WO2011104896A1 - 液晶表示装置、液晶表示装置の製造方法及び液晶表示装置の製造装置 - Google Patents

液晶表示装置、液晶表示装置の製造方法及び液晶表示装置の製造装置 Download PDF

Info

Publication number
WO2011104896A1
WO2011104896A1 PCT/JP2010/053516 JP2010053516W WO2011104896A1 WO 2011104896 A1 WO2011104896 A1 WO 2011104896A1 JP 2010053516 W JP2010053516 W JP 2010053516W WO 2011104896 A1 WO2011104896 A1 WO 2011104896A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid crystal
display device
crystal display
plastic film
Prior art date
Application number
PCT/JP2010/053516
Other languages
English (en)
French (fr)
Inventor
岡本 守
江口 敏正
重義 大槻
山口 伸也
Original Assignee
住友化学株式会社
住友ベークライト株式会社
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 住友ベークライト株式会社, 凸版印刷株式会社 filed Critical 住友化学株式会社
Priority to KR1020127025282A priority Critical patent/KR101465853B1/ko
Priority to US13/580,865 priority patent/US20130050623A1/en
Publication of WO2011104896A1 publication Critical patent/WO2011104896A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78633Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device with a light shield
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133368Cells having two substrates with different characteristics, e.g. different thickness or material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support

