極部2の構成は、図1の場合と同様である。固定側電極部22では、固定側アーク接触子8の内側に永久磁石9,23が配置されている。なお、図8におけるその他の構成は、図1と同様である。
 永久磁石9,23は、各本体が固定側電極部22の中心軸上に配置され、それぞれ着磁方向を中心軸方向に揃えて配置されるとともに、同一の極性同士が互いに対向するようにして近接配置されている。具体的には、例えば、永久磁石9のN極側の端面と永久磁石23のN極側の端面とが互いに突き合わされて配置されている。
 また、永久磁石23は可動側電極部2側に配置され、永久磁石9は固定側電極部22側に配置されている。そして、永久磁石23の中心軸に垂直な断面は、永久磁石9の断面よりも小さく、永久磁石23の中心軸方向の厚みは、永久磁石9の中心軸方向の厚みよりも小さい。なお、永久磁石9,23は、ケース11により覆われて固定側電極部22に固定されている。
 また、永久磁石9,23は、それぞれ例えば円柱形状もしくは角柱形状等の柱形状とすることができる。例えば、永久磁石9,23が、円柱形状である場合、永久磁石23の径は、永久磁石9の径よりも小さい。
 また、永久磁石9,23間に形成される間隙は、実施の形態1と同様に、固定側アーク接触子8における可動接触子5との接離点よりも中心軸方向(開閉方向)の可動側電極部2側に位置している。
 また、永久磁石9,23を覆うケース11の先端部の形状は滑らかな曲率を有するR形状であるため、この先端部に永久磁石を配置するスペースを取り難い場合がある。そのため、本実施の形態では、永久磁石23の大きさを、その断面および厚みの双方に関して永久磁石9よりも小さくすることで、ケース11の先端部の形状に適合させその配置を容易にしている。
 なお、永久磁石9,23を可動側電極部2に設ける場合は、永久磁石23を固定側電極部22側に配置し、永久磁石9は可動側電極部2側に配置することができる。一般に、可動側電極部2と固定側電極部22との間の電極間ギャップにより近いほうの永久磁石の外径をより小さくすることができる。
 また、本実施の形態では、ケース11の先端部の形状に合わせて永久磁石23の大きさを小さくした分、永久磁石9の厚みを実施の形態1の場合と比べて大きくすることもできる。
 本実施の形態によれば、永久磁石9,23の同じ極性同士を突き合わせることにより、従来に比べて径方向の磁束密度を大幅に向上させることができる。本実施の形態の動作は、実施の形態1と同様である。また、本実施の形態のその他の効果は、実施の形態1で説明したとおりである。
実施の形態3.
 図9は、本実施の形態に係る電流開閉器25の断面構成を示す図である。電流開閉器25は、例えばガス絶縁開閉装置内に配置される遮断器、電流開閉仕様付きの断路器、または電流開閉仕様付きの接地開閉器であり、図9では、その電流開閉部の断面構成が示されている。
 電流開閉器25は、例えばSFなどの絶縁性ガスが封入された金属容器(図示せず)内に配置される。電流開閉器25は、相互に中心軸を一致させ対向して配置された可動側電極部2と固定側電極部26とからなる。中心軸の定義は、実施の形態1と同様である。また、可動側電極部2の構成は、図1の場合と同様である。固定側電極部26では、固定側アーク接触子8の内側に永久磁石9,27、28が配置されている。なお、図9におけるその他の構成は、図1と同様である。
 永久磁石9,27,28は、各本体が固定側電極部26の中心軸上に配置され、それぞれ着磁方向を中心軸方向に揃えて配置されるとともに、同一の極性同士が互いに対向するようにして近接配置されている。具体的には、例えば、永久磁石9のN極側の端面と永久磁石27のN極側の端面とが互いに突き合わされて配置されるとともに、永久磁石27のS極側の端面と永久磁石28のS極側の端面とが互いに突き合わされて配置されている。
 また、永久磁石9,27,28は、順に固定側電極部26側から可動側電極部2側に配置されている。また、中心軸方向の厚みは、例えば最も固定側電極部26側の永久磁石9の厚みが最も大きく、永久磁石27,28の厚みはほぼ等しい。
 また、永久磁石9,27,28は、それぞれ例えば円柱形状もしくは角柱形状等の柱形状とすることができる。図9では、永久磁石9,27,28は円柱形状であり、かつ互いに同径である。
 また、永久磁石9,27間に形成される間隙と永久磁石27,28間に形成される間隙は、実施の形態1と同様に、いずれも固定側アーク接触子8における可動接触子5との接離点よりも中心軸方向(開閉方向)の可動側電極部2側に位置している。
 また、アークは上記接離点から可動側電極部2側にわたって発生することから、アークが発生する真横の領域に上記2個の間隙が配置されることになる。なお、実施の形態1で説明したように、これらの間隙付近では、径方向の磁束密度が特に大きくなっている。
 本実施の形態によれば、固定側電極部26に例えば3個の永久磁石9,27,28を配置することで、径方向の磁束密度が特に強い箇所である同極性同士の対向箇所を中心軸方向に複数箇所(図示例では2箇所)設けることになり、遮断性能をより向上させることができる。従来、例えば、電流仕様が高いとアークを簡単に遮断できないことがあり、アークをある程度の長さまで引っ張ってしまうことがあった。しかしながら、本実施の形態によれば、電流仕様が高い場合でも、径方向の磁束密度の特に強い箇所を中心軸方向に複数箇所設けるようにしたので、より迅速にアークを消弧することができる。
