WO2011104898A1 - 回転角検出又は同期装置用巻線の巻線方法 - Google Patents

回転角検出又は同期装置用巻線の巻線方法 Download PDF

Info

Publication number
WO2011104898A1
WO2011104898A1 PCT/JP2010/055576 JP2010055576W WO2011104898A1 WO 2011104898 A1 WO2011104898 A1 WO 2011104898A1 JP 2010055576 W JP2010055576 W JP 2010055576W WO 2011104898 A1 WO2011104898 A1 WO 2011104898A1
Authority
WO
WIPO (PCT)
Prior art keywords
winding
output
stator
stator teeth
rotation angle
Prior art date
Application number
PCT/JP2010/055576
Other languages
English (en)
French (fr)
Inventor
米蔵 久保田
菊池 良巳
Original Assignee
多摩川精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 多摩川精機株式会社 filed Critical 多摩川精機株式会社
Priority to EP10846561.8A priority Critical patent/EP2541215B1/en
Priority to KR1020127020308A priority patent/KR101402655B1/ko
Priority to US13/577,586 priority patent/US20120311850A1/en
Priority to CN201080062904.7A priority patent/CN102741660B/zh
Publication of WO2011104898A1 publication Critical patent/WO2011104898A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2073Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by movement of a single coil with respect to two or more coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor
    • Y10T29/49071Electromagnet, transformer or inductor by winding or coiling

