WO2011104859A1 - 電子部品、導電性ペーストおよび電子部品の製造方法 - Google Patents

電子部品、導電性ペーストおよび電子部品の製造方法 Download PDF

Info

Publication number
WO2011104859A1
WO2011104859A1 PCT/JP2010/053077 JP2010053077W WO2011104859A1 WO 2011104859 A1 WO2011104859 A1 WO 2011104859A1 JP 2010053077 W JP2010053077 W JP 2010053077W WO 2011104859 A1 WO2011104859 A1 WO 2011104859A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
electronic component
aluminum
electrode
electrode wiring
Prior art date
Application number
PCT/JP2010/053077
Other languages
English (en)
French (fr)
Inventor
拓也 青柳
孝 内藤
浩貴 山本
隆彦 加藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2012501588A priority Critical patent/JP5480360B2/ja
Priority to CN201080063260.3A priority patent/CN102754534B/zh
Priority to PCT/JP2010/053077 priority patent/WO2011104859A1/ja
Priority to TW100105071A priority patent/TWI407457B/zh
Publication of WO2011104859A1 publication Critical patent/WO2011104859A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10128Display
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0315Oxidising metal

Definitions

  • the present invention relates to an electronic component having electrode wiring, a conductive paste used for forming the electrode wiring, and a method for manufacturing the electronic component.
  • Electrode wiring is formed on electronic parts such as solar cells, plasma display panels (PDP), liquid crystal displays (LCD), and ceramic multilayer wiring boards.
  • the electrode wiring is formed using a conductive paste.
  • silver (Ag) or aluminum (Al) is used as metal particles.
  • the electrode wiring is formed by firing the conductive paste at a high temperature in the atmosphere.
  • the conductive paste has glass particles in addition to the metal particles, and when the conductive paste is fired, the glass particles By heating to a temperature equal to or higher than the softening point, the glass particles soften and flow, and the electrode wiring becomes dense and firmly adheres to the substrate.
  • Patent Document 1 As a conductive paste using aluminum metal particles, a conductive paste using phosphate glass frit as glass particles has been proposed (see Patent Document 1). In addition, a conductive paste using a mixture of aluminum metal particles and silver metal particles as metal particles has been proposed (see Patent Document 2).
  • the firing temperature should be 660.4 ° C. or higher of the melting point of aluminum in order to obtain sufficient electrical characteristics with a conductive paste using aluminum metal particles. If the firing temperature is lowered to 550 ° C. to 600 ° C. as in Patent Document 1, the manufacture of electronic parts becomes easy, but sufficient electrical characteristics cannot be obtained, and the design of electronic parts may be restricted. It is believed that there is.
  • the sintering temperature of the metal particles is successfully lowered by mixing aluminum metal particles and silver metal particles in the conductive paste as compared with the case where the metal particles are aluminum.
  • Patent Document 2 although the firing temperature is lowered and sufficient electrical characteristics can be obtained, it is considered difficult to reduce the cost because silver is used for the metal particles.
  • an object of the present invention is to provide an electronic component including an electrode wiring that can obtain sufficient electrical characteristics even at a low firing temperature, a conductive paste, and a method for manufacturing the electronic component at a low cost.
  • the present invention provides an electronic component comprising an electrode wiring having a plurality of particles made of aluminum (Al) and / or an alloy containing aluminum and an oxide for fixing the particles to a substrate.
  • the oxide is characterized by containing phosphorus (P) and aluminum.
  • the present invention also includes a phosphoric acid solution, A conductive paste having a plurality of particles made of aluminum and / or an alloy containing aluminum dispersed in the phosphoric acid solution.
  • the present invention applies a conductive paste having a plurality of particles made of aluminum and / or an alloy containing aluminum dispersed in a phosphoric acid solution to a substrate,
  • the method is a method for manufacturing an electronic component in which the applied conductive paste is baked to form an electrode wiring.
  • an electronic component including an electrode wiring that can obtain sufficient electrical characteristics even at a low firing temperature, a conductive paste, and a method for manufacturing the electronic component at a low cost.
  • FIG. 3A is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3A is a cross-sectional view taken along the line AA in FIG.
  • the ceramic multilayer wiring board (electronic component) which concerns on the 4th Embodiment of this invention. It is an example of the temperature schedule at the time of baking the ceramic multilayer wiring board (electronic component) which concerns on the 4th Embodiment of this invention.
  • the conductive paste is also manufactured by changing the manufacturing conditions for each of Examples 1 to 12 and the comparative example, and the firing conditions of the conductive paste (electrode wiring) are also set in Examples 1 to 12. And different for each comparative example.
  • the manufacturing conditions of the conductive paste 3 and the mixing ratio of type consisting of particles of aluminum (Al) particles, phosphorus pentoxide (P 2 O 5) and water (H 2 O) and ethanol (C 2 H 5
  • the weight ratio of the phosphoric acid solution consisting of (OH) is varied.
  • the weight ratio of the phosphoric acid solution changes, the ratio of the volume of aluminum to the sum of the volumes of aluminum and phosphorus pentoxide also changes. Moreover, as an evaluated characteristic, a peel test, a water resistance test, and a measurement of specific resistance are performed on the electrode wiring. Below, formation of electrode wiring is demonstrated in detail.
  • a part of the particles as formed by the water atomization method was treated with a ball mill in an organic solvent to form plate-like particles. Further, in order to improve the thermal stability of the plate-like particles, an annealing treatment at a temperature of 700 ° C. was performed in a reducing atmosphere. From the plate-like particles, particles having a particle size of 8 ⁇ m or more were removed by sieving, and particles having a particle size of less than 1.5 ⁇ m were also removed by sieving. The remaining particles, that is, the particles after removing the large particles and the small particles by sieving, are a plate-like particle group having a volume fraction of about 95% or more in the range of the particle size of 1.5 ⁇ m or more and less than 8 ⁇ m. And set to particle group C.
  • Example 12 the particle group A and the particle group B so that the particles of the particle group A are 50% by weight and the particles of the particle group B are 50% by weight.
  • the particles were blended and used.
  • Example 12 the particles of the particle group A and the particle group C were blended and used so that the particles of the particle group A were 50% by weight and the particles of the particle group C were 50% by weight.
  • a phosphoric acid solution was produced for each of Examples 1-12.
  • the phosphoric acid solution was produced by mixing phosphorus pentoxide, water, and ethanol in a weight ratio as shown in Table 1. Ethanol is used to accelerate evaporation and drying of the phosphoric acid solution and make it difficult to absorb moisture after drying. From Example 1 to Example 8, the weight ratio of phosphorus pentoxide was increased, the weight ratio of water was decreased, and the weight ratio of the sum of phosphorus pentoxide and water was kept constant. The weight ratio of ethanol was constant.
  • the weight ratios of phosphorus pentoxide, water and ethanol in Examples 9 to 12 were 10% by weight, 80% by weight and 10% by weight, respectively, and the same as in Example 3.
  • phosphoric acid H 3 PO 4
  • the amount of water is adjusted so that the concentration of phosphorus atoms is equal.
  • the phosphoric acid solution was not used for the comparative example, but lead (Pb) type
  • Example 12 The firing conditions of Examples 1 to 8, Example 12 and Comparative Example were the same at a firing temperature of 700 ° C. and a firing time of 30 minutes.
  • the firing temperature was changed to 400 ° C., 500 ° C., and 600 ° C., and the firing time was the same for 30 minutes.
  • the weight ratio of phosphorus pentoxide is preferably 1% by weight or more and the weight ratio of water is preferably 89% by weight or less (Examples 2 to 8: At least an evaluation of “ ⁇ ” is obtained), and it is preferable that the weight ratio of phosphorus pentoxide is 10% by weight or more and the weight ratio of water is 80% by weight or less (Examples 3 to 8: “ It was found that an evaluation of “O” is obtained.
  • the result of the peel test depends on the weight ratio of phosphorus pentoxide in the phosphoric acid solution.
  • the weight ratio of phosphorus pentoxide is the volume ratio of phosphorus pentoxide to aluminum in the electrode wiring.
  • Example 9 the firing temperature under the firing conditions was evaluated as “x” at 400 ° C. (Example 9), but 500 ° C. It was found that an evaluation of “ ⁇ ” was obtained at (Example 10), 600 ° C. (Example 11), and 700 ° C. (Example 3). From this, it is considered that the electrode wiring of the present invention does not adhere to the substrate and easily peels off when the firing temperature is 400 ° C. or lower, but exceeds 400 ° C., for example, 500 ° C. or higher, becomes dense and adheres to the substrate. It is done.
  • Example 12 the evaluation of “ ⁇ ” can be achieved using either the particle group B (Example 3) or the particle group C (Example 12). It turns out that it is obtained. Further, it was found that the evaluation of “ ⁇ ” was also obtained in the comparative example.
  • the weight ratio of phosphorus pentoxide is 0.5% by weight or more and the weight ratio of water is 89.5% by weight or less.
  • the weight ratio of phosphorus pentoxide is 1% by weight or more and the weight ratio of water is 89% by weight or less. It turned out to be preferable (Examples 2 to 8: an evaluation of “ ⁇ ” is obtained).
  • the comparative example was “x”. It was found that the electrode wirings of Examples 1 to 8 were superior in water resistance compared to the comparative example.
  • the result of the water resistance test is evaluated by the ratio of the volume of aluminum to the sum of the volumes of aluminum and phosphorus pentoxide, it is preferably 99.9% by volume or less (Examples 1 to 8: at least “ ⁇ ”). In addition, it was found that the content is preferably 99.7% by volume or less (Examples 2 to 8: an evaluation of “ ⁇ ” is obtained).
  • the evaluation was “x” at 400 ° C. (Example 9) at the firing temperature of the firing conditions. It was found that an evaluation of “ ⁇ ” was obtained at 0 ° C. (Example 10), 600 ° C. (Example 11), and 700 ° C. (Example 3). From this, the electrode wiring of the present invention can not obtain high water resistance because the aluminum particles are not covered with a dense oxide at a firing temperature of 400 ° C. or lower, but exceeds 400 ° C., for example, at 500 ° C. or higher, It is considered that the oxide covering the aluminum particles becomes dense and high water resistance is obtained.
  • Example 3 the evaluation of “ ⁇ ” is made regardless of whether the particle group B (Example 3) or the particle group C (Example 12) is used. Was found to be obtained.
  • the specific resistance decreased and the specific resistance at 10 wt% (Example 3). Became a minimum value (0.68 ⁇ 10 ⁇ 5 ⁇ cm), and the specific resistance increased with an increase from 10 wt% to 70 wt% (from Example 3 to Example 8).
  • the specific resistance was 1.0 ⁇ 10 ⁇ 5 ⁇ cm or less in the range of 1 to 15% by weight of phosphorus pentoxide (Examples 2 to 4).
  • the specific resistance is smaller than the specific resistance of the comparative example (5.6 ⁇ 10 ⁇ 5 ⁇ cm). 0.0 ⁇ 10 ⁇ 5 ⁇ cm or less.