実施の形態4.
 図10は、本実施の形態に係る電流開閉器30の断面構成を示す図である。電流開閉器30は、例えばガス絶縁開閉装置内に配置される遮断器、電流開閉仕様付きの断路器、または電流開閉仕様付きの接地開閉器であり、図10では、その電流開閉部の断面構成が示されている。
 電流開閉器30は、例えばSFなどの絶縁性ガスが封入された金属容器(図示せず)内に配置される。電流開閉器30は、相互に中心軸を一致させ対向して配置された可動側電極部2と固定側電極部31とからなる。中心軸の定義は、実施の形態1と同様である。また、可動側電極部2の構成は、図1の場合と同様である。
 固定側電極部31では、固定側電極部31の外表面を形成する固定側シールド32が設けられている。そして、この固定側シールド32の内側(内表面)には例えば2個の永久磁石33,34が設けられている。
 永久磁石33,34は、それぞれ例えばリング形状であり、着磁方向を中心軸方向に揃えて配置されるとともに、同一の極性同士が互いに対向するようにして近接配置されている。具体的には、例えば、永久磁石33のN極側の端面と永久磁石34のN極側の端面とが互いに対向するようにして配置されている。
 また、永久磁石33,34の各本体は、固定側電極部31(または可動側電極部2)の中心軸52を中心として半径が可動接触子5の外径で規定される円筒状の領域53の外側に配置される。また、永久磁石33,34の対は、固定側シールド32の可動側電極部2側の端部に配置されている。したがって、可動接触子5は、永久磁石33,34を貫通するようにして固定側電極部31と接離される。
 なお、実施の形態1~3では、複数個の永久磁石は、中心軸52を中心として半径が可動接触子5の外径で規定される円筒状の領域53の内側に配置されるものであり、具体的には、固定側アーク接触子8の内側に配置され、特に、各本体が中心軸52上に配置されるものである。
 また、永久磁石33,34間に形成される間隙は、実施の形態1と同様に、固定側アーク接触子8における可動接触子5との接離点よりも中心軸方向(開閉方向)の可動側電極部2側に位置している。
 図11は、固定側電極部31に設けられた永久磁石33,34の作用を説明するための図である。図11では、電流開閉器30の開放動作中における遮断直後の状態を示しており、固定側アーク接触子8と可動側アーク接触子15との間には、アーク60が発生している。また、永久磁石33,34から発生した磁束は矢印付の点線で示されている。なお、図10,図11では、図1と同一の構成要素には同一の符号を付している。
 図11に示すように、アーク60の発生に伴い、固定側アーク接触子8と可動側アーク接触子15との間にアーク電流Iが流れることになるが、この電流Iは、永久磁石33,34の発生する磁束密度Bにより、電流Iと磁束密度Bに直交する方向にローレンツ力Fを受ける。また、図11に示すように、アーク電流Iの通流方向は概ね中心軸方向であることから、磁束密度Bの成分のうち径方向成分によるローレンツ力Fを受け、これによりアーク60は中心軸の周りに回転駆動されることとなる。したがって、磁束密度Bの径方向成分を大きくすることにより、アーク60の回転駆動が促進され、効果的に冷却されることから、遮断性能が向上することになる。
 そこで、本実施の形態では、永久磁石33,34の同じ極性同士を対向して配置することで、アーク発生部付近での磁束密度Bの径方向成分を大きくしている。さらに、永久磁石33,34を互いに近接配置させることで、永久磁石33,34のN極からそれぞれ発生する磁束が互いに反発して径方向に向けられるため、径方向成分が大幅に増大する。
 本実施の形態によれば、複数個の永久磁石である永久磁石33,34を固定側シールド32の内側(内表面上)でかつ中心軸52を中心として半径が可動接触子5の外径で規定される円筒状の領域53の外側に配置するようにしたので、永久磁石33,34の配置位置が固定側シールド32に近くなり、アークが固定側シールド32に転流した場合でも、直ちにアークを回転駆動し消弧することができる。
 また、本実施の形態では、永久磁石33,34は例えばリング形状としている。これは、汎用的な形状であり、ガス絶縁開閉装置も同軸円筒型が基本形状であることから、電極部への設置に適している。特に、リング形状は、可動接触子5が貫通する固定側シールド32への設置に適している。
 また、永久磁石33,34は、リング形状ではなく、例えば分割された複数個の永久磁石を環状に配置したものであってもよい。この場合、個々の永久磁石は例えば円柱状であり、同じ極性同士を突き合わせて対にしたものを、中心軸52を中心とした円周上に複数個配置する。
 また、本実施の形態では、永久磁石33,34は、互いに同じ内外径のリング形状としている。これにより、永久磁石33,34の電極部内への設置が容易となる。