Definitions

  • the present invention relates to a winding method of an output winding wound around a stator tooth of a stator in a rotation angle detection device such as a resolver or a rotation angle synchronization device such as a synchro, and in particular, an output signal output from the output winding is
  • a rotation angle detection device such as a resolver or a rotation angle synchronization device such as a synchro
  • an output signal output from the output winding is
  • the present invention relates to a winding method for winding a sine wave signal.
  • FIG. 9 is a diagram showing a resolver as a conventional rotation angle detecting device of this type.
  • the resolver 900 of FIG. 9 includes a ring-shaped stator 920 in which a plurality of stator teeth 931 protruding inward from the inner peripheral surface are formed in a ring shape. Further, a rotor (not shown) provided inside the stator 920 so as to be rotatable with respect to the stator 920 so that the gap permeance between the stator teeth 931 periodically changes with rotation. Is provided.
  • Each stator tooth 931 formed in the stator 920 receives an excitation signal from the outside, and an excitation winding (not shown) is wound between adjacent stator teeth so that the winding directions are opposite to each other. .
  • Each stator tooth 931 is wound with an output winding y from which an output signal that changes in accordance with the rotation angle of the rotor is output.
  • the output winding y for each stator tooth 931 is connected in series to form an output winding group z.
  • each stator tooth 931 of the stator 920 When an excitation signal is input to the excitation winding, each stator tooth 931 of the stator 920 is excited to generate a magnetic flux. If the shape formed by the combination of the adjacent stator teeth 931 is a slot 930, a magnetic circuit is formed in each slot 930. At that time, the gap permeance with each slot 930 (each magnetic circuit) changes in accordance with the rotation angle of the rotor, so that a magnetic flux corresponding to the rotation angle of the rotor is generated in each magnetic circuit. An electrical signal is generated in the output winding group z by the generated magnetic flux, and the rotational angle of the rotor can be detected by taking out the electrical signal as an output signal.
  • the following expression (51) is an expression showing the number of turns of the output winding y wound around each stator tooth 931, which is proposed in Patent Document 1. That is, conventionally, for each stator tooth 931, the number of turns indicated by the equation (51) is set and wound as the output winding y. As a result, a sine wave signal is output to the output winding group z as an output signal in which signals generated in the output windings y are superimposed.
  • an n-phase output winding y is wound around each stator tooth 931 to form an n-phase output winding group z.
  • the number of turns of each output winding y is adjusted so that sinusoidal signals having different phases are output.
  • a two-phase output winding group z is wound, and a sin signal is output from one output winding group z and a cos signal is output from the other output winding group z.
  • a synchro for example.
  • the three-phase output winding group z set by the equation (51) is wound, and sine wave signals whose phases are shifted from each other by 120 degrees are output from the output winding groups z.
  • the synchro is usually used to synchronize their operations among a plurality of devices, and is used in a set of a synchro transmitter and a sync receiver.
  • These synchro transmitters and receivers have the same structure. That is, both have a stator and a rotor, and a three-phase output winding group z is wound around the stator teeth.
  • the rotor of a synchro receiver is made the same as the position of the rotor of a synchro transmitter by connecting each output winding group z of a synchro transmitter and a receiver.
  • synchronization refers to each of the synchronization transmitter and receiver.
  • the rotation angle synchronization device refers to each of the transmission side device and the reception side device used in a system that synchronizes the rotation angle including the transmission side device and the reception side device, such as a synchro.
  • the conventional equation (51) is a fractional expression in which a mathematical expression is determined in the denominator numerator, or is complicated because the number of terms constituting the expression is large, so that the number of turns cannot be set easily.
  • the present invention relates to a rotation angle detection or a winding method for a synchronous device winding for outputting a sine wave signal from an output winding group, and it is an object to make it easier to set the number of turns than in the past.
  • the present invention provides a stator in which a plurality of stator teeth are formed in a ring shape; A rotor provided rotatably with respect to the stator; Excitation windings to which excitation signals are input, and excitation windings sequentially wound around the stator teeth such that the winding directions are opposite to each other between adjacent stator teeth, A winding group in which output windings wound around the respective stator teeth are connected in series, and a magnetic flux generated by the excitation winding and changing according to the rotation angle of the rotor is output as a sine wave signal.
  • An output winding group for A winding method of the output winding in a rotation angle detection or synchronization device comprising: When a number is assigned to each stator tooth according to the arrangement order of the plurality of stator teeth, the number of turns W (k) of the output winding wound around the k-th stator teeth is expressed by the following equation (1): It is characterized by setting.
  • the inventors output a sine wave signal that changes in accordance with the rotation angle of the rotor by winding the number of turns W (k) set in equation (1) around each stator tooth. It was found that it was output from the winding group.
  • the equation (1) is not a fractional expression, and the number of terms constituting the equation is small, so the number of windings can be set more easily than in the past.
  • an output signal Vo sum expressed by the following equation (2) is output to the output winding group in the present invention.
  • the rotor rotation angle ⁇ is set based on the value of the sine wave signal. It can be detected.
  • the present invention provides a stator in which a plurality of stator teeth are formed in a ring shape, A rotor provided rotatably with respect to the stator; Excitation windings to which excitation signals are input, and excitation windings sequentially wound around the stator teeth such that the winding directions are opposite to each other between adjacent stator teeth, A winding group in which output windings wound around the respective stator teeth are connected in series, and a magnetic flux generated by the excitation winding and changing according to the rotation angle of the rotor is output as a sine wave signal.
  • An output winding group for A winding method of the output winding in a rotation angle detection or synchronization device comprising: When a number is assigned to each stator tooth according to the arrangement order of the plurality of stator teeth, the number of turns W (k) of the output winding wound around the kth stator teeth is expressed by the following equation (3): It is characterized by setting.
  • the output signal output from the output winding group is a signal that is 90 degrees out of phase with the cos output signal (equation (2)), that is, the sin output signal (equation (4)).
  • the rotation angle detection or synchronization device includes the output winding group for n phases in which the output windings for n phases are wound around each stator tooth,
  • the number of turns W (k) is set by setting the phase adjustment parameter ⁇ in each output winding group so that the output signals output from these output winding groups have a predetermined phase relationship.
  • the rotation angle detection device can be a resolver including the output winding group for two phases in which one is a sin phase and the other is a cos phase.
  • the resolver since it is necessary to obtain a sin wave output signal and a cos wave output signal that change in accordance with the rotation angle of the rotor, it is preferable to apply the present invention to the resolver.
  • the maximum number of turns W SMAX among the number of turns W sin (k) set by the expression (1) or (3) for the sin phase output winding group When the maximum number of turns W CMAX among the number of turns W cos (k) set in the expression (1) or (3) for the cos phase output winding group,
  • the sin phase winding number W sin (k) and the cos phase winding number W cos (k) are set such that the sin phase maximum winding number W SMAX and the cos phase maximum winding number W CMAX match. Correct either one.
  • the number k in the expression (1) or (3) is an integer
  • the maximum number of turns W SMAX in the sin-phase output winding group and the maximum number of turns W CMAX in the cos-phase output winding group. May be different.
  • the output signal output from the sin-phase output winding group and the output signal output from the cos-phase output winding group are not exactly in the relationship between the sin signal and the cos signal. And if the rotation angle of a rotor is detected based on these output signals, there exists a possibility that detection accuracy may fall.
  • the number of turns W cos (k) of the cos phase is corrected by the following equations (5) and (6).
  • the maximum number of windings W SMAX of the sin phase and the maximum number of windings W CMAX of the cos phase can be matched.
  • FIG. 1 is a perspective view of a resolver 100.
  • FIG. It is a disassembled perspective view of the stator 200 of FIG.
  • FIG. 3 is an explanatory diagram of an excitation winding 4 wound around stator teeth 210a to 210h of a stator 200.
  • 4 is an explanatory diagram of an output winding 5 wound around stator teeth 210a to 210h of a stator 200.
  • FIG. It is a figure for demonstrating the number of turns of a stator winding, a winding direction, the output signal etc. which are output from a stator winding. It is the figure which showed typically the direction of the magnetic flux in a certain time when the rotor 300 exists in a rotation state.
  • FIG. 1 is a perspective view of a resolver 100 as a rotation angle detection device in which a winding is wound by the winding method of the present invention.
  • FIG. 1 illustration of wiring such as stator windings is omitted.
  • FIG. 2 is an exploded perspective view of the stator 200 of FIG.
  • a resolver 100 shown in FIG. 1 includes a stator (stator) 200 and a rotor (rotor) 300.
  • the resolver 100 is a so-called inner rotor type rotation angle detection device. That is, the rotor 300 is provided on the inner side of the stator 200, and the output winding group constituting the stator winding provided in the stator 200 according to the rotation angle of the rotor 300 in a state where the rotor 300 is opposed to the outer peripheral side.
  • the output signal changes.
  • the stator 200 is constituted by an annular (ring-shaped) flat plate 250 made of a magnetic material, and a plurality of stator teeth (teeth) 210 are formed on the flat plate 250 in a ring shape. These stator teeth 210 are formed so as to intersect the flat plate 250.
  • the stator 200 has eight stator teeth 210a, 210b, 210c, 210d, 210e, 210f, 210g, and 210h that are raised substantially perpendicularly to the same plane side with respect to the flat plate surface by bending or the like.
  • the stator teeth 210a to 210h are formed on the flat plate 250 in advance by press working, and then raised so as to be substantially perpendicular to the surface of the flat plate 250 by bending press processing.
  • the stator teeth 210a to 210h are formed on the inner edge (inner diameter side) of the annular flat plate 250.
  • at least the surface facing the rotor 300 among the surfaces of the stator teeth 210a to 210h is not a flat surface, and is located on the inner diameter side of the annular flat plate 250 when viewed along the direction of the rotation axis of the rotor 300. It forms so that it may become a part of circular arc centering on.
  • the stator 200 is provided with an insulating cap 400 configured to be attachable to the flat plate 250.
  • the insulating cap 400 is integrally formed with a plurality of bobbins 410a, 410b, 410c, 410d, 410e, 410f, 410g, 410h provided in accordance with the positions of the stator teeth 210a to 210h of the stator 200.
  • Each bobbin 410a to 410h has a stator tooth insertion hole, and stator teeth 210a to 210h corresponding to the bobbin are inserted into the stator tooth insertion hole, and a stator winding is wound around the outside.
  • the direction of the stator teeth insertion hole of each of the bobbins 410a to 410h is the same as the direction of the rotating shaft of the rotor 300.
  • the insulating cap 400 includes a connector unit 450 provided with terminal pins that are electrically connected to stator windings wound outside the bobbins 410a to 410h. And are integrally formed.
  • the connector unit 450 is provided with terminal pin insertion holes 461 to 466.
  • the terminal pin insertion holes 461 to 466 have terminal pins 471 to 476 made of a conductive material electrically connected to the stator winding. Each inserted. An excitation signal is externally applied to the stator winding via any of the terminal pins 471 to 476, and an output signal is output to the outside via any of the terminal pins 471 to 476.
  • the insulating cap 400 includes a plurality of transition pins 480a, 480b, 480c, 480d, 480e, 480f, and 480g, and the bobbins 410a to 410h, the connector unit 450, and the transition pins 480a to 480g are integrally formed.
  • Each crossover pin 480a to 480g is formed on the annular insulating cap 400 between the two bobbins.
  • the crossover pin is not formed between the bobbins 410a and 410h.
  • Each of the crossover pins 480a to 480g has a columnar shape provided between the two bobbins, and a conductive wire electrically connected to the stator winding wound around the outside of one of the bobbins is a crossover pin. And is electrically connected to a stator winding wound around the other bobbin. This makes it difficult to resonate even if the distance between the two bobbins becomes long, and allows the number of turns of the stator winding to be adjusted in half turns.
  • the crossover pin has a portion in the same direction as the direction of the rotating shaft of the rotor 300.
  • Such an insulating cap 400 is formed by plastic processing using an insulating resin (insulating material) such as PBT (Polybutylene-terephthalate) or PPT (Polypropylene-terephthalate).
  • insulating resin insulating material
  • PBT Polybutylene-terephthalate
  • PPT Polypropylene-terephthalate
  • the rotor 300 is made of a magnetic material and is provided so as to be rotatable with respect to the stator 200. More specifically, the rotor 300 is provided to be rotatable with respect to the stator 200 so that the gap permeance between the stator teeth 210a to 210h of the stator 200 is changed by the rotation of the rotor 300 about the rotation axis.
  • the axial multiplication angle of the rotor 300 is “2”, and the outer diameter contour line on the outer diameter side in a plan view is shown in two cycles for one circumference of the circumference with respect to the circumference of a given radius. It has a changing shape.
  • the surface of the outer peripheral surface of the rotor 300 facing the inner (inner diameter side, inner peripheral side) surface of the stator teeth 210a to 210h raised with respect to the flat plate 250 is a gap permeance at two cycles per rotation of the rotor 300. Is changing.
  • the stator winding for extracting the output signal output from the output winding by the rotation of the rotor 300, which is a feature of the present invention, will be described.
  • the stator winding is composed of an excitation winding and an output winding, and the output signal of the output winding changes by the rotation of the rotor 300 with respect to the stator 200 in a state of being excited by the excitation winding.
  • FIGS. 3A and 3B are explanatory diagrams of stator windings wound around the stator teeth 210a to 210h of the stator 200.
  • FIG. 3A shows a state where the excitation winding 4 is wound around the stator teeth 210a to 210h.
  • FIG. 3B is a plan view of the stator 200 showing a state in which the output winding 5 is wound around the stator teeth 210a to 210h.
  • FIGS. 3A and 3B the state in which the excitation winding 4 is wound and the state in which the output winding 5 is wound are separately shown, but in actuality, each of the stator teeth 210a to 210h is energized. Winding 4 and output winding 5 are wound together.
  • the exciting winding 4 is the root side of the stator teeth 210a to 210h
  • the output winding 5 is the leading end side of the stator teeth 210a to 210h. 4 and the output winding 5 are wound respectively.
  • FIG. 4 is a diagram for explaining the number of turns of the stator winding wound around each of the stator teeth 210a to 210h, the winding direction, the output signal output from the stator winding, and the like.
  • FIG. 4A shows a state where the stator teeth 210a to 210h are arranged in a line for convenience of explanation.
  • the coordinate axes of the stator teeth 210a to 210h are shown in correspondence with FIG. 4 (a).
  • the seventh stator tooth 210g
  • each stator tooth 210a to 210h has a number k.
  • the first stator teeth 210a and the second stator teeth 210b constitute a slot 211a.
  • slots 211b to 211h are formed from the other two adjacent stator teeth. That is, eight slots 211a to 211h, which are the same as the number of stator teeth 210a to 210h, are configured. The position of the slot 211a is the origin.
  • FIG. 3A the excitation coils 4 are wound around the stator teeth 210a to 210h via bobbins 410a to 410h (see FIGS. 1 and 2 and not shown in FIGS. 3A and 3B).
  • the excitation winding 4 can be a coil winding, for example.
  • FIG. 4 (b) schematically shows the number of turns and the winding direction of the excitation winding 4 wound around the stator teeth 210a to 210h.
  • the positive side is the forward winding (clockwise CW direction in FIG. 3A) and the negative side is the reverse winding (counterclockwise CCW direction in FIG. 3A) with reference to the zero point of the number of windings. .
  • FIG. 4B the positive side is the forward winding (clockwise CW direction in FIG. 3A) and the negative side is the reverse winding (counterclockwise CCW direction in FIG. 3A) with reference to the zero point of the number of windings. .
  • the excitation winding 4 is wound around the respective stator teeth 210a to 210h so that the winding directions between the adjacent stator teeth are opposite to each other.
  • the number of turns of the excitation winding 4 is the same for each of the stator teeth 210a to 210h.
  • This excitation winding 4 is started from a terminal pin R1 of FIG. 3A by a dedicated winding machine, for example, stator teeth 210a ⁇ stator teeth 210b ⁇ stator teeth 210c ⁇ stator teeth 210d ⁇ stator teeth 210e ⁇ stator teeth 210f ⁇ Winding is performed in the order of stator teeth 210g ⁇ stator teeth 210h.
  • the other end of the excitation winding 4 is electrically connected to the terminal pin R2.
  • the terminal pins R1 and R2 are assigned to any of the terminal pins 471 to 476 in FIGS.
  • FIG. 5 is a plan view of the resolver 100 and schematically shows the direction of the magnetic flux at a certain time when the rotor 300 is in a rotating state.
  • FIG. 5 also schematically shows the direction of the magnetic flux passing through each of the stator teeth 210a to 210h as the winding magnetic core.
  • the insulating cap 400 is not shown for convenience of explanation.
  • each stator tooth 210a to 210h Since the exciting winding 4 wound around each stator tooth 210a to 210h is wound so as to be opposite to each other between adjacent stator teeth as described above, the magnetic flux passing through each stator tooth 210a to 210h. are connected between adjacent stator teeth. Specifically, as shown in FIG. 5, the magnetic flux is coupled between the adjacent stator teeth via the flat plate 250 of the stator 200 (solid arrow) and via the rotor 300 (dotted arrow). That is, a magnetic circuit is formed for each of the slots 211a to 211h.
  • the output winding 5 for outputting an output signal corresponding to the rotation angle of the rotor 300 is wound around each of the stator teeth 210a to 210h (see FIG. 3B).
  • the output winding 5 further includes a sin phase output winding 51 and a cos phase output winding 52.
  • the output windings 51 and 52 are configured by connecting output windings wound around the stator teeth 210a to 210h in series.
  • the sin-phase output winding 51 includes an output winding 51b wound around the second stator teeth 210b and an output winding wound around the fourth stator teeth 210d.
  • the line 51d, the output winding 51f wound around the sixth stator tooth 210f, and the output winding 51h wound around the eighth stator tooth 210h are connected in series.
  • the cos phase output winding 52 is an output winding 52a wound around the first stator teeth 210a, and an output winding wound around the output winding 210c wound around the third stator teeth 210c. 52c, an output winding 52e wound around the fifth stator tooth 210e and an output winding 52g wound around the seventh stator tooth 210g are connected in series.
  • the output winding 51 configured by the output windings 51b, 51d, 51f, and 51h is referred to as an output winding group 51.
  • the output winding 52 is referred to as an output winding group 52
  • the output winding 5 is referred to as an output winding group 5.
  • the sin-phase output winding group 51 and the cos-phase output winding group 52 are windings for outputting an output signal that changes sinusoidally as the rotor 300 rotates. However, the waveforms of the output signals are different from each other. Specifically, the cos-phase output winding group 52 is in phase with the output signal output from the sin-phase output winding group 51. Is a winding for outputting an output signal shifted by 90 °.
  • the outputs wound around the stator teeth 210a to 210h It is necessary to adjust the number of windings and the winding direction.
  • the inventors set the number of windings W (k) to be wound around the k-th stator teeth in the following equation (1), so that the output signal Vosum represented by the following equation (2), that is, It has been found that an output signal Vosum that changes sinusoidally according to the rotation angle ⁇ of the rotor is output from the output winding group.
  • the winding number W (k) in the expression (1) is a concept including the winding direction, and the winding direction is opposite to the positive winding number W (k) and the negative winding number W (k). It is supposed to be.
  • the parameter ⁇ for phase adjustment in the equation (1) is a parameter for adjusting the phase of the output signal V osum , for example, adjusting the position of the zero point of the output signal V osum , This is for adjusting the phase of each output signal Vosum in the output winding group.
  • the number of slots S 8
  • the number of turns W sin (k) of each output winding in the sin-phase output winding group 51 is expressed by the following equation (7).
  • FIG. 4C is a diagram schematically showing the number of windings W sin (k)
  • FIG. 4E is a diagram schematically showing the number of windings W cos (k).
  • the number of turns MaxTrn is applied to the second stator teeth 210b in the reverse winding (counterclockwise CCW direction in FIG. 3B, the same applies hereinafter). Winding is performed by winding the number of windings MaxTrn in the forward direction (clockwise CW direction in FIG. 3B, the same applies hereinafter) around the fourth stator teeth 210d, and winding the number of windings MaxTrn in the reverse direction around the sixth stator teeth 210f. The maximum number of turns MaxTrn is wound around the second stator teeth 210h. That is, as described above, the sin-phase output winding group 51 includes the output winding 51b, the output winding 51d, the output winding 51f, and the output winding 51h connected in series (see FIG. 3B).
  • the sin-phase output winding group 51 is sequentially wound in the order of the stator teeth 210b ⁇ the stator teeth 210d ⁇ the stator teeth 210f ⁇ the stator teeth 210h by a dedicated winding machine, for example, starting from the terminal pin S2 in FIG. 3B. Is done.
  • the other end of the output winding group 51 is electrically connected to the terminal pin S4.
  • the terminal pins S2 and S4 are assigned to any of the terminal pins 471 to 476 of FIGS.
  • the cos phase output winding group 52 is wound around the first stator tooth 210a with the maximum number of turns MaxTrn and the third stator tooth 210c.
  • the winding number MaxTrn is wound around the reverse winding
  • the winding number MaxTrn is wound around the fifth stator tooth 210e
  • the winding number MaxTrn is wound around the seventh stator tooth 210g. That is, as described above, the output winding group 52 of the cos phase is configured by connecting the output winding 52a, the output winding 52c, the output winding 52e, and the output winding 52g in series (see FIG. 3B).
  • the cos-phase output winding group 52 is wound in order in the order of the stator teeth 210a ⁇ the stator teeth 210c ⁇ the stator teeth 210e ⁇ the stator teeth 210g by a dedicated winding machine, for example, starting from the terminal pin S1 in FIG. 3B. Is done.
  • the other end of the output winding group 52 is electrically connected to the terminal pin S3. Note that the terminal pins S1 and S3 are assigned to any of the terminal pins 471 to 476 in FIGS.
  • the output signal Vosum1 of the output winding group 51 is output from between the terminal pins S2 and S4, and the output winding from between the terminal pins S1 and S3.
  • the output signal V osum2 of the group 52 is output.
  • stator teeth 210b, 210d, 210f are wound around the second, fourth, sixth, and eighth stator teeth 210b, 210d, 210f, and 210h.
  • output signals are output, and when these output signals are superimposed, the waveform of FIG.
  • stator teeth 210a, 210c, 210e, and 210g are wound, the stator teeth 210a, 210c, 210e, and 210g Output signals are output, and when these output signals are superimposed, the waveform of FIG.
  • the number of turns W (k) wound around each of the stator teeth 210a to 210h is a good value (see Table 1), but the resolver 100 has a different number of slots S or the like.
  • the distribution of the number of turns W (k) is different from that in Table 1.
  • FIG. 6 is a diagram schematically showing the distribution of the number of turns W (k). In Table 2, only the coefficient multiplied by the maximum number of turns MaxTrn is shown. In Table 2, only the second decimal place is shown.
  • the winding number W (k) is distributed in a complicated manner. Even in such a case, by winding the number of turns W (k) in Table 2 around each stator tooth, the output signal V osum that changes in a sine wave shape expressed by the above equation (2) is output. .
  • the maximum number of turns W SMAX among the number of turns W sin (k) set for the sin phase output winding group is “1.0”
  • the maximum number of turns W CMAX among the number of turns W cos (k) set for the phase output winding group is “0.95”. This is due to the fact that the number k assigned to the equation (1) is an integer. If the maximum number of turns W SMAX is different from the maximum number of turns W CMAX , an error occurs in the relationship between the output signal V osum1 and the output signal V osum2 .
  • the winding number W cos (k) of the cos phase is corrected by the following equations (5) and (6) so that the maximum winding number W SMAX and the maximum winding number W CMAX coincide.
  • the correction coefficient Wc is obtained by the equation (5) and multiplied by the correction coefficient Wc, thereby correcting the number of turns W cos (k) of the cos phase. This can prevent the error from occurring.
  • the winding number W cos (k) of the cos phase is corrected, but the winding number W sin (k) of the sin phase may be corrected. Both the cos phase winding number W cos (k) and the sin phase winding number W sin (k) may be corrected.
  • the output signal Vosum of the above equation (2) is output by winding the winding number W (k) set by the above equation (1).
  • k is the number of stator teeth
  • S is the number of slots
  • X is the number of rotor poles
  • is the rotation angle of the rotor
  • is a parameter for phase adjustment.
  • the vector potential Az Right (k) of the slot on the right side (CW direction) of the k-th stator teeth is expressed by the following equation (12).
  • the term ( ⁇ 1) k ⁇ 1 is also a term added to adjust the sign.
  • the vector potentials Az Left (k) and Az Right (k) correspond to the magnetic flux generated in each stator tooth by the excitation winding to which the excitation signal is input.
  • ⁇ in the equation (24) is expanded to a complex number. Specifically, when ⁇ in the equation (24) is considered as a real part of a complex number and an imaginary part i ⁇ sin (4 km ⁇ m ⁇ + X ⁇ + ⁇ ) is added, the following equation (25) is obtained.
  • the number of turns set by the above equation (1) is wound around each of the stator teeth 210a to 210h as an output winding. Therefore, an output signal that changes in a sine wave shape according to the rotation angle of the rotor 300 expressed by the equation (2) can be obtained.
  • the expression (1) according to the present invention is not a fractional expression, and the number of terms constituting the expression is small, so that the number of turns can be set more easily than in the past.
  • equation (1) is not a fractional expression, the set number of turns is unlikely to be a fraction, and an accurate output signal can be obtained.
  • the expression (1) showing the number of turns of the output winding in the above embodiment is expressed as a function of cos, but is set by an expression expressed as a function of sin in the following expression (3).
  • the number of windings may be wound.
  • the inventors have found that an output signal changing in a sinusoidal form of the following equation (4) can be obtained.
  • the vector potential Az Right (k) of the slot on the right side (CW direction) of the kth stator teeth is expressed by the following equation (28).
  • the term ( ⁇ 1) k ⁇ 1 is also a term added to adjust the sign.
  • the vector potentials Az Left (k) and Az Right (k) correspond to the magnetic flux generated in each stator tooth by the excitation winding to which the excitation signal is input.
  • ⁇ in the equation (40) is expanded to a complex number. Specifically, when ⁇ in the equation (40) is considered as an imaginary part of a complex number and a real part cos (4 km ⁇ m ⁇ + X ⁇ + ⁇ ) is added, the following equation (41) is obtained.
  • equation (41) the term 4 km ⁇ that changes when k changes can be transformed as in the following equation (42).
  • equation (3) is not a fractional expression, and since the number of terms constituting the equation is small, the number of turns can be set more easily than in the past.
  • FIG. 10 is a diagram showing an example in which the resolver is applied to control of a brushless motor.
  • the resolver 802 (resolver rotor) is provided coaxially with the rotation shaft of the brushless motor 801 and detects the rotation angle of the brushless motor 802.
  • the first-phase output signal (sin signal) and the second-phase output signal (cos signal) as rotation angles detected by the resolver 802 are transmitted to the control unit 803 that controls the brushless motor 801.
  • the control unit 803 grasps the current rotation angle of the brushless motor 801 based on the transmitted first-phase and second-phase output signals. Then, the control unit 803 switches the direction of the coil current of the brushless motor 801 according to the rotation angle, and controls the brushless motor 801 to perform a desired rotational operation.
  • FIG. 11 is a diagram showing an example in which the resolver is applied to control of a hybrid vehicle.
  • a hybrid engine system 850 illustrated in FIG. 11 includes an engine 851, a motor 852, a generator 853, wheels 854, an inverter 855, and a battery 856.
  • the wheel 854 is rotationally driven by the engine 851, and the wheel 854 is also rotationally driven by the motor 852.
  • a battery 856 is connected to the motor 852 via an inverter 855, and the drive shaft 857 is driven to rotate in response to the supply of electric power from the battery 856.
  • the generator 853 generates electric power by the rotation of the rotating shaft 858, and the electric power is charged to the battery 856 via the inverter 855.
  • Resolvers 861 and 862 are provided on the drive shaft 857 of the motor 852 and the rotation shaft 858 of the generator 853, respectively.
  • the resolver 861 detects the rotational position of the drive shaft 857 of the motor 852 and transmits it to a control unit (not shown).
  • the resolver 862 detects the rotational position of the rotating shaft 858 of the generator 853 and transmits it to the control unit.
  • the control unit controls the rotation of the motor 852 and the generator 853 based on the rotation position transmitted from the resolvers 861 and 862.
  • the wheel 854 can be driven only by the motor 852, and otherwise, the wheel 854 can be driven by both the engine 851 and the motor 852.
  • the rotating shaft 858 of the generator 853 is rotated to decelerate, and power is generated by the generator 853 by the rotation of the rotating shaft 858, and the battery 856 can be charged with the power.
  • FIG. 12 is a diagram showing an example in which the resolver is applied to automobile engine control.
  • the resolver 876 is provided on the output shaft 875 of the engine 871 and detects the rotational position on the output shaft 875.
  • the rotational position of the output shaft 875 detected by the resolver 876 is transmitted to the ECU 877 that controls the engine 871.
  • the ECU 877 calculates the rotational speed of the output shaft 875, that is, the engine speed, based on the rotational position transmitted from the resolver 876.
  • ECU 877 controls engine 871 based on the calculated engine speed.
  • the resolver is suitable because it can obtain a highly accurate detection signal even when applied in a harsh environment such as an engine.
  • the winding method of the rotation angle detection or synchronization device winding according to the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the claims.
  • the present invention is applied to a resolver of a type in which the stator teeth are raised with respect to the flat plate of the stator.
  • the present invention can also be applied to a type of resolver formed in the radial direction.
  • the present invention is applied to a resolver in which the rotor is disposed inside the stator teeth.
  • the present invention is applied to an outer rotor type resolver disposed outside the stator teeth. It can also be applied.
  • the present invention is applied to the resolver in which the two-phase output winding group is wound around the stator teeth.
  • the present invention can also be applied to an angle detection device.
  • the present invention can be applied to a rotation angle synchronization device in addition to a rotation angle detection device.
  • the present invention is also applicable to a synchro in which a three-phase output winding group is wound to output a three-phase output signal. The invention can be applied.
  • This synchronizer includes a stator, a rotor, and an output winding group wound around the stator teeth. From the output winding group, a resolver is output in that a sine wave signal that changes according to the rotation of the rotor is output. Is the same. That is, the number of turns of the output winding wound around each stator tooth is set so that the synchro also outputs a sine wave signal from the output winding group. Also, the synchro differs from the resolver in that the output winding group for three phases is wound around the stator teeth and the output signals output from each output winding group are out of phase with each other by 120 degrees. Yes.
  • synchronization is generally divided into a transmission side and a reception side, and when one of them is indexed, it is used both when the synchronization is generically including when both are indexed.
  • the structure of the transmitting side and the receiving side is common, but more strictly speaking, the sync on the transmitting side outputs a sine wave signal corresponding to the rotation angle of the rotor, and the sync on the receiving side is output. It can be said that it receives the received signal and copies it to its own output signal (in other words, its own generated signal).
  • FIG. 13 is a diagram showing an application example of the synchro.
  • the synchronization is mainly used to synchronize their operations among a plurality of devices, and is generally used in a set of a synchronization transmitter and a synchronization receiver.
  • a synchro transmitter 702 as a synchro is provided such that its rotating shaft 701 rotates in accordance with the operation of one device (device on the transmission side, not shown).
  • the synchro transmitter 702 outputs first-phase to third-phase output signals (sine wave signals) that change according to the rotation angle of the connected device.
  • the sync receiver 703 as a sync is provided such that its rotating shaft 704 rotates in accordance with the operation of the other device (receiving device, not shown).
  • the synchro receiver 703 outputs first-phase to third-phase output signals (sine wave signals) that change according to the rotation angle of the connected device. Then, the phases of the sync transmitter 702 and the sync receiver 703 are connected. With respect to these operations, (1) if the position of the rotor is different between the sync transmitter 702 and the sync receiver 703, a potential difference occurs between them, and current flows in each phase. (2) The rotor of the synchro receiver 703 is rotated by the current. That is, torque is generated.
  • the resolver even if the present invention is applied to a synchro-transmitter and synchro-receiver that output a sine wave signal that changes according to the rotation of the rotor, the number of turns to output the sine wave signal is reduced. Since it can be set easily, it is preferable.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