  • the volume ratio decreases from 99.9% to 97.4% by volume (Examples). 1 to Example 3), the specific resistance decreases, and at 97.4% by volume (Example 3), the specific resistance reaches the minimum value (0.68 ⁇ 10 ⁇ 5 ⁇ cm), from 97.4% by volume to 84.%. With a decrease to 2% by volume (from Example 3 to Example 8), the specific resistance increased. The specific resistance was 1.0 ⁇ 10 ⁇ 5 ⁇ cm or less in the range from 99.7% to 96.1% by volume (Examples 2 to 4).
  • Example 3 and Examples 9 to 11 By comparing the results of the specific resistance measurement between Example 3 and Examples 9 to 11 and the comparative example, it is 5.0 ⁇ 10 ⁇ smaller than the specific resistance (5.6 ⁇ 10 ⁇ 5 ⁇ cm) of the comparative example. It was found that the specific resistance was lower in Example 3, Example 10 and Example 11 than 5 ⁇ cm. Further, by comparing between Example 3 and Examples 9 to 11, it was found that the specific resistance had the minimum value in Example 3 and was 0.68 ⁇ 10 ⁇ 5 ⁇ cm.
  • the specific resistance decreases, and at 700 ° C. (Example 3), the specific resistance is minimum. Value (0.68 ⁇ 10 ⁇ 5 ⁇ cm).
  • the specific resistance was 1.0 ⁇ 10 ⁇ 5 ⁇ cm or less.
  • the specific resistance is smaller than the specific resistance of the comparative example (5.6 ⁇ 10 ⁇ 5 ⁇ cm) in the range exceeding 400 ° C., for example, 500 ° C. or more (Example 10, Example 11, Example 3). It became less than 5.0 ⁇ 10 ⁇ 5 ⁇ cm.
  • Example 12 the particle group C (plate-like particle: Example 12) was used rather than the particle group B (spherical particle: Example 3). It was found that the specific resistance can be reduced.
  • the volume ratio is 99.7% by volume or less and 84.2% by volume or more. It was found that good adhesion (peel test result) and good water resistance (water resistance test result) can be obtained when the value is within the range (Examples 2 to 8).
  • this volume ratio is rewritten as the volume ratio of phosphorus pentoxide, the value obtained by subtracting the volume ratio of aluminum from 100 volume% becomes the volume ratio of phosphorus pentoxide, so that it is 0.3 volume% or more and 15.8. When it is in the range of not more than volume% (Examples 2 to 8), good adhesion (peel test result) and good water resistance (water resistance test result) can be obtained.
  • this volume ratio is in the range of 99.7% by volume or less and 85.1% by volume or more (Examples 2 to 7), good adhesion (peel test result) and good water resistance (water resistance) Test results) and good specific resistance (specific resistance measurement results). Furthermore, when this volume ratio is in the range of 97.4% by volume or less and 96.1% by volume or more (Examples 3 and 4), better adhesion (peel test result) and better water resistance ( It was found that a better specific resistance (specific resistance measurement result) with a specific resistance of 1.0 ⁇ 10 ⁇ 5 ⁇ cm or less was obtained.
  • FIG. 1 shows an enlarged view of a part of a cross-sectional view of an electrode wiring 2 provided in the electronic component 1 according to the first embodiment of the present invention.
  • the electronic component 1 has an alumina substrate 3 and an electrode wiring 2 bonded and fixed on the alumina substrate 3.
  • the electrode wiring 2 includes a plurality of particles 4 made of aluminum (Al) and / or an alloy containing aluminum, and an oxide 5 that fixes the particles 4 to the substrate 3.
  • FIG. 1 is based on the result of observing the electrode wiring 2 produced in, for example, Example 11 in Table 1 using a scanning electron microscope-energy dispersive X-ray analyzer (SEM-EDX).
  • SEM-EDX scanning electron microscope-energy dispersive X-ray analyzer
  • the plurality of particles 4 are bonded (necked) by sintering.
  • no native oxide layer of aluminum was observed from the result of analysis by an energy dispersive X-ray analyzer (EDX).
  • the oxide 5 has a phosphorus oxide containing phosphorus and oxygen (O) as main components, and the phosphorus content was 50 atomic% or more at a component ratio not considering oxygen.
  • O phosphorus and oxygen
  • aluminum was also detected in oxide 5.
  • the natural oxide film of aluminum covering the surfaces of the particles 4 dispersed in the phosphoric acid solution is dissolved by the phosphoric acid solution, It was inferred that aluminum was eluted and the phosphoric acid solution containing aluminum finally became oxide 5 containing phosphorus and aluminum by firing. Since the native oxide film of aluminum that covered the surfaces of the aluminum and aluminum alloy particles 4 disappeared during firing, the necking joint portion 6 can be easily generated, and the ratio of the electrode wiring 2 can be reduced. The resistance could be reduced.
  • the entire surface of the particles 4 is wetted with the phosphoric acid solution and covered with the phosphoric acid solution. For this reason, when baked, the entire surface of the particle 4 excluding the necking bonding portion 6 is covered with the oxide 5.
  • the oxide 5 is in direct contact with the particles 4, and the oxide 5 is not formed into two layers but is a single layer. Therefore, the oxide 5 includes phosphorus (P) atoms. And aluminum atoms are suddenly included in the entire film.
  • the electrode wiring 2 was found to exhibit excellent conductivity even at a firing temperature of aluminum melting point of 660.4 ° C. or lower.
  • the sintering of aluminum does not proceed because of its oxide film (natural oxide film), and the reason why the firing temperature equal to or higher than the melting point is considered is to destroy this oxide film.
  • the oxide film on the surface of the aluminum particles 4 is etched away in an acidic phosphoric acid solution. That is, during firing, the aluminum component is eluted in the phosphoric acid solution, and is precipitated in the phosphoric acid solution or in the phosphoric acid oxide 5 as an oxide compound or aluminum oxide of phosphorus and aluminum. The removal of the oxide film promotes the sintering of aluminum, and it is presumed that good conductivity was exhibited even when firing at a temperature lower than the melting point.
  • the phosphoric acid solution covers the surfaces of the particles 4, and during firing, phosphoric acid reacts with the eluted aluminum component to generate oxide 5 that becomes a compound (oxidized compound).
  • the reason why the water resistance is improved is that the sparse oxide film is removed from the entire surface of the aluminum particles 4, and a uniform and dense phosphorus and aluminum compound is formed on the entire surface of the aluminum particles 4. For this reason, it is considered that the surface of the particles 4 is not exposed and the chemical stability is improved.
  • the water resistance exceeded 400 ° C., for example, when it was baked at 500 ° C. or higher, good water resistance was obtained.
  • lead (Pb) metal is composed of aluminum particles 4. Precipitation was observed at the interface between them, and segregation of glass components was observed. This is presumably because the lead of the Pb-based glass was reduced and precipitated by the oxidation of the aluminum particles 4 by the Pb-based glass. Therefore, in the conventionally used Pb-based glass, the surface of the aluminum particles is further oxidized while leaving the sparse oxide film on the surface of the aluminum particles. It is a sparse oxide film, and it is presumed that it could not be densely coated.
  • the particles 4 not only the aluminum particles 4 but also particles 4 made of an alloy containing aluminum can be used.
  • the alloy containing aluminum contains at least one element selected from silver (Ag), copper (Cu), silicon (Si), magnesium (Mg), and calcium (Ca).
  • the conductivity of the alloy (Al-Ag) can be increased by adding silver.
  • strength of an alloy (Al-Cu) can be raised by adding copper.
  • silicon the wear resistance of the alloy (Al-Si) can be increased.
  • magnesium or calcium the strength and corrosion resistance of the alloy (Al-Mg, Al-Ca) can be increased.
  • the particle 4 includes a particle group A (first particle group) 4A having a volume fraction of about 95% within a range of a particle size of 0.5 ⁇ m or more and less than 1.5 ⁇ m, and a particle size of 1.5 ⁇ m or more and less than 8 ⁇ m. And a particle group B (second particle group) 4B having a volume fraction of about 95% within the range.
  • the total weight of the plurality of particles 4 in the particle group A (4A) and the total weight of the plurality of particles 4 in the particle group B (4B) are substantially equal. According to this, since the particles 4 of the particle group A (4B) having a small particle size enter the gap between the particles 4 of the particle group B (4B) having a large particle size, the density of the particles 4 can be increased. Dense electrode wiring 2 can be formed.
  • FIG. 2 shows a part of a cross-sectional view of a plasma display panel (PDP: electronic component) 11 (1) according to a second embodiment of the present invention.
  • a plasma display panel 11 will be described as an example of the electronic component 1 to which the present invention can be applied.
  • the electrode wiring 2 of the electronic component 1 of the present invention is used for the display electrode 20 and the address electrode 21 of the plasma display panel 11 (1).
  • the plasma display panel 11 (1) is arranged such that the front plate 12 (3) and the back plate 13 (3) face each other with a gap of 100 to 150 ⁇ m, and the front plate 12 (3) and the back plate 13 (3) The gap is maintained by the partition wall 14.
  • a display electrode 20 (2) is formed on the front plate 12 (3).
  • the front plate 12 (3) corresponds to the substrate 3 of the first embodiment, and the display electrode 20 (2) corresponds to the electrode wiring 2 of the first embodiment.
  • a dielectric layer 23 is formed on the display electrode 20 (2), and a protective layer 25 (for example, a magnesium oxide (MgO) vapor deposition film) is provided on the dielectric layer 23 to protect the display electrode 20 (2) and the like from discharge. ) Is formed.
  • a protective layer 25 for example, a magnesium oxide (MgO) vapor deposition film
  • An address electrode 21 (2) is formed on the back plate 13 (3).
  • the back plate 13 (3) corresponds to the substrate 3 of the first embodiment, and the address electrode 21 (2) corresponds to the electrode wiring 2 of the first embodiment.
  • the address electrode 21 (2) is formed so as to be orthogonal to the display electrode 20 (2).
  • a dielectric layer 24 is formed on the address electrode 21 (2), and a partition wall 14 for configuring the cell 16 is provided on the dielectric layer 24.
  • the partition 14 is a stripe-like or lattice (box) -like structure.
  • the minute space partitioned by the partition wall 14 becomes a cell 16.
  • the cell 16 is filled with phosphors 17, 18, and 19.
  • One pixel is composed of three cells 16 corresponding to the three primary colors of the cell 16 filled with the red phosphor 17, the cell 16 filled with the green phosphor 18, and the cell 16 filled with the blue phosphor 19. Yes.
  • Each pixel can emit various colors in accordance with signals applied to the display electrode 20 (2) and the address electrode 21 (2).
  • the particle group A described in Table 1 was prepared as particles to be included in the conductive paste.
  • the particles were aluminum metal particles.
  • the particles of the particle group A have a volume fraction of about 95% or more within a range where the particle size is 0.5 ⁇ m or more and less than 1.5 ⁇ m.
  • Particle group B and particle group C were not used, and particle group A was used in an amount of 100% by weight.
  • the phosphoric acid solution prepared the phosphoric acid solution of the same weight ratio as Example 3 of Table 1. That is, a phosphoric acid solution having a weight ratio of 10% by weight of phosphorus pentoxide, 80% by weight of water and 10% by weight of ethanol was prepared. 30 parts by weight of this phosphoric acid solution was added to 100 parts by weight of the previously prepared powder. By irradiating these mixtures with ultrasonic waves for 10 minutes, particles were dispersed in the phosphoric acid solution to complete a conductive paste.
  • a plasma display panel was produced.