Definitions

  • the present invention particularly relates to a liquid crystal display device using a plastic film substrate, a method for manufacturing the liquid crystal display device, and a manufacturing apparatus for the liquid crystal display device.
  • liquid crystal display devices have been mounted on various portable information devices such as mobile phones and PDAs (Personal Digital Assistants).
  • portable information devices it is necessary to reduce power consumption as much as possible. Therefore, as a liquid crystal display device, a reflective liquid crystal display device or a transflective liquid crystal display device that uses external light as much as possible and suppresses the use of a backlight is used. It is preferable to use it.
  • a liquid crystal is sandwiched between a first substrate and a second substrate which are arranged to face each other, and the opposite surface side where electrodes are provided on the first substrate and the second substrate. Are each covered with an alignment film, and the alignment state of the liquid crystal molecules contained in the liquid crystal is controlled by these alignment films. Further, the space between the first substrate and the second substrate is sealed with a sealing agent provided at the peripheral portion thereof, whereby the liquid crystal is filled and sealed between the first substrate and the second substrate. (Patent Document 1).
  • a pair of glass substrates are used as the first substrate and the second substrate, the liquid crystal is sandwiched between the pair of glass substrates, the absorption polarizing plate disposed on one glass substrate side of the liquid crystal, and the other glass of the liquid crystal
  • a reflection type polarizing plate arranged on the substrate side and one that applies a voltage to the liquid crystal by using external light to prevent a decrease in contrast due to external light reflection (Patent Document 2).
  • the liquid crystal display devices In response to the recent demand for smaller and more compact liquid crystal display devices, the liquid crystal display devices have been designed to be thinner.
  • a pair of glass substrates is used as a first substrate and a second substrate that are arranged opposite to each other, and a liquid crystal is sandwiched between the pair of glass substrates. Since a light shielding layer, a colored layer, a common electrode layer, an active element, and the like are formed, there is a certain limit in reducing the size and thickness of the device.
  • the present invention has been made in view of the above circumstances, and a liquid crystal display device, a liquid crystal display device manufacturing method, and a liquid crystal display device that prevent a reduction in contrast due to reflection of external light and that can reduce the size and thickness of the device.
  • An object is to provide a manufacturing apparatus.
  • the present invention is configured as follows.
  • the invention according to claim 1 is a liquid crystal display device in which an alignment film and a liquid crystal are sandwiched between a first substrate and a second substrate, and are bonded via a gap holding material and a sealant,
  • the first substrate is a substrate in which a light shielding layer, a colored layer, and a common electrode layer are formed on a plastic film substrate
  • the second substrate is a glass substrate in which active elements are formed in advance. It is a substrate bonded on a plastic film substrate
  • the liquid crystal display device is characterized in that a barrier film is formed on one side or both sides of at least one of the plastic film substrates.
  • the invention according to claim 2 is the liquid crystal display device according to claim 1, wherein the alignment film is a photo-alignment control type alignment film.
  • the invention according to claim 3 is the liquid crystal display device according to claim 1, wherein the sealant is a photo-curing sealant.
  • the invention according to claim 4 is the liquid crystal display device according to claim 1, wherein the gap retaining material is a columnar spacer formed in a light shielding layer region on the first substrate side.
  • the invention according to claim 5 is a spherical spacer in which the gap retaining material is disposed between the first substrate and the second substrate and is disposed in a light shielding layer region on the first substrate side.
  • the invention according to claim 6 is the liquid crystal display device according to claim 1, wherein the first substrate and the second substrate have a polarizing layer on a surface different from the bonding surface. It is.
  • the invention according to claim 7 is the liquid crystal display device according to claim 1, wherein the second substrate is a substrate in which an active element is directly formed on a plastic film substrate.
  • the active element of the second substrate is a mixture of oxygen (O) and nitrogen (N), and the ratio of N to O (N number density / O number density) is 0 to 0.
  • the invention according to claim 9 is the liquid crystal display device according to claim 1, wherein the light-shielding layer on the first substrate side is disposed above the active layer.
  • the invention according to claim 10 is the liquid crystal display device according to claim 9, wherein the light-shielding layer on the first substrate side is formed immediately above the active layer.
  • the invention according to claim 11 is a method of manufacturing a liquid crystal display device in which an alignment film and a liquid crystal are sandwiched between a first substrate and a second substrate and bonded via a gap holding material and a sealant.
  • the first substrate includes a step of forming a light shielding layer on a plastic film substrate, a step of forming a colored layer, and a step of forming a common electrode.
  • the second substrate includes a step of forming an active element on a glass substrate, and a step of bonding the glass substrate on a plastic film substrate.
  • At least one of the plastic film substrates has a step of forming a barrier film on one side or both sides, Forming alignment films on the bonding surfaces of the first substrate and the second substrate,
  • a method for manufacturing a liquid crystal display device comprising: a sealing agent drawing step by an ODF process, a liquid crystal filling step, a bonding step through the drawn sealing agent, and a step of curing the sealing agent. is there.
  • At least one of the plastic film substrate of the first substrate and the plastic film substrate of the second substrate is in a roll shape. It is a manufacturing method of a display device.
  • a columnar spacer disposed in the light shielding layer region on the first substrate side is formed by the photolithography method as the gap retaining material. This is a manufacturing method of the liquid crystal display device.
  • a spherical spacer disposed between the first substrate and the second substrate and disposed in a light shielding layer region on the first substrate side, 12.
  • the invention described in claim 15 is characterized in that a polarizing layer is formed by a bonding method on a surface different from the bonding surface of the first substrate and the second substrate. This is a manufacturing method of the liquid crystal display device.
  • the invention described in claim 16 is characterized in that a polarizing layer is formed by a coating method on a surface different from the bonding surface of the first substrate and the second substrate.
  • a method for manufacturing a liquid crystal display device is characterized in that a polarizing layer is formed by a coating method on a surface different from the bonding surface of the first substrate and the second substrate.
  • the invention described in claim 17 is the method for manufacturing a liquid crystal display device according to claim 11, wherein the second substrate is manufactured by a method of directly forming an active element on a plastic film substrate. is there.
  • the active element of the second substrate is a mixture of oxygen (O) and nitrogen (N), and the ratio of N to O (N number density / O number density) is 0 to 18.
  • the invention according to claim 19 is characterized in that the first substrate and the second substrate are bonded together so that the light shielding layer on the first substrate side is disposed above the active layer.
  • Item 19 A method for producing a liquid crystal display device according to Item 18.
  • the invention according to claim 20 is the method for manufacturing a liquid crystal display device according to claim 18, wherein the light-shielding layer on the first substrate side is formed just above the active layer by a photolithography method. is there.
  • a liquid crystal display device manufacturing apparatus that executes the liquid crystal display device manufacturing method according to any one of the eleventh to seventeenth aspects of the present invention to manufacture the liquid crystal display device. It is.
  • the present invention has the following effects.
  • the first substrate is a substrate in which a light shielding layer, a colored layer, and a common electrode layer are formed on a plastic film substrate, and an active element is formed in advance on the second substrate.
  • the glass substrate thus bonded is a substrate bonded onto a plastic film substrate, a barrier film is formed on one side or both sides of at least one of the plastic film substrates, and the plastic film is formed on the first substrate and the second substrate.
  • the alignment film is a photo-alignment control type alignment film and does not require rubbing treatment. Therefore, no dust is generated due to scraping of the alignment film, and static electricity due to friction is not generated.
  • optical alignment control since it is a non-contact method called optical alignment control, uniform alignment treatment can be performed on the entire surface without being affected by the unevenness of the underlying film.
  • the sealing agent is a photo-curing type sealing agent, and the curing time can be shortened as compared with the conventional thermosetting type. Moreover, since heat is not used, the expansion of the plastic film substrate as a base material can be suppressed, and the liquid crystal display device to be cured can be downsized.
  • the gap holding material is a columnar spacer formed in the light shielding layer region on the first substrate side, the columnar spacer is formed only in the light shielding layer region of the first substrate, and the opening Since no spacers are present and alignment disorder does not occur, the contrast is high.
  • the gap retaining material is a spherical spacer disposed between the first substrate and the second substrate and disposed in the light shielding layer region on the first substrate side. Since the spherical spacer is disposed only in the light-shielding layer region of the substrate, the spacer does not exist in the opening and alignment disorder does not occur, so the contrast is high. In addition, since the spherical spacer is more elastically deformed and less plastically deformed than the columnar spacer, the liquid crystal display device can flexibly cope with external pressure.
  • the first substrate and the second substrate have a polarizing layer on a surface different from the bonding surface, and enable transmission control of backlight light passing through the liquid crystal display device. Yes.
  • the second substrate is a substrate in which an active element is directly formed on a plastic film substrate, and by directly forming the active element, the liquid crystal display device is light and thin, It becomes difficult to break.
  • the active element of the second substrate is a mixture of oxygen (O) and nitrogen (N), and the ratio of N to O (N number density / O number density) is 0 to 2 Since the active layer containing a non-metallic element is transparent to visible light, the transmittance of the display device is increased, and the power consumption of the backlight can be reduced. Moreover, since it has flexibility, it bends well and a performance characteristic improves.
  • the light shielding layer on the first substrate side is disposed above the active layer, and when the external light from the viewing direction enters the display device, the incident light does not hit the active layer. For this reason, malfunctions and characteristic changes of the active layer are less likely to occur.
  • the light shielding layer on the first substrate side is formed immediately above the active layer, and when the external light from the viewing direction enters the display device, the incident light does not hit the active layer. It is possible to suppress malfunctions and characteristic changes of the active layer. Further, since the light shielding layer is disposed immediately above the active layer, the internally scattered light of the backlight light entering the display device does not hit the active layer, and the characteristic change is further less likely to occur.
  • the first substrate forms a light shielding layer, a colored layer, and a common electrode on a plastic film substrate
  • the second substrate forms an active element on a glass substrate.
  • a glass substrate is bonded onto a plastic film substrate, and at least one of the plastic film substrates is formed with a barrier film on one or both sides, so that transmission of impurities such as water vapor and gas from the outside can be suppressed, and a liquid crystal display The reliability of the device is improved.
  • alignment films are formed on the bonding surfaces of the first substrate and the second substrate, respectively, drawing of the sealing agent by ODF process, filling of the liquid crystal, bonding through the drawn sealing agent, and curing the sealing agent
  • ODF process drawing of the sealing agent by ODF process
  • filling of the liquid crystal bonding through the drawn sealing agent
  • curing the sealing agent By using the ODF process, a roll-to-roll paneling process can be realized.
  • At least one of the plastic film substrate of the first substrate or the plastic film substrate of the second substrate is in a roll shape, and a panel forming process in a roll-to-roll system is realized.
  • the manufactured display panel can be rolled up.
  • columnar spacers arranged in the light shielding layer region on the first substrate side as the gap holding material are formed by a photolithography method, and the light shielding layer region on the first substrate side is highly accurate. Since the light shielding layer line width can be reduced, the transmittance of the liquid crystal display device is improved.
  • a spherical spacer disposed between the first substrate and the second substrate and disposed in the light-shielding layer region on the first substrate side as the gap holding material is determined by a fixed point arrangement method.
  • the light shielding layer region on the first substrate side can be arranged and formed with high accuracy and the light shielding layer line width can be reduced, so that the transmittance of the liquid crystal display device is increased.
  • the liquid crystal display device can be made thin, light and difficult to break by manufacturing the second substrate by a method of directly forming an active element on a plastic film substrate.
  • the active element of the second substrate is a mixture of oxygen (O) and nitrogen (N), and the ratio of N to O (N number density / O number density) is 0 to 2 Since the active layer containing the nonmetallic element is formed by the sputtering method and can be formed by the sputtering method (room temperature) without using the conventional plasma CVD (300 ° C.), a low environmental load and a low temperature process are possible.
  • the first substrate and the second substrate are bonded so that the light shielding layer on the first substrate side is disposed above the active layer, and external light from the viewing direction is displayed on the display device.
  • the active layer When incident on the active layer, no incident light strikes the active layer, so that the malfunction and characteristic change of the active layer are less likely to occur.
  • the light shielding layer on the first substrate side can be formed by photolithography just above the active layer and can be arranged and formed with high accuracy, and the light shielding layer line width can be narrowed.
  • the transmittance of the liquid crystal display device is increased.
  • the liquid crystal display device is lightweight and thin, It becomes difficult to break.
  • Embodiments of a liquid crystal display device, a liquid crystal display device manufacturing method, and a liquid crystal display device manufacturing device according to the present invention will be described below. Although this embodiment shows a preferred embodiment, the present invention is not limited to this.
  • FIG. 1 is a schematic configuration diagram of a liquid crystal display device
  • FIG. 2 is a schematic configuration diagram of a plastic film substrate as a second substrate.
  • the alignment films 12 and 13 and the liquid crystal 14 are sandwiched between the first substrate 10 and the second substrate 11, and the gap holding material 15 and the sealant 16 are provided. It is pasted through.
  • the first substrate 10 is a substrate in which a light shielding layer 10b, a colored layer 10c, and a common electrode layer 10d are formed on a plastic film substrate 10a, and an alignment film 12 is formed on the common electrode layer 10.
  • the second substrate 11 is a substrate in which a glass substrate 11a on which an active element 17 is previously formed is bonded onto a plastic film substrate 11b.
  • the plastic film substrate 10a is provided with inorganic barriers 10e and 10f on both sides, and a resin barrier 10g is provided on the inorganic barrier 10e.
  • the plastic film substrate 11b is formed with inorganic barriers 11c and 11d on both sides, and a glass substrate 11a is provided on the inorganic barrier 11c via an adhesive 11e, and on the inorganic barrier 11d.
  • a resin barrier 11f is provided.
  • the barrier film is formed on one side or both sides of at least one of the plastic film substrates.
  • the active element 17 of the second substrate 11 is a mixture of oxygen (O) and nitrogen (N), and includes a nonmetallic element having a ratio of N to O (N number density / O number density) of 0 to 2.
  • An active layer 17a is provided.
  • the active element 17 of the second substrate 11 is a mixture of oxygen (O) and nitrogen (N), and includes a nonmetallic element having a ratio of N to O (N number density / O number density) of 0 to 2. Since the active layer 17a is included and visible light is transmissive, the transmittance of the display device is increased and low power consumption of the backlight is possible. Moreover, since it has flexibility, it bends well and a performance characteristic improves.
  • This active layer 17a is produced from a combination of a metal raw material (In 2 O 3 , SnO 2 ) and an insulator raw material (Si 3 N 4 ). Even if nitride is used as the metal raw material, it is an insulator itself from the beginning. Therefore, no matter how much it is mixed with other insulator raw materials, a semiconductor cannot be formed. For this reason, the metal raw material uses the oxide which is a metal itself. On the other hand, when nitride is used as the insulator raw material, a semiconductor produced by mixing both becomes an oxynitride mixture containing both oxygen (O) and nitrogen (N). The state of mixing is expressed by the following formula. The mixing ratios x and y can be determined under conditions where the positive and negative valences are balanced.
  • the mixing ratio x of the main metal raw material In 2 O 3 and the mixing ratio y of the insulator material Si 3 N 4 are set, the mixing ratio of the subordinate metal raw material SnO 2 is 6 ⁇ x from the valence balance.
  • N 12-18 (typical value 17)
  • N 0 to 24 (typical value 12).
  • N 1: 0 to 2
  • Number ratio of nitrogen to oxygen 1 that is, ratio of nitrogen (N) to oxygen (O) (N number density / O number density) is 0 to 2.