 本発明が適用される回転角検出装置としてのレゾルバ100は、複数のステータティース210が輪状に連なって形成されたステータ200と、そのステータ200に対して回転可能に設けられたロータ300とを備える。ステータティース210には、ロータ300の回転角に応じた出力信号を得るために、出力巻線が直列接続された出力巻線群が巻回される。そして、ステータティース210の配置順にしたがって各ステータティース210に番号を割り当てたときに、k番目のステータティース210に巻回される出力巻線の巻回数W(k)を次の(1)式により設定する。これにより、出力巻線群から正弦波信号を出力させるための回転角検出又は同期装置用巻線の巻線方法に関し、従来よりも簡易に巻回数を設定できるようにする。

Description

回転角検出又は同期装置用巻線の巻線方法
 本発明は、レゾルバ等の回転角検出装置又はシンクロ等の回転角同期装置におけるステータのステータティースに巻回される出力巻線の巻線方法に関し、特に、出力巻線から出力される出力信号が正弦波信号となるように巻回する巻線方法に関する。
 従来、レゾルバ、シンクロ等、ステータとロータとを有し、ロータの回転に伴ってステータとロータとの間の磁気的特性が変化することを利用して、ロータの回転角に応じた出力信号を出力する回転角検出又は同期装置が知られている(例えば、特許文献1参照)。ここで、図9は、従来のこの種の回転角検出装置としてのレゾルバを示した図である。図9のレゾルバ900は、内周面から内方に突出した複数のステータティース931が輪状に連なって形成されたリング状のステータ920を備える。また、ステータ920の内側には、ステータ920に対して回転可能に設けられ、各ステータティース931との間のギャップパーミアンスが回転に伴って周期的に変化するように設けられたロータ(図示外)を備える。
 ステータ920に形成された各ステータティース931には、外部から励磁信号が入力され、隣り合うステータティース間で巻回方向が互いに反対方向になるように励磁巻線(図示外)が巻回される。また、各ステータティース931には、ロータの回転角に応じて変化する出力信号が出力される出力巻線yが巻回される。そして、各ステータティース931ごとの出力巻線yが直列接続されて、出力巻線群zが形成される。
 励磁巻線に励磁信号が入力されると、ステータ920の各ステータティース931は励磁されて磁束が発生する。そして、隣り合うステータティース931の組み合わせからなる形状をスロット930とすると、各スロット930で磁気回路がそれぞれ形成される。その際、ロータの回転角に応じて、各スロット930(各磁気回路)との間のギャップパーミアンスが変化するので、各磁気回路には、ロータの回転角に応じた磁束が発生する。そして、出力巻線群zには、発生した磁束によって電気信号が発生し、その電気信号を出力信号として取り出すことにより、ロータの回転角を検出できる。
 ところで、従来のこの種の回転角検出装置においては、各ステータティース931に巻回される出力巻線yの巻回数を調節することで、ロータの回転角に応じて正弦波状に変化する正弦波信号が出力信号として出力されるようになっている。ここで、次の(51)式は、特許文献1で提案されている、各ステータティース931に巻回される出力巻線yの巻回数を示した式である。すなわち、従来では、ステータティース931ごとに、式(51)で示される巻回数が設定されて出力巻線yとして巻回される。これにより、出力巻線群zには、各出力巻線yで発生する信号が重ね合った出力信号としての正弦波信号が出力される。
Figure JPOXMLDOC01-appb-M000006
 なお、各ステータティース931にはn相の出力巻線yが巻回されており、n相の出力巻線群zが形成されている。そして、それら出力巻線群zは、互いに位相が異なる正弦波信号が出力されるように、各出力巻線yの巻回数が調節されている。例えば、レゾルバの場合では、2相の出力巻線群zが巻回され、一方の出力巻線群zからはsin信号、他方の出力巻線群zからはcos信号が出力される。また、回転角同期装置としては、例えばシンクロがある。従来のシンクロは、式(51)で設定された3相の出力巻線群zが巻回され、各出力巻線群zからは互いに位相が120度ずれた正弦波信号が出力される。そして、シンクロは、通常、複数の機器間でそれらの運転を同期するために用いられ、シンクロ発信機とシンクロ受信機のセットで用いられる。これらシンクロ発信機、受信機は、同じ構造とされる。すなわち、どちらもステータとロータとを有し、ステータティースには、3相の出力巻線群zが巻回される。そして、シンクロ発信機、受信機の各出力巻線群zを接続することで、シンクロ受信機のロータがシンクロ発信機のロータの位置と同じにされる。すなわち、同期される。なお、本明細書における「シンクロ」は、シンクロ発信機、受信機のそれぞれを指すものとする。また、回転角同期装置は、シンクロのように、発信側の装置と受信側の装置とを含む回転角を同期するシステムに用いられる、それら発信側の装置、受信側の装置のそれぞれを指すものとする。
特許第3171737号
 しかしながら、従来の(51)式は、分母分子に数式が定められた分数式であったり、式を構成する項数が多くなっていたりして複雑であるため、簡易に巻回数を設定できないという問題があった。そこで、本発明は、出力巻線群から正弦波信号を出力させるための回転角検出又は同期装置用巻線の巻線方法に関し、従来よりも簡易に巻回数を設定できるようにすることを課題とする。
 上記課題を解決するために、本発明は、複数のステータティースが輪状に連なって形成されたステータと、
 そのステータに対して回転可能に設けられたロータと、
 励磁信号が入力される巻線であって、隣り合うステータティース間で巻回方向が互いに反対方向になるように、それぞれの前記ステータティースに順次巻回された励磁巻線と、
 それぞれの前記ステータティースに巻回された出力巻線が直列接続された巻線群であって、前記励磁巻線によって発生し前記ロータの回転角に応じて変化する磁束を正弦波信号として出力させるための出力巻線群と、
 を備える回転角検出又は同期装置における前記出力巻線の巻線方法であって、
 前記複数のステータティースの配置順にしたがって各ステータティースに番号を割り当てたときに、k番目の前記ステータティースに巻回される前記出力巻線の巻回数W(k)を次の(1)式により設定することを特徴とする。
Figure JPOXMLDOC01-appb-M000007
 これによれば、発明者らは、(1)式にて設定される巻回数W(k)を各ステータティースに巻回することにより、ロータの回転角に応じて変化する正弦波信号が出力巻線群から出力されることを見出した。そして、この(1)式は、分数式ではなく、また、式を構成する項数も少ないので、従来よりも簡易に巻回数を設定できる。
 また、本発明における前記出力巻線群には、次の(2)式で表される出力信号Vosumが出力される。
Figure JPOXMLDOC01-appb-M000008
 このように、出力巻線群からは(2)式で示されるロータの回転角θをパラメータとした正弦波信号が出力されるので、その正弦波信号の値に基づいてロータの回転角θを検出できる。
 また、上記(1)式では、巻回数をcosの関数として表したが、sinの関数として表すこともできる。すなわち、本発明は、複数のステータティースが輪状に連なって形成されたステータと、
 そのステータに対して回転可能に設けられたロータと、
 励磁信号が入力される巻線であって、隣り合うステータティース間で巻回方向が互いに反対方向になるように、それぞれの前記ステータティースに順次巻回された励磁巻線と、
 それぞれの前記ステータティースに巻回された出力巻線が直列接続された巻線群であって、前記励磁巻線によって発生し前記ロータの回転角に応じて変化する磁束を正弦波信号として出力させるための出力巻線群と、
 を備える回転角検出又は同期装置における前記出力巻線の巻線方法であって、
 前記複数のステータティースの配置順にしたがって各ステータティースに番号を割り当てたときに、k番目の前記ステータティースに巻回される前記出力巻線の巻回数W(k)を次の(3)式により設定することを特徴とする。
Figure JPOXMLDOC01-appb-M000009
 この場合には、前記出力巻線群に、次の(4)式で表される出力信号Vosumが出力される。
Figure JPOXMLDOC01-appb-M000010
 このように、cosとsinは、互いに位相が90度異なった関係となるので、(1)式を変形すると、上記(3)式のように、巻回数をsinの関数として表すことができる。この場合、出力巻線群から出力される出力信号は、cosの出力信号((2)式)に対して90度位相がずれた信号、すなわちsinの出力信号((4)式)が出力される。
 また、本発明における前記回転角検出又は同期装置は、各ステータティースにn相分の前記出力巻線が巻回されたn相分の前記出力巻線群を備え、
 それら出力巻線群から出力される出力信号が所定の位相関係となるように、各出力巻線群における前記位相調整用のパラメータφを設定して前記巻回数W(k)を設定する。
 このように、上記(1)式又は(3)式の位相調整用のパラメータφを設定することで、互いに所定の位相関係となる出力信号が出力されるn相分の出力巻線群における巻回数を簡易に設定できる。
 この場合、前記回転角検出装置は、一方がsin相、他方がcos相の関係となる2相分の前記出力巻線群を備えたレゾルバとすることができる。
 このように、レゾルバにおいては、ロータの回転角に応じて変化するsin波の出力信号とcos波の出力信号とを得る必要があるので、レゾルバに本発明を適用すると好適である。
 また、本発明は、前記sin相の出力巻線群に対して(1)式又は(3)式で設定される巻回数Wsin(k)のうちの最大巻回数WSMAX
 前記cos相の出力巻線群に対して(1)式又は(3)式で設定される巻回数Wcos(k)のうちの最大巻回数WCMAXとしたときに、
 前記sin相の最大巻回数WSMAXと前記cos相の最大巻回数WCMAXとが一致するように、前記sin相の巻回数Wsin(k)と前記cos相の巻回数Wcos(k)のいずれか一方を補正する。
 これによれば、(1)式又は(3)式の番号kは整数であるので、sin相の出力巻線群における最大巻回数WSMAXとcos相の出力巻線群における最大巻回数WCMAXとが異なる場合がある。この場合、sin相の出力巻線群から出力される出力信号とcos相の出力巻線群から出力される出力信号とは、正確にsin信号とcos信号との関係にならなくなる。そして、それら出力信号に基づいてロータの回転角を検出すると検出精度が低下するおそれがある。そこで、sin相の最大巻回数WSMAXとcos相の最大巻回数WCMAXとが一致するように、sin相の巻回数Wsin(k)とcos相の巻回数Wcos(k)のいずれか一方を補正するので、検出精度の低下を防止できる。
 具体的には、前記cos相の巻回数Wcos(k)を次の(5)、(6)式により補正をする。
Figure JPOXMLDOC01-appb-M000011
 これにより、sin相の最大巻回数WSMAXとcos相の最大巻回数WCMAXとが一致させることができる。
レゾルバ100の斜視図である。 図1のステータ200の分解斜視図である。 ステータ200のステータティース210a~210hに巻回される励磁巻線4の説明図である。 ステータ200のステータティース210a~210hに巻回される出力巻線5の説明図である。 ステータ巻線の巻回数、巻線方向及びステータ巻線から出力される出力信号等を説明するための図である。 ロータ300が回転状態にあるときのある時刻における磁束の向きを模式的に示した図である。 S=10、X=2のレゾルバにおける巻回数W(k)の分布を模式的に表した図である。 S=10、X=2の場合のβi(25)式のベクトル図である。 図7Aにおいて、実数軸及び虚数軸を追加した図である。 S=10、X=2の場合のβi(41)式のベクトル図である。 図8Aにおいて、実数軸及び虚数軸を追加した図である。 従来のレゾルバ900を示した図である。 レゾルバをブラシレスモータの制御に適用した事例を示した図である。 レゾルバをハイブリッド自動車の制御に適用した事例を示した図である。 レゾルバをエンジン制御に適用した事例を示した図である。 シンクロの用途例を示した図である。
 次に、本発明に係る回転角検出又は同期装置用巻線の巻線方法の実施形態を説明する。図1は、本発明の巻線方法によって巻線が巻回された回転角検出装置としてのレゾルバ100の斜視図である。なお、図1では、ステータ巻線等の配線の図示を省略している。図2は、図1のステータ200の分解斜視図である。
 図1に示すレゾルバ100は、ステータ(固定子)200と、ロータ(回転子)300とを含む。レゾルバ100は、いわするインナーロータタイプの回転角検出装置である。すなわち、ステータ200の内側にロータ300が設けられ、ロータ300の外周側の対向した状態で、ロータ300の回転角に応じて、ステータ200に設けられたステータ巻線を構成する出力巻線群からの出力信号が変化するようになっている。
 ステータ200は、磁性材料からなる環状(リング状)の平板250により構成され、平板250に複数のステータティース(歯)210が輪状に連なって形成されている。これらのステータティース210は、平板250に対して交差するように形成されている。図1では、ステータ200は、折り曲げ加工等により平板面に対して同一面側に略垂直に起こされた8個のステータティース210a、210b、210c、210d、210e、210f、210g、210hを有する。ステータティース210a~210hは、プレス加工により予め平板250に形成された後に、折り曲げプレス加工により、平板250の面に対して略垂直となるように起こされている。これらのステータティース210a~210hは、環状の平板250の内側(内径側)の縁部に形成される。また、各ステータティース210a~210hの面のうち少なくともロータ300と対向する面は平面ではなく、ロータ300の回転軸の方向に沿って見たときに、環状の平板250の内径側に位置する点を中心とする円弧の一部となるように形成される。
 また、ステータ200には、平板250に装着可能に構成された絶縁キャップ400が装着される。絶縁キャップ400は、ステータ200のステータティース210a~210hの位置に合わせて設けられた複数のボビン410a、410b、410c、410d、410e、410f、410g、410hが一体に形成されている。各ボビン410a~410hは、ステータティース挿入孔を有し、当該ボビンに対応するステータティース210a~210hが当該ステータティース挿入孔に挿入されるとともに、その外側にステータ巻線が巻回される。なお、各ボビン410a~410hのステータティース挿入孔の向きは、ロータ300の回転軸の向きと同じである。
 また、絶縁キャップ400は、各ボビン410a~410hの外側に巻回されるステータ巻線と電気的に接続される端子ピンが設けられたコネクタユニット450を含み、各ボビン410a~410hとコネクタユニット450とが一体に形成される。このコネクタユニット450には、端子ピン挿入孔461~466が設けられており、端子ピン挿入孔461~466には、ステータ巻線と電気的に接続される導電材からなる端子ピン471~476がそれぞれ挿入される。ステータ巻線には、端子ピン471~476のいずれかを介して外部から励磁信号が印加されるとともに、端子ピン471~476のいずれかを介して外部に出力信号を出力する。
 さらに、絶縁キャップ400は、複数の渡りピン480a、480b、480c、480d、480e、480f、480gを含み、これらボビン410a~410h、コネクタユニット450、及び渡りピン480a~480gが一体に形成されている。各渡りピン480a~480gは、2つのボビンの間において、環状の絶縁キャップ400上に形成されている。なお、ボビン410a、410hの間には、渡りピンが形成されていない。各渡りピン480a~480gは、2つのボビンの間に設けられた円柱状の形状を有し、一方のボビンの外側に巻回されるステータ巻線と電気的に接続される導線が、渡りピンにおいて張力を持たせた状態で掛けられて、他方のボビンの外側に巻回されるステータ巻線と電気的に接続される。これにより、2つのボビンの距離が長くなっても共振し難くなる上に、ステータ巻線の巻回数を半ターン単位で調整できるようになる。ここで、導線に張力を持たせ易くし、かつその状態をできるだけ長く維持させるために、渡りピンは、ロータ300の回転軸の向きと同じ向きの部分を有することが望ましい。