  • the conductive paste was applied to the entire surface of the front plate 12 (3) and the back plate 13 (3) by screen printing, and dried at 150 ° C. in the atmosphere. Excess portions of the conductive paste coating film were removed by photolithography and etching, and the display electrode 20 (2) and the address electrode 21 (2) were patterned. Thereafter, the display electrode 20 (2) and the address electrode 21 (2) were completed by firing in the air at the firing temperature of 600 ° C. for the firing time of 30 minutes, which is the same as the firing conditions of Example 11 in Table 1. In this firing, the firing atmosphere becomes an acidic atmosphere. However, due to this firing, the metal particles of the display electrode 20 (2) and the address electrode 21 (2), particularly the aluminum metal particles, may be discolored due to a chemical reaction. There wasn't.
  • a dielectric paste to be the dielectric layers 23 and 24 was applied to each of the front plate 12 (3) and the back plate 13 (3), and baked in the atmosphere at a baking temperature of 610 ° C. and a baking time of 30 minutes.
  • the firing atmosphere is an acidic atmosphere
  • the dielectric layer 23 is in direct contact with the display electrode 20 (2)
  • the dielectric layer 24 is in direct contact with the address electrode 21 (2).
  • the body layer 23 did not chemically react with the display electrode 20 (2), and the dielectric layer 24 did not chemically react with the address electrode 21 (2).
  • a protective layer 25 was deposited from the dielectric layer 23 side of the front plate 12 (3).
  • the partition wall 14 was produced by forming a material containing at least a powdery glass composition and a filler into a stripe shape or a lattice shape, and sintering the formed structure at 500 to 600 ° C.
  • the partition wall 14 was disposed on the dielectric layer 24 to constitute the cell 16.
  • Each cell 16 is filled with phosphor pastes corresponding to the three primary colors and baked at 450 to 500 ° C., so that the red phosphor 17, the green phosphor 18, and the blue phosphor 19 are placed in the cell 16. Formed.
  • the sealing material 15 was applied to the peripheral edge of either the front plate 12 (3) or the back plate 13 (3) by a dispenser method, a printing method, or the like. And the front board 12 (3) and the back board 13 (3) were sealed.
  • the front plate 12 (3) and the back plate 13 (3) are arranged facing each other while being accurately aligned, and are set to 420 to 500 ° C. Heated. During this heating, the gas in the cell 16 was exhausted and a rare gas was enclosed instead.
  • the sealing material 15 may be temporarily fired simultaneously with the firing of the phosphor paste when the phosphors 17 to 19 are formed. By pre-baking the sealing material 15, bubbles contained in the sealing material 15 can be reduced. In FIG.
  • the sealing material 15 and the address electrode 21 (2) are in direct contact with each other, but the display electrode 20 (2) is also in direct contact with the sealing material 15 in order to draw the electrode to the outside.
  • the sealing material 15 is heated at the time of pre-baking and glass sealing, and the heating atmosphere becomes an acidic atmosphere by this heating. By this heating, the sealing material 15 becomes the display electrode 20 (2) and the address electrode. There was no chemical reaction with 21 (2). Thus, the plasma display panel 11 (1) was completed.
  • the specific resistance of the display electrode 20 (2) and the address electrode 21 (2) did not increase before and after the display of the image information. Further, the adjacent display electrodes 20 (2) and the adjacent address electrodes 21 (2) do not deteriorate the electric withstand voltage, and the voltage can be boosted and the cell 16 can be lit. It was. In addition, no migration phenomenon as in the case of silver thick electrode wiring occurred, and no other problems were found. Since expensive silver is not used for the display electrode 20 (2) and the address electrode 21 (2) of the plasma display panel 11 (1) of the second embodiment, it can greatly contribute to cost reduction.
  • FIG. 3A shows a bottom view (back side) of a solar battery cell (electronic component) 31 (1) according to the third embodiment of the present invention
  • FIG. 3B shows a cross-sectional view taken along line AA in FIG. 3A.
  • the figure shows the light receiving surface side (front surface side) as the upper side and the back surface side as the lower side.
  • a solar battery cell 31 will be described as an example of the electronic component 1 to which the present invention can be applied.
  • 3A and 3B show a back contact type (back electrode type) crystalline silicon solar cell 31 (1) as an example.
  • the electrode wiring 2 of the electronic component 1 of the present invention is used for the back surface p-type electrode 37 of the solar battery cell 31 (1).
  • a back surface p-type electrode 37 (2) is formed on a cell wafer 38 made of a p-type silicon substrate.
  • the cell wafer 38 (3) corresponds to the substrate 3 of the first embodiment, and the back surface p-type electrode 37 (2) corresponds to the electrode wiring 2 of the first embodiment.
  • the back contact type (back electrode type) solar battery cell 31 the back surface p-type electrode 37 (2) and the back surface n-type electrode 36 are formed on the back surface side.
  • the cell wafer 38 (1) has a through hole 39 penetrating between both front and back surfaces, and an n-type semiconductor layer 33 is formed on the side wall of the through hole 39 and on the light receiving surface side (front surface side) of the cell wafer 38 (1).
  • a through-hole electrode 34 made of silver is embedded in the through-hole 39.
  • a grid electrode 32 for current collection made of silver and grid is formed on the light receiving surface side (surface side) of the cell wafer 38 (1) so as to be connected to the through-hole electrode 34.
  • a heavily doped layer 35 is formed on the back side of the cell wafer 38 (1) apart from the through hole 39 and the through hole electrode 34.
  • the heavily doped layer 35 prevents carrier recombination.
  • a grid-like back surface p-type electrode 37 (2) made of aluminum is formed on the back surface side of the cell wafer 38 (1) so as to be aligned with the heavily doped layer 35.
  • a grid-like back surface n-type electrode 36 made of silver is formed on the back surface side of the cell wafer 38 (1) so as to be aligned with the through-hole electrode 34.
  • a p-type silicon substrate was prepared as the cell wafer 38 (3).
  • a through hole 39 was formed in the cell wafer 38 (3) by laser drilling or etching.
  • a mixed solution of 1% caustic soda (sodium hydroxide: NaOH) and 10% isopropyl alcohol (CH 3 CH (OH) CH 3 ) is used.
  • the light receiving surface side (surface side) of 3) was etched to form a texture.
  • phosphorus (P) is transferred from phosphorus pentoxide to the cell wafer 38 (1).
  • the n-type semiconductor layer 33 was formed on the light receiving surface side by diffusion. Although illustration is omitted, an antireflection film of a silicon nitride film (Si 3 N 4 ) may be formed on the n-type semiconductor layer 33 with a uniform thickness.
  • This silicon nitride film can be formed by a plasma CVD method using a mixed gas of silane (SiH 4 ) and ammonia (NH 3 ) as a raw material.
  • a commercially available silver paste is filled into the previously formed through hole 39 by a printing method, and further, the silver paste is printed in a grid shape on the light receiving surface side, whereby the through hole electrode 34, And the grid electrode 32 for current collection was formed.
  • the formed through-hole electrode 34 and the current collecting grid electrode 32 were dried at 150 ° C. for 30 minutes.
  • back side n-type electrode 36 On the back side opposite to the light-receiving surface, silver paste was used and printed in stripes by screen printing to form a back side n-type electrode 36. Further, on the back side opposite to the light receiving surface, the same conductive paste as that used in Example 2 is used, and printing is performed in stripes by screen printing to form the back side p-type electrode 37 (2). did. The formed back surface n-type electrode 36 and back surface p-type electrode 37 (2) were dried at 150 ° C. for 30 minutes.
  • the back contact solar cell 31 (1 ) was completed. Note that, by this baking, aluminum is diffused from the back surface p-type electrode 37 (2) into the cell wafer 38 (3) below the back surface p-type electrode 37 (2), and is highly doped to prevent carrier recombination. Layer 35 is formed simultaneously.
  • the back contact solar cell 31 (1) according to the third embodiment has higher conversion efficiency than the solar cell produced by comparison. This seems to be because the electrical resistance value of the back surface p-type electrode 37 (2) could be reduced. From the above, it was confirmed that the electrode wiring 2 (see FIG. 1) of the present invention can be applied as the back surface p-type electrode 37 (2) of the back contact solar cell 31 (1). In addition, the manufacturing method of the back surface p-type electrode 37 (2) of the photovoltaic cell demonstrated above can respond to the manufacturing method of not only a back contact type photovoltaic cell but the p-type electrode of various photovoltaic cells. .
  • FIG. 4 is a cross-sectional view of a ceramic multilayer wiring board (electronic component) 41 (1) according to the fourth embodiment of the present invention.
  • the electronic component 1 according to the present invention see FIG. 1
  • FIG. 4 as an example of the multilayer wiring board, a multilayer wiring board 41 (1) composed of five layers of low temperature co-fired ceramics (LTCC) is shown.
  • the electrode wiring 2 of the electronic component 1 of the present invention is used for the through-hole electrode 43 (2) and the wiring 44 (2) of the multilayer wiring board 41 (1).
  • a wiring 44 (2) is formed on the upper and lower surfaces of each ceramic substrate 42 (3). In FIG. 4, the wiring 44 (2) is formed in six layers.
  • the wirings 44 (2) in each layer are connected by a through-hole electrode 43 (2).
  • the through-hole electrode 43 (2) penetrates the ceramic substrate 42 (3).
  • the wiring 44 (2) and the through-hole electrode 43 (2) are three-dimensionally formed.
  • the ceramic substrate 42 (3) corresponds to the substrate 3 of the first embodiment, and the through-hole electrode 43 (2) and the wiring 44 (2) correspond to the electrode wiring 2 of the first embodiment.
  • FIG. 5 shows an example of a temperature schedule when firing.
  • the temperature rising process from room temperature to 700 ° C. is in the air, and the process in the temperature range of 700 ° C. to 900 ° C. (including the holding time at 900 ° C. for 60 minutes) is in a nitrogen atmosphere.
  • the temperature lowering process from 700 ° C. to room temperature was again in the atmosphere.
  • the rate of temperature rise and the rate of temperature fall were 5 ° C./min.
  • the temperature schedule of baking is not limited to FIG.
  • the reason why the nitrogen atmosphere is set in the temperature range of 700 ° C. to 900 ° C. is to suppress oxidation of the particles 4 in the conductive paste.
  • the glass powder of the green sheet did not chemically react with the through-hole electrode 43 (2) and the wiring 44 (2), and no gap was generated in the vicinity of the mutual interface. From the above, it was confirmed that the electrode wiring 2 (see FIG. 1) of the present invention can be applied as the wiring 44 (2) and the through-hole electrode 43 (2) of the multilayer wiring board 41 (1). There is no need to use expensive silver thick film wiring as the wiring 44 (2) and the through-hole electrode 43 (2), which can greatly contribute to cost reduction.
  • the electronic component 1 is the plasma display panel 11, the solar battery cell 31, and the ceramic mounting substrate 41 has been described.
  • the electronic component 1 is not limited to these, and an electronic component to which an aluminum electrode wiring can be applied. The application range can be expanded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Gas-Filled Discharge Tubes (AREA)
  • Conductive Materials (AREA)
  • Photovoltaic Devices (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