  • an active element having an active layer 17a containing a nonmetallic element having a ratio of N to O (N number density / O number density) of 0 to 2 in a mixture of oxygen (O) and nitrogen (N). 17 can obtain performance equal to or higher than that of the active element 17 using amorphous silicon formed on the glass substrate at 200 ° C. or higher even when formed at a temperature of 200 ° C. or lower. Is also suitable for forming on a plastic substrate having a low heat-resistant temperature. Further, an active element 17 having a high field effect mobility can be easily obtained, and this active element 17 is suitable for a large screen and high-definition display using an organic EL element as a current driving element.
  • the ratio of nitrogen (N) to oxygen (O) is in the range of 0 to 2 because the above-mentioned ratio of nitrogen (N) to oxygen (O) (N number density). / O number density) is determined from the balance between the band gap and the valence as described in the section from 0 to 2. If this value becomes 0 (no nitrogen is present at all), depending on the amount of oxygen, the band gap of the active layer 17a is too small to be metallic, and the active element 17 is always on. On the other hand, when this value exceeds 2 (oxygen deficiency, nitrogen excess), the band gap of the active layer becomes too large and becomes insulating, and the active element 17 is always in the OFF state. In either case, a problem occurs as an active element characteristic.
  • the first substrate 10 is a substrate in which the light shielding layer 10b, the colored layer 10c, and the common electrode layer 10d are formed on the plastic film substrate 10a
  • the second substrate 11 Is a substrate in which a glass substrate 11a on which an active element 17 has been formed in advance is bonded onto a plastic film substrate 11b.
  • At least one of the plastic film substrate 11b is provided with a barrier film on one side or both sides.
  • the alignment films 12 and 13 are optical alignment control type alignment films and do not require a rubbing process, no dust is generated due to scraping of the alignment films 12 and 13, and static electricity due to friction does not occur.
  • it is a non-contact method called optical alignment control, uniform alignment treatment can be performed on the entire surface without being affected by the unevenness of the underlying film.
  • the sealing agent 16 is a photo-curing type sealing agent, and the curing time can be shortened as compared with the conventional thermosetting type. Moreover, since the sealing agent 16 does not use heat for curing, the expansion of the plastic film substrates 10a and 11b, which are base materials, can be suppressed, and the curing device can be downsized.
  • the gap retaining material 15 is a columnar spacer 15a, and one end portion is formed in contact with the alignment film 12, and the other end portion is formed in contact with the alignment film 13, but the position of the one end portion is the first position. It is formed in the light shielding layer region on the substrate 10a side, and the other end portion is formed in the light shielding active device region on the second substrate 11b side.
  • the gap retaining material 15 is a columnar spacer 15a disposed between the first substrate 10a and the second substrate 11b and formed in the light shielding layer region on the first substrate 10a side.
  • FIG. 3 is a schematic configuration diagram of the liquid crystal display device according to the second embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the gap retaining member 15 uses a spherical spacer 15b as shown in FIG.
  • a part of the spherical spacer 15b is formed in contact with the alignment film 12, and the other part is formed in contact with the alignment film 13.
  • a part of the spherical spacer 15b is formed in the light shielding layer region on the first substrate 10a side.
  • the other portion is formed in the active element region on the second substrate 11b side.
  • the gap retaining material 15 is a spherical spacer 15b disposed between the first substrate 10a and the second substrate 11b and disposed in the light shielding layer region on the first substrate 10a side. Since the spherical spacer 15b is disposed only in the light shielding layer region of the substrate 10a, the spacer does not exist in the opening 12a of the alignment film 12, and the alignment is not disturbed. Therefore, the contrast is high. In addition, since the spherical spacer 15b is more elastically deformed and less plastically deformed than the columnar spacer 15a, the liquid crystal display device can flexibly cope with external pressure.
  • FIG. 4 is a schematic configuration diagram of the liquid crystal display device according to the third embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the first substrate 10a and the second substrate 11b have polarizing layers 20 and 21 on a surface different from the bonding surface, and transmit backlight light through the liquid crystal display device. Allows control.
  • FIG. 5 is a schematic configuration diagram of a liquid crystal display device according to a fourth embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the second substrate 11 is a substrate in which the active element 17 is directly formed on the plastic film substrate 11b. By forming the active element 17 directly, the second substrate 11 is lighter and thinner. It becomes difficult to break.
  • FIG. 6 is a schematic configuration diagram of a liquid crystal display device according to a fifth embodiment.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted.
  • the light shielding layer 22 on the first substrate 10a side is disposed above the active layer 17a, and incident light enters the active layer 17a when external light from the viewing direction enters the liquid crystal display device. Therefore, malfunction and characteristic change of the active layer 17a are less likely to occur.
  • the light shielding layer 22 on the first substrate 11b side is formed immediately above the active layer 17a, when the external light from the viewing direction enters the liquid crystal display device, the incident light does not hit the active layer 17a. Thus, malfunctions and characteristic changes of the active layer 17a can be suppressed. Further, since the light shielding layer 22 is disposed immediately above the active layer 17a, the internally scattered light of the backlight light entering the liquid crystal display device does not hit the active layer 17a, and the characteristic change is further less likely to occur.
  • FIG. 7 is a schematic configuration diagram of the first substrate manufacturing apparatus
  • FIG. 8 is a schematic configuration diagram of the second substrate manufacturing apparatus
  • FIG. 9 is a schematic configuration diagram of a bonding apparatus for the first substrate and the second substrate. .
  • the manufacturing apparatus of the liquid crystal display device of this embodiment includes a first substrate manufacturing apparatus in FIG. 7, a second substrate manufacturing apparatus in FIG. 8, and a bonding of the first substrate and the second substrate in FIG.
  • a liquid crystal display device is manufactured by sandwiching an alignment film and a liquid crystal between a first substrate and a second substrate and bonding them with a gap holding material and a sealant.
  • the first substrate manufacturing apparatus in FIG. 7 has a delivery unit 101 and a take-up unit 102, sends out a roll-shaped plastic film substrate 10a from the delivery unit 101, and winds it on the take-up unit 102.
  • a barrier film forming part 110 that forms a barrier film on one or both sides of the plastic film substrate 10a and a light shielding layer that forms a light shielding layer 10b on the plastic film substrate 10a Part 103, colored layer forming part 104 for forming colored layer 10c, common electrode forming part 105 for forming common electrode 10d, and alignment film forming part for forming alignment film 12 on the bonding surface of first substrate 10 106, a gap retaining material forming portion 107, and a polarizing layer bonding portion 111 are arranged.
  • a columnar spacer 15a disposed in the light shielding layer region on the first substrate 10a side is formed by a photolithography method.
  • the columnar spacers 15a can be arranged and formed with high accuracy in the light shielding layer region on the first substrate 10a side by photolithography, and the light shielding layer line width can be narrowed, so that the transmittance of the display panel is improved.
  • a spherical spacer 15b disposed between the first substrate 10a and the second substrate 11b and disposed in the light shielding layer region on the first substrate 10a side.
  • the spherical spacers 15b can be arranged and formed with high accuracy in the light shielding layer region on the first substrate 10a side by the fixed point arrangement method, and the light shielding layer line width can be reduced, so that the transmittance of the display panel is increased.
  • the polarizing layer 20 is formed by a bonding method on a surface different from the bonding surface of the first substrate 10, and the polarizing layer 20 is formed by a bonding method, thereby reducing the thickness. Is possible.
  • the polarizing layer 20 can be formed by a coating method, and the thickness can be reduced by forming the polarizing layer 20 by a coating method.
  • the plastic film substrate 10a of the first substrate 10 is in a roll shape, and a roll-to-roll panel forming process is realized in which the plastic film substrate is fed from the roll shape and wound into a roll shape.
  • the produced display panel can be wound up in a roll shape.
  • the second substrate manufacturing apparatus in FIG. 8 has a delivery unit 201 and a take-up unit 202, and feeds the roll-shaped plastic film substrate 11 b from the delivery unit 201 and winds it on the take-up unit 202.
  • the part 206 and the polarizing layer bonding part 211 are arrange
  • the second substrate 11 is manufactured by a method of directly forming the active element 17 on the plastic film substrate 11b, and the display panel can be made thin, light and difficult to break.
  • the active element 17 of the second substrate 11 is a mixture of oxygen (O) and nitrogen (N), and the ratio of N to O (N number density / O number density) is 0 to 2.
  • An active layer 17a containing is formed by sputtering.
  • the sputtering method is performed by the sputtering apparatus shown in FIGS.
  • the sputtering apparatus 321 includes roll winding mechanisms 322a and 322b, a feeding mechanism 323, a winding mechanism 324, an alignment mechanism 325, and metal targets 326a and 326b.
  • a vacuum chamber 327 for holding is provided.
  • This vacuum chamber 327 has opening / closing doors 327a, 327b on the roll winding mechanisms 322a, 322b side, opens / closes the opening / closing door 327a, sets a roll-shaped film substrate P, opens / closes the opening / closing door 327b, and the active layer 17a
  • the provided roll-shaped film substrate P is taken out.
  • the roll winding mechanism 322a mounts the roll film substrate P on the rotation shaft 322a1, the rotation shaft 322a1 rotates by feeding the roll film substrate P, and the roll winding mechanism 322b causes the roll film substrate P to rotate on the rotation shaft 322b1.
  • the rotating shaft 322b1 is rotated by winding the roll-shaped film substrate P.
  • the delivery mechanism 323 has a pair of delivery rollers 323a, and feeds the roll-shaped film substrate P from one end along the longitudinal direction by the rotation of the pair of delivery rollers 323a.
  • the winding mechanism 324 has a pair of winding rollers 324b, and winds the roll-shaped film substrate P from one end along the longitudinal direction by the rotation of the pair of winding rollers 324b.
  • the alignment mechanism 325 includes a detection sensor 325a, a control device 325b, and a roller drive device 325c.
  • the detection sensor 325a detects the alignment pattern A of the roll-shaped film substrate P shown in FIG. 11, and controls this detection information.
  • the control device 325b controls the delivery mechanism 323 and the winding mechanism 324 via the roller driving device 325c, and performs planar alignment of the roll-shaped film substrate P.
  • the vacuum chamber 327 is in a vacuum state by being driven by a vacuum pump 328.
  • the vacuum chamber 327 is provided with a gas introduction mechanism 329.
  • the gas introduction mechanism 329 supplies an atmospheric gas containing a nonmetallic element to the vacuum chamber 327. To introduce.
  • the metal targets 326a and 326b face the semiconductor forming surface of the roll film substrate P and are arranged at linear positions along the length of the roll film substrate P.
  • the metal target 326a is a metal element target, and the metal target 326ba is a metalloid element target.
  • the sputtering apparatus 321 uses metal targets 326a and 326b, and a mixture of a plurality of elements including at least one of a non-metal element, a metal element, and a metalloid element is used as a single target.
  • 326b is a very good target.
  • the sputtering apparatus 321 introduces the atmospheric gas containing the nonmetallic element into the vacuum chamber 327 by the gas introduction mechanism 329, and the metal elements or metalloid elements of the metal targets 326a and 326b or these elements into the vacuum chamber 327.
  • the metal targets 326a and 326b When a plurality of metal targets including a mixture of the above are arranged and a high voltage is applied to the metal targets 326a and 326b through the electrodes, atoms on the surface of the metal target are repelled, and an atmospheric gas containing a nonmetallic element introduced into the vacuum chamber 327 Then, the active layer 17a can be formed on the roll-shaped film substrate P by reacting with the repelled metal.
  • the active layer 17a can be formed by a low temperature process, and a low process cost can be realized.
  • the active layer 17a can realize a relatively high field effect mobility and can manufacture a liquid crystal display device having stable characteristics against light and heat.
  • the active layer 17a can freely control the band gap, and can manufacture a liquid crystal display device capable of increasing the field effect mobility.
  • the sputtering apparatus 321 includes a vacuum chamber 327 that holds all the mechanisms inside, and can be wound from the roll state to the feed roll state at the time of manufacturing to realize a low process cost.
  • the sputtering apparatus 321 introduces an atmospheric gas containing a nonmetallic element into the vacuum chamber 327, has a plurality of metal targets 326a and 326b containing a metal element, a metalloid element, or a mixture thereof, and the metal targets 326a and 326b.
  • the active layer 17a having a uniform property can be formed in the roll-shaped film substrate P by being arranged at linear positions along the length of the roll-shaped film substrate P.
  • the active element 17 of the second substrate 11 is a mixture of oxygen (O) and nitrogen (N), and the ratio of N to O (N number density / O number density) is 0 to 2. Since the active layer 17a containing the metal element is formed by sputtering and can be formed by sputtering (room temperature) without using conventional plasma CVD (300 ° C.), a low environmental load and low-temperature process are possible.
  • the light shielding layer 22 on the first substrate 10 side can be formed by photolithography just above the active layer 17a, and can be arranged and formed with high accuracy, and the light shielding layer line width can be reduced.
  • the transmittance of the display panel is increased.
  • the first substrate 10 and the second substrate 11 are bonded so that the light shielding layer 22 on the first substrate 10 side is disposed above the active layer 17a, and external light from the viewing direction is displayed on the liquid crystal display.
  • no incident light hits the active layer, so that the malfunction and characteristic change of the active layer are less likely to occur.
  • the polarizing layer 21 is formed by a bonding method on a surface different from the bonding surface of the second substrate 11, and the polarizing layer 21 is formed by a bonding method, thereby reducing the thickness. Is possible.
  • the polarizing layer 21 can be formed by a coating method, and the thickness can be reduced by forming the polarizing layer 21 by a coating method.
  • the plastic film substrate 11b of the second substrate 11 is in the form of a roll, and a roll-to-roll paneling process is realized in which the plastic film substrate is fed from the roll shape and wound into a roll shape.
  • the produced display panel can be wound up in a roll shape.
  • the first substrate and the second substrate bonding apparatus in FIG. 9 are formed by the first substrate 10 formed by the first substrate manufacturing apparatus in FIG. 7 and the second substrate manufacturing apparatus in FIG.
  • the second substrate 11 is set, and the sealant drawing unit 301 by the ODF process, the liquid crystal filling unit 302, the bonding unit 303 for bonding via the drawn sealant, and the curing unit 304 for curing the sealant. And are arranged.
  • a ring-shaped UV curable seal is formed on a transparent substrate without forming a liquid crystal injection port, and then an appropriate amount of liquid crystal is dropped on the inner region of the seal and bonded with a vacuum apparatus. Later, this UV curable seal is cured by irradiating it with ultraviolet rays.
  • the sealant drawing unit 301 the sealant drawing is provided on the bonding surface by the sealant 16.
  • the portions operated by electricity of the plurality of liquid crystal display devices are provided so as to surround the entire outside, respectively, and further, the entire outside of the portions operated by electricity of the plurality of liquid crystal display devices are surrounded.
  • the drawing of the sealant is not limited to one that surrounds the entire exterior, but may be applied so as to surround a part of the exterior.
  • a liquid sealant placed in a syringe is ejected from an opening of the dispenser and applied.
  • This dispenser uses the one with small variation in the discharge amount of the opening at each position in the width direction of the opening row, and applies the sealing agent in a syringe while pushing it out, so that the sealing agent can be applied easily and reliably. Can be granted.
  • the sealing agent that forms the drawing of the sealing agent is composed of an ultraviolet curable resin, a thermosetting resin, an adhesive, and the like, and prevents gaps and in-plane displacement and prevents liquid crystal leakage.
  • a ring-shaped ultraviolet curable sealant 16 is formed on the substrate without forming a liquid crystal injection port, and then an appropriate amount of the liquid crystal 15 is dropped on the inner region of the sealant 16.
  • a sealing agent 16 used for bonding is provided on the first substrate 10, and the liquid crystal 14 can be dropped onto the first substrate 10 in a portion surrounded and sealed by the sealing agent 16.
  • a liquid crystal display device is manufactured by providing the liquid crystal 15. *
  • the bonding unit 303 includes a vacuum chamber 303a, a flat stage 303b, and a bonding mechanism 303c.
  • the vacuum chamber 303a is closed at the time of bonding, and the inside is made into a vacuum state, and it is separated when transported so that the substrate can be transported.
  • a flat stage 303b and a bonding mechanism 303c are disposed inside the vacuum chamber 303a.
  • the flat stage 303b holds the substrate in a flat state, and the bonding mechanism 303c bonds the first substrate 10 and the second substrate 11 on the flat stage 303b.
  • the sealing agent 16 is an ultraviolet curable resin, and the ultraviolet curable resin is cured by irradiating the sealing agent 16 with ultraviolet rays, and the substrate can be easily and reliably cured without applying heat to the substrate. it can.
  • the present invention is particularly applicable to a liquid crystal display device using a plastic film substrate, a liquid crystal display device manufacturing method, and a liquid crystal display device manufacturing apparatus, which prevents a decrease in contrast due to reflection of external light, and further reduces the size of the device. Thinning is possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Theoretical Computer Science (AREA)