 このような絶縁キャップ400をステータ200の平板250に装着することにより、ステータ200とステータ巻線とが電気的に絶縁される。これにより、ステータ巻線により構成されるコイルの絶縁破壊を防止できる。このような絶縁キャップ400は、PBT(Poly-butylene-terephtalate:ポリブチレンテレフタレート)又はPPT(Polypropylene-terephtalate:ポリプロピレンテレフタレート)等の絶縁性の樹脂(絶縁材)を用いた塑性加工により形成される。
 ロータ300は、磁性材料からなり、ステータ200に対して回転自在に設けられている。より具体的には、ロータ300は、ロータ300の回転軸回りの回転によりステータ200の各ステータティース210a~210hとの間のギャップパーミアンスが変化するようにステータ200に対して回転可能に設けられている。例えば、ロータ300の軸倍角が「2」であり、所与の半径の円周線を基準に、その円周線の1周につき、平面視において外径側の外径輪郭線を2周期で変化する形状を有している。そして、平板250に対して起こされたステータティース210a~210hの内側(内径側、内周側)の面と対向するロータ300の外周面の面が、ロータ300の1回転につき2周期でギャップパーミアンスが変化するようになっている。
 次に、本発明の特徴である、ロータ300の回転によって出力巻線から出力される出力信号を取り出すためのステータ巻線について説明する。ステータ巻線は、励磁巻線と出力巻線とから構成され、励磁巻線により励磁した状態で、ステータ200に対するロータ300の回転により、出力巻線の出力信号が変化する。
 図3A及び図3Bは、ステータ200のステータティース210a~210hに巻回されるステータ巻線の説明図であり、図3Aは、ステータティース210a~210hに励磁巻線4が巻回された状態を示したステータ200の平面図、図3Bは、ステータティース210a~210hに出力巻線5が巻回された状態を示したステータ200の平面図を示している。なお、図3A及び図3Bでは、励磁巻線4が巻回された状態と出力巻線5が巻回された状態とを別で示しているが、実際は、各ステータティース210a~210hに、励磁巻線4と出力巻線5とが一緒に巻回されている。この際、例えば、励磁巻線4はステータティース210a~210hの根本側、出力巻線5はステータティース210a~210hの先端側というように、ステータティースにおける巻回位置が分けられて、励磁巻線4、出力巻線5はそれぞれ巻回される。また、図4は、各ステータティース210a~210hに巻回されるステータ巻線の巻回数、巻線方向及びステータ巻線から出力される出力信号等を説明するための図である。
 先ず、図4(a)を参照して、各ステータティース210a~210hの配置関係について説明する。図4(a)は、説明の便宜のために、各ステータティース210a~210hを一列に並べた状態を示している。また、その上に、図4(a)と対応させて各ステータティース210a~210hの座標軸を示している。なお、その座標軸は、各ステータティース210a~210hが形成されているステータ200の内周を1周2π(=360°)とした角度の座標軸であり、ステータティース210aとステータティース210bの真ん中を原点としている。
 図4(a)に示すように、8個のステータティース210a~210hは、ステータ200の内周に等間隔で形成されている。すなわち、隣り合うステータティース間の距離がいずれもπ/4(=45°)となるように形成されている。より具体的には、図3Aの端子ピンR1側に位置するステータティース210aをk=1として、図3Aにおける反時計回りの方向にしたがった配置順に、各ステータティース210a~210hに番号kを割り当てたときに、1番目のステータティース210aは座標θ=-π/8の位置に形成される。また、2番目のステータティース210bは座標θ=π/8の位置に形成され、3番目のステータティース210cは座標θ=3π/8の位置に形成され、4番目のステータティース210dは座標θ=5π/8の位置に形成される。また、5番目のステータティース210eは座標θ=7π/8の位置に形成され、6番目のステータティース210fは座標θ=9π/8の位置に形成され、7番目のステータティース210gは座標θ=11π/8の位置に形成され、8番目のステータティース210hは座標θ=13π/8の位置に形成される。なお、図4(a)では、各ステータティース210a~210hに、それぞれの番号kを示している。
 また、隣り合う2つのステータティースにて構成される形状をスロットと称したときに、1番目のステータティース210aと2番目のステータティース210bとからスロット211aが構成される。同様にして、図4(a)に示すように、他の隣り合う2つのステータティースからはスロット211b~211hが構成される。すなわち、ステータティース210a~210hの個数と同じ8個のスロット211a~211hが構成されている。なお、スロット211aの位置が原点となっている。
 そして、各ステータティース210a~210hには、図3Aに示すように、ボビン410a~410h(図1、2参照、図3A及び図3Bでは不図示)を介して、励磁巻線4が巻回される。この励磁巻線4は、例えばコイル巻線とすることができる。ここで、図4(b)は、各ステータティース210a~210hに巻回される励磁巻線4の巻回数及び巻回方向を模式的に示している。なお、図4(b)において、巻回数のゼロ点を基準としてプラス側を正巻(図3Aにおける時計回りCW方向)とし、マイナス側を逆巻(図3Aにおける反時計回りCCW方向)としている。この図4(b)に示すように、励磁巻線4は、隣り合うステータティース間で巻回方向が互いに反対方向になるように、それぞれのステータティース210a~210hに巻回される。また、励磁巻線4の巻回数は、各ステータティース210a~210hで同じとされる。
 この励磁巻線4は、専用の巻線機によって、例えば図3Aの端子ピンR1から開始して、ステータティース210a→ステータティース210b→ステータティース210c→ステータティース210d→ステータティース210e→ステータティース210f→ステータティース210g→ステータティース210hの順に順次巻回される。そして、励磁巻線4の他端が端子ピンR2に電気的に接続される。なお、端子ピンR1、R2は、図1、図2の端子ピン471~476のいずれかに割り当てられる。
 そして、端子ピンR1、R2間に励磁信号(例えば、一定周波数の交流信号)が与えられ、励磁巻線4にはその励磁信号が入力される。すると、各ステータティース210a~210hが励磁されて磁束が発生する。ここで、図5は、レゾルバ100の平面図であり、ロータ300が回転状態にあるときのある時刻における磁束の向きを模式的に示している。また、図5において、巻線磁芯としての各ステータティース210a~210hを通る磁束の向きも模式的に示している。なお、図5においては、説明の便宜上、絶縁キャップ400の図示を省略している。各ステータティース210a~210hに巻回される励磁巻線4は、上述したように隣り合うステータティース間で互いに反対方向になるように巻回されているので、各ステータティース210a~210hを通る磁束は隣り合うステータティース間で結合される。具体的には、図5に示すように、ステータ200の平板250を介して(実線の矢印)、及びロータ300を介して(点線の矢印)、隣り合うステータティース間で磁束が結合する。すなわち、スロット211a~211hごとに磁気回路が形成される。この際、ロータ300が回転すると、各ステータティース210a~210hとの間のギャップパーミアンスが変化するので、各スロット211a~211hの磁気回路における磁束は、ロータ300の回転に応じて変化する。そして、各磁気回路の磁束に応じた信号、すなわちロータ300の回転角に応じた信号が、ステータティース210a~210hに巻回された出力巻線によって出力信号として出力されることになる。
 上述したように、各ステータティース210a~210hには、ロータ300の回転角に応じた出力信号を出力するための出力巻線5が巻回される(図3B参照)。その出力巻線5は、さらに、sin相の出力巻線51とcos相の出力巻線52とから構成される。これら出力巻線51、52は、それぞれ各ステータティース210a~210hに巻回された出力巻線が直列接続されて構成される。具体的には、sin相の出力巻線51は、図3Bに示すように、2番目のステータティース210bに巻回された出力巻線51b、4番目のステータティース210dに巻回された出力巻線51d、6番目のステータティース210fに巻回された出力巻線51f及び8番目のステータティース210hに巻回された出力巻線51hが直列接続されて構成される。また、cos相の出力巻線52は、1番目のステータティース210aに巻回された出力巻線52a、3番目のステータティース210cに巻回された出力巻線210cに巻回された出力巻線52c、5番目のステータティース210eに巻回された出力巻線52e及び7番目のステータティース210gに巻回された出力巻線52gが直列接続されて構成される。なお、以下、各出力巻線51b、51d、51f、51hにて構成される出力巻線51を、出力巻線群51と称する。同様にして、出力巻線52を出力巻線群52と、出力巻線5を出力巻線群5と称する。
 これらsin相の出力巻線群51及びcos相の出力巻線群52は、いずれもロータ300の回転にともなって正弦波状に変化する出力信号を出力するための巻線である。ただし、それらの出力信号の波形は互いに位相が異なっており、具体的には、cos相の出力巻線群52は、sin相の出力巻線群51から出力される出力信号に対して、位相が90°ずれた出力信号を出力するための巻線とされる。
 このように、出力巻線群51、52から出力される出力信号が、ロータ300の回転にともなって正弦波状に変化する出力信号とするためには、各ステータティース210a~210hに巻回する出力巻線の巻回数や巻回方向を調節する必要がある。本発明者らは、次の(1)式にてk番目のステータティースに巻回する巻回数W(k)を設定することで、次の(2)式で示される出力信号Vosum、すなわちロータの回転角θに応じて正弦波状に変化する出力信号Vosumが出力巻線群から出力されることを見出した。なお、(1)式における巻回数W(k)は、巻回方向を含む概念であり、正の巻回数W(k)と負の巻回数W(k)とは巻回方向が互いに反対方向とされるものである。また、(1)式における位相調整用のパラメータφは、出力信号Vosumの位相を調整するためのパラメータであって、例えば、出力信号Vosumのゼロ点の位置を調整したり、複数相の出力巻線群における各出力信号Vosumの位相を調整したりするためのものである。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 本実施形態のレゾルバ100においてはスロットの個数S=8であり、また、ロータ300の極数X=2、位相調整用のパラメータφ=0として、これらの値を(1)式に代入すると、sin相の出力巻線群51における各出力巻線の巻回数Wsin(k)は、次の(7)式のようになる。
Figure JPOXMLDOC01-appb-M000014
 また、cos相の出力巻線群52における各出力巻線の巻回数Wcos(k)は、位相調整用のパラメータφ=π/2とすると、次の(8)式のようになる。
Figure JPOXMLDOC01-appb-M000015
 そして、これら(7)式、(8)式に、番号k(k=1~8)を代入して、sin相の出力巻線群51における各ステータティース210a~210hに巻回する巻回数Wsin(k)、cos相の出力巻線群52における各ステータティース210a~210hに巻回する巻回数Wcos(k)は次の表1のようになる。なお、表1においては、最大巻回数MaxTrnに乗算される係数のみを示している。また、図4(c)は巻回数Wsin(k)を模式的に表した図であり、図4(e)は巻回数Wcos(k)を模式的に表した図である。
Figure JPOXMLDOC01-appb-T000016
 表1、図4(c)に示すように、sin相の出力巻線群51として、2番目のステータティース210bに逆巻(図3Bにおける反時計回りCCW方向、以下同じ)に巻回数MaxTrnを巻回し、4番目のステータティース210dに正巻(図3Bにおける時計回りCW方向、以下同じ)に巻回数MaxTrnを巻回し、6番目のステータティース210fに逆巻に巻回数MaxTrnを巻回し、8番目のステータティース210hに正巻に巻回数MaxTrnを巻回することになる。つまり、上述したように、sin相の出力巻線群51は、出力巻線51b、出力巻線51d、出力巻線51f及び出力巻線51hが直列接続されて構成される(図3B参照)。
 このsin相の出力巻線群51は、専用の巻線機によって、例えば図3Bの端子ピンS2から開始して、ステータティース210b→ステータティース210d→ステータティース210f→ステータティース210hの順に順次巻回される。そして、出力巻線群51の他端が端子ピンS4に電気的に接続される。なお、端子ピンS2、S4は、図1、図2の端子ピン471~476のいずれかに割り当てられる。
 また、cos相の出力巻線群52としては、表1、図4(e)に示すように、1番目のステータティース210aに正巻に巻回数MaxTrnを巻回し、3番目のステータティース210cに逆巻に巻回数MaxTrnを巻回し、5番目のステータティース210eに正巻に巻回数MaxTrnを巻回し、7番目のステータティース210gに逆巻に巻回数MaxTrnを巻回することになる。つまり、上述したように、cos相の出力巻線群52は、出力巻線52a、出力巻線52c、出力巻線52e及び出力巻線52gが直列接続されて構成される(図3B参照)。
 このcos相の出力巻線群52は、専用の巻線機によって、例えば図3Bの端子ピンS1から開始して、ステータティース210a→ステータティース210c→ステータティース210e→ステータティース210gの順に順次巻回される。そして、出力巻線群52の他端が端子ピンS3に電気的に接続される。なお、端子ピンS1、S3は、図1、図2の端子ピン471~476のいずれかに割り当てられる。
 このようにして出力巻線群51、52を構成することで、端子ピンS2、S4間からは出力巻線群51の出力信号Vosum1が出力され、端子ピンS1、S3間からは出力巻線群52の出力信号Vosum2が出力されることになる。この際、出力巻線群51の出力信号Vosum1として、上記(2)式にスロットの個数S=8、ロータ300の極数X=2、位相調整用のパラメータφ=0を代入して、次の(9)式の正弦波信号が出力される。また、同様に、出力巻線群52の出力信号Vosum2として、上記(2)式にスロットの個数S=8、ロータ300の極数X=2、位相調整用のパラメータφ=π/2を代入して、次の(10)式の正弦波信号が出力される。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
 そして、(9)式の出力信号Vosum1の波形を図4の座標軸θに対応させて示すと、図4(d)のようになる。同様に、(10)式の出力信号Vosum2の波形を図4の座標軸θに対応させて示すと、図4(f)のようになる。なお、実際には、各ステータティース210a~210hに巻回された各出力巻線から出力される出力信号が重ね合わされた信号が出力信号Vosum1、出力信号Vosum2として出力される。具体的には、出力巻線群51においては、2番目、4番目、6番目、8番目のステータティース210b、210d、210f、210hに巻回されているので、それらステータティース210b、210d、210f、210hから出力信号が出力され、それら出力信号を重ね合わせると図4(d)の波形となる。
 また、出力巻線群52においては、1番目、3番目、5番目、7番目のステータティース210a、210c、210e、210gに巻回されているので、それらステータティース210a、210c、210e、210gから出力信号が出力され、それら出力信号を重ね合わせると図4(f)の波形となる。
