WO2011102433A1 - ナノカーボン材料製造装置及びナノカーボン材料の製造方法 - Google Patents

ナノカーボン材料製造装置及びナノカーボン材料の製造方法 Download PDF

Info

Publication number
WO2011102433A1
WO2011102433A1 PCT/JP2011/053420 JP2011053420W WO2011102433A1 WO 2011102433 A1 WO2011102433 A1 WO 2011102433A1 JP 2011053420 W JP2011053420 W JP 2011053420W WO 2011102433 A1 WO2011102433 A1 WO 2011102433A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocarbon material
carrier gas
tube
mixture
cross
Prior art date
Application number
PCT/JP2011/053420
Other languages
English (en)
French (fr)
Inventor
優 野田
利男 大沢
東榮 金
英介 羽場
俊輔 上田
Original Assignee
国立大学法人東京大学
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 日立化成工業株式会社 filed Critical 国立大学法人東京大学
Priority to CN2011800078890A priority Critical patent/CN102741162A/zh
Priority to US13/579,627 priority patent/US9315384B2/en
Priority to KR1020127016883A priority patent/KR101864455B1/ko
Priority to EP11744719.3A priority patent/EP2537799B1/en
Priority to CA2790021A priority patent/CA2790021C/en
Priority to JP2012500647A priority patent/JP5862559B2/ja
Publication of WO2011102433A1 publication Critical patent/WO2011102433A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/006Separating solid material from the gas/liquid stream by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/007Separating solid material from the gas/liquid stream by sedimentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/1818Feeding of the fluidising gas
    • B01J8/1827Feeding of the fluidising gas the fluidising gas being a reactant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00389Controlling the temperature using electric heating or cooling elements
    • B01J2208/00407Controlling the temperature using electric heating or cooling elements outside the reactor bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00761Discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00796Details of the reactor or of the particulate material
    • B01J2208/00991Disengagement zone in fluidised-bed reactors