 導電性ペーストは、リン酸溶液中に分散し、アルミニウム(Al)及び/又はアルミニウムを含む合金からなる複数の粒子(4)を有する。この導電性ペーストを基板(3)に塗布し焼成して電極配線(2)を形成する。この電極配線(2)は、アルミニウム及び/又はアルミニウムを含む合金からなる複数の粒子(4)と、その粒子(4)を基板(3)に固定する酸化物(5)とを有し、酸化物(5)は、リン(P)とアルミニウムを渾然と含んでいる。粒子(4)は、銀(Ag)、銅(Cu)、シリコン(Si)、マグネシウム(Mg)、カルシウム(Ca)のうち少なくとも一種の元素を含んでいる。電極配線(2)では、粒子(4)が、84.2体積%以上99.7体積%以下になっている。

Description

電子部品、導電性ペーストおよび電子部品の製造方法
 本発明は、電極配線を具備する電子部品と、その電極配線の形成に用いる導電性ペーストと、その電子部品の製造方法に関する。
 太陽電池セル、プラズマディスプレイパネル(PDP)、液晶ディスプレイ(LCD)や、セラミック多層配線基板等の電子部品には、電極配線が形成されている。その電極配線は導電性ペーストを用いて形成されている。導電性ペーストには、金属粒子として、銀(Ag)やアルミニウム(Al)が用いられている。電極配線は、導電性ペーストを大気中、高温で焼成することによって形成されるが、導電性ペーストは金属粒子の他にもガラス粒子を有しており、導電性ペーストの焼成時には、そのガラス粒子の軟化点以上の温度に加熱されることで、ガラス粒子が軟化流動し、電極配線は緻密になるとともに基板に強固に接着する。
 アルミニウムの金属粒子を用いた導電性ペーストでは、ガラス粒子にリン酸系ガラスフリットを用いる導電性ペーストが提案されている(特許文献1等参照)。また、アルミニウムの金属粒子と銀の金属粒子を混ぜたものを金属粒子として用いた導電性ペーストが提案されている(特許文献2等参照)。
特開2000-11927号公報 特開2008-108716号公報
 アルミニウムは表面に安定な酸化皮膜を生成するため、アルミニウムの金属粒子は難焼結性を示す。このため、アルミニウムの金属粒子を用いた導電性ペーストで十分な電気的特性を得るためには、焼成の温度をアルミニウムの融点の660.4℃以上にすればよいことがわかっている。特許文献1のように焼成の温度を550℃~600℃に下げたのでは、電子部品の製造は容易になるが、十分な電気的特性が得られず電子部品の設計に制約が生じる場合があると考えられる。特許文献2では、導電性ペーストにアルミニウムの金属粒子と銀の金属粒子を混ぜることで、金属粒子の焼結温度を、金属粒子がアルミニウムの場合より下げることに成功している。特許文献2では、焼成の温度が下げられ、十分な電気的特性も得ることができるが、金属粒子に銀を用いているのでコストを低減し難いと考えられる。
 そこで、本発明の目的は、低い焼成の温度でも十分な電気的特性が得られる電極配線を具備する電子部品と、導電性ペーストと、その電子部品の製造方法を低コストで提供することにある。
 前記目的を達成するために、本発明は、アルミニウム(Al)及び/又はアルミニウムを含む合金からなる複数の粒子と、前記粒子を基板に固定する酸化物とを有する電極配線を具備する電子部品であって、
 前記酸化物は、リン(P)とアルミニウムを渾然と含んでいることを特徴としている。
 また、本発明は、リン酸溶液と、
 前記リン酸溶液中に分散し、アルミニウム及び/又はアルミニウムを含む合金からなる複数の粒子とを有する導電性ペーストであることを特徴としている。
 また、本発明は、リン酸溶液中に分散しているアルミニウム及び/又はアルミニウムを含む合金からなる複数の粒子を有する導電性ペーストを基板に塗布し、
 塗布した前記導電性ペーストを焼成して、電極配線を形成する電子部品の製造方法であることを特徴としている。
 本発明によれば、低い焼成の温度でも十分な電気的特性が得られる電極配線を具備する電子部品と、導電性ペーストと、その電子部品の製造方法を低コストで提供することができる。
本発明の第1の実施形態に係る電子部品が具備する電極配線の断面図の一部である。 本発明の第2の実施形態に係るプラズマディスプレイパネル(電子部品)の断面図の一部である。 本発明の第3の実施形態に係る太陽電池セル(電子部品)の底面図である。 図3AのA-A方向の矢視断面図を上下反転して示している。 本発明の第4の実施形態に係るセラミック多層配線基板(電子部品)の断面図である。 本発明の第4の実施形態に係るセラミック多層配線基板(電子部品)を焼成する際の温度スケジュールの1例である。
 次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。また、本発明は、ここで取り上げた複数の実施形態の個々に限定されることはなく、適宜組み合わせてもよい。
(第1の実施形態)
 表1に示すように、第1の実施形態では、実施例1~12と1つの比較例の計13種類の電極配線を形成し、各種特性を評価している。電極配線の形成に当っては、導電性ペーストも、実施例1~12と比較例毎に、製造条件を変えて製造し、導電性ペースト(電極配線)の焼成条件も、実施例1~12と比較例毎に変えている。なお、導電性ペーストの製造条件では、3種類の粒子群からなるアルミニウム(Al)粒子の配合比と、五酸化リン(P)と水(HO)とエタノール(COH)からなるリン酸溶液の重量比を変化させている。なお、リン酸溶液の重量比の変化に伴って、アルミニウムと五酸化リンの体積の和に対するアルミニウムの体積の比も変化する。また、評価した特性としては、電極配線に対して、ピール試験と、耐水性試験と、比抵抗の計測を行っている。
 以下では、電極配線の形成について詳細に説明する。
Figure JPOXMLDOC01-appb-T000001
(1.電極配線の形成)
(1-1.アルミニウム粒子の配合)
 まず、アルミニウムを溶融し、水アトマイズ法にて球状の粒子を形成した。この粒子の一部から、粒径8μm以上の粒子を篩いによって除去し、粒径0.5μm未満の粒子を篩いによって除去した。残った粒子を、つまり、篩いによって大きな粒子と小さな粒子を除去した後の粒子をさらに、篩いによって、粒径が0.5μm以上1.5μm未満の範囲内に約95%以上の体積分率を有する粒子群Aと、粒径が1.5μm以上8μm未満の範囲内に約95%以上の体積分率を有する粒子群Bに分けた。
 また、水アトマイズ法にて形成したままの粒子の一部を、有機溶媒中でボールミルで処理し、板状の粒子を形成した。さらに、この板状の粒子の熱的安定性を向上させるために、還元雰囲気中で温度700℃のアニール処理を行った。この板状の粒子から、粒径8μm以上の粒子を篩いによって除去し、かつ、粒径1.5μm未満の粒子も篩いによって除去した。残った粒子は、つまり、篩いによって大きな粒子と小さな粒子を除去した後の粒子は、粒径が1.5μm以上8μm未満の範囲内に約95%以上の体積分率を有する板状の粒子群であり、粒子群Cとした。
 表1に示すように、実施例1~11と比較例では、粒子群Aの粒子が50重量%になり、粒子群Bの粒子が50重量%になるように、粒子群Aと粒子群Bの粒子を配合して使用した。実施例12では、粒子群Aの粒子が50重量%になり、粒子群Cの粒子が50重量%になるように、粒子群Aと粒子群Cの粒子を配合して使用した。
(1-2.リン酸溶液の生成)
 次に、実施例1~12毎に、リン酸溶液を生成した。リン酸溶液は、表1に示すような重量比で、五酸化リンと水とエタノールを混合して生成した。なお、エタノールは、リン酸溶液の蒸発・乾燥を速め、乾燥後に吸湿しにくくするために用いている。実施例1から順に実施例8まで、五酸化リンの重量比は増加させ、水の重量比は減少させ、五酸化リンと水の和の重量比を一定とした。また、エタノールの重量比は一定とした。実施例9~12の五酸化リンと水とエタノールの重量比は、10重量%と80重量%と10重量%とし、実施例3と同じにした。なお、五酸化リンの代わりに、リン酸(HPO)を使用しても良い。その場合には、リン原子の濃度が等しくなるように水の量を調整する。また、比較例には、リン酸溶液は用いず、替わりに鉛(Pb)系ガラスを用いた。
(1-3.導電性ペーストの生成)
 実施例1~12毎に、1-1で配合したアルミニウム粒子の100重量部に対して、1-2で生成した30重量部のリン酸溶液を添加し混合した。この混合物に対して、超音波を10分間照射することで、リン酸溶液中にアルミニウム粒子を分散させ、導電性ペーストを得た。
 比較例では、1-1で配合したアルミニウム粒子の100重量部に対して、10重量部の鉛系ガラスの粉末と、溶剤としてのブチルカルビトールアセテートを、バインダとしてのエチルセルロースを添加し混合した。この混合物に対して、超音波を10分間照射することで、溶剤中にアルミニウム粒子と鉛系ガラスの粉末とバインダを分散させ、導電性ペーストを得た。
(1-4.電極配線の焼成)
 実施例1~12と比較例毎に、アルミナ(Al)基板上に導電性ペーストをドクターブレードにて塗布した。塗布後、導電性ペーストを大気中において温度150℃で30分間加熱し乾燥させた。その後、電気炉にて大気中で5℃/分の昇温速度で表1の焼成条件に示す、いわゆる焼成温度まで昇温し、その焼成温度で、表1の焼成条件に示す、いわゆる焼成時間保持して焼成し、その後、放冷した。この焼成により電極配線を完成させた。焼成後の塗膜(電極配線)の厚みは、実施例1~12と比較例のどれも約10μmであった。実施例1~8と実施例12と比較例の焼成条件は、焼成温度が700℃で焼成時間が30分間で同じにした。実施例9~11では、焼成温度を400℃、500℃、600℃と変え、焼成時間は30分間で同じにした。
(2.電極配線の特性)
(2-1.ピール試験)
 実施例1~12と比較例毎に、完成した電極配線の基板に対する接着の強さを、ピール試験にて評価した。ピール試験では、市販のセロハンテープを、電極配線に貼り付けた後に引き剥がした。そして、剥がした後に電極配線を観察し評価した。評価基準としては、アルミニウム粒子のほとんど全てが剥がれ電極配線が断線状態となったものを「×」とし、アルミニウム粒子の一部が剥がれ電極配線の一部が欠けたが断線状態にならなかったものを「△」とし、アルミニウム粒子が剥がれず(電極配線の表面のアルミニウム粒子がセロハンテープに薄く付着する程度を含む)電極配線が断線状態にならなかったものを「○」とする基準を用いた。表1に示すように、ピール試験の結果は、実施例1と実施例9で「×」であり、実施例2で「△」であり、実施例3~8と実施例10~12と比較例で「○」であった。