 なお、本実施形態のレゾルバ100では、各ステータティース210a~210hに巻回する巻回数W(k)はきりがよい値となっているが(表1参照)、スロットの個数S等が異なるレゾルバを用いる場合には、表1とは違った巻回数W(k)の分布となる。例えば、スロット(ステータティース)の個数S=10、ロータの極数X=2のレゾルバを用いるとする。この場合、上記(1)式に、S=10、X=2、φ=0(sin相の場合)、π/2(cos相の場合)を代入して、各ステータティースに巻回する巻回数W(k)を求めると、次の表2のようになる。また、図6は、その巻回数W(k)の分布を模式的に表した図である。なお、表2においては、最大巻回数MaxTrnに乗算される係数のみを示している。また、表2においては、小数第2位までを示している。
Figure JPOXMLDOC01-appb-T000019
 この表2、図6で示すように、用いるレゾルバによっては、巻回数W(k)が複雑に分布する。このような場合であっても、表2の巻回数W(k)を各ステータティースに巻回することにより、上記(2)式で示される正弦波状に変化する出力信号Vosumが出力される。
 ところで、表2においては、sin相の出力巻線群に対して設定される巻回数Wsin(k)のうちの最大巻回数WSMAXは「1.0」となっているのに対し、cos相の出力巻線群に対して設定される巻回数Wcos(k)のうちの最大巻回数WCMAXは「0.95」となっている。これは、(1)式に代入する番号kが整数であることに起因するものである。そして、最大巻回数WSMAXと最大巻回数WCMAXとが異なっていると、出力信号Vosum1と出力信号Vosum2との関係に誤差が生じる。そこで、この場合には、次の(5)式、(6)式によって、最大巻回数WSMAXと最大巻回数WCMAXとが一致するように、cos相の巻回数Wcos(k)を補正する。すなわち、(5)式によって補正係数Wcを求めて、その補正係数Wcを乗算することで、cos相の巻回数Wcos(k)を補正する。これによって、上記誤差が生じるのを防止できる。なお、(5)式、(6)式では、cos相の巻回数Wcos(k)を補正しているが、sin相の巻回数Wsin(k)を補正するようにしてもよいし、cos相の巻回数Wcos(k)とsin相の巻回数Wsin(k)の双方を補正するようにしてもよい。
Figure JPOXMLDOC01-appb-M000020
 次に、上記(1)式で設定された巻回数W(k)を巻回することで、上記(2)式の出力信号Vosumが出力されることを理論的に説明する。なお、以下の説明において、上記と同様に、kはステータティースの番号、Sはスロットの個数、Xはロータの極数、θはロータの回転角、φは位相調整用のパラメータとしている。
 (励磁巻線によって発生するベクトルポテンシャル)
 励磁巻線の電流方向が、奇数番目のスロットではマイナス、偶数番目のスロットではプラスとなるように、励磁巻線が各ステータティースに巻回されているとする。この場合、k番目のステータティースの左側(CCW方向)のスロットのベクトルポテンシャルAzLeft(k)は、次の(11)式で表される。なお、(11)式において、(-1)の項はkが奇数のとき(-1)=-1、kが偶数のとき(-1)=1として、符号を調節するために付け加えた項である。
Figure JPOXMLDOC01-appb-M000021
 また、k番目のステータティースの右側(CW方向)のスロットのベクトルポテンシャルAzRight(k)は、次の(12)式で表される。なお、(12)式において、(-1)k-1の項も符号を調節するために付け加えた項である。
Figure JPOXMLDOC01-appb-M000022
 なお、このベクトルポテンシャルAzLeft(k)、AzRight(k)は、励磁信号が入力された励磁巻線によって各ステータティースに発生する磁束に相当するものである。
 (k番目のステータティースにおける出力信号)
 また、k番目のステータティースに巻回される出力巻線の巻回数をW(k)、その出力巻線のZ方向(ステータティースの長さ方向)の長さをWlenとすると、その出力巻線から出力される出力電圧(出力信号)Vo(k)は、次の(13)式で表される。
Figure JPOXMLDOC01-appb-M000023
 ((2)式が得られることの証明)
 k番目のステータティースにおいて、上記(1)式で示される巻回数W(k)を巻回したときに、(2)式で示される出力信号Vosumが出力されることを証明する。ここで、上記(13)式の出力巻線の長さWlen=1としても、出力信号の正弦波の振幅が変化するのみであるので、目的とする証明に影響を与えない。そこで、Wlen=1として、上記(13)式に、(11)式のAzLeft(k)、(12)式のAzRight(k)及び(1)式のW(k)を代入すると、次の(14)式が得られる。
Figure JPOXMLDOC01-appb-M000024
 この(14)式において、X/S=mと置き換える。また、(-1)k-1=-(-1)であるので、(14)式から次の(15)式が得られる。
Figure JPOXMLDOC01-appb-M000025
 ここで、kは整数であるので(-1)2k=1である。よって、(15)式から次の(16)式が得られる。
Figure JPOXMLDOC01-appb-M000026
 ここで、(16)式の[ ]内は、三角関数の和積の公式により、次の(17)式のように変形することができる。
Figure JPOXMLDOC01-appb-M000027
 よって、(16)式、(17)式から次の(18)式が得られる。
Figure JPOXMLDOC01-appb-M000028
 さらに、三角関数の積和の公式により、(18)式の第2、第3項の積を和に変換すると、次の(19)式が得られる。
Figure JPOXMLDOC01-appb-M000029
 よって、(18)式、(19)式から次の(20)式が得られる。
Figure JPOXMLDOC01-appb-M000030
 そして、次の(21)式のように、この(20)式で示される出力信号Vo(k)を、kを1からSまで変化させて足し合わせることにより、各ステータティースに巻回された出力巻線を直列に接続したときの出力電圧(出力信号)Vosumが得られる。
Figure JPOXMLDOC01-appb-M000031
 ここで、kが1~Sまで変化する正数で、Sが偶数であるときには、(21)式の第1項(Σの項)は、次の(22)式ようにゼロとなる(この証明は後述する)。
Figure JPOXMLDOC01-appb-M000032
 よって、(21)式、(22)式から次の(23)式、すなわち上記(2)式を得ることができる。ここで、m=X/S、α=cos(mπ)、φはいずれも定数である。よって、出力信号Vosumはkに関係なくロータの回転角θのみの関数となる。
Figure JPOXMLDOC01-appb-M000033
 なお、m=0.5となるロータの極数Xとスロットの個数Sの組み合わせのレゾルバは、α=cos(mπ)=0となり(2)式のVosum=0となる。よって、(2)式は、m=0.5となるロータの極数Xとスロットの個数Sの組み合わせのレゾルバは実用化できないことを示している。
 ((22)式の証明)
 kが1~Sまで変化する正数で、Sが偶数であるときには、(22)式となることを証明する。そのために、次の(24)式を定める。
Figure JPOXMLDOC01-appb-M000034
 ここで、(24)式のβを複素数に拡張する。具体的には、(24)式のβを複素数の実数部と考え、虚数部i・sin(4kmπ-mπ+Xθ+φ)を加えると、次の(25)式が得られる。
Figure JPOXMLDOC01-appb-M000035
 (25)式においてkが変化したときに変化する項4kmπを次の(26)式のように変形することができる。
Figure JPOXMLDOC01-appb-M000036
 ここで、Sは正の偶数であるので、(26)式においてkが1~S/2まで変化すると、4kmπは4mπからX・2πまで2X・2π/Sずつ増加する。また、4kmπの値は、kがS/2+1~Sまで変化するときと、kが1~S/2まで変化するときとでは同じ値となる。よって、kが1~Sまで変化すると、(25)式のβiと原点(0、0)を結ぶ直線は、長さ1のS/2本のベクトルとなり、各ベクトル間の角度は2X・2π/Sの等間隔である。そして、これら長さ1のS/2本のベクトルには、虚数軸を対称軸とする回転座標が存在する。この回転座標では、Σβiの実数部であるΣβはゼロとなり、上記(22)式が成立する。
 以上の具体例として、S=10、X=2の場合のβiのベクトル図を図7Aに示す。この図7Aに対して、図7Bのように座標系を設定した場合、k=1~5のベクトルの実数部(cos成分)の和がゼロであることが解る。また、図7Bの座標系をπ/2回転させると、k=1~5のベクトルの虚数部(sin成分)の和がゼロであることが解る。
 以上説明したように、本実施形態のレゾルバ100では、上記(1)式で設定される巻回数が、各ステータティース210a~210hに出力巻線として巻回される。よって、(2)式で示されるロータ300の回転角に応じて正弦波状に変化する出力信号を得ることができる。そして、本発明に係る(1)式は、分数式ではなく、また、式を構成する項数も少ないので、従来よりも簡易に巻回数を設定できる。また、(1)式は分数式でないので、設定される巻回数が端数となりにくく、精度のよい出力信号を得ることができる。
 (変形例)
 上記実施形態における出力巻線の巻回数を示した(1)式は、cosの関数として表したものであったが、次の(3)式のsinの関数として表した式にて設定される巻回数を巻回してもよい。この場合、次の(4)式の正弦波状に変化する出力信号が得られることを、発明者らは見出した。
Figure JPOXMLDOC01-appb-M000037
Figure JPOXMLDOC01-appb-M000038
 ここで、上記(3)式で設定された巻回数W(k)を巻回することで、上記(4)式の出力信号Vosumが出力されることを理論的に説明する。
 (励磁巻線によって発生するベクトルポテンシャル)
 励磁巻線の電流方向が、奇数番目のスロットではマイナス、偶数番目のスロットではプラスとなるように、励磁巻線が各ステータティースに巻回されているとする。この場合、k番目のステータティースの左側(CCW方向)のスロットのベクトルポテンシャルAzLeft(k)は、次の(27)式で表される。なお、(27)式において、(-1)の項はkが奇数のとき(-1)=-1、kが偶数のとき(-1)=1として、符号を調節するために付け加えた項である。
Figure JPOXMLDOC01-appb-M000039
 また、k番目のステータティースの右側(CW方向)のスロットのベクトルポテンシャルAzRight(k)は、次の(28)式で表される。なお、(28)式において、(-1)k-1の項も符号を調節するために付け加えた項である。
Figure JPOXMLDOC01-appb-M000040
 なお、このベクトルポテンシャルAzLeft(k)、AzRight(k)は、励磁信号が入力された励磁巻線によって各ステータティースに発生する磁束に相当するものである。
 (k番目のステータティースにおける出力信号)
 また、k番目のステータティースに巻回される出力巻線の巻回数をW(k)、その出力巻線のZ方向(ステータティースの長さ方向)の長さをWlenとすると、その出力巻線から出力される出力電圧(出力信号)Vo(k)は、次の(29)式で表される。
Figure JPOXMLDOC01-appb-M000041
 ((2)式が得られることの証明)
 k番目のステータティースにおいて、上記(3)式で示される巻回数W(k)を巻回したときに、(4)式で示される出力信号Vosumが出力されることを証明する。ここで、上記(29)式の 出力巻線の長さWlen=1としても、出力信号の正弦波の振幅が変化するのみであるので、目的とする証明に影響を与えない。そこで、Wlen=1として、上記(29)式に、(27)式のAzLeft(k)、(28)式のAzRight(k)及び(3)式のW(k)を代入すると、次の(30)式が得られる。
Figure JPOXMLDOC01-appb-M000042
 この(30)式において、X/S=mと置き換える。また、(-1)k-1=-(-1)であるので、(30)式から次の(31)式が得られる。
Figure JPOXMLDOC01-appb-M000043
 ここで、kは整数であるので(-1)2k=1である。よって、(31)式から次の(32)式が得られる。
Figure JPOXMLDOC01-appb-M000044
 ここで、(32)式の[ ]内は、三角関数の和積の公式により、次の(33)式のように変形することができる。
Figure JPOXMLDOC01-appb-M000045
 よって、(32)式、(33)式から次の(34)式が得られる。
Figure JPOXMLDOC01-appb-M000046
 さらに、三角関数の積和の公式により、(34)式の第2、第3項の積を和に変換すると、次の(35)式が得られる。
Figure JPOXMLDOC01-appb-M000047
 よって、(34)式、(35)式から次の(36)式が得られる。
Figure JPOXMLDOC01-appb-M000048
 そして、次の(37)式のように、この(36)式で示される出力信号Vo(k)を、kを1からSまで変化させて足し合わせることにより、各ステータティースに巻回された出力巻線を直列に接続したときの出力電圧(出力信号)Vosumが得られる。
Figure JPOXMLDOC01-appb-M000049
 ここで、kが1~Sまで変化する正数で、Sが偶数であるときには、(37)式の第1項(Σの項)は、次の(38)式ようにゼロとなる(この証明は後述する)。
Figure JPOXMLDOC01-appb-M000050
 よって、(37)式、(38)式から次の(39)式、すなわち上記(4)式を得ることができる。ここで、m=X/S、α=cos(mπ)、φはいずれも定数である。よって、出力信号Vosumはkに関係なくロータの回転角θのみの関数となる。
Figure JPOXMLDOC01-appb-M000051
 なお、m=0.5となるロータの極数Xとスロットの個数Sの組み合わせのレゾルバは、α=cos(mπ)=0となり(4)式のVosum=0となる。よって、(4)式は、m=0.5となるロータの極数Xとスロットの個数Sの組み合わせのレゾルバは実用化できないことを示している。
 ((38)式の証明)
 kが1~Sまで変化する正数で、Sが偶数であるときには、(38)式となることを証明する。そのために、次の(40)式を定める。
Figure JPOXMLDOC01-appb-M000052
 ここで、(40)式のβを複素数に拡張する。具体的には、(40)式のβを複素数の虚数部と考え、実数部cos(4kmπ-mπ+Xθ+φ)を加えると、次の(41)式が得られる。
Figure JPOXMLDOC01-appb-M000053
 (41)式においてkが変化したときに変化する項4kmπを次の(42)式のように変形することができる。
Figure JPOXMLDOC01-appb-M000054
 ここで、Sは正の偶数であるので、(42)式においてkが1~S/2まで変化すると、4kmπは4mπからX・2πまで2X・2π/Sずつ増加する。また、4kmπの値は、kがS/2+1~Sまで変化するときと、kが1~S/2まで変化するときとでは同じ値となる。よって、kが1~Sまで変化すると、(41)式のβiと原点(0、0)を結ぶ直線は、長さ1のS/2本のベクトルとなり、各ベクトル間の角度は2X・2π/Sの等間隔である。そして、これら長さ1のS/2本のベクトルには、実数軸を対称軸とする回転座標が存在する。この回転座標では、Σβiの虚数部であるΣβはゼロとなり、上記(38)式が成立する。
 以上の具体例として、S=10、X=2の場合のβiのベクトル図を図8Aに示す。この図8Aに対して、図8Bのように座標系を設定した場合、k=1~5のベクトルの虚数部(sin成分)の和がゼロであることが解る。また、図8Bの座標系をπ/2回転させると、k=1~5のベクトルの虚数部(cos成分)の和もゼロであることが解る。
 このように、上記(3)式によっても(4)式の正弦波状に変化する出力信号が得ることができる。そして、(3)式も、(1)式と同様に、分数式ではなく、また、式を構成する項数も少ないので、従来よりも簡易に巻回数を設定できる。
   