 また、固定側シールド32の先端部は、永久磁石33,34の設置のために、固定側主接触子7側に湾曲した形状となっている。すなわち、固定側シールド32は、可動側電極部2側のその先端部が断面略L字状に形成されている。そこで、電極部間ギャップ側の永久磁石34の内径を永久磁石33の内径よりも大きくし、または永久磁石34の外径を永久磁石33の外径よりも小さくすることもできる。これにより、永久磁石33,34の固定側シールド32への設置が容易となる。なお、永久磁石33,34の設置形態は図示例に限定されず、固定側シールド32の内表面上に設置されるものであればその他の形態でもよい。
 ここで、従来の電流開閉器の別の一例について説明する。図13は、従来の電流開閉器90の別の一例の断面構成を示す図である。図13に示すように、電流開閉器90は、相互に対向して配置された可動側電極部2と固定側電極部91とからなる。可動側電極部2の構成は、図1の場合と同様である。また、固定側シールド32の内側(内表面)にはリング状の永久磁石92が単独で設けられている。なお、図13におけるその他の構成は、図12と同様である。
 この従来の電流開閉器90では、電流仕様が高い場合などは径方向の磁束密度の大きさが不十分で、アークの速やかな消弧が困難であった。すなわち、単一の永久磁石92から発生する磁束密度の径方向成分は、本実施の形態の場合と比べて大幅に小さいので、発生したアークがすぐに切れず、遮断性能が低いという問題があった。
 なお、永久磁石33,34を、可動側電極部2の外表面を構成する可動側シールド6の内側に配置することもできる。このように、永久磁石33,34は、可動側電極部2に設けることもできるが、可動側および固定側のいずれに設ける場合でもシールドの内部に設けられる。
 また、本実施の形態と実施の形態1~3をそれぞれ組み合わせた形態も可能である。
 なお、実施の形態1~4では、永久磁石は、固定側電極部に設けられているが、固定側電極部および可動側電極部の少なくともいずれか一方の電極部に設ける構成が可能である。すなわち、隣接間で同極性同士を対向させた複数個の永久磁石を固定側電極部に設ける構成、隣接間で同極性同士を対向させた複数個の永久磁石を可動側電極部に設ける構成、または、隣接間で同極性同士を対向させた複数個の第1の永久磁石を固定側電極部に設けかつ隣接間で同極性同士を対向させた複数個の第2の永久磁石を可動側電極部に設ける構成が可能である。例えば、本実施の形態の永久磁石33,34と実施の形態1の永久磁石9,10を組み合わせるなど、種々の組み合わせが可能である。
実施の形態5.
 図14は、本実施の形態に係る電流開閉器40の断面構成を示す図である。電流開閉器40は、例えばガス絶縁開閉装置内に配置される遮断器、電流開閉仕様付きの断路器、または電流開閉仕様付きの接地開閉器であり、図14では、その電流開閉部の断面構成が示されている。
 電流開閉器40は、例えばSFなどの絶縁性ガスが封入された金属容器(図示せず)内に配置される。電流開閉器40は、相互に中心軸を一致させ(すなわち、中心軸52)、対向して配置された固定側電極部41と可動側電極部42とからなる。
 可動側電極部42は、筒状に構成されて中心軸52方向に往復動作可能な可動接触子5と、この可動接触子5の先端部にて筒状に設けられ耐アーク材料で形成された可動側アーク接触子15と、この可動接触子5の周囲に設けられた電界緩和用の可動側シールド48と、この可動側シールド48の内周に沿って形成された環状溝75内に設置され、可動側シールド48および可動接触子5に接触して双方を導通する環状のコイルばね接触子65と、を備えている。ここで、可動側シールド48の内周とは、中心軸52を中心とした内周を意味する。
 コイルばね接触子65は、コイルが巻回軸に対して傾斜して螺旋状に巻回され断面が楕円形状の傾斜コイルばね66と、この傾斜コイルばね66の内部に挿入されたリング67とからなる。傾斜コイルばね66は、ばね性に優れた例えば銅合金から形成される。リング67は、例えば絶縁性材料から形成され、傾斜コイルばね66を環状に維持する剛性を有している。
 固定側電極部41は、中心軸52の周りに筒状に設けられ耐アーク材料で形成された固定側アーク接触子44と、この固定側アーク接触子44の周囲に設けられた電界緩和用の固定側シールド43と、この固定側シールド43の内周に形成された環状溝72a内に設置された環状のコイルばね接触子45aと、このコイルばね接触子45aよりも可動側電極部42側に配置され、固定側シールド43の内周に形成された例えば断面矩形の環状溝81内に設置されたリング形状の永久磁石47bと、を備えている。ここで、固定側シールド43の内周とは、中心軸52を中心とした内周を意味する。固定側シールド43は、可動接触子5が嵌入可能な嵌合穴を有する導体からなり、固定側アーク接触子44はこの嵌合穴内に配置される。
 コイルばね接触子45aは、コイルが巻回軸に対して傾斜して螺旋状に巻回され断面が楕円形状の傾斜コイルばね46aと、この傾斜コイルばね46aの内部に挿入されたリング形状の永久磁石47aとからなる。傾斜コイルばね46aは、ばね性に優れた例えば銅合金から形成される。また、永久磁石47bは、例えば環状溝81の側面に固定され、さらに固定側シールド43の内側から筒状の金属部材で支持されている。なお、永久磁石47bの設置方法は、図示例に限定されない。
 ここで、図15~図17を参照して、コイルばね接触子45aの詳細について説明する。図15は図14のB部拡大部、図16は図14のA-A線に沿う横断面図、図17は本実施の形態における傾斜コイルばねを示す側面図である。