Abstract

本発明は、液晶表示装置において、外光反射によるコントラスト低下を防止し、しかも装置の小型、薄型化を可能とすることを目的とする。 本発明に係る液晶表示装置は、第1の基板(10)と第2の基板(11)間に配向膜(12,13)及び液晶(14)を挟持させ、ギャップ保持材(15)、及びシール剤(16)を介して貼合されたものであって、第1の基板(10)は、プラスチックフィルム基板(10a)上に遮光層(10b)と、着色層(10c)と、共通電極層(10d)が形成された基板であり、第2の基板(11)は、予め能動素子(17)が形成されたガラス基板(11a)が、プラスチックフィルム基板(11b)上に貼合された基板であり、プラスチックフィルム基板(10a,11b)の少なくとも一方には、片面または両面にバリア膜が形成されている。

Description

液晶表示装置、液晶表示装置の製造方法及び液晶表示装置の製造装置
 この発明は、特に、プラスチックフィルム基板を用いた液晶表示装置、液晶表示装置の製造方法及び液晶表示装置の製造装置に関する。
 近年、液晶表示装置は、種々の携帯情報機器、例えば携帯電話やPDA(Personal Digital Assistant)などに搭載されてきている。携帯情報機器においては、できるだけ消費電力を抑える必要があるので、液晶表示装置としては、外光をできる限り利用して、バックライトの使用を抑える反射型液晶表示装置や半透過型液晶表示装置を用いることが好ましい。
 このような液晶表示装置では、対向配置された第1基板と第2基板との間に、液晶を狭持して構成され、この第1基板および第2基板において電極が設けられた対向面側は、それぞれ配向膜によって覆われており、これらの配向膜によって液晶に含まれる液晶分子の配向状態が制御される。また、第1基板と第2基板との間は、その周縁部に設けられたシール剤で封止され、これにより液晶が第1基板と第2基板間に充填封止された状態となっている(特許文献1)。
 また、第1基板と第2基板として、一対のガラス基板を用い、一対のガラス基板で液晶を挟持し、液晶の一方のガラス基板側に配置された吸収型偏光板と、液晶の他方のガラス基板側に配置された反射型偏光板と、外光を用いて、液晶に電圧を印加し、外光反射によるコントラスト低下を防止するものがある(特許文献2)。
特開2005-283693号公報 特開2008-185810号公報
 近年の液晶表示装置の小型・コンパクト化の要求に伴い、液晶表示装置を薄くする設計がなされている。このような設計がなされた場合、対向配置された第1基板と第2基板として一対のガラス基板を用い、この一対のガラス基板の間に、液晶を狭持して構成され、さらに基板には遮光層と、着色層と、共通電極層、能動素子などが形成されるために、装置の小型、薄型化には一定の限界がある。
 この発明は、かかる実情に鑑みてなされたもので、外光反射によるコントラスト低下を防止し、しかも装置の小型、薄型化を可能にした液晶表示装置、液晶表示装置の製造方法及び液晶表示装置の製造装置を提供することを目的とする。
 前記課題を解決し、かつ目的を達成するために、この発明は、以下のように構成した。
 請求項1に記載の発明は、第1の基板と第2の基板間に配向膜及び液晶を挟持させ、ギャップ保持材、及びシール剤を介して貼合された液晶表示装置であり、
 前記第1の基板は、プラスチックフィルム基板上に遮光層と、着色層と、共通電極層が形成された基板であり、 前記第2の基板は、予め能動素子が形成されたガラス基板が、
プラスチックフィルム基板上に貼合された基板であり、
 前記プラスチックフィルム基板の少なくとも一方には、片面または両面にバリア膜が形成されていることを特徴とする液晶表示装置である。
 請求項2に記載の発明は、前記配向膜が、光配向制御型の配向膜であることを特徴とする請求項1に記載の液晶表示装置である。
 請求項3に記載の発明は、前記シール剤が、光硬化型のシール剤であることを特徴とする請求項1に記載の液晶表示装置である。
 請求項4に記載の発明は、前記ギャップ保持材が、前記第1の基板側の遮光層領域に形成された柱状スペーサであることを特徴とする請求項1に記載の液晶表示装置である。
 請求項5に記載の発明は、前記ギャップ保持材が、前記第1の基板と前記第2の基板間に配置され、かつ前記第1の基板側の遮光層領域に配置された球状スペーサであることを特徴とする請求項1に記載の液晶表示装置である。
 請求項6に記載の発明は、前記第1の基板と前記第2の基板は、貼合面と異なる面に偏光層を有していることを特徴とする請求項1に記載の液晶表示装置である。
 請求項7に記載の発明は、前記第2の基板が、プラスチックフィルム基板上に能動素子を直接形成された基板であることを特徴とする請求項1に記載の液晶表示装置である。
 請求項8に記載の発明は、前記第2の基板の能動素子が、酸素(O)と窒素(N)の混合物であり、Oに対するNの比(N数密度/O数密度)が0乃至2である非金属元素を含む活性層を有していることを特徴とする請求項1乃至請求項7のいずれか1項に記載の液晶表示装置である。
 請求項9に記載の発明は、前記第1の基板側の遮光層が、前記活性層上方に配置されていることを特徴とする請求項1に記載の液晶表示装置である。
 請求項10に記載の発明は、前記第1の基板側の遮光層が、前記活性層直上に形成されていることを特徴とする請求項9記載の液晶表示装置である。
 請求項11に記載の発明は、第1の基板と第2の基板間に、配向膜及び液晶を挟持させギャップ保持材及びシール剤を介して貼合する液晶表示装置の製造方法において、
 前記第1の基板は、プラスチックフィルム基板上に遮光層を形成する工程と、着色層を形成する工程と、共通電極を形成する工程とを有し、
 前記第2の基板は、ガラス基板上に能動素子を形成する工程と、前記ガラス基板をプラスチックフィルム基板上に貼合する工程とを有し、
 前記プラスチックフィルム基板の少なくとも一方には、片面または両面にバリア膜を形成する工程を有し、
 前記第1の基板と前記第2の基板の貼合面にそれぞれ配向膜を形成する工程と、
 ODFプロセスによるシール剤描画工程と、液晶充填工程と、描画された前記シール剤を介した貼り合せ工程と、前記シール剤を硬化させる工程とを有することを特徴とする液晶表示装置の製造方法である。
 請求項12に記載の発明は、前記第1の基板のプラスチックフィルム基板、もしくは前記第2の基板のプラスチックフィルム基板のうち少なくとも一方がロール状であることを特徴とする請求項11に記載の液晶表示装置の製造方法である。
 請求項13に記載の発明は、前記ギャップ保持材として、前記第1の基板側の遮光層領域に配置される柱状スペーサが、フォトリソグラフィー法により形成されることを特徴とする請求項11に記載の液晶表示装置の製造方法である。
 請求項14に記載の発明は、前記ギャップ保持材として、前記第1の基板と前記第2の基板間に配置され、かつ前記第1の基板側の遮光層領域に配置される球状スペーサが、定点配置法により形成されることを特徴とする請求項11に記載の液晶表示装置の製造方法である。
 請求項15に記載の発明は、前記第1の基板と前記第2の基板との貼合面とは異なる面に、偏光層を貼合方式で形成することを特徴とする請求項11に記載の液晶表示装置の製造方法である。
 請求項16に記載の発明は、前記第1の基板と前記第2の基板との貼合面とは異なる面に、偏光層を塗布方式で形成することを特徴とする請求項11に記載の液晶表示装置の製造方法。
 請求項17に記載の発明は、前記第2の基板が、プラスチックフィルム基板上に能動素子を直接形成する手法で製造されることを特徴とする請求項11に記載の液晶表示装置の製造方法である。
 請求項18に記載の発明は、前記第2の基板の能動素子が、酸素(O)と窒素(N)の混合物であり、Oに対するNの比(N数密度/O数密度)が0乃至2である非金属元素を含む活性層をスパッタ方式により形成することを特徴とする請求項11乃至請求項17のいずれか1項に記載の液晶表示装置の製造方法である。
 請求項19に記載の発明は、前記第1の基板側の遮光層が、前記活性層上方に配置されるように前記第1の基板と前記第2の基板を貼り合せることを特徴とする請求項18に記載の液晶表示装置の製造方法である。
 請求項20に記載の発明は、前記第1の基板側の遮光層が、前記活性層直上にフォトリソグラフィー法により形成されることを特徴とする請求項18に記載の液晶表示装置の製造方法である。
 請求項21に記載の発明は、請求項11乃至請求項17のいずれか1項に記載の液晶表示装置の製造方法を実行し、液晶表示装置を製造することを特徴する液晶表示装置の製造装置である。
 前記構成により、この発明は、以下のような効果を有する。
 請求項1に記載の発明では、第1の基板は、プラスチックフィルム基板上に遮光層と、着色層と、共通電極層が形成された基板であり、第2の基板は、予め能動素子が形成されたガラス基板が、プラスチックフィルム基板上に貼合された基板であり、プラスチックフィルム基板の少なくとも一方には、片面または両面にバリア膜が形成され、第1の基板及び第2の基板にプラスチックフィルム基板を用いたことで、従来のガラス基板を用いた液晶表示装置と比べ薄くなり、しかも割れにくい。
請求項2に記載の発明では、配向膜が、光配向制御型の配向膜であり、ラビング処理がいらないため、配向膜の削れによる発塵が生じないし、摩擦による静電気が発生しない。また、光配向制御という非接触方式であるため、下地膜の凹凸の影響を受けず全面に均一な配向処理ができる。
 請求項3に記載の発明では、シール剤が、光硬化型のシール剤であり、従来の熱硬化タイプと比べて、硬化時間が短縮できる。また、熱を使用しないため、基材であるプラスチックフィルム基板の膨張を抑制でき、かつ硬化させる液晶表示装置が小型化できる。
 請求項4に記載の発明では、ギャップ保持材が、第1の基板側の遮光層領域に形成された柱状スペーサであり、第1の基板の遮光層領域にのみ柱状スペーサを形成し、開口部にスペーサが存在せず、配向乱れが生じないため、コントラストが高い。
 請求項5に記載の発明では、ギャップ保持材が、第1の基板と第2の基板間に配置され、かつ第1の基板側の遮光層領域に配置された球状スペーサであり、第1の基板の遮光層領域にのみ球状スペーサを配置するため、開口部にスペーサが存在せず、配向乱れが生じないため、コントラストが高い。また、球状スペーサは柱状スペーサより弾性変形が大きく、かつ塑性変形が小さいため、外部からの圧力に対して液晶表示装置が柔軟に対応できる。
 請求項6に記載の発明では、第1の基板と第2の基板は、貼合面と異なる面に偏光層を有しており、液晶表示装置を通るバックライト光の透過制御を可能にしている。
 請求項7に記載の発明では、第2の基板が、プラスチックフィルム基板上に能動素子を直接形成された基板であり、能動素子を直接形成することで、さらに液晶表示装置が軽量、薄型で、割れにくくなる。
 請求項8に記載の発明では、第2の基板の能動素子が、酸素(O)と窒素(N)の混合物であり、Oに対するNの比(N数密度/O数密度)が0乃至2である非金属元素を含む活性層を有し、可視光に透過性を有するため、表示装置の透過率が高くなり、バックライトの低消費電力が可能になる。また、フレキシブル性を有しているため、良く曲がり、性能特性が向上する。
 請求項9に記載の発明では、第1の基板側の遮光層が、活性層上方に配置されており、目視方向からの外光が表示装置に入射する際、活性層へ入射光が当たらなくなるため、活性層の誤動作や特性変化が起きにくくなる。
 請求項10に記載の発明では、第1の基板側の遮光層が、活性層直上に形成され、目視方向からの外光が表示装置に入射する際、活性層へ入射光が当たらなくなるため、活性層の誤動作や特性変化を抑制することができる。また、遮光層が活性層の直上に配置されているため、表示装置に入るバックライト光の内部散乱光も活性層に当たらなくなり、特性変化がさらに起きにくくなる。
 請求項11に記載の発明では、第1の基板は、プラスチックフィルム基板上に遮光層と、着色層と、共通電極とを形成し、第2の基板は、ガラス基板上に能動素子を形成し、ガラス基板をプラスチックフィルム基板上に貼合し、プラスチックフィルム基板の少なくとも一方には、片面または両面にバリア膜を形成したことで、外部から水蒸気やガス等の不純物の透過を抑制でき、液晶表示装置の信頼性が向上する。また、第1の基板と第2の基板の貼合面にそれぞれ配向膜を形成し、ODFプロセスによりシール剤描画と、液晶充填と、描画されたシール剤を介した貼り合せ、シール剤を硬化させ、ODFプロセスを用いたことで、ロール・ツー・ロール方式のパネル化プロセスを実現することができる。