 
 次に、レゾルバの用途例について説明する。ここで、図10は、レゾルバをブラシレスモータの制御に適用した事例を示した図である。この図10に示す事例において、レゾルバ802(レゾルバのロータ)は、ブラシレスモータ801の回転軸と同軸に設けられ、ブラシレスモータ802の回転角を検出する。レゾルバ802で検出された回転角としての第1相の出力信号(sin信号)及び第2相の出力信号(cos信号)は、ブラシレスモータ801を制御する制御部803に送信される。制御部803は、送信された第1相、第2相の出力信号に基づいて、ブラシレスモータ801の現在の回転角を把握する。そして、制御部803は、その回転角に応じて、ブラシレスモータ801のコイル電流の向きを切換制御して、ブラシレスモータ801が所望の回転運転をするように制御する。
 また、図11は、レゾルバをハイブリッド自動車の制御に適用した事例を示した図である。図11に示すハイブリッドエンジンシステム850は、エンジン851、モータ852、発電機853、車輪854、インバータ855及びバッテリ856を備えている。そのハイブリッドエンジンシステム850は、エンジン851によって車輪854が回転駆動されるとともに、モータ852によっても車輪854が回転駆動されるようになっている。モータ852にはインバータ855を介してバッテリ856が接続されており、そのバッテリ856からの電力の供給を受けて駆動軸857を回転駆動させる。発電機853は回転軸858の回転により電力を発生し、その電力がインバータ855を介してバッテリ856に充電される。また、モータ852の駆動軸857及び発電機853の回転軸858には、それぞれレゾルバ861、862が設けられる。レゾルバ861は、モータ852の駆動軸857の回転位置を検出し、それを図示しない制御部に送信する。また、レゾルバ862は、発電機853の回転軸858の回転位置を検出し、それを制御部に送信する。その制御部は、レゾルバ861、862から送信された回転位置に基づいて、モータ852や発電機853の回転を制御する。これによって、例えばハイブリッド自動車が低速走行時にはモータ852のみで車輪854を駆動させ、それ以外ではエンジン851及びモータ852の両方で車輪854を駆動させることができる。また、減速時には、発電機853の回転軸858を回転させることで減速するとともに、その回転軸858の回転で発電機853で電力を発生させて、その電力をバッテリ856に充電させることができる。
 