 図15~図17に示すように、永久磁石47aの断面は例えば長方形であり、その断面の中心軸52方向の幅寸法Wdは、径方向の厚さ寸法Tよりも大きく形成されている。このように形成することにより、傾斜コイルばね46aが、可動接触子5により径方向に圧縮されてコイルが更に傾斜しても、傾斜コイルばね46aと永久磁石47aとの間に径方向の間隙が確保される。なお、径方向とは、中心軸52に直交する方向である。
 傾斜コイルばね46aは、楕円形に、かつ、楕円の短軸がコイルの中心軸線と鋭角を成すように傾斜螺旋巻きされ、楕円の長軸を中心軸52方向に向け、楕円の短軸を径方向に向けて環状溝72a内に設置される。また、永久磁石47aは、中心軸52方向のその両端部がそれぞれ傾斜コイルばね46aの内周に接触している。
 上記の構成により、中心軸52方向における永久磁石47aの両端部が、傾斜コイルばね46aの長軸方向の変形を阻止するとともに、傾斜コイルばね46aの環状溝72a内での捻れを防止し、短軸方向の変形のみを許容する。また、短軸を径方向に向けて環状溝72a内に設置するので、環状溝72aは、浅い溝でよく、深い溝加工を行う必要がなく、加工コストの増大と、固定側シールド43の通電断面積の減少を回避している。
 また、図15に示すように、環状溝72aは、底部ほど幅が狭く形成され、傾斜コイルばね46aは、環状溝72aの底面72fとの間に間隙を有し、頂部56aを環状溝72aから突出させ、環状溝72aの側面72d、72eに接触して係止されている。すなわち、傾斜コイルばね46aを、固定側シールド43と二点で接触させるようにして、接触電気抵抗を低減させている。
 また、図16に示すように、永久磁石47aの切断部14aを、傾斜コイルばね46aの両端の突合せ部13aから周方向にずらして配置している。ずらし角度は、例えば180°とするのがよい。構造的に弱い部分である切断部14aと突合せ部13aとを互いにずらすことにより、傾斜コイルばね46aと永久磁石47aの組立構造が強いものとなる上に、傾斜コイルばね46aが永久磁石47aの切断部14aから脱落するおそれを回避することができる。
 以上の構造は、コイルばね接触子65についてもリング67が永久磁石ではないことを除けば同様の構造である(コイルばね接触子の詳細については特許文献2を参照)。
 本実施の形態では、固定側接触子はコイルばね接触子45aと固定側アーク接触子44により構成される。可動接触子5は、コイルばね接触子45aと固定側アーク接触子44との間を進退動し、コイルばね接触子45aおよび固定側アーク接触子44とそれぞれ接離し、これにより固定側電極部41と可動側電極部42間の通流電流が開閉される。可動接触子5はコイルばね接触子45aと永久磁石47bを貫通する形でコイルばね接触子45aと接触する。したがって、永久磁石47a,47bの各本体は、中心軸52を中心として半径が可動接触子5の外径で規定される円筒状の領域53の外側に配置される。また、永久磁石47a,47bは固定側シールド43の内側に配置される。
 また、本実施の形態では、永久磁石47a,47bは、それぞれ着磁方向を中心軸52方向に揃えて配置されるとともに、同一の極性同士が互いに対向するようにして配置されている。具体的には、永久磁石47aのS極側の端面と永久磁石47bのS極側の端面とが互いに突き合わされて配置されている。なお、永久磁石47aのN極側の端面と永久磁石47bのB極側の端面とが互いに突き合わされて配置される構成であってもよい。永久磁石47a,47bは、例えば互いに同じ内外径のリング形状である。
 永久磁石の同じ極性同士を対向配置することの作用効果は実施の形態4と同様である。すなわち、永久磁石47a,47bの同じ極性同士を対向して配置することで、アーク発生部付近での磁束密度の径方向成分を大きくしている。さらに、永久磁石47a,47bを互いに近接配置させることで、永久磁石47a,47bのS極からそれぞれ発生する磁束が互いに反発して径方向に向けられるため、径方向成分が大幅に増大する。したがって、例えば開放動作中において固定側アーク接触子44と可動側アーク接触子15との間に発生したアークは、永久磁石47a,47bの磁束密度により効果的に回転駆動され、電流開閉器40の遮断性能が向上することになる。なお、図14では、永久磁石47a,47bから発生した磁束を矢印付の点線で示している。
 また、永久磁石47a,47b間に形成される間隙は、固定側アーク接触子44における可動接触子5との接離点とほぼ同じ位置または接離点よりも中心軸方向(開閉方向)の可動側電極部2側に位置し、アークの遮断性能を向上させるようにしている。図14の例では、永久磁石47a,47b間に形成される間隙は、固定側アーク接触子44における可動接触子5との接離点とほぼ同じ位置にある。
 なお、固定側シールド43の内表面上にて中心軸52方向に配列されるコイルばね接触子の個数は、複数個であってもよい。また、固定側シールド43内に配置される永久磁石47bと同様の構成の永久磁石を中心軸52方向に配列すること、つまり、永久磁石47bの個数を複数個とすることもできる。この場合、複数個の永久磁石47bは、発生したアークを効果的に消去するように、図14と同様に、可動側電極部42側に配置することが好ましい。