 ピール試験の結果を、実施例1~8間で比較することにより、五酸化リンの重量比で1重量%以上であり水の重量比で89重量%以下であることが好ましく(実施例2~8:少なくとも「△」の評価が得られる)、さらに、五酸化リンの重量比で10重量%以上であり水の重量比で80重量%以下であることが好ましい(実施例3~8:「○」の評価が得られる)ことがわかった。このように、ピール試験の結果が、リン酸溶液中の五酸化リンの重量比に依存しているのは、この五酸化リンの重量比が、電極配線中のアルミニウムに対する五酸化リンの体積の比に相関しているからと考えられる。すなわち、アルミニウム粒子を基板に固定するには、アルミニウムの体積に対して一定の割合以上の体積の五酸化リンが必要であると考えられるからである。表1にアルミニウムと五酸化リンの体積の和に対するアルミニウムの体積の比を示したが、ピール試験の結果をこの体積の比で評価すると、この体積の比で99.7体積%以下であることが好ましく(実施例2~8:少なくとも「△」の評価が得られる)、さらに、97.4体積%以下であることが好ましい(実施例3~8:「○」の評価が得られる)ことがわかった。
 また、ピール試験の結果を、実施例3と実施例9~11間で比較することにより、焼成条件の焼成温度で、400℃(実施例9)では「×」の評価となるが、500℃(実施例10)、600℃(実施例11)、700℃(実施例3)では「○」の評価が得られることがわかった。これより、本発明の電極配線は、焼成温度が400℃以下では基板に密着しておらず剥がれやすいが、400℃を超え、たとえば500℃以上では、緻密になり基板に密着していると考えられる。
 また、ピール試験の結果を、実施例3と実施例12で比較することにより、粒子群B(実施例3)と粒子群C(実施例12)のどちらを用いても「○」の評価が得られることがわかった。また、比較例でも「○」の評価が得られることがわかった。
(2-2.耐水性試験)
 実施例1~12と比較例毎に、完成した電極配線の水に対する腐食性を、耐水性試験にて評価した。耐水性試験では、電極配線を70℃の温水に30分間浸漬した。浸漬した後に電極配線を観察し評価した。評価基準としては、試験後に電極配線が黒色化したものは「×」とし、電極配線の色の変化がわずかにあるものは「△」とし、色がほとんど変わらないものを「○」とする基準を用いた。表1に示すように、ピール試験の結果は、実施例1と実施例9で「×」であり、実施例2で「△」であり、実施例3~8と実施例10~12と比較例で「○」であった。表1に示すように、耐水性試験の結果は、実施例9と比較例で「×」であり、実施例1で「△」であり、実施例2~8と実施例10~12で「○」であった。
 耐水性試験の結果を、実施例1~8と比較例の間で比較することにより、五酸化リンの重量比で0.5重量%以上であり水の重量比で89.5重量%以下であることが好ましく(実施例1~8:少なくとも「△」の評価が得られる)、さらに、五酸化リンの重量比で1重量%以上であり水の重量比で89重量%以下であることが好ましい(実施例2~8:「○」の評価が得られる)ことがわかった。一方、比較例は、「×」になることがわかった。比較例に比べて、実施例1~8の電極配線の方が、耐水性に優れていることがわかった。また、耐水性試験の結果を、アルミニウムと五酸化リンの体積の和に対するアルミニウムの体積の比で評価すると、99.9体積%以下であることが好ましく(実施例1~8:少なくとも「△」の評価が得られる)、さらに、99.7体積%以下であることが好ましい(実施例2~8:「○」の評価が得られる)ことがわかった。
 また、耐水性試験の結果を、実施例3と実施例9~11間で比較することにより、焼成条件の焼成温度で、400℃(実施例9)では「×」の評価となるが、500℃(実施例10)、600℃(実施例11)、700℃(実施例3)では「○」の評価が得られることがわかった。これより、本発明の電極配線は、焼成温度が400℃以下ではアルミニウム粒子が緻密な酸化物で覆われておらず高い耐水性が得られないが、400℃を超え、たとえば500℃以上では、アルミニウム粒子を覆う酸化物が緻密になり高い耐水性が得られると考えられる。一方、比較例では、焼成温度が700℃でも耐水性が得られず、評価が「×」になっている。実施例3と実施例9~11と比較例とでは、アルミニウム粒子を覆う酸化物の形成方法が異なっているためである。
 また、耐水性試験の結果を、実施例3と実施例12で比較することにより、粒子群B(実施例3)と粒子群C(実施例12)のどちらを用いても「○」の評価が得られることがわかった。
(2-3.比抵抗測定)
 実施例1~12と比較例毎に、完成した電極配線の比抵抗を測定した。比抵抗測定では、電極配線の電気抵抗と膜厚を測定し、この電気抵抗と膜厚に基づいて比抵抗を算出した。比抵抗測定の結果を、実施例1~8と比較例の間で比較することにより、比較例の比抵抗(5.6×10-5Ωcm)より小さい5.0×10-5Ωcmよりも、実施例1~7において比抵抗が低くなることがわかった。また、実施例1~8の間で比較することにより、比抵抗は、実施例3において最小値をとり、0.68×10-5Ωcmとなることがわかった。
 五酸化リンの重量比で0.5重量%から10重量%までの増加に伴って(実施例1から実施例3へ)、比抵抗は減少し、10重量%(実施例3)において比抵抗は最小値(0.68×10-5Ωcm)となり、10重量%から70重量%までの増加に伴って(実施例3から実施例8へ)、比抵抗は増加した。五酸化リンの重量比で1重量%から15重量%までの範囲(実施例2~4)で、比抵抗は、1.0×10-5Ωcm以下になった。五酸化リンの重量比で0.5重量%から65重量%までの範囲(実施例1~7)で、比抵抗は、比較例の比抵抗(5.6×10-5Ωcm)より小さい5.0×10-5Ωcmより小さくなった。
 比抵抗測定の結果を、アルミニウムと五酸化リンの体積の和に対するアルミニウムの体積の比で評価すると、その体積比で99.9体積%から97.4体積%までの減少に伴って(実施例1から実施例3へ)、比抵抗は減少し、97.4体積%(実施例3)において比抵抗は最小値(0.68×10-5Ωcm)となり、97.4体積%から84.2体積%までの減少に伴って(実施例3から実施例8へ)、比抵抗は増加した。この体積比で99.7体積%から96.1体積%までの範囲(実施例2~4)で、比抵抗は、1.0×10-5Ωcm以下になった。この体積比で99.9体積%から85.1体積%までの範囲(実施例1~7)で、比抵抗は、比較例の比抵抗(5.6×10-5Ωcm)より小さい5.0×10-5Ωcm未満になった。
 比抵抗測定の結果を、実施例3と実施例9~11と比較例の間で比較することにより、比較例の比抵抗(5.6×10-5Ωcm)より小さい5.0×10-5Ωcmよりも、実施例3と実施例10と実施例11において比抵抗が低くなることがわかった。また、実施例3と実施例9~11の間で比較することにより、比抵抗は、実施例3において最小値をとり、0.68×10-5Ωcmとなることがわかった。
 焼成条件の焼成温度で400℃から700℃までの増加に伴って(実施例9、10、11から実施例3へ)、比抵抗は減少し、700℃(実施例3)において比抵抗は最小値(0.68×10-5Ωcm)となった。焼成温度で600℃から700℃までの範囲(実施例11と実施例3)で、比抵抗は、1.0×10-5Ωcm以下になった。焼成温度で400℃を超え、たとえば500℃以上の範囲(実施例10、実施例11、実施例3)で、比抵抗は、比較例の比抵抗(5.6×10-5Ωcm)より小さい5.0×10-5Ωcm未満になった。
 また、比抵抗測定の結果を、実施例3と実施例12で比較することにより、粒子群B(球状粒子:実施例3)よりも粒子群C(板状粒子:実施例12)を用いた方が、比抵抗を低減できることがわかった。
(2-4.製造条件の最適化)
 ピール試験と耐水性試験と比抵抗測定の結果から、アルミニウムと五酸化リンの体積の和に対するアルミニウムの体積の比について評価すると、この体積比が、99.7体積%以下84.2体積%以上の範囲内であるとき(実施例2~8)、良好な密着性(ピール試験結果)と、良好な耐水性(耐水性試験結果)が得られることがわかった。なお、この体積比を、五酸化リンの体積比で書き直すと、100体積%からアルミニウムの体積比を引いた値が、五酸化リンの体積比になるので、0.3体積%以上15.8体積%以下の範囲内であるとき(実施例2~8)、良好な密着性(ピール試験結果)と、良好な耐水性(耐水性試験結果)が得られることになる。
 さらに、この体積比が、99.7体積%以下85.1体積%以上の範囲内であるとき(実施例2~7)、良好な密着性(ピール試験結果)と、良好な耐水性(耐水性試験結果)と、良好な比抵抗(比抵抗測定結果)が得られることがわかった。さらに、この体積比が、97.4体積%以下96.1体積%以上の範囲内であるとき(実施例3、4)、より良好な密着性(ピール試験結果)と、良好な耐水性(耐水性試験結果)と、比抵抗が1.0×10-5Ωcm以下という、より良好な比抵抗(比抵抗測定結果)が得られることがわかった。
 また、焼成温度について評価すると、この焼成温度が、500℃以上700℃以下の範囲内であるとき(実施例10、11、3)、良好な密着性(ピール試験結果)と、良好な耐水性(耐水性試験結果)と、良好な比抵抗(比抵抗測定結果)が得られることがわかった。さらに、この焼成温度が、600℃以上700以下の範囲内であるとき(実施例11、3)、良好な密着性(ピール試験結果)と、良好な耐水性(耐水性試験結果)と、比抵抗が1.0×10-5Ωcm以下という、より良好な比抵抗(比抵抗測定結果)が得られることがわかった。
 また、アルミニウム粒子の粒子群Bと粒子群Cの配合について評価すると、粒子群Bに替えて粒子群Cを用いると(実施例12)、良好な密着性(ピール試験結果)と、良好な耐水性(耐水性試験結果)と、実施例3の粒子群Bを用いた場合より良好な比抵抗(比抵抗測定結果)が得られることがわかった。
 図1に、本発明の第1の実施形態に係る電子部品1が具備する電極配線2の断面図の一部の拡大図を示す。電子部品1は、アルミナ基板3と、アルミナ基板3上に接着し固定された電極配線2を有している。電極配線2は、アルミニウム(Al)及び/又はアルミニウムを含む合金からなる複数の粒子4と、粒子4を基板3に固定させる酸化物5とを有している。
 図1は、表1のたとえば実施例11で作製した電極配線2を、走査型電子顕微鏡-エネルギ分散型X線分析装置(SEM-EDX)を用いて観察した結果に基づいている。複数の粒子4同士は、焼結によって結合(ネッキング)している。このネッキング結合部6には、エネルギ分散型X線分析装置(EDX)による分析の結果から、アルミニウムの自然酸化物の層は観察されなかった。
 酸化物5は、リンと酸素(O)を主成分とするリンの酸化物を有し、酸素を考慮しない成分比率でリンの含有率が50原子%以上になっていた。また、酸化物5中にはリンの他、アルミニウムも検出された。これらより、導電性ペーストの焼成前、又は焼成中において、リン酸溶液中に分散している粒子4の表面を覆っていたアルミニウムの自然酸化膜がリン酸溶液によって溶かされ、リン酸溶液中にアルミニウムが溶出し、焼成によって、最終的に、このアルミニウムを含んだリン酸溶液は、リンとアルミニウムを含んだ酸化物5になったと推察された。アルミニウムとアルミニウム合金の粒子4の表面を覆っていたアルミニウムの自然酸化膜が、焼成の際になくなっていたことで、ネッキング結合部6を容易に発生させることが可能になり、電極配線2の比抵抗を低減させることができた。