 また、図12は、レゾルバを自動車のエンジン制御に適用した事例を示した図である。図12に示す事例において、レゾルバ876は、エンジン871の出力軸875に設けられ、その出力軸875に回転位置を検出する。レゾルバ876に検出された出力軸875の回転位置は、エンジン871を制御するECU877に送信される。ECU877は、レゾルバ876から送信された回転位置に基づいて、出力軸875の回転速度、すなわちエンジン回転数を算出する。そして、ECU877は、算出したエンジン回転数に基づいて、エンジン871を制御する。これにより、例えば、ハイブリッド自動車のエンジンに適用した場合には、ハイブリッド自動車が低速走行時にはエンジンの回転数を低く制御してモータのみで駆動させることができる。このように、レゾルバは、エンジンのように過酷な環境で適用したとしても、精度の高い検出信号を得ることができるので、好適である。
 なお、本発明に係る回転角検出又は同期装置用巻線の巻線方法は、上記実施形態に限定されるわけではなく、特許請求の範囲の趣旨を逸脱しない限りにおいて種々変形することができる。例えば、上記実施形態では、ステータティースがステータの平板に対して起こされたタイプのレゾルバに本発明を適用した例について説明したが、従来の図9のレゾルバのように、ステータティースが、ステータの径方向に向いて形成されたタイプのレゾルバに本発明を適用することもできる。
 また、上記実施形態では、ロータが、ステータティースの内側に配置されるタイプのレゾルバに本発明を適用した例について説明したが、ステータティースの外側に配置されるアウターロータタイプのレゾルバに本発明を適用することもできる。
 また、上記実施形態では、2相の出力巻線群がステータティースに巻回されるレゾルバに本発明を適用した例について説明したが、N相の出力巻線群が巻回されるその他の回転角検出装置に対しても、本発明を適用することができる。また、回転角検出装置のほかに回転角同期装置にも適用することができ、例えば、3相の出力巻線群が巻回されて3相の出力信号を出力するシンクロに対しても、本発明を適用することができる。
 このシンクロは、ステータとロータとステータティースに巻回された出力巻線群とを備えており、その出力巻線群から、ロータの回転に応じて変化する正弦波信号を出力する点で、レゾルバと同じである。すなわち、シンクロも、出力巻線群から正弦波信号が出力されるように、各ステータティースに巻回される出力巻線の巻回数が設定される。また、シンクロは、3相分の出力巻線群がステータティースに巻回され、各出力巻線群から出力される出力信号が、互いに位相角が120度ずれている点で、レゾルバと異なっている。
 なお、シンクロは、一般的に、発信側と受信側とに分かれ、そのうちの一方を指標する場合、双方を指標する場合を含んでシンクロを総称する場合のいずれにも用いられる。そして、発信側、受信側の構造は共通であるが、より厳密に言えば、発信側のシンクロは、ロータの回転角に応じた正弦波信号を出力し、受信側のシンクロは、その出力された信号を受けて、その信号をコピーした形で自身の出力信号とする(換言すれば、自身の生成信号とする)ということができる。
ここで、図13は、シンクロの用途例を示した図である。シンクロは、図13に示すように、主に、複数の機器間でそれらの運転を同期させるために用いられ、一般的に、シンクロ発信機とシンクロ受信機のセットで用いられる。具体的には、図13において、シンクロとしてのシンクロ発信機702は、その回転軸701が、一方の機器(発信側の機器、図示外)の運転にしたがって回転するように設けられる。そのシンクロ発信機702は、接続された機器の回転角に応じて変化する第1相~第3相の出力信号(正弦波信号)を出力する。また、同様に、シンクロとしてのシンクロ受信機703は、その回転軸704が他方の機器(受信側の機器、図示外)の運転にしたがって回転するように設けられる。そのシンクロ受信機703は、接続された機器の回転角に応じて変化する第1相~第3相の出力信号(正弦波信号)を出力する。そして、これらシンクロ発信機702とシンクロ受信機703の各相が接続される。これらの動作について、(1)シンクロ発信機702とシンクロ受信機703でロータの位置が異なると、それらの間で電位差が生じ、各相に電流が流れる。(2)その電流によって、シンクロ受信機703のロータが回転する。すなわち、トルクが発生する。(3)シンクロ受信機703のロータ(回転軸704)の回転にともなって、それに接続された受信側の機器が回転される。(4)シンクロ受信機703のロータの位置がシンクロ発信機702のロータの位置と同じになると、各相に電流が流れなくなる。(5)電流が流れなくなると、シンクロ受信機703のロータの回転が停止される。よって、シンクロ発信機702とシンクロ受信機703のロータの位置が同じ、つまり発信側の機器と受信側に機器の運転が同期される。このように、レゾルバと同様に、ロータの回転に応じて変化する正弦波信号を出力するシンクロ発信機及びシンクロ受信機に対して本発明を適用しても、正弦波信号を出力する巻回数を簡易に設定できるので、好適である。
 また、シンクロ受信機を用いないで、S/D変換器を接続してシンクロ発信機単独でシステムを構成する場合におけるそのシンクロ発信機に対して本発明を適用しても、正弦波信号を出力する巻回数を簡易に設定できるので、好適である。
 100 レゾルバ
 200 ステータ
 210 ステータティース
 211 スロット
 300 ロータ
 4 励磁巻線
 5 出力巻線群
 51 sin相の出力巻線群
 52 cos相の出力巻線群
 51b、51d、51f、51g、52a、52c、52e、52g 出力巻線