 一般に、固定側シールド43の内側に、それぞれリング形状の複数個の永久磁石を中心軸52方向に配列し、隣接する永久磁石同士は同じ極性同士を互いに対向させて配置し、複数個の永久磁石のうちの少なくとも一つは傾斜コイルばねの内部に挿入され、当該傾斜コイルばねとともに環状のコイルばね接触子を構成するものであればよい。例えば、複数個の永久磁石がすべてコイルばね接触子の内部に配置される構成も可能である。なお、複数個の永久磁石における隣接する永久磁石間の間隙のうちの少なくとも一つは、上述したように、固定側アーク接触子44における可動接触子5との接離点よりも中心軸52方向の可動側電極部42側に位置しまたはほぼ同じ位置にあることが望ましい(図14参照)。次に、図18を参照して、固定側シールド43の内表面上に複数個のコイルばね接触子が設けられた構成例について説明する。
 図18は、本実施の形態の変形例を示す図であり、固定側シールド43の内表面上に例えば2個のコイルばね接触子45a,45cが中心軸52方向に配列されている。コイルばね接触子45cは、コイルばね接触子45aと同様の構成であり、コイルが巻回軸に対して傾斜して螺旋状に巻回され断面が楕円形状の傾斜コイルばね46cと、この傾斜コイルばね46cの内部に挿入されたリング形状の永久磁石47cとからなり、固定側シールド43の内周に形成された環状溝72c内に設置されている。また、コイルばね接触子45cの永久磁石47cのN極とコイルばね接触子45aの永久磁石47aのN極とが互いに対向している。すなわち、隣接する永久磁石間で同じ極性同士が突き合わされ対向して配置される。
 また、図18に示すように、可動側電極部42は、環状のコイルばね接触子65a,65bを備えている。コイルばね接触子65a,65bは、それぞれ可動側シールド48の内周に沿って形成された環状溝75a,75b内に設置され、可動側シールド48および可動接触子5に接触して双方を導通する。また、コイルばね接触子65aは、傾斜コイルばね66aと、この傾斜コイルばね66aの内部に挿入されたリング67aとからなる。同様に、コイルばね接触子65bは、傾斜コイルばね66bと、この傾斜コイルばね66bの内部に挿入されたリング67bとからなる。コイルばね接触子65a,65bは、それぞれ図14のコイルばね接触子65と同じ構造である。図18では、可動側電極部42および固定側電極部41のそれぞれのコイルばね接触子の個数を同数の2個とし、図14の場合よりも個数を増やしているので、可動側電極部42と固定側電極部41との間に流れる電流量が大きい場合に好適である。
 本実施の形態によれば、コイルばね接触子を構成する傾斜コイルばねの内部にリング状の永久磁石を配置するようにしたので、永久磁石によってコイルばね接触子を環状に保持することができるとともに、省スペース化が実現されるという効果がある。
 図10では、例えばチューリップ型の固定側主接触子7と永久磁石33,34とが中心軸52方向に配列され、永久磁石33,34は固定側主接触子7よりも可動電極部2側に配置されている。これに対して、本実施の形態では、例えば図18に示すように、永久磁石47a,47cはそれぞれコイルばね接触子45a,47cの内部に配置されているので、固定側電極部41の中心軸52方向の長さがより短くなる。
 また、本実施の形態によれば、例えば図14に示すように、永久磁石47a,47bを固定側シールド43の内側でかつ中心軸52を中心として半径が可動接触子5の外径で規定される円筒状の領域53の外側に配置するようにしたので、永久磁石47a,47bの配置位置が固定側シールド43に近くなり、アークが固定側シールド43に転流した場合でも、迅速にアークを回転駆動し消弧することができる。
 なお、本実施の形態では、複数個の永久磁石(例えば永久磁石47a,47b)は固定側電極部41に設けられているが、固定側電極部41および可動側電極部42の少なくともいずれか一方の電極部に設ける構成が可能である。例えば、図14において、コイルばね接触子65のリング67を永久磁石とし、このようなコイルばね接触子65を複数個可動側電極部42に設けることもできる。この場合、隣接するコイルばね接触子間で永久磁石の同極性同士を対向させるとともに、固定側電極部41に設けるコイルばね接触子の個数を可動側電極部42に設けるコイルばね接触子の個数と同数にすることが好ましい。
 以上のように、本発明は、例えばガス絶縁開閉装置にて使用される電流開閉器として有用である。
 1,21,25,30,40,70,90 電流開閉器
 2,42 可動側電極部
 3,22,26,31,41,71,91 固定側電極部
 4 可動側主接触子
 5 可動接触子
 6,48 可動側シールド
 7 固定側主接触子
 8,44 固定側アーク接触子
 9,10,23,27,28,33,34,47a,47b,47c 永久磁石
 80,92 永久磁石
 11 ケース
 12,32,43 固定側シールド
 15 可動側アーク接触子
 45a,45c,65,65a,65b コイルばね接触子
 46a,46c,66,66a,66b 傾斜コイルばね
 56b 頂部
 50 間隙
 52 中心軸
 53 領域
 60 アーク
 67,67a,67b リング
 72a,72b,75,75a,75b,81 環状溝
 72f 底面
 72d 側面