 また、エタノールの添加等によるアルミニウムとアルミニウム合金の粒子4の表面の高い親水性により、粒子4の表面の全面は、リン酸溶液で濡れ、リン酸溶液に覆われることになる。このため、焼成すると、ネッキング結合部6を除いた粒子4の全表面が、酸化物5で覆われることになる。なお、アルミニウムの自然酸化膜が除かれたことで、酸化物5は、粒子4に直接接し、酸化物5は2層化しておらず単層なので、酸化物5には、リン(P)原子とアルミニウム原子とが、膜中の全体に渾然と含まれていることになる。
 また、電極配線2は、表1の実施例10と実施例11に示すように、アルミニウムの融点660.4℃以下の焼成温度においても、優れた導電性を示すことが判明した。従来、アルミニウムの焼結が進まないのは、その酸化皮膜(自然酸化膜)が原因であり、融点以上の焼成温度を必要とするのは、この酸化被膜を破壊するためであると考えられる。電極配線2においては、酸性のリン酸溶液中でアルミニウムの粒子4の表面の酸化皮膜がエッチングされ除かれる。すなわち、焼成中に、アルミニウム成分がリン酸溶液中に溶出し、リン酸溶液中又はリン酸の酸化物5中に、リンとアルミニウムの酸化化合物や酸化アルミニウム等として析出する。酸化被膜が除去されたことで、アルミニウムの焼結が促進され、融点より低温の焼成でも良好な導電性を発現したと推察される。
 また、リン酸溶液は、粒子4の表面を被覆し、焼成時、リン酸と溶出したアルミニウム成分とが反応し、化合物(酸化化合物)となる酸化物5を生成している。電極配線2において、耐水性が向上した要因は、アルミニウムの粒子4の全表面から疎な酸化皮膜が除かれ、アルミニウムの粒子4の全表面に均一に緻密なリンとアルミニウムの化合物が形成されるため、粒子4の表面が露出しなくなり、化学的安定性が向上したと考えられる。ただし、耐水性は、400℃を超えて、たとえば500℃以上で焼成した場合に良好な耐水性が得られた。
 一方、表1に示す比較例で作製した電極配線2を、走査型電子顕微鏡-エネルギ分散型X線分析装置(SEM-EDX)を用いて観察すると、鉛(Pb)金属が、アルミニウムの粒子4同士の界面に析出しており、ガラス成分の偏析が観察された。これは、アルミニウムの粒子4のPb系ガラスによる酸化によって、Pb系ガラスの鉛が還元されて析出したものと考えられる。したがって、従来使用されているPb系ガラスでは、アルミニウムの粒子の表面の疎な酸化被膜を残したまま、さらに、アルミニウムの粒子の表面が酸化されることになるので、新たにできた酸化被膜も疎な酸化被膜であり、緻密に被覆できなかったと推察される。
 粒子4には、アルミニウムの粒子4だけでなく、アルミニウムを含む合金からなる粒子4を用いることができる。アルミニウムを含む合金としては、銀(Ag)、銅(Cu)、シリコン(Si)、マグネシウム(Mg)、カルシウム(Ca)のうち少なくとも一種の元素を含んでいる。例えば、銀が添加されることで、合金(Al-Ag)の導電率を高めることができる。また、銅が添加されることで、合金(Al-Cu)の強度を高めることができる。シリコンが添加されることで、合金(Al-Si)の耐磨耗性を高めることができる。マグネシウムやカルシウムが添加されることで、合金(Al-Mg、Al-Ca)の強度や耐食性を高めることができる。
 粒子4は、粒径が0.5μm以上1.5μm未満の範囲内に約95%の体積分率を有する粒子群A(第1粒子群)4Aと、粒径が1.5μm以上8μm未満の範囲内に約95%の体積分率を有する粒子群B(第2粒子群)4Bとから構成されている。粒子群A(4A)の複数の粒子4の総重量と、粒子群B(4B)の複数の粒子4の総重量とは、略等しくなっている。これによれば、粒径の大きな粒子群B(4B)の粒子4間の隙間に、粒径の小さな粒子群A(4B)の粒子4が入り、粒子4の密度を高めることができるので、緻密な電極配線2を形成することができる。
(第2の実施形態)
 図2に、本発明の第2の実施形態に係るプラズマディスプレイパネル(PDP:電子部品)11(1)の断面図の一部を示す。第2の実施形態では、本願発明を適用可能な電子部品1として、プラズマディスプレイパネル11を例に挙げ説明する。プラズマディスプレイパネル11(1)の表示電極20とアドレス電極21に、本願発明の電子部品1の電極配線2を用いている。プラズマディスプレイパネル11(1)は、前面板12(3)と背面板13(3)とが100~150μmの間隙をもって対向させて配置され、前面板12(3)と背面板13(3)の間隙は隔壁14で維持されている。前面板12(3)と背面板13(3)との周縁部は封着材料15で気密に封止され、前面板12(3)と背面板13(3)の間隙のパネル内部には希ガスが充填されている。
 前面板12(3)上には表示電極20(2)が形成されている。前面板12(3)が、第1の実施形態の基板3に相当し、表示電極20(2)が、第1の実施形態の電極配線2に相当する。表示電極20(2)上に誘電体層23が形成され、誘電体層23上に放電から表示電極20(2)等を保護するための保護層25(例えば、酸化マグネシウム(MgO)の蒸着膜)が形成されている。
 背面板13(3)上にはアドレス電極21(2)が形成されている。背面板13(3)が、第1の実施形態の基板3に相当し、アドレス電極21(2)が、第1の実施形態の電極配線2に相当する。平面視において、アドレス電極21(2)は、表示電極20(2)に対して直交するように形成されている。アドレス電極21(2)上に誘電体層24が形成され、誘電体層24上にセル16を構成するための隔壁14が設けられている。隔壁14は、ストライプ状あるいは格子(ボックス)状の構造体である。
 前面板12(3)と背面板13(3)の間の間隙において、隔壁14により区切られた微小空間はセル16となる。セル16には蛍光体17、18、19が充填されている。赤色蛍光体17が充填されたセル16と緑色蛍光体18が充填されたセル16と青色蛍光体19が充填されたセル16の3原色に対応する3個のセル16で1画素が構成されている。各画素は、表示電極20(2)とアドレス電極21(2)に印加される信号に応じて種々の色を発光することができる。
 次に、プラズマディスプレイパネル11(1)の製造方法について説明する。
(導電性ペーストの作製)
 まず、導電性ペーストに含有させる粒子として、表1で説明した粒子群Aを用意した。粒子は、アルミニウムの金属粒子とした。粒子群Aの粒子は、粒径が0.5μm以上1.5μm未満の範囲内に約95%以上の体積分率を有している。粒子群Bと粒子群Cとは用いず、粒子群Aを配合比で100重量%用いた。また、リン酸溶液には表1の実施例3と同じ重量比のリン酸溶液を用意した。すなわち、五酸化リンを10重量%、水を80重量%、エタノールを10重量%とする重量比のリン酸溶液を用意した。このリン酸溶液を、先に用意した粉末の100重量部に対して、30重量部添加した。これらの混合物に、超音波を10分間照射することでリン酸溶液中に粒子を分散させ、導電性ペーストを完成させた。
(プラズマディスプレイパネルの作製)
 次に、プラズマディスプレイパネルを作製した。まず、導電性ペーストを、スクリーン印刷法によって、前面板12(3)と背面板13(3)の全面に塗布し、大気中150℃で乾燥させた。フォトリソグラフィ法とエッチング法によって導電性ペーストの塗布膜の余分な箇所を除去して、表示電極20(2)とアドレス電極21(2)のパターニングを行った。その後、表1の実施例11の焼成条件と同じ、大気中、焼成温度600℃、焼成時間30分間で焼成して、表示電極20(2)とアドレス電極21(2)を完成させた。この焼成では、焼成雰囲気は酸性雰囲気になるのであるが、この焼成によって、表示電極20(2)とアドレス電極21(2)との、特にアルミニウムの金属粒子が化学反応して変色等することはなかった。
 次に、誘電体層23、24となる誘電性ペーストを前面板12(3)と背面板13(3)のそれぞれに塗布し、大気中、焼成温度610℃、焼成時間30分間で焼成した。なお、この焼成では、焼成雰囲気は酸性雰囲気になり、誘電体層23は表示電極20(2)に直接接し、誘電体層24はアドレス電極21(2)に直接接するが、この焼成によって、誘電体層23が、表示電極20(2)とで化学反応することはなく、誘電体層24が、アドレス電極21(2)とで化学反応することはなかった。前面板12(3)の誘電体層23の側から保護層25を蒸着した。
 隔壁14は、少なくとも粉末状のガラス組成物とフィラーとを含む材料を、ストライプ状あるいは格子状に成形し、この成形した構造体を500~600℃で焼結して作製した。この隔壁14を、誘電体層24の上に配置し、セル16を構成させた。そして、それぞれのセル16に、三原色に対応する蛍光体用のペーストを充填し450~500℃で焼成することによって、赤色蛍光体17と緑色蛍光体18と青色蛍光体19を、セル16内に形成した。
 次に、封着材料15を、ディスペンサー法や印刷法等により、前面板12(3)または背面板13(3)のどちらか一方の周縁部に塗布した。そして、前面板12(3)と背面板13(3)を封着した。前面板12(3)と背面板13(3)の封着では、前面板12(3)と背面板13(3)とを正確に位置合わせしながら対向させて配置し、420~500℃に加熱した。この加熱時には、セル16内のガスを排気して替わりに希ガスを封入した。なお、封着材料15は、蛍光体17~19の形成時の蛍光体用のペーストの焼成と同時に仮焼成してもよい。封着材料15を仮焼成することによって、封着材料15内に含まれる気泡を低減できる。なお、図2では、封着材料15とアドレス電極21(2)とが直接接しているが、表示電極20(2)も外部に電極を引き出すために封着材料15と直接接している。封着材料15は、仮焼成時とガラス封着時に加熱され、この加熱では焼成雰囲気は酸性雰囲気になるのであるが、この加熱によって、封着材料15が、表示電極20(2)およびアドレス電極21(2)とで化学反応することはなかった。以上で、プラズマディスプレイパネル11(1)が完成した。
(プラズマディスプレイパネルの評価)
(外観検査)
 表示電極20(2)とアドレス電極21(2)の周りの外観検査を行った。表示電極20(2)と前面板12(3)との界面部や、表示電極20(2)と誘電体層23との界面部には、空隙の発生や変色は認められなかった。また、アドレス電極21(2)と背面板13(3)の界面部や、アドレス電極21(2)と誘電体層24の界面部には、空隙の発生や変色は認められなかった。外観上良好な状態でプラズマディスプレイパネル11(1)を作製することができた。
(点灯実験)