 請求項12に記載の発明では、第1の基板のプラスチックフィルム基板、もしくは第2の基板のプラスチックフィルム基板のうち少なくとも一方がロール状であり、ロール・ツー・ロール方式でのパネル化プロセスを実現することができ、しかも作製した表示パネルをロール状で巻き取ることが可能である。
 請求項13に記載の発明では、ギャップ保持材として、第1の基板側の遮光層領域に配置される柱状スペーサが、フォトリソグラフィー法により形成され、第1の基板側の遮光層領域に高精度に配置形成することが可能となり、遮光層線幅を細くできるため、液晶表示装置の透過率が向上する。
 請求項14に記載の発明では、ギャップ保持材として、第1の基板と第2の基板間に配置され、かつ第1の基板側の遮光層領域に配置される球状スペーサが、定点配置法により形成され、第1の基板側の遮光層領域に高精度に配置形成することが可能となり、遮光層線幅を細くできるため、液晶表示装置の透過率がアップする。
 請求項15に記載の発明では、第1の基板と第2の基板との貼合面とは異なる面に、偏光層を貼合方式で形成することで、さらに薄型化が可能である。
 請求項16に記載の発明では、第1の基板と第2の基板との貼合面とは異なる面に、偏光層を塗布方式で形成したことで、さらに薄型化が可能である。
 請求項17に記載の発明では、第2の基板が、プラスチックフィルム基板上に能動素子を直接形成する手法で製造することで、液晶表示装置を薄く、軽く、割れにくくすることができる。
 請求項18に記載の発明では、第2の基板の能動素子が、酸素(O)と窒素(N)の混合物であり、Oに対するNの比(N数密度/O数密度)が0乃至2である非金属元素を含む活性層をスパッタ方式により形成し、従来のプラズマCVD(300℃)を用いず、スパッタ法(室温)で形成できるため、低環境負荷、低温プロセスが可能となる。
 請求項19に記載の発明では、第1の基板側の遮光層が、活性層上方に配置されるように第1の基板と第2の基板を貼り合せ、目視方向からの外光が表示装置に入射する際、活性層へ入射光が当たらなくなるため、活性層の誤動作や特性変化が起きにくくなる。
 請求項20に記載の発明では、第1の基板側の遮光層が、活性層直上にフォトリソグラフィー法により形成し、高精度に配置形成することが可能となり、遮光層線幅を細くできるため、液晶表示装置の透過率がアップする。
 請求項21に記載の発明では、請求項11乃至請求項17のいずれか1項に記載の表示装置の製造方法を実行し、表示装置を製造することで、液晶表示装置が軽量、薄型で、割れにくくなる。
液晶表示装置の概略構成図である。 第2の基板のプラスチックフィルム基板の概略構成図である。 第2の実施の形態の液晶表示装置の概略構成図である。 第3の実施の形態の液晶表示装置の概略構成図である。 第4の実施の形態の液晶表示装置の概略構成図である。 第5の実施の形態の液晶表示装置の概略構成図である。 第1の基板製造装置の概略構成図である。 第2の基板製造装置の概略構成図である。 第1の基板と第2の基板の貼合装置の概略構成図である。 スパッタ装置の概略図である。 プラスチックフィルム基板の斜視図である。
 以下、この発明の液晶表示装置、液晶表示装置の製造方法及び液晶表示装置の製造装置の実施の形態について説明する。この実施の形態は好ましい形態を示すものであるが、この発明はこれに限定されない。
 [液晶表示装置]
 (第1の実施の形態)
 この第1の実施の形態の液晶表示装置を、図1及び図2に基づいて説明する。図1は液晶表示装置の概略構成図、図2は第2の基板のプラスチックフィルム基板の概略構成図である。
 この第1の実施の形態の液晶表示装置は、第1の基板10と第2の基板11の間に、配向膜12,13及び液晶14を挟持させ、ギャップ保持材15、及びシール剤16を介して貼合されている。
 第1の基板10は、プラスチックフィルム基板10a上に遮光層10bと、着色層10cと、共通電極層10dが形成された基板であり、この共通電極層10上に配向膜12が形成されている。第2の基板11は、予め能動素子17が形成されたガラス基板11aが、プラスチックフィルム基板11b上に貼合された基板である。
 プラスチックフィルム基板10a には、図2に示すように、両面に無機バリア10e,10fが形成され、無機バリア10e上には樹脂バリア10gが設けられている。プラスチックフィルム基板11b には、図2に示すように、両面に無機バリア11c,11dが形成され、無機バリア11c上には粘着剤11eを介してガラス基板11aが設けられ、無機バリア11d上には樹脂バリア11fが設けられている。このように、プラスチックフィルム基板の少なくとも一方には、片面または両面にバリア膜が形成される。
 第2の基板11の能動素子17が、酸素(O)と窒素(N)の混合物であり、Oに対するNの比(N数密度/O数密度)が0乃至2である非金属元素を含む活性層17aを有している。第2の基板11の能動素子17が、酸素(O)と窒素(N)の混合物であり、Oに対するNの比(N数密度/O数密度)が0乃至2である非金属元素を含む活性層17aを有し、可視光に透過性を有するため、表示装置の透過率が高くなり、バックライトの低消費電力が可能になる。また、フレキシブル性を有しているため、良く曲がり、性能特性が向上する。
 この活性層17aは、金属原料(In, SnO)と絶縁体原料(Si)の組み合わせから作製する。金属原料は窒化物を用いようとしてもそれ自体が初めから絶縁体なので、他の絶縁体原料といくら混ぜても半導体は形成できない。このため、金属原料はそれ自体が金属である酸化物を用いる。これに対し、絶縁体原料に窒化物を用いると、両者を混ぜて作製される半導体は酸素(O)と窒素(N)の両方を含む酸窒化物の混合物となる。混合の様子を次の式で表す。正負の価数が釣り合う条件で混合比x、yを決めることができる。
Figure JPOXMLDOC01-appb-I000001
 主たる金属原料Inの混合比x、絶縁体材料Siの混合比yとすると、価数釣り合いから、従たる金属原料SnOの混合比は6-xとなる。金属原料と絶縁体原料の比x:yは、原料それぞれのバンドギャップと、混合後に形成される半導体のバンドギャップによって決まり、例えばxの範囲としてはx=0~6(典型値5)、yの範囲としてはy=0~6(典型値3)が望ましい。
  従って、O:Nの数量比は、
O=12~18 (典型値17)
N=0~24(典型値12)となる。
 従って、O:N=1:0~2 酸素1に対する窒素の数密度比、すなわち酸素(O)に対する窒素(N)の比(N数密度/O数密度)は0乃至2である。
 この実施の形態では、酸素(O)と窒素(N)の混合物でOに対するNの比(N数密度/O数密度)が0乃至2である非金属元素を含む活性層17aを有する能動素子17は、200℃以下の温度で形成した場合にも、200℃以上でガラス基板上に形成しているアモルファスシリコンを用いた能動素子17と同等以上の性能を得ることができるので、ガラス基板よりも耐熱温度の低いプラスチック基板上に形成する場合に好適である。また、容易に高電界効果移動度の能動素子17が得られ、この能動素子17は、電流駆動素子の有機EL素子を用いた大画面、高精細ディスプレイに好適である。
 また、酸素(O)に対する窒素(N)の比(N数密度/O数密度)が0乃至2の範囲となるのは、上記「酸素(O)に対する窒素(N)の比(N数密度/O数密度)は0乃至2」おいて述べたように、バンドギャップと価数釣り合いから決まる。仮にこの値が0(窒素が全く存在しない)となった場合、酸素の量によっては、活性層17aのバンドギャップが小さすぎて金属的となり、能動素子17が常時オン状態となってしまう。逆にこの値が2を超える(酸素不足、窒素過剰)場合、活性層のバンドギャップが大きすぎて絶縁体的となり、能動素子17が常時オフ状態となってしまう。いずれの場合も能動素子特性として問題が起きる。
 このように、この実施の形態では、第1の基板10は、プラスチックフィルム基板10a上に遮光層10bと、着色層10cと、共通電極層10dが形成された基板であり、第2の基板11は、予め能動素子17が形成されたガラス基板11aが、プラスチックフィルム基板11b上に貼合された基板であり、プラスチックフィルム基板11bの少なくとも一方には、片面または両面にバリア膜が形成され、第1の基板10及び第2の基板11にプラスチックフィルム基板10a,11bを用いたことで、従来のガラス基板パネルと比べ薄くなり、しかも割れにくい。
 また、配向膜12,13が、光配向制御型の配向膜であり、ラビング処理がいらないため、配向膜12,13の削れによる発塵が生じないし、摩擦による静電気が発生しない。また、光配向制御という非接触方式であるため、下地膜の凹凸の影響を受けず全面に均一な配向処理ができる。
 また、シール剤16が、光硬化型のシール剤であり、従来の熱硬化タイプと比べて、硬化時間が短縮できる。また、シール剤16は、硬化させるために熱を使用しないため、基材であるプラスチックフィルム基板10a,11bの膨張を抑制でき、かつ硬化させる装置が小型化できる。
また、ギャップ保持材15は、柱状スペーサ15aであり、一端部が配向膜12に接して形成され、他端部が配向膜13に接して形成されているが、一端部の位置は第1の基板10a側の遮光層領域に形成され、他端部の位置は第2の基板11b側の遮能動素子領域に形成されている。このように、ギャップ保持材15が、第1の基板10aと第2の基板11b間に配置され、かつ第1の基板10a側の遮光層領域に形成された柱状スペーサ15aであり、第1の基板10aの遮光層領域にのみ柱状スペーサを形成することで、配向膜12の開口部12aにスペーサが存在せず、配向乱れが生じないため、コントラストが高い。
 (第2の実施の形態)
 図3は第2の実施の形態の液晶表示装置の概略構成図である。この第2の実施の形態は、第1の実施の形態と同じ構成は同じ符号を付して説明を省略する。この第2の実施の形態では、ギャップ保持材15は、図3に示すように、球状スペーサ15bを用いている。この球状スペーサ15bは、一部が配向膜12に接して形成され、他部が配向膜13に接して形成されているが、一部の位置は第1の基板10a側の遮光層領域に形成され、他部の位置は第2の基板11b側の遮能動素子領域に形成されている。
 このように、ギャップ保持材15が、第1の基板10aと第2の基板11b間に配置され、かつ第1の基板10a側の遮光層領域に配置された球状スペーサ15bであり、第1の基板10aの遮光層領域にのみ球状スペーサ15bを配置するため、配向膜12の開口部12aにスペーサが存在せず、配向乱れが生じないため、コントラストが高い。また、球状スペーサ15bは柱状スペーサ15aより弾性変形が大きく、かつ塑性変形が小さいため、外部からの圧力に対して液晶表示装置が柔軟に対応できる。
 (第3の実施の形態)
 図4は第3の実施の形態の液晶表示装置の概略構成図である。この第3の実施の形態は、第1の実施の形態と同じ構成は同じ符号を付して説明を省略する。この第3の実施の形態では、第1の基板10aと第2の基板11bは、貼合面と異なる面に偏光層20,21を有しており、液晶表示装置を通るバックライト光の透過制御を可能にしている。
 (第4の実施の形態)
 図5は第4の実施の形態の液晶表示装置の概略構成図である。この第4の実施の形態は、第1の実施の形態と同じ構成は同じ符号を付して説明を省略する。この第4の実施の形態では、第2の基板11が、プラスチックフィルム基板11b上に能動素子17を直接形成された基板であり、能動素子17を直接形成することで、さらに軽量、薄型で、割れにくくなる。
 (第5の実施の形態)
 図6は第5の実施の形態の液晶表示装置の概略構成図である。この第5の実施の形態は、第1の実施の形態と同じ構成は同じ符号を付して説明を省略する。この第5の実施の形態では、第1の基板10a側の遮光層22が、活性層17a上方に配置され、目視方向からの外光が液晶表示装置に入射する際、活性層17aへ入射光が当たらなくなるため、活性層17aの誤動作や特性変化が起きにくくなる。
 また、第1の基板11b側の遮光層22が、活性層17a直上に形成されていると、目視方向からの外光が液晶表示装置に入射する際、活性層17aへ入射光が当たらなくなるため、活性層17aの誤動作や特性変化を抑制することができる。また、遮光層22が活性層17aの直上に配置されているため、液晶表示装置に入るバックライト光の内部散乱光も活性層17aに当たらなくなり、特性変化がさらに起きにくくなる。
[液晶表示装置の製造方法及び液晶表示装置の製造装置]
 この実施の形態の液晶表示装置の製造方法及び液晶表示装置の製造装置を、図7乃至図9に基づいて説明する。図7は第1の基板製造装置の概略構成図、図8は第2の基板製造装置の概略構成図、図9は第1の基板と第2の基板の貼合装置の概略構成図である。