Claims (20)

  1.  固定側電極部と可動側電極部とが互いに中心軸を一致させて対向して配置され、前記可動側電極部に設けられた可動接触子が前記中心軸上を往復動作して前記固定側電極部に設けられた固定側接触子と接離することにより、前記固定側電極部と前記可動側電極部の間を通流する電流を開閉する電流開閉器であって、
     前記固定側電極部および前記可動側電極部の少なくともいずれか一方に設けられ、それぞれ着磁方向を前記中心軸方向に揃えて配置され、前記中心軸を中心として半径が前記可動接触子の外径で規定される円筒状の領域の内側に配置されるとともに、隣接するもの同士の間では同じ極性同士を互いに対向させ突き合わせるようにして配置された複数個の永久磁石、
     を備えることを特徴とする電流開閉器。
  2.  前記複数個の永久磁石は、前記中心軸上に配置されることを特徴とする請求項1に記載の電流開閉器。
  3.  前記複数個の永久磁石は、前記固定側電極部に配置されることを特徴とする請求項1または2に記載の電流開閉器。
  4.  前記複数個の永久磁石における隣接する前記永久磁石間の間隙は、前記固定側接触子における前記可動接触子との接離点よりも前記中心軸方向の前記可動側電極部側に位置していることを特徴とする請求項3に記載の電流開閉器。
  5.  前記固定側接触子は、固定側主接触子と、この固定側主接触子の内側に同軸的に配置された固定側アーク接触子とからなり、
     前記可動接触子の先端部には、可動側アーク接触子が設けられており、
     前記複数個の永久磁石は、前記固定側アーク接触子の内側に配置されていることを特徴とする請求項3または4に記載の電流開閉器。
  6.  前記複数個の永久磁石は、それぞれ円柱形状であることを特徴とする請求項3~5のいずれか1項に記載の電流開閉器。
  7.  前記複数個の永久磁石は、互いに同径であることを特徴とする請求項6に記載の電流開閉器。
  8.  前記複数個の永久磁石のうち、最も固定側電極部側に配置される永久磁石の中心軸方向の厚みが最も大きいことを特徴とする請求項3~7のいずれか1項に記載の電流開閉器。
  9.  前記複数個の永久磁石の個数は2個であることを特徴とする請求項1~8のいずれか1項に記載の電流開閉器。
  10.  前記可動側電極部と前記固定側電極部が、絶縁性ガスが封入された金属容器内に設けられていることを特徴とする請求項1~9のいずれか1項に記載の電流開閉器。
  11.  固定側電極部と可動側電極部とが互いに中心軸を一致させて対向して配置され、前記可動側電極部に設けられた可動接触子が前記中心軸上を往復動作して前記固定側電極部に設けられた固定側接触子と接離することにより、前記固定側電極部と前記可動側電極部の間を通流する電流を開閉する電流開閉器であって、
     前記固定側接触子の周囲に配置された固定側シールドと、
     前記可動接触子の周囲に配置された可動側シールドと、
     前記固定側シールドおよび前記可動側シールドの少なくともいずれか一方の内側に設けられ、それぞれ着磁方向を前記中心軸方向に揃えて配置され、前記中心軸を中心として半径が前記可動接触子の外径で規定される円筒状の領域の外側に配置されるとともに、隣接するもの同士の間では同じ極性同士を互いに対向させ突き合わせるようにして配置された複数個の永久磁石と、
     を備えることを特徴とする電流開閉器。
  12.  前記固定側接触子は、前記固定側シールドの内側に設けられた固定側主接触子と、この固定側アーク接触子の内側に同軸的に配置された固定側アーク接触子とからなり、
     前記可動接触子の先端部には、可動側アーク接触子が設けられており、
     前記複数個の永久磁石は、前記固定側主接触子よりも前記可動電極部側に配置されていることを特徴とする請求項11に記載の電流開閉器。
  13.  前記複数個の永久磁石における隣接する前記永久磁石間の間隙は、前記固定側アーク接触子における前記可動接触子との接離点よりも前記中心軸方向の前記可動側電極部側に位置していることを特徴とする請求項12に記載の電流開閉器。
  14.  前記複数個の永久磁石は、それぞれリング形状であることを特徴とする請求項11~13のいずれか1項に記載の電流開閉器。
  15.  前記複数個の永久磁石は、互いに同じ内外形であることを特徴とする請求項14に記載の電流開閉器。
  16.  前記複数個の永久磁石はそれぞれリング形状であり、
     前記複数個の永久磁石のうちの少なくとも一つは傾斜コイルばねの内部に挿入され、当該傾斜コイルばねとともに環状のコイルばね接触子を構成し、
     前記コイルばね接触子は、前記固定側シールドの内周に形成された環状溝内に設置され、
     前記固定側接触子は、前記固定側シールドの内側に設けられた固定側アーク接触子と、前記コイルばね接触子とからなり、
     前記可動接触子の先端部には、可動側アーク接触子が設けられていることを特徴とする請求項11に記載の電流開閉器。
  17.  前記複数個の永久磁石における隣接する前記永久磁石間の間隙のうちの少なくとも一つは、前記固定側アーク接触子における前記可動接触子との接離点よりも前記中心軸方向の前記可動側電極部側に位置しまたはほぼ同じ位置にあることを特徴とする請求項16に記載の電流開閉器。
  18.  前記複数個の永久磁石のうち前記コイルばね接触子内に配置されていないものは、前記固定側シールドの中に配置されていることを特徴とする請求項16または17に記載の電流開閉器。
  19.  前記複数個の永久磁石の個数は2個であることを特徴とする請求項11~18のいずれか1項に記載の電流開閉器。
  20.  前記可動側電極部と前記固定側電極部が、絶縁性ガスが封入された金属容器内に設けられていることを特徴とする請求項11~19のいずれか1項に記載の電流開閉器。
PCT/JP2010/061721 2010-02-26 2010-07-09 電流開閉器 WO2011104902A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/519,506 US8902026B2 (en) 2010-02-26 2010-07-09 Electric current switching apparatus
CN2010800646733A CN102770933A (zh) 2010-02-26 2010-07-09 电流断续器
JP2010536250A JP4637296B1 (ja) 2010-02-26 2010-07-09 電流開閉器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010053160 2010-02-26
JPPCT/JP2010/053160 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011104902A1 true WO2011104902A1 (ja) 2011-09-01