 続いて、作製したプラズマディスプレイパネル11(1)の点灯実験を行った。プラズマディスプレイパネル11(1)のセル16を点灯(発光)させるために、点灯させたいセル16の表示電極20(2)とアドレス電極21(2)との間に電圧を印加してセル16内にアドレス放電を行い、希ガスをプラズマ状態に励起してセル16内に壁電荷を蓄積させた。次に、表示電極20(2)の対に一定の電圧を印加することで、壁電荷が蓄積されたセル16のみに表示放電が起こり紫外線22を発生させた。そして、この紫外線22を利用して蛍光体17~19を発光させ、画像(情報)を表示させた。
 この画像情報の表示の前後で、表示電極20(2)及びアドレス電極21(2)の比抵抗が増加することはなかった。また、隣接する表示電極20(2)同士、及び、隣接するアドレス電極21(2)同士等で、電気的耐圧性が低下することはなく、電圧を昇圧でき、セル16を点灯することができた。また、銀厚膜の電極配線のようなマイグレーション現象も生じず、その他特に支障があるような点は認められなかった。第2の実施形態のプラズマディスプレイパネル11(1)の表示電極20(2)とアドレス電極21(2)には、高価な銀を使っていないので、コスト低減にも大きく貢献できる。
(第3の実施形態)
 図3Aに、本発明の第3の実施形態に係る太陽電池セル(電子部品)31(1)の底面図(裏面側)を示し、図3Bに、図3AのA-A方向の矢視断面図を、受光面側(表面側)を上側にし、裏面側を下側にして示している。第3の実施形態では、本願発明を適用可能な電子部品1として、太陽電池セル31を例に挙げ説明する。図3Aと図3Bには、バックコンタクト型(裏面電極型)結晶シリコン太陽電池セル31(1)を1例として示している。太陽電池セル31(1)の裏面p型電極37に、本願発明の電子部品1の電極配線2を用いている。また、p型のシリコン基板からなるセルウェハ38上に裏面p型電極37(2)が形成されている。セルウェハ38(3)が、第1の実施形態の基板3に相当し、裏面p型電極37(2)が、第1の実施形態の電極配線2に相当する。バックコンタクト型(裏面電極型)の太陽電池セル31では、裏面側に、裏面p型電極37(2)と、裏面n型電極36が形成されている。
 セルウェハ38(1)には、表裏両面間を貫通したスルーホール39が形成され、スルーホール39の側壁と、セルウェハ38(1)の受光面側(表面側)に、n型半導体層33が形成されている。スルーホール39内には銀製のスルーホール電極34が埋め込まれている。スルーホール電極34に接続するように、セルウェハ38(1)の受光面側(表面側)に、銀製でグリッド状の集電用グリッド電極32が形成されている。
 セルウェハ38(1)の裏面側には、スルーホール39とスルーホール電極34から離れて、高濃度ドープ層35が形成されている。高濃度ドープ層35は、キャリアの再結合を防止している。高濃度ドープ層35に位置整合するように、セルウェハ38(1)の裏面側に、アルミニウム製でグリッド状の裏面p型電極37(2)が形成されている。また、スルーホール電極34に位置整合するように、セルウェハ38(1)の裏面側に、銀製でグリッド状の裏面n型電極36が形成されている。
 次に、太陽電池セル31(1)の製造方法について説明する。
(導電性ペーストの作製)
 第3の実施形態では、導電性ペーストとして、表1の実施例2で使用した導電性ペーストと同じものを作製し使用した。
(太陽電池セルの作製)
 セルウェハ38(3)として、p型のシリコン基板を用意した。次に、セルウェハ38(3)に、レーザドリルまたはエッチング等によって、スルーホール39を形成した。次に、図示は省略したが、光入射効率を向上させるため1%苛性ソーダ(水酸化ナトリウム:NaOH)と10%イソプロピルアルコール(CHCH(OH)CH)の混合液を用い、セルウェハ38(3)の受光面側(表面側)をエッチングしてテクスチャを形成した。
 セルウェハ38(3)の受光面側(表面側)に、五酸化リンを含む液を塗布し、900℃で30分間処理することで、五酸化リンからセルウェハ38(1)へリン(P)を拡散させ、受光面側にn型半導体層33を形成した。なお、図示は省略したが、n型半導体層33上に、シリコン窒化膜(Si)の反射防止膜を一様な厚さに形成してもよい。このシリコン窒化膜は、シラン(SiH)とアンモニア(NH)の混合ガスを原料とするプラズマCVD法により形成することができる。
 次に、先に形成されたスルーホール39内部に、市販の銀ペーストを印刷法により充填し、さらに、受光面側には、上記銀ペーストをグリッド状に印刷することで、スルーホール電極34、並びに集電用グリッド電極32を形成した。形成したスルーホール電極34、並びに集電用グリッド電極32を150℃で30分間乾燥させた。
 受光面の反対側の裏面側には、銀ペーストを使用し、スクリーン印刷により、ストライプ状に印刷し、裏面n型電極36を形成した。また、受光面の反対側の裏面側に、実施例2で使用した導電性ペーストと同じ導電性ペーストを使用し、スクリーン印刷により、ストライプ状に印刷し、裏面p型電極37(2)を形成した。形成した裏面n型電極36と裏面p型電極37(2)を150℃で30分間乾燥させた。
 スルーホール電極34、集電用グリッド電極32、裏面n型電極36と裏面p型電極37(2)に、850℃で2秒保持する焼成を行うことにより、バックコンタクト型太陽電池セル31(1)を完成させた。なお、この焼成により、裏面p型電極37(2)の下部のセルウェハ38(3)に、裏面p型電極37(2)からアルミニウムが拡散し、キャリアの再結合を防止するための高濃度ドープ層35が、同時に形成される。
 また、比較として、表1の比較例で用いた導電性ペーストと同じ導電性ペーストを使用して裏面p型電極37(2)を形成したバックコンタクト型太陽電池セル31(1)を作製した。
(太陽電池セルの評価)
 第3の実施形態に係るバックコンタクト型太陽電池セル31(1)は、比較で作製した太陽電池セルよりも変換効率が高効率となることが判明した。これは、裏面p型電極37(2)の電気抵抗値を低下できたためと思われる。以上のことから、本発明の電極配線2(図1参照)は、バックコンタクト型太陽電池31(1)の裏面p型電極37(2)として適用できることが確認された。なお、前記で説明した太陽電池セルの裏面p型電極37(2)の作製方法は、バックコンタクト型太陽電池セルに限らず、各種太陽電池セルのp型電極の作製方法に対応できるものである。
(第4の実施形態)
 図4に、本発明の第4の実施形態に係るセラミック多層配線基板(電子部品)41(1)の断面図を示す。第4の実施形態では、本発明に係る電子部品1(図1参照)を多層配線基板へ適用した例について説明する。図4では、多層配線基板の1例として、低温焼成セラミック(LTCC:Low Temperature Co-fired Ceramics)の5層からなる多層配線基板41(1)を示している。多層配線基板41(1)のスルーホール電極43(2)と配線44(2)に、本願発明の電子部品1の電極配線2を用いている。セラミック基板42(3)それぞれの上面と下面に配線44(2)が形成されている。図4では、配線44(2)は、6層形成されている。各層の配線44(2)は、スルーホール電極43(2)で接続されている。スルーホール電極43(2)は、セラミック基板42(3)を貫通している。多層配線基板41(1)では、配線44(2)とスルーホール電極43(2)が三次元的に形成されている。セラミック基板42(3)が、第1の実施形態の基板3に相当し、スルーホール電極43(2)と配線44(2)が、第1の実施形態の電極配線2に相当する。
 次に、多層配線基板41(1)の製造方法について説明する。
(導電性ペーストの作製)
 第4の実施形態では、導電性ペーストとして、表1の実施例2で使用した導電性ペーストと同じものを作製し使用した。
(多層配線基板の作製)
 まず、ガラス粉末とセラミックス粉末とバインダとが混練された複数枚のグリーンシートを用意した。グリーンシートは、後記する焼成によって各層のセラミック基板42(3)となる。次に、グリーンシートの所望の位置に貫通孔を開ける。貫通孔の開いたグリーンシートに対し、実施例2で使用したものと同じ導電性ペーストを、所望の配線パターンに印刷法で塗布する。このとき、貫通孔にも導電性ペーストが充填される。配線パターンに塗布された導電性ペーストが、後記する焼成によってスルーホール電極43(2)と配線44(2)になる。必要に応じて、例えば、図4に示す最下層のグリーンシートの裏面にも導電性ペーストを印刷法にて塗布し配線パターンを形成する。グリーンシートの裏面に塗布する場合には、表面に塗布した導電性ペーストを乾燥させてから行うことになる。
 所定の配線パターンを形成した複数のグリーンシートを積層し、一体で焼成する。図5に、焼成する際の温度スケジュールの1例を示す。図5に示すように、室温から700℃までの昇温過程は大気中とし、700℃~900℃の温度範囲(60分間の900℃での保持時間を含む)の過程は窒素雰囲気中とし、700℃から室温までの降温過程は再び大気中とした。なお、昇温レートと降温レートとは、5℃/分とした。なお、焼成の温度スケジュールは、図5に限定されるものではない。なお、700℃~900℃の温度範囲で窒素雰囲気中としているのは、導電性ペースト中の粒子4の酸化を抑制するためである。
(多層配線基板の評価)
 配線44(2)の周りの外観検査を行った。配線44(2)とセラミック基板42(3)との界面部には、空隙の発生や変色は認められなかった。外観上良好な状態で多層配線基板41(1)を作製することができた。配線44(2)とスルーホール電極43(2)の比抵抗を測定したところ、表1の実施例2と同様の設計通りの値が得られた。次に、作製した多層配線基板41(1)の断面観察を行った。その結果、作製した多層配線基板41(1)は十分緻密に焼成されていた。そのため、比抵抗も良好な設計通りの値となったと思われる。これは、グリーンシートで、700℃までの昇温過程において、略完全に脱バインダが完了していたためと考えられた。また、グリーンシートのガラス粉末が、スルーホール電極43(2)と配線44(2)と化学反応することはなく、互いの界面近傍で空隙も発生していないことが確認された。以上のことから、本発明の電極配線2(図1参照)は、多層配線基板41(1)の配線44(2)とスルーホール電極43(2)として適用できることが確認された。配線44(2)とスルーホール電極43(2)として、高価な銀厚膜の電極配線を使用する必要が無いので、コスト低減にも大きく貢献できる
 実施形態では、電子部品1が、プラズマディスプレイパネル11、太陽電池セル31とセラミック実装基板41の場合について説明したが、電子部品1はこれらに限らず、アルミニウムの電極配線が適用可能な電子部品に適用範囲を広げることができる。
 1   電子部品
 2   電極配線
 3   基板
 4   粒子
 4A  粒子群A(第1粒子群)
 4B  粒子群B(第2粒子群)
 5   酸化物
 6   ネッキング結合部