 この実施の形態の液晶表示装置の製造装置は、図7の第1の基板製造装置と、図8の第2の基板製造装置と、図9の第1の基板と第2の基板の貼合装置とを備え、第1の基板と第2の基板間に、配向膜及び液晶を挟持させギャップ保持材及びシール剤を介して貼合して液晶表示装置を製造する。
 図7の第1の基板製造装置は、送り出し部101と、巻き取り部102とを有し、送り出し部101からロール状のプラスチックフィルム基板10aを送り出し、巻き取り部102に巻き取る。この送り出し部101と巻き取り部102との間に、プラスチックフィルム基板10aの片面または両面にバリア膜を形成するバリア膜形成部110と、プラスチックフィルム基板10a上に遮光層10bを形成する遮光層形成部103と、着色層10cを形成する着色層形成部104と、共通電極10dを形成する共通電極形成部105と、第1の基板10の貼合面に配向膜12を形成する配向膜形成部106と、ギャップ保持材形成部107と、偏光層貼合部111が配置されている。
 ギャップ保持材形成部107では、ギャップ保持材15として、第1の基板10a側の遮光層領域に配置される柱状スペーサ15aが、フォトリソグラフィー法により形成される。フォトリソグラフィー法により柱状スペーサ15aを、第1の基板10a側の遮光層領域に高精度に配置形成することが可能となり、遮光層線幅を細くできるため、表示パネルの透過率が向上する。
 また、ギャップ保持材形成部107では、ギャップ保持材15として、第1の基板10aと第2の基板11b間に配置され、かつ第1の基板10a側の遮光層領域に配置される球状スペーサ15bが、定点配置法により形成することができる。定点配置法により球状スペーサ15bを、第1の基板10a側の遮光層領域に高精度に配置形成することが可能となり、遮光層線幅を細くできるため、表示パネルの透過率がアップする。
 偏光層貼合部111では、第1の基板10の貼合面とは異なる面に、偏光層20を貼合方式で形成し、偏光層20を貼合方式で形成することで、薄型化が可能である。また、偏光層20を塗布方式で形成することができ、塗布方式で形成することで、薄型化が可能である。
 この実施の形態では、第1の基板10のプラスチックフィルム基板10aがロール状であり、ロール状からプラスチックフィルム基板を送り出し、ロール状に巻き取るロール・ツー・ロール方式でのパネル化プロセスを実現し、作製した表示パネルをロール状で巻き取ることが可能である。
 図8の第2の基板製造装置は、送り出し部201と、巻き取り部202とを有し、送り出し部201からロール状のプラスチックフィルム基板11bを送り出し、巻き取り部202に巻き取る。この送り出し部201と巻き取り部202との間に、プラスチックフィルム基板11bの片面または両面にバリア膜を形成するバリア膜形成部210と、ガラス基板11a上に能動素子17を形成する能動素子形成部203と、ガラス基板11aをプラスチックフィルム基板11b上に貼合するガラス基板貼合部204と、遮光層形成部205と、第2の基板11の貼合面に配向膜13を形成する配向膜形成部206と、偏光層貼合部211が配置されている。
能動素子形成部203では、第2の基板11が、プラスチックフィルム基板11b上に能動素子17を直接形成する手法で製造され、表示パネルを、薄く、軽く、割れにくくすることができる。
 また、第2の基板11の能動素子17が、酸素(O)と窒素(N)の混合物であり、Oに対するNの比(N数密度/O数密度)が0乃至2である非金属元素を含む活性層17aをスパッタ方式により形成する。
 スパッタ方式は、図10及び図11のスパッタ装置によって実施される。このスパッタ装置321は、ロール巻機構322a,322bと、送出機構323と、巻取機構324と、位置合わせ機構325と、金属ターゲット326a,326bと、を有し、これらの全ての機構を内部に保持する真空チャンバ327を備えている。この真空チャンバ327は、ロール巻機構322a,322b側に開閉扉327a,327bを有し、開閉扉327aを開閉してロール状フィルム基板Pをセットし、開閉扉327bを開閉して活性層17aが設けられたロール状フィルム基板Pを取り出す。
 ロール巻機構322aは、回転軸322a1にロール状フィルム基板Pを装着し、回転軸322a1はロール状フィルム基板Pの送り出しによって回転し、ロール巻機構322bは、回転軸322b1にロール状フィルム基板Pを装着し、回転軸322b1はロール状フィルム基板Pの巻き取りによって回転する。
 送出機構323は、一対の送出ローラ323aを有し、この一対の送出ローラ323aの回転によってロール状フィルム基板Pを長尺方向に沿って一方の端部から送り出す。
 巻取機構324は、一対の巻取ローラ324bを有し、この一対の巻取ローラ324bの回転によってロール状フィルム基板Pを長尺方向に沿って一方の端部から巻き取る。
 位置合わせ機構325は、検出センサ325a、制御装置325b、ローラ駆動装置325cを有し、検出センサ325aによって、図11に示すロール状フィルム基板Pの位置合わせパターンAを検出し、この検出情報を制御装置325bに送り、制御装置325bはローラ駆動装置325cを介して送出機構323及び巻取機構324を制御し、ロール状フィルム基板Pの平面位置合わせを行う。
 真空チャンバ327内は、真空ポンプ328に駆動によって真空状態であり、この真空チャンバ327には、ガス導入機構329が設けられ、このガス導入機構329は非金属元素を含む雰囲気ガスを真空チャンバ327内に導入する。
 金属ターゲット326a,326bは、ロール状フィルム基板Pの半導体形成面に対面し、ロール状フィルム基板Pの長尺に沿った直線状の位置に配列されている。
 金属ターゲット326aは、金属元素のターゲットであり、金属ターゲット326baは、半金属元素のターゲットである。
 スパッタ装置321は、金属ターゲット326a,326bとし、非金属元素、金属元素、半金属元素それぞれ少なくともひとつを含む複数の元素を混ぜ合わせた混合物を、単一のターゲットとして用いているが、金属ターゲット326a,326bを一体のターゲットとてもよい。
 このように、スパッタ装置321は、ガス導入機構329により、真空チャンバ327内に非金属元素を含む雰囲気ガスを導入し、真空チャンバ327内に金属ターゲット326a,326bの金属元素または半金属元素またはこれらの混合物を含む金属ターゲットを複数配置し、電極を介して金属ターゲット326a,326bに高電圧をかけると金属ターゲット表面の原子がはじき飛ばされ、真空チャンバ327内に導入された非金属元素を含む雰囲気ガスと、はじき飛ばされた金属と反応させることによって、ロール状フィルム基板Pに活性層17aを製膜することができる。
 このスパッタ装置321を用い、低温プロセスで活性層17aを形成可能であり、低プロセスコストを実現することができる。また、活性層17aは、比較的高い電界効果移動度を実現でき、かつ光、熱に対して安定な特性を有する液晶表示装置を製造することができる。
 また、活性層17aは自在にバンドギャップを制御でき、また電界効果移動度を増大させることができる液晶表示装置を製造することができる。
 また、スパッタ装置321は、全ての機構を内部に保持する真空チャンバ327を備え、製造時にロール状態から送り出しロール状態に巻き取り、低プロセスコストを実現することができる。
 また、スパッタ装置321は、非金属元素を含む雰囲気ガスを真空チャンバ327内に導入し、金属元素または半金属元素またはこれらの混合物を含む金属ターゲット326a,326bを複数有し、金属ターゲット326a,326bが、ロール状フィルム基板Pの長尺に沿った直線状の位置に配列され、ロール状フィルム基板P内に均一な性質の活性層17aを形成できる。
 このように、第2の基板11の能動素子17が、酸素(O)と窒素(N)の混合物であり、Oに対するNの比(N数密度/O数密度)が0乃至2である非金属元素を含む活性層17aをスパッタ方式により形成し、従来のプラズマCVD(300℃)を用いず、スパッタ法(室温)で形成できるため、低環境負荷、低温プロセスが可能となる。
 遮光層形成部205では、第1の基板10側の遮光層22が、活性層17a直上にフォトリソグラフィー法により形成し、高精度に配置形成することが可能となり、遮光層線幅を細くできるため、表示パネルの透過率がアップする。このように、第1の基板10側の遮光層22が、活性層17a上方に配置されるように第1の基板10と第2の基板11を貼り合せ、目視方向からの外光が液晶表示装置に入射する際、活性層へ入射光が当たらなくなるため、活性層の誤動作や特性変化が起きにくくなる。
 偏光層貼合部211では、第2の基板11の貼合面とは異なる面に、偏光層21を貼合方式で形成し、偏光層21を貼合方式で形成することで、薄型化が可能である。また、偏光層21を塗布方式で形成することができ、塗布方式で形成することで、薄型化が可能である。
 この実施の形態では、第2の基板11のプラスチックフィルム基板11bがロール状であり、ロール状からプラスチックフィルム基板を送り出し、ロール状に巻き取るロール・ツー・ロール方式でのパネル化プロセスを実現し、作製した表示パネルをロール状で巻き取ることが可能である。
 図9の第1の基板と第2の基板の貼合装置は、図7の第1の基板製造装置によって成形された第1の基板10と、図8の第2の基板製造装置によって成形された第2の基板11がセットされ、ODFプロセスによるシール剤描画部301と、液晶充填部302と、描画されたシール剤を介した貼り合せる貼合部303と、シール剤を硬化させる硬化部304とが配置されている。
 ODFプロセスによる製造方法は、液晶注入口を形成せずに透明基板に閉環形状の紫外線硬化型のシールを形成し、その後、適量の液晶をシールの内側領域に滴下し、真空装置で貼り合わせた後、この紫外線硬化型のシールに紫外線することで硬化させる製造であり、このODFプロセスを用いると、液晶注入の時間短縮およびトータルプロセスの短縮が可能となり、安価で液晶光学素子を製造することが可能となる。
 シール剤描画部301では、シール剤16によって貼り合わせ面にシール剤描画を設ける。シール剤描画は、複数個の液晶表示装置の電気により作動する部位をそれぞれその外部全体を囲むように付与しているが、さらに複数個の液晶表示装置の電気により作動する部位の外部全体を囲むように付与してもよい。シール剤描画は、それぞれ外部全体を囲むものに限らず、外部の一部を囲むように付与してもよい。この実施の形態では、ディスペンサーを用いて、シリンジに入れた液状のシール剤を、ディスペンサーの開口部から吐出させて塗布して設ける。このディスペンサーは、開口部列の幅方向、各位置の開口部の吐出量のバラツキが小さいものを用い、シリンジに入れた液状のシール剤を押し出しながら塗布することで、シール剤を簡単かつ確実に付与することができる。シール剤描画を形成するシール剤としては、紫外線硬化樹脂、熱硬化樹脂、接着剤などにより構成され、ギャップおよび面内のずれを防止するとともに、液晶の漏洩を防止する。
 液晶充填部302では、液晶注入口を形成せずに基板に閉環形状の紫外線硬化型のシール剤16を形成し、その後、適量の液晶15をシール剤16の内側領域に滴下する。貼り合わせに用いるシール剤16を第1の基板10に設け、このシール剤16で囲まれてシールされた部分の第1の基板10に液晶14を滴下することができる。この実施の形態では、液晶15を設けることで液晶表示装置を製造する。 
 貼合部303には、真空チャンバー303aと、平面ステージ303bと、貼り合せ機構303cとを備える。真空チャンバー303aは、貼り合わせ時に閉じ内部を真空状態にし、搬送させる時に離間させて基板を搬送可能にする。真空チャンバー303aの内部に、平面ステージ303bと、貼り合せ機構303cとが配置されている。平面ステージ303bは、基板を平面状態に保持し、貼り合せ機構303cにより、平面ステージ303b上で第1の基板10と第2の基板11との貼り合せを行う。
 硬化部304では、シール剤16が紫外線硬化樹脂であり、シール剤16に紫外線を照射して紫外線硬化樹脂を硬化し、基板に熱を与えて変形させることなく簡単、かつ確実に硬化させることができる。
 この発明は、特に、プラスチックフィルム基板を用いた液晶表示装置、液晶表示装置の製造方法及び液晶表示装置の製造装置に適用可能であり、外光反射によるコントラスト低下を防止し、しかも装置の小型、薄型化が可能である。
 10 第1の基板
 10a プラスチックフィルム基板
 10b 遮光層
 10c 着色層
 10d 共通電極層
 10e,10f 無機バリア
 10g 樹脂バリア
 