Family

ID=44506342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061721 WO2011104902A1 (ja) 2010-02-26 2010-07-09 電流開閉器

Country Status (3)

Country Link
US (1) US8902026B2 (ja)
CN (1) CN102770933A (ja)
WO (1) WO2011104902A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522252A (zh) * 2011-12-19 2012-06-27 中国西电电气股份有限公司 一种非sf6气体绝缘金属封闭隔离开关的断口结构
JP6837607B1 (ja) * 2020-01-27 2021-03-03 三菱電機株式会社 ガス絶縁開閉装置
WO2022005077A1 (ko) * 2020-06-29 2022-01-06 엘에스일렉트릭 주식회사 아크 경로 형성부 및 이를 포함하는 직류 릴레이

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101199588B1 (ko) * 2011-08-24 2012-11-12 현대중공업 주식회사 가스 절연 개폐장치의 단로기용 이중 구조 콘택트 장치
JP6029524B2 (ja) * 2013-04-22 2016-11-24 株式会社日立製作所 開閉装置
DE102013216371A1 (de) * 2013-08-19 2015-02-19 Siemens Aktiengesellschaft Elektrisches Kontaktsystem
JP6169289B1 (ja) * 2016-04-28 2017-07-26 三菱電機株式会社 開閉器
EP3477675B1 (en) * 2017-10-30 2022-03-02 ABB Schweiz AG Gas-insulated medium-voltage switch with shield device
JP6456581B1 (ja) * 2018-06-25 2019-01-23 三菱電機株式会社 ガス遮断器
US11764010B2 (en) * 2018-10-19 2023-09-19 Te Connectivity Solutions Gmbh Contactor with arc suppressor
EP3819925A1 (en) * 2019-11-06 2021-05-12 General Electric Technology GmbH Improved insulating support assembly for a circuit breaker
US11380501B2 (en) * 2019-12-31 2022-07-05 Southern States Llc High voltage electric power switch with carbon arcing electrodes and carbon dioxide dielectric gas
EP3933865A1 (en) * 2020-06-30 2022-01-05 ABB Power Grids Switzerland AG Hybrid current path for circuit breakers
CN114628176B (zh) * 2022-03-18 2023-12-08 深圳市友利通新能源科技有限公司 一种高压力直流接触器灭弧系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945231Y1 (ja) * 1970-10-15 1974-12-11
JPS5763733A (en) * 1980-10-01 1982-04-17 Yaskawa Denki Seisakusho Kk Gas sealed breaker
JPS58184720U (ja) * 1982-06-02 1983-12-08 富士電機株式会社 電磁接触器の消弧装置
JP2000011820A (ja) * 1998-06-17 2000-01-14 Yaskawa Electric Corp ガス開閉器
JP2007335148A (ja) * 2006-06-13 2007-12-27 Mitsubishi Electric Corp 開閉器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1413214A (fr) * 1964-08-29 1965-10-08 Telemecanique Electrique Perfectionnement aux dispositifs de soufflage d'arc dans les appareils de coupure decourant
US3384772A (en) * 1965-10-22 1968-05-21 Rabinowitz Mario Method and apparatus for controlling breadown voltage in vacuum
US4273977A (en) * 1977-08-31 1981-06-16 Mitsubishi Denki Kabushiki Kaisha Circuit interrupter
JPS5782155A (en) * 1980-11-10 1982-05-22 Fuji Sangyo Co Ltd High strength nonbaked tile
FR2515418A1 (fr) * 1981-10-26 1983-04-29 Merlin Gerin Interrupteur a autoexpansion et a aimant permanent
EP0125553B1 (en) * 1983-05-09 1988-09-14 Mitsubishi Denki Kabushiki Kaisha Circuit breaker of spiral arc type