Claims (13)

  1.  アルミニウム(Al)及び/又はアルミニウムを含む合金からなる複数の粒子と、前記粒子を基板に固定する酸化物とを有する電極配線を具備する電子部品であって、
     前記酸化物は、リン(P)とアルミニウムを渾然と含んでいることを特徴とする電子部品。
  2.  前記粒子は、銀(Ag)、銅(Cu)、シリコン(Si)、マグネシウム(Mg)、カルシウム(Ca)のうち少なくとも一種の元素を含むことを特徴とする請求の範囲第1項に記載の電子部品。
  3.  前記電極配線では、
     前記粒子が、84.2体積%以上99.7体積%以下であることを特徴とする請求の範囲第1項又は第2項に記載の電子部品。
  4.  複数の前記粒子は、
     粒径が0.5μm以上1.5μm未満の範囲内に約95%の体積分率を有する第1粒子群と、
     粒径が1.5μm以上8μm未満の範囲内に約95%の体積分率を有する第2粒子群とから構成され、
     前記第1粒子群と前記第2粒子群の重量は略等しいことを特徴とする請求の範囲第1項乃至第3項のいずれか1項に記載の電子部品。
  5.  前記粒子は、板状粒子を含むことを特徴とする請求の範囲第1項乃至第4項のいずれか1項に記載の電子部品。
  6.  前記酸化物は、リンと酸素(O)を主成分とし、前記酸素を考慮しない成分比率でリンの含有率が50原子%以上であることを特徴とする請求の範囲第1項乃至第5項のいずれか1項に記載の電子部品。
  7.  複数の前記粒子同士は、焼結によって結合していることを特徴とする請求の範囲第1項乃至第6項のいずれか1項に記載の電子部品。
  8.  リン酸溶液と、
     前記リン酸溶液中に分散し、アルミニウム及び/又はアルミニウムを含む合金からなる複数の粒子とを有することを特徴とする導電性ペースト。
  9.  請求の範囲第8項に記載の導電性ペーストを基板に塗布し、焼成されてなる電極配線を具備し、
     前記電極配線は、
     焼結によって互いに結合した複数の前記粒子と、
     前記リン酸溶液から形成され、前記粒子を基板に接着させるリンの酸化物とを有することを特徴とする電子部品。
  10.  前記電極配線の比抵抗が、5×10-5Ωcm未満であることを特徴とする請求の範囲第1項乃至第7項、及び第9項のいずれか1項に記載の電子部品。
  11.  前記電極配線の比抵抗が、1×10-5Ωcm未満であることを特徴とする請求の範囲第1項乃至第7項、及び第9項乃至第10項のいずれか1項に記載の電子部品。
  12.  請求の範囲第1項乃至第7項、及び第9項乃至第11項のいずれか1項に記載の電子部品において、電子部品が、プラズマディスプレイパネル、太陽電池セル、セラミック実装基板のいずれかであることを特徴とする電子部品。
  13.  リン酸溶液中に分散しているアルミニウム及び/又はアルミニウムを含む合金からなる複数の粒子を有する導電性ペーストを基板に塗布し、
     塗布した前記導電性ペーストを焼成して、電極配線を形成することを特徴とする電子部品の製造方法。
PCT/JP2010/053077 2010-02-26 2010-02-26 電子部品、導電性ペーストおよび電子部品の製造方法 WO2011104859A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012501588A JP5480360B2 (ja) 2010-02-26 2010-02-26 電子部品、導電性ペーストおよび電子部品の製造方法
CN201080063260.3A CN102754534B (zh) 2010-02-26 2010-02-26 电子部件、导电性浆料及电子部件的制造方法
PCT/JP2010/053077 WO2011104859A1 (ja) 2010-02-26 2010-02-26 電子部品、導電性ペーストおよび電子部品の製造方法
TW100105071A TWI407457B (zh) 2010-02-26 2011-02-16 Electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/053077 WO2011104859A1 (ja) 2010-02-26 2010-02-26 電子部品、導電性ペーストおよび電子部品の製造方法

Publications (1)

Publication Number Publication Date
WO2011104859A1 true WO2011104859A1 (ja) 2011-09-01

Family

ID=44506303

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053077 WO2011104859A1 (ja) 2010-02-26 2010-02-26 電子部品、導電性ペーストおよび電子部品の製造方法

Country Status (4)

Country Link
JP (1) JP5480360B2 (ja)
CN (1) CN102754534B (ja)
TW (1) TWI407457B (ja)
WO (1) WO2011104859A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072441A (ja) * 2010-09-29 2012-04-12 Toyo Aluminium Kk 導電性アルミニウムフィラー、および、それを含む導電性ペースト組成物、ならびに、その導電性ペースト組成物を用いて形成された導電性膜
CN103117130A (zh) * 2012-12-07 2013-05-22 蚌埠市智峰科技有限公司 一种含有聚乙烯醋酸乙烯酯的太阳能电池导电混合浆料的制备方法
CN103212763A (zh) * 2013-04-11 2013-07-24 中国电子科技集团公司第十四研究所 一种ltcc器件装焊方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167907A (ja) * 1987-12-23 1989-07-03 Murata Mfg Co Ltd 導電性被膜形成用銅ペースト
JP2000011927A (ja) * 1998-06-18 2000-01-14 Futaba Corp 立体グリッド付蛍光表示管の電極構造及び製造方法
JP2000330269A (ja) * 1999-05-18 2000-11-30 Taiyo Ink Mfg Ltd 感光性ペースト組成物及びそれを用いて焼成物パターンを形成したパネル
JP2008108716A (ja) * 2006-09-27 2008-05-08 Kyoto Elex Kk 低温焼成用導電性ペースト組成物
JP2009087557A (ja) * 2007-09-27 2009-04-23 Futaba Corp 蛍光表示管及び蛍光表示管用導電材ペースト

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3328004B2 (ja) * 1993-06-18 2002-09-24 富士通株式会社 フラッシュ定着用トナー及び電子写真装置
JP3452034B2 (ja) * 2000-07-05 2003-09-29 株式会社村田製作所 導電性ペーストおよび積層セラミック電子部品
JP3523633B2 (ja) * 2001-11-13 2004-04-26 Tdk株式会社 セラミックコンデンサ
JP2011034894A (ja) * 2009-08-05 2011-02-17 Hitachi Chem Co Ltd Cu−Al合金粉末、それを用いた合金ペーストおよび電子部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167907A (ja) * 1987-12-23 1989-07-03 Murata Mfg Co Ltd 導電性被膜形成用銅ペースト
JP2000011927A (ja) * 1998-06-18 2000-01-14 Futaba Corp 立体グリッド付蛍光表示管の電極構造及び製造方法
JP2000330269A (ja) * 1999-05-18 2000-11-30 Taiyo Ink Mfg Ltd 感光性ペースト組成物及びそれを用いて焼成物パターンを形成したパネル
JP2008108716A (ja) * 2006-09-27 2008-05-08 Kyoto Elex Kk 低温焼成用導電性ペースト組成物
JP2009087557A (ja) * 2007-09-27 2009-04-23 Futaba Corp 蛍光表示管及び蛍光表示管用導電材ペースト

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072441A (ja) * 2010-09-29 2012-04-12 Toyo Aluminium Kk 導電性アルミニウムフィラー、および、それを含む導電性ペースト組成物、ならびに、その導電性ペースト組成物を用いて形成された導電性膜
CN103117130A (zh) * 2012-12-07 2013-05-22 蚌埠市智峰科技有限公司 一种含有聚乙烯醋酸乙烯酯的太阳能电池导电混合浆料的制备方法
CN103212763A (zh) * 2013-04-11 2013-07-24 中国电子科技集团公司第十四研究所 一种ltcc器件装焊方法

Also Published As

Publication number Publication date
CN102754534A (zh) 2012-10-24
JPWO2011104859A1 (ja) 2013-06-17
TWI407457B (zh) 2013-09-01
CN102754534B (zh) 2016-04-06
TW201212044A (en) 2012-03-16
JP5480360B2 (ja) 2014-04-23

Similar Documents

Publication Publication Date Title
CN103155159B (zh) 太阳能电池元件及其制造方法
US8253011B2 (en) Semiconductor substrate, electrode forming method, and solar cell fabricating method
JP5497504B2 (ja) 電子部品
TWI478890B (zh) An electronic component, a conductive paste for an aluminum electrode thereof, and a glass composition for an aluminum electrode
JP5826178B2 (ja) 電極用ガラス組成物、及びそれを用いた電極用ペースト、並びにそれを適用した電子部品
TWI391362B (zh) A glass composition and a conductive mortar composition using the same, an electrode wire member, and an electronic component
JP2010161331A (ja) 電極,電極ペースト及びそれを用いた電子部品
US20120125670A1 (en) Cu-Al ALLOY POWDER, ALLOY PASTE UTILIZING SAME, AND ELECTRONIC COMPONENT
WO2010109541A1 (ja) 導電性ペースト及びそれを用いた電極配線を具備する電子部品
TWI471283B (zh) An electronic component, a conductive paste for an aluminum electrode thereof, and a glass composition for an aluminum electrode
JP5480360B2 (ja) 電子部品、導電性ペーストおよび電子部品の製造方法
JP5747096B2 (ja) 導電性ペースト
US8217274B2 (en) Wiring member, method of manufacturing the wiring member and electronic element
JP2013168369A (ja) 導電性ペースト及びそれを用いた電極配線を具備する電子部品
WO2023190282A1 (ja) 導電性ペースト、太陽電池及び太陽電池の製造方法
WO2010116746A1 (ja) Cu-Al-Co系合金の電極・配線を具備した電子部品
KR20090091923A (ko) 플라즈마 디스플레이 패널 및 그 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080063260.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10846523

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012501588

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 7335/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10846523

Country of ref document: EP

Kind code of ref document: A1