  11 第2の基板
 11b プラスチックフィルム基板
 11c,11d 無機バリア
 11e 粘着剤
 11f 樹脂バリア
 12,13 配向膜
 14 液晶
 15 ギャップ保持材
 16 シール剤
 17 能動素子
 17a 活性層
 22 遮光層
 110 バリア膜形成部
 103 遮光層形成部
 104 着色層形成部
 106 配向膜形成部
 105 共通電極形成部
 107 ギャップ保持材形成部
 111 偏光層貼合部
 210 バリア膜形成部
 203 能動素子形成部
 204 ガラス基板貼合部
 205 遮光層形成部
 206 配向膜形成部
 211 偏光層貼合部
 321 スパッタ装置
 301 シール剤描画部
 302 液晶充填部
 303 貼合部
 304 硬化部
  
  
  

Claims (21)

  1.  第1の基板と第2の基板間に配向膜及び液晶を挟持させ、ギャップ保持材、及びシール剤を介して貼合された液晶表示装置であり、
     前記第1の基板は、プラスチックフィルム基板上に遮光層と、着色層と、共通電極層が形成された基板であり、
     前記第2の基板は、予め能動素子が形成されたガラス基板が、プラスチックフィルム基板上に貼合された基板であり、
     前記プラスチックフィルム基板の少なくとも一方には、片面または両面にバリア膜が形成されていることを特徴とする液晶表示装置。
  2.  前記配向膜が、光配向制御型の配向膜であることを特徴とする請求項1に記載の液晶表示装置。
  3.  前記シール剤が、光硬化型のシール剤であることを特徴とする請求項1に記載の液晶表示装置。
  4.  前記ギャップ保持材が、前記第1の基板側の遮光層領域に形成された柱状スペーサであることを特徴とする請求項1に記載の液晶表示装置。
  5.  前記ギャップ保持材が、前記第1の基板と前記第2の基板間に配置され、かつ前記第1の基板側の遮光層領域に配置された球状スペーサであることを特徴とする請求項1に記載の液晶表示装置。
  6.  前記第1の基板と前記第2の基板は、貼合面と異なる面に偏光層を有していることを特徴とする請求項1に記載の液晶表示装置。
  7.  前記第2の基板が、プラスチックフィルム基板上に能動素子を直接形成された基板であることを特徴とする請求項1に記載の液晶表示装置。
  8.  前記第2の基板の能動素子が、酸素(O)と窒素(N)の混合物であり、Oに対するNの比(N数密度/O数密度)が0乃至2である非金属元素を含む活性層を有していることを特徴とする請求項1乃至請求項7のいずれか1項に記載の液晶表示装置。
  9.  前記第1の基板側の遮光層が、前記活性層上方に配置されていることを特徴とする請求項1に記載の液晶表示装置。
  10.  前記第1の基板側の遮光層が、前記活性層直上に形成されていることを特徴とする請求項9記載の液晶表示装置。
  11.  第1の基板と第2の基板間に、配向膜及び液晶を挟持させギャップ保持材及びシール剤を介して貼合する液晶表示装置の製造方法において、
     前記第1の基板は、プラスチックフィルム基板上に遮光層を形成する工程と、着色層を形成する工程と、共通電極を形成する工程とを有し、
     前記第2の基板は、ガラス基板上に能動素子を形成する工程と、前記ガラス基板をプラスチックフィルム基板上に貼合する工程とを有し、
     前記プラスチックフィルム基板の少なくとも一方には、片面または両面にバリア膜を形成する工程を有し、
     前記第1の基板と前記第2の基板の貼合面にそれぞれ配向膜を形成する工程と、
     ODFプロセスによるシール剤描画工程と、液晶充填工程と、描画された前記シール剤
    を介した貼り合せ工程と、前記シール剤を硬化させる工程とを有することを特徴とする液晶表示装置の製造方法。
  12.  前記第1の基板のプラスチックフィルム基板、もしくは前記第2の基板のプラスチックフィルム基板のうち少なくとも一方がロール状であることを特徴とする請求項11に記載の液晶表示装置の製造方法。
  13.  前記ギャップ保持材として、前記第1の基板側の遮光層領域に配置される柱状スペーサが、フォトリソグラフィー法により形成されることを特徴とする請求項11に記載の液晶表示装置の製造方法。
  14.  前記ギャップ保持材として、前記第1の基板と前記第2の基板間に配置され、かつ前記第1の基板側の遮光層領域に配置される球状スペーサが、定点配置法により形成されることを特徴とする請求項11に記載の液晶表示装置の製造方法。
  15.  前記第1の基板と前記第2の基板との貼合面とは異なる面に、偏光層を貼合方式で形成することを特徴とする請求項11に記載の液晶表示装置の製造方法。
  16.  前記第1の基板と前記第2の基板との貼合面とは異なる面に、偏光層を塗布方式で形成することを特徴とする請求項11に記載の液晶表示装置の製造方法。
  17.  前記第2の基板が、プラスチックフィルム基板上に能動素子を直接形成する手法で製造されることを特徴とする請求項11に記載の液晶表示装置の製造方法。
  18.  前記第2の基板の能動素子が、酸素(O)と窒素(N)の混合物であり、Oに対するNの比(N数密度/O数密度)が0乃至2である非金属元素を含む活性層をスパッタ方式により形成することを特徴とする請求項11乃至請求項17のいずれか1項に記載の液晶表示装置の製造方法。
  19.  前記第1の基板側の遮光層が、前記活性層上方に配置されるように前記第1の基板と前記第2の基板を貼り合せることを特徴とする請求項18に記載の液晶表示装置の製造方法。
  20.  前記第1の基板側の遮光層が、前記活性層直上にフォトリソグラフィー法により形成されることを特徴とする請求項18に記載の液晶表示装置の製造方法。
  21.  請求項11乃至請求項17のいずれか1項に記載の表示装置の製造方法を実行し、液晶表示装置を製造することを特徴する液晶表示装置の製造装置。
      