JPS62254328A (ja) * 1986-04-25 1987-11-06 三菱電機株式会社 開閉装置
JPH0221522A (ja) * 1988-07-08 1990-01-24 Fuji Electric Co Ltd ガス開閉機器
JP3234853B2 (ja) * 1995-08-08 2001-12-04 三菱電機株式会社 直流遮断装置
JP2002197949A (ja) 2000-12-26 2002-07-12 Toshiba Corp ガス絶縁断路器
JP4197406B2 (ja) * 2002-05-23 2008-12-17 三菱電機株式会社 ガス絶縁開閉器
JP2004236459A (ja) 2003-01-31 2004-08-19 Hitachi Ltd ガス絶縁開閉装置
JP2007323992A (ja) * 2006-06-01 2007-12-13 Mitsubishi Electric Corp ガス絶縁開閉装置
CN101682137B (zh) 2008-04-14 2012-07-18 三菱电机株式会社 触点
US8274007B2 (en) * 2009-08-19 2012-09-25 Southern States, Inc. Magnet interrupter for high voltage switching

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4945231Y1 (ja) * 1970-10-15 1974-12-11
JPS5763733A (en) * 1980-10-01 1982-04-17 Yaskawa Denki Seisakusho Kk Gas sealed breaker
JPS58184720U (ja) * 1982-06-02 1983-12-08 富士電機株式会社 電磁接触器の消弧装置
JP2000011820A (ja) * 1998-06-17 2000-01-14 Yaskawa Electric Corp ガス開閉器
JP2007335148A (ja) * 2006-06-13 2007-12-27 Mitsubishi Electric Corp 開閉器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102522252A (zh) * 2011-12-19 2012-06-27 中国西电电气股份有限公司 一种非sf6气体绝缘金属封闭隔离开关的断口结构
JP6837607B1 (ja) * 2020-01-27 2021-03-03 三菱電機株式会社 ガス絶縁開閉装置
WO2021152646A1 (ja) * 2020-01-27 2021-08-05 三菱電機株式会社 ガス絶縁開閉装置
WO2022005077A1 (ko) * 2020-06-29 2022-01-06 엘에스일렉트릭 주식회사 아크 경로 형성부 및 이를 포함하는 직류 릴레이

Also Published As

Publication number Publication date
CN102770933A (zh) 2012-11-07
US8902026B2 (en) 2014-12-02
US20120280772A1 (en) 2012-11-08

Similar Documents

Publication Publication Date Title
WO2011104902A1 (ja) 電流開閉器
JP4522490B1 (ja) ガス絶縁開閉装置
US8519812B2 (en) Vacuum interrupter for vacuum circuit breaker
JP5368150B2 (ja) 開閉器
KR101604368B1 (ko) 가스 절연 개폐기
WO2013140619A1 (ja) 電流開閉器
JP4753360B2 (ja) 電気接点開閉部
JP4637296B1 (ja) 電流開閉器
JP2018534741A (ja) 接点ギャップを中央フランジ軸方向位置から離すことによるCu−Cr浮遊中央シールド部品の壁厚さの最大化
JP6029524B2 (ja) 開閉装置
JP4878331B2 (ja) 電気接点開閉部
CN105529209B (zh) 用于真空断续器的轴向磁场线圈
KR101300264B1 (ko) 개폐기
JP4197406B2 (ja) ガス絶縁開閉器
JP2007323992A (ja) ガス絶縁開閉装置
JP2016048636A (ja) 真空バルブ
JP2002334636A (ja) ガス絶縁断路器
JP2007305497A (ja) 真空開閉器およびそのコンディショニング処理方法
WO2020054128A1 (ja) ガス絶縁開閉装置
JP5512474B2 (ja) 開閉装置
WO2021070409A1 (ja) 断路器およびガス絶縁開閉装置
KR20170113981A (ko) 가스절연 차단기
JPH029409B2 (ja)
CN101536129A (zh) 具有旋转的开关电弧的高压电路断路器
JPH04155721A (ja) 真空バルブ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080064673.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010536250

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846565

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13519506

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846565

Country of ref document: EP

Kind code of ref document: A1