Claims (8)

  1.  複数のステータティースが輪状に連なって形成されたステータと、
     そのステータに対して回転可能に設けられたロータと、
     励磁信号が入力される巻線であって、隣り合うステータティース間で巻回方向が互いに反対方向になるように、それぞれの前記ステータティースに順次巻回された励磁巻線と、
     それぞれの前記ステータティースに巻回された出力巻線が直列接続された巻線群であって、前記励磁巻線によって発生し前記ロータの回転角に応じて変化する磁束を正弦波信号として出力させるための出力巻線群と、
     を備える回転角検出又は同期装置における前記出力巻線の巻線方法であって、
     前記複数のステータティースの配置順にしたがって各ステータティースに番号を割り当てたときに、k番目の前記ステータティースに巻回される前記出力巻線の巻回数W(k)を次の(1)式により設定することを特徴とする回転角検出又は同期装置用巻線の巻線方法。
    Figure JPOXMLDOC01-appb-M000001
  2.  前記出力巻線群には、次の(2)式で表される出力信号Vosumが出力されることを特徴とする請求の範囲第1項に記載の回転角検出又は同期装置用巻線の巻線方法。
    Figure JPOXMLDOC01-appb-M000002
  3.  複数のステータティースが輪状に連なって形成されたステータと、
     そのステータに対して回転可能に設けられたロータと、
     励磁信号が入力される巻線であって、隣り合うステータティース間で巻回方向が互いに反対方向になるように、それぞれの前記ステータティースに順次巻回された励磁巻線と、
     それぞれの前記ステータティースに巻回された出力巻線が直列接続された巻線群であって、前記励磁巻線によって発生し前記ロータの回転角に応じて変化する磁束を正弦波信号として出力させるための出力巻線群と、
     を備える回転角検出又は同期装置における前記出力巻線の巻線方法であって、
     前記複数のステータティースの配置順にしたがって各ステータティースに番号を割り当てたときに、k番目の前記ステータティースに巻回される前記出力巻線の巻回数W(k)を次の(3)式により設定することを特徴とする回転角検出又は同期装置用巻線の巻線方法。
    Figure JPOXMLDOC01-appb-M000003
  4.  前記出力巻線群には、次の(4)式で表される出力信号Vosumが出力されることを特徴とする請求の範囲第3項に記載の回転角検出又は同期装置用巻線の巻線方法。
    Figure JPOXMLDOC01-appb-M000004
  5.  前記回転角検出又は同期装置は、各ステータティースにn相分の前記出力巻線が巻回されたn相分の前記出力巻線群を備え、
     それら出力巻線群から出力される出力信号が所定の位相関係となるように、各出力巻線群における前記位相調整用のパラメータφを設定して前記巻回数W(k)を設定することを特徴とする請求の範囲第1項~第4項のいずれか1項に記載の回転角検出又は同期装置用巻線の巻線方法。
  6.  前記回転角検出装置は、一方がsin相、他方がcos相の関係となる2相分の前記出力巻線群を備えたレゾルバであることを特徴とする請求の範囲第5項に記載の回転角検出又は同期装置用巻線の巻線方法。
  7.  前記sin相の出力巻線群に対して前記(1)式又は前記(3)式で設定される巻回数Wsin(k)のうちの最大巻回数WSMAX
     前記cos相の出力巻線群に対して前記(1)式又は前記(3)式で設定される巻回数Wcos(k)のうちの最大巻回数WCMAXとしたときに、
     前記sin相の最大巻回数WSMAXと前記cos相の最大巻回数WCMAXとが一致するように、前記sin相の巻回数Wsin(k)と前記cos相の巻回数Wcos(k)のいずれか一方を補正することを特徴とする請求の範囲第6項に記載の回転角検出又は同期装置用巻線の巻線方法。
  8.  前記cos相の巻回数Wcos(k)を次の(5)、(6)式により前記補正をすることを特徴とする請求の範囲第7項に記載の回転角検出又は同期装置用巻線の巻線方法。
    Figure JPOXMLDOC01-appb-M000005
     
     
PCT/JP2010/055576 2010-02-23 2010-03-29 回転角検出又は同期装置用巻線の巻線方法 WO2011104898A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10846561.8A EP2541215B1 (en) 2010-02-23 2010-03-29 Method of detecting rotational angle or method of winding for synchronizing device windings
KR1020127020308A KR101402655B1 (ko) 2010-02-23 2010-03-29 회전각 검출 또는 동기 장치용 권선의 권선 방법
US13/577,586 US20120311850A1 (en) 2010-02-23 2010-03-29 Method of detecting rotational angle or method of winding for synchronizing device windings
CN201080062904.7A CN102741660B (zh) 2010-02-23 2010-03-29 旋转角侦测或同步装置用绕组的卷绕方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010037464A JP4654348B1 (ja) 2010-02-23 2010-02-23 検出装置用巻線の正弦波巻線方法
JP2010-037464 2010-02-23

Publications (1)

Publication Number Publication Date
WO2011104898A1 true WO2011104898A1 (ja) 2011-09-01

Family

ID=43952754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055576 WO2011104898A1 (ja) 2010-02-23 2010-03-29 回転角検出又は同期装置用巻線の巻線方法

Country Status (7)

Country Link
US (1) US20120311850A1 (ja)
EP (1) EP2541215B1 (ja)
JP (1) JP4654348B1 (ja)
KR (1) KR101402655B1 (ja)
CN (1) CN102741660B (ja)
TW (2) TW201129999A (ja)
WO (1) WO2011104898A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560424B2 (en) 2016-06-02 2023-01-24 Medimmune Limited Antibodies to alpha-synuclein and uses thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013221740A (ja) * 2012-04-12 2013-10-28 Jtekt Corp レゾルバ
KR101407097B1 (ko) * 2013-01-30 2014-06-13 대성전기공업 주식회사 레졸버용 스테이터 및 이를 포함하는 레졸버
WO2014077471A1 (ko) * 2012-11-19 2014-05-22 대성전기공업 주식회사 레졸버용 스테이터 및 이를 포함하는 레졸버
JP6248251B2 (ja) * 2013-11-29 2017-12-20 多摩川精機株式会社 アウタロータ型回転センサの信号線引出し構造
JP6009101B2 (ja) 2013-12-09 2016-10-19 三菱電機株式会社 回転角度検出装置、回転電機、及びエレベータ用巻上機
JP6182454B2 (ja) * 2013-12-26 2017-08-16 アズビル株式会社 回転角度検出器
JP6106077B2 (ja) * 2013-12-26 2017-03-29 アズビル株式会社 回転角度検出器およびアクチュエータ
WO2017115414A1 (ja) * 2015-12-28 2017-07-06 三菱電機株式会社 回転角度検出装置および回転電機
JP7026529B2 (ja) * 2018-01-18 2022-02-28 ミネベアミツミ株式会社 ステータ構造およびレゾルバ
KR102051820B1 (ko) 2018-07-17 2019-12-04 국방과학연구소 비동기 리졸버 회전각 검출기 및 이의 방법
JP7217208B2 (ja) * 2019-07-26 2023-02-02 株式会社日立製作所 走査電磁石および粒子線治療システム
CN115457276B (zh) * 2022-09-20 2023-05-30 哈尔滨理工大学 基于视觉检测的输配电变压器高压绕组缠绕角度检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06229780A (ja) * 1992-10-27 1994-08-19 Tamagawa Seiki Co Ltd 検出器用巻線の正弦波巻線方法
JPH08178611A (ja) * 1994-12-27 1996-07-12 Tamagawa Seiki Co Ltd バリアブルリラクタンス型角度検出器
JP2007327869A (ja) * 2006-06-08 2007-12-20 Mitsubishi Electric Corp レゾルバ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4002308B2 (ja) * 1995-08-10 2007-10-31 株式会社アミテック 誘導型回転位置検出装置
TW354844B (en) * 1996-10-08 1999-03-21 Aime Paucher Radial layer winding method and device thereof
JP3938501B2 (ja) * 2001-10-16 2007-06-27 三菱電機株式会社 回転角度検出装置、それを用いた永久磁石型回転電機、及び、永久磁石型回転電機を用いた電動パワーステアリング装置
WO2007029678A1 (ja) * 2005-09-05 2007-03-15 Japan Aviation Electronics Industry Limited レゾルバ
EP1966874B1 (en) * 2005-12-26 2018-04-18 Toyota Jidosha Kabushiki Kaisha Magnetic resolver
JP4862118B2 (ja) * 2006-07-19 2012-01-25 多摩川精機株式会社 角度検出器
DE112009001282B4 (de) * 2008-05-27 2013-06-06 Mitsubishi Electric Corp. Drehwinkelerfassungsvorrichtung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06229780A (ja) * 1992-10-27 1994-08-19 Tamagawa Seiki Co Ltd 検出器用巻線の正弦波巻線方法
JP3171737B2 (ja) 1992-10-27 2001-06-04 多摩川精機株式会社 検出器用巻線の正弦波巻線方法
JPH08178611A (ja) * 1994-12-27 1996-07-12 Tamagawa Seiki Co Ltd バリアブルリラクタンス型角度検出器
JP2007327869A (ja) * 2006-06-08 2007-12-20 Mitsubishi Electric Corp レゾルバ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2541215A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11560424B2 (en) 2016-06-02 2023-01-24 Medimmune Limited Antibodies to alpha-synuclein and uses thereof

Also Published As

Publication number Publication date
CN102741660A (zh) 2012-10-17
EP2541215A4 (en) 2014-03-12
KR101402655B1 (ko) 2014-06-03
CN102741660B (zh) 2015-11-25
EP2541215B1 (en) 2015-07-08
JP4654348B1 (ja) 2011-03-16
KR20120112704A (ko) 2012-10-11
JP2011174743A (ja) 2011-09-08
TWI383412B (zh) 2013-01-21
EP2541215A1 (en) 2013-01-02
US20120311850A1 (en) 2012-12-13
TW201129999A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
WO2011104898A1 (ja) 回転角検出又は同期装置用巻線の巻線方法
JP4158858B2 (ja) 回転角度検出器
CN105850014B (zh) 旋转变压器装置、电动机以及驱动器
JP2007101480A (ja) レゾルバ
EP2853861B1 (en) Position detection device
CN108369112B (zh) 旋转角度检测装置及旋转电机
CN108027253B (zh) 无刷旋转变压器及旋转角度检测装置
JP5201589B2 (ja) レゾルバ
JP4397788B2 (ja) 回転角度検出装置
JP4991991B2 (ja) レゾルバ
US10135374B2 (en) Permanent magnet motor, position estimating device, and motor driving controlling device
CN109327124A (zh) 旋转变压器以及电动机
JP2016161325A (ja) バリアブルリラクタンス型レゾルバ
JP4991992B2 (ja) レゾルバ
JP5470552B2 (ja) レゾルバ及びレゾルバの製造方法
US9064630B2 (en) Integrated high frequency rotary transformer and resolver for traction motor
JP7297103B2 (ja) レゾルバおよび電動パワーステアリング装置
US20150228405A1 (en) Rotary transformers for electrical machines
JP5182759B2 (ja) レゾルバー及びレゾルバーの製造方法
JP2003279378A (ja) シンクロレゾルバ
JP5228216B2 (ja) レゾルバ及びレゾルバの製造方法
WO2022124416A1 (ja) レゾルバ
JP5526371B2 (ja) 回転角検出又は回転同期装置
EP1686351A1 (en) Brushless resolver and its constructing method
JP5467310B2 (ja) レゾルバ及びレゾルバの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080062904.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846561

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127020308

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13577586

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010846561

Country of ref document: EP