      
PCT/JP2010/053516 2010-02-26 2010-03-04 液晶表示装置、液晶表示装置の製造方法及び液晶表示装置の製造装置 WO2011104896A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020127025282A KR101465853B1 (ko) 2010-02-26 2010-03-04 액정 표시 장치, 액정 표시 장치의 제조 방법 및 액정 표시 장치의 제조 장치
US13/580,865 US20130050623A1 (en) 2010-02-26 2010-03-04 Liquid crystal display, method of manufacturing liquid crystal display, and apparatus for manufacturing liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010042420A JP5413845B2 (ja) 2010-02-26 2010-02-26 液晶表示装置、液晶表示装置の製造方法及び液晶表示装置の製造装置
JP2010-042420 2010-02-26

Publications (1)

Publication Number Publication Date
WO2011104896A1 true WO2011104896A1 (ja) 2011-09-01

Family

ID=44506338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053516 WO2011104896A1 (ja) 2010-02-26 2010-03-04 液晶表示装置、液晶表示装置の製造方法及び液晶表示装置の製造装置

Country Status (4)

Country Link
US (1) US20130050623A1 (ja)
JP (1) JP5413845B2 (ja)
KR (1) KR101465853B1 (ja)
WO (1) WO2011104896A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015100893A1 (zh) * 2013-12-31 2015-07-09 京东方科技集团股份有限公司 阵列基板及显示装置
CN107290893A (zh) * 2017-07-19 2017-10-24 深圳市华星光电半导体显示技术有限公司 液晶显示面板

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014182330A (ja) * 2013-03-21 2014-09-29 Stanley Electric Co Ltd 液晶光学素子とその製造方法
US20150192820A1 (en) * 2014-01-06 2015-07-09 Litemax Electronics Inc. Lcd screen capable of preventing the phenomenon of blackening lcd panel
CN107479256B (zh) * 2017-08-02 2020-06-09 深圳市华星光电技术有限公司 一种光配向装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186252A (ja) * 1984-10-04 1986-05-01 住友ベークライト株式会社 透明積層導電フイルム
JPH04238322A (ja) * 1991-01-22 1992-08-26 Ricoh Co Ltd 液晶表示装置
JPH09101544A (ja) * 1995-10-06 1997-04-15 Toppan Printing Co Ltd 液晶表示装置
JP2002311246A (ja) * 2001-02-07 2002-10-23 Sumitomo Chem Co Ltd 偏光板、その製造方法及び液晶表示装置
JP2003337543A (ja) * 2002-05-17 2003-11-28 Toshiba Corp 表示装置
JP2004205601A (ja) * 2002-12-24 2004-07-22 Seiko Epson Corp 電気光学装置、電気光学装置の製造方法、電子機器
JP2006184721A (ja) * 2004-12-28 2006-07-13 Dainippon Printing Co Ltd カラーフィルタ用多面付け基板および液晶表示装置
JP2007123861A (ja) * 2005-09-29 2007-05-17 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
WO2007094082A1 (ja) * 2006-02-14 2007-08-23 Kuraray Co., Ltd. 表示装置における上下基板の接合方法、接合装置及び電子機器
JP2008216428A (ja) * 2007-03-01 2008-09-18 Seiko Epson Corp 表示装置
JP2009242701A (ja) * 2008-03-31 2009-10-22 Fujifilm Corp 光配向膜用組成物、並びに、光配向膜及びその製造方法、液晶セル及び液晶表示装置
JP2009265639A (ja) * 2008-03-31 2009-11-12 Dainippon Screen Mfg Co Ltd 液晶表示装置の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145101A (ja) * 2002-10-25 2004-05-20 Seiko Epson Corp スペーサ定点配置装置、液晶装置の製造方法、液晶装置、電子機器
CN101277886B (zh) * 2005-12-20 2011-03-09 夏普株式会社 薄膜辊制造方法及制造装置和薄膜辊
EP2075628B1 (en) * 2006-11-30 2016-08-10 Sharp Kabushiki Kaisha Active matrix substrate for liquid crystal display panel
SG156537A1 (en) * 2008-04-09 2009-11-26 Toshiba Matsushita Display Tec Methods of laser annealing a semiconductor layer and semiconductor devices produced thereby
JP4609529B2 (ja) * 2008-06-11 2011-01-12 ソニー株式会社 偏光板、表示装置および電子機器
JP2010181777A (ja) * 2009-02-09 2010-08-19 Hitachi Displays Ltd 表示装置
WO2010113376A1 (ja) * 2009-03-31 2010-10-07 パナソニック株式会社 フレキシブル半導体装置およびその製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6186252A (ja) * 1984-10-04 1986-05-01 住友ベークライト株式会社 透明積層導電フイルム
JPH04238322A (ja) * 1991-01-22 1992-08-26 Ricoh Co Ltd 液晶表示装置
JPH09101544A (ja) * 1995-10-06 1997-04-15 Toppan Printing Co Ltd 液晶表示装置
JP2002311246A (ja) * 2001-02-07 2002-10-23 Sumitomo Chem Co Ltd 偏光板、その製造方法及び液晶表示装置
JP2003337543A (ja) * 2002-05-17 2003-11-28 Toshiba Corp 表示装置
JP2004205601A (ja) * 2002-12-24 2004-07-22 Seiko Epson Corp 電気光学装置、電気光学装置の製造方法、電子機器
JP2006184721A (ja) * 2004-12-28 2006-07-13 Dainippon Printing Co Ltd カラーフィルタ用多面付け基板および液晶表示装置
JP2007123861A (ja) * 2005-09-29 2007-05-17 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
WO2007094082A1 (ja) * 2006-02-14 2007-08-23 Kuraray Co., Ltd. 表示装置における上下基板の接合方法、接合装置及び電子機器
JP2008216428A (ja) * 2007-03-01 2008-09-18 Seiko Epson Corp 表示装置
JP2009242701A (ja) * 2008-03-31 2009-10-22 Fujifilm Corp 光配向膜用組成物、並びに、光配向膜及びその製造方法、液晶セル及び液晶表示装置
JP2009265639A (ja) * 2008-03-31 2009-11-12 Dainippon Screen Mfg Co Ltd 液晶表示装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015100893A1 (zh) * 2013-12-31 2015-07-09 京东方科技集团股份有限公司 阵列基板及显示装置
CN107290893A (zh) * 2017-07-19 2017-10-24 深圳市华星光电半导体显示技术有限公司 液晶显示面板

Also Published As

Publication number Publication date
KR20120138781A (ko) 2012-12-26
JP2011180247A (ja) 2011-09-15
KR101465853B1 (ko) 2014-11-26
JP5413845B2 (ja) 2014-02-12
US20130050623A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
JP5413845B2 (ja) 液晶表示装置、液晶表示装置の製造方法及び液晶表示装置の製造装置
US7688407B2 (en) Liquid crystal display with transmissive and reflective regions comprising a first alignment film having different alignments in the transmissive and reflective regions and a second alignment film with a single alignment
TWI438529B (zh) 顯示裝置
US9030427B2 (en) Flexible display panel with touch sensor function
JP5934797B2 (ja) 表示パネル
US10416500B2 (en) Display device having a moisture barrier layer and method of manufacturing the same
KR101470298B1 (ko) 액정 표시 장치 및 그 제작 방법
US10429692B2 (en) Liquid crystal display panel and fabrication method
US9229279B2 (en) Liquid crystal display device comprising a plurality of seal column organic layers buried in a seal
US7495724B2 (en) Liquid crystal display device
US20090128771A1 (en) Fabrication methods for liquid crystal display devices
US8451392B2 (en) Liquid crystal display and method of manufacturing liquid crystal display having particular liquid crystal film
US20190369431A1 (en) Display panel and display device
JP2008112001A (ja) 液晶表示装置
US20090109386A1 (en) Liquid crystal display panel and liquid crystal display applying the same
US10048534B2 (en) Display device
US8570467B2 (en) Liquid crystal display and the fabricating method of the same
KR20030032453A (ko) 액정 표시 장치
US9256103B2 (en) Liquid crystal display including liquid crystal with different pretilt angles and method of manufacturing the same
KR20120055474A (ko) 액정표시장치 및 그 제조방법
US20050140875A1 (en) Liquid crystal display device and method for fabricating the same
Kim et al. 3.4: Invited Paper: Developments of Transmissive a‐Si TFT‐LCD using Low Temperature Processes on Plastic Substrate
James Harding et al. Paper No 6.2: A Review of Liquid Crystal Displays on Plastic Substrates
JP2010191240A (ja) 液晶表示装置
KR101158621B1 (ko) 액정표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127025282

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13580865

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10846559

Country of ref document: EP

Kind code of ref document: A1