Definitions

  • the present invention relates to a nanocarbon material manufacturing apparatus and a method for manufacturing a nanocarbon material using the same.
  • Patent Document 1 As a technology in this type of field, for example, there is a carbon nanotube manufacturing apparatus described in Patent Document 1.
  • carbon nanotubes are grown and synthesized in the process of descending the reaction tube by supplying a source gas containing a carbon source and a catalyst and a carrier gas from the upper part of the reaction tube (so-called gas phase flow). Law).
  • the nanocarbon material manufacturing apparatus described in Patent Document 2 the nanocarbon material is grown by supplying a carbon raw material and a flowing gas to the catalyst carrier in the reaction section.
  • the carbon nanotubes grown in the reaction tube are sent to the recovery apparatus along with the flow of the carrier gas.
  • This recovery device includes a filter in a discharge pipe provided at the lower part of the reaction tube, and the carbon nanotubes are captured by this filter.
  • the recovery operation is complicated.
  • the nanocarbon material grown on the catalyst carrier in the reaction section is recovered by the recovery device together with the catalyst carrier. After this recovery process, it was necessary to purify the nanocarbon material by acid treatment or the like in order to separate it from the catalyst support, and the recovery operation was complicated. Therefore, a technique for easily collecting a large amount of nanocarbon material has been required in the conventional nanocarbon material recovery apparatus.
  • the present invention has been made to solve the above-described problems, and provides a nanocarbon material production apparatus capable of easily collecting a large amount of nanocarbon material and a method of producing a nanocarbon material using the same. With the goal.
  • a nanocarbon material manufacturing apparatus of the present invention includes a reaction tube that receives a supply of a raw material gas and a carrier gas and grows the nanocarbon material, and is connected to the reaction tube.
  • the nanocarbon material grown in the reaction tube rides on the flow of the carrier gas, passes through the connecting tube as a mixture, and is sent to the recovery tube.
  • the discharge part is provided above the connecting part with the connecting pipe, and the capturing part is provided below the connecting part with the connecting pipe. Accordingly, the carrier gas contained in the mixture flows upward from the connection portion and is discharged from the discharge portion, while the nanocarbon material in the mixture falls downward from the connection portion due to gravity sedimentation and is discharged from the mixture. Separated and captured by the capture unit. Therefore, in this nanocarbon material manufacturing apparatus, a large amount of nanocarbon material can be easily recovered.
  • a filter for blocking the nanocarbon material is provided in the discharge part.
  • the part of the nanocarbon material sent to the recovery pipe may rise above the connection part with the connecting pipe due to the flow of the carrier gas before being captured by the capturing part by gravity sedimentation. Therefore, by providing a filter in the discharge part, it is possible to prevent the nanocarbon material from flowing into the discharge part. Further, when a certain amount of the nanocarbon material blocked by the filter is collected, it falls by gravity sedimentation and is captured by the capturing unit. Thereby, in this nanocarbon material manufacturing apparatus, a larger amount of nanocarbon material can be easily recovered.
  • the connecting pipe is preferably inclined so that the mixture flows while descending from the reaction pipe toward the recovery pipe.
  • the reaction tube has a catalyst carrier inside, a main reaction part in which the nanocarbon material is grown around the catalyst carrier and the nanocarbon material is peeled from the catalyst carrier by stirring the catalyst carrier with a carrier gas, A catalyst carrier that is located above the main reaction part and falls without being entrained by the carrier gas, and a separation part that separates the nanocarbon material that is entrained by the carrier gas. Is preferably larger than the cross-sectional area of the main reaction part.
  • the flow rate of the carrier gas in the separation unit can be made slower than the flow rate of the carrier gas in the main reaction unit. Therefore, in the main reaction part, the carrier gas flow rate is increased to increase the agitation, thereby accelerating the separation of the nanocarbon material from the catalyst carrier, and in the separation part, the carrier gas flow rate is reduced to reduce the catalyst carrier flow rate. By promoting the fall, the catalyst carrier and the nanocarbon material can be easily separated. This eliminates the need to separate and purify the nanocarbon material from the catalyst carrier after collecting the catalyst carrier on which the nanocarbon material has grown, unlike conventional nanocarbon material manufacturing apparatuses. It becomes easy.
  • reaction tube is preferably located above the separation portion and further has an introduction portion serving as a connection portion with the connecting tube, and the cross-sectional area of the separation portion is preferably larger than the cross-sectional area of the introduction portion.
  • the flow rate of the carrier gas in the introduction portion can be made faster than the flow rate of the carrier gas in the separation portion. Therefore, the mixture of the nanocarbon material and the carrier gas is suppressed from staying in the introduction part, and the mixture can be smoothly moved from the separation part to the connection part.
  • cross-sectional area of the recovery pipe is preferably larger than the cross-sectional area of the connecting pipe.
  • the flow rate of the carrier gas in the recovery pipe can be made slower than the flow speed of the carrier gas in the connecting pipe. Therefore, since the influence of the flow of the carrier gas on the nanocarbon material is reduced, the nanocarbon material is effectively subjected to gravity sedimentation and easily falls to the capture portion of the recovery tube. Accordingly, the nanocarbon material can be efficiently recovered.
  • the recovery tube further includes an open valve that opens the nanocarbon material captured by the capturing unit to the outside.
  • the nanocarbon material captured by the capturing part can be opened to the outside and easily recovered.
  • the manufacturing method of the nanocarbon material of the present invention is a manufacturing method using the above-described nanocarbon material device.
  • recovery and the process of refilling a catalyst support to a fluidized bed apparatus are indispensable.
  • a fluidized bed is formed before the catalyst support is removed. After the process of stopping and cooling the apparatus and the process of refilling the catalyst carrier, a process of starting up the fluidized bed apparatus and raising the temperature is further required.
  • nanocarbon material manufacturing methods require additional facilities such as a mechanism for removing a high-temperature catalyst carrier from a fluidized bed apparatus and a mechanism for separating the nanocarbon material from the removed catalyst carrier.
  • Ancillary equipment may be larger.
  • the nanocarbon material is put on the carrier gas flow and separated and recovered from the catalyst carrier, so that the nanocarbon material can be manufactured with a single device.
  • the nanocarbon material gets wet with the treatment liquid. It will be. In this case, it is necessary to dry the nanocarbon material, but the nanocarbon material may be densely aggregated at the time of drying, and there is a possibility that post-processing may be restricted. In addition, there is a possibility that the quality of the nanocarbon material is deteriorated, for example, impurities are mixed from the treatment liquid.
  • a nanocarbon material having a high purity (99 wt%) can be obtained by separating and collecting it on a carrier gas flow. This facilitates various processes in the post process of the nanocarbon material.
  • the present invention it is possible to provide a nanocarbon material manufacturing apparatus capable of easily collecting a large amount of nanocarbon material and a method of manufacturing a nanocarbon material using the same.
  • FIG. 1 is a diagram showing an embodiment of a nanocarbon material manufacturing apparatus according to the present invention.
  • FIG. 2A is a view showing a state in which the raw material gas and the carrier gas are supplied to the catalyst carrier in the main reaction section.
  • FIG. 2B is a diagram illustrating a state in which the nanocarbon material has grown in the main reaction portion.
  • FIG. 3A is a diagram illustrating a state in which the nanocarbon material and the catalyst carrier are separated in the separation unit.
  • FIG. 3B is a diagram illustrating a state in which the mixture of the nanocarbon material and the carrier gas passes through the introduction part and the connection pipe.
  • FIG. 4A is a diagram illustrating a state in which the nanocarbon material is captured and the carrier gas is discharged.
  • FIG. 4B is a diagram illustrating a state in which the nanocarbon material captured by the filter falls to the capturing unit.
  • FIG. 1 is a diagram showing an embodiment of a nanocarbon material manufacturing apparatus according to the present invention.
  • a nanocarbon material manufacturing apparatus 1 includes a reaction tube 2 for growing a nanocarbon material, a recovery tube 3 for recovering the nanocarbon material grown in the reaction tube 2, a reaction tube 2 and a recovery tube 3 And a heating section H that heats the reaction tube 2.
  • the nanocarbon material is a carbon material having a size in at least one direction of a nanometer unit or a micrometer unit, and is a carbon material having various shapes such as a fiber shape and a tube (hollow) shape.
  • Each of the reaction tube 2, the recovery tube 3, and the connecting tube 4 is, for example, a glass tube or a stainless tube having a circular cross section.
  • the reaction tube 2 has a main reaction part 21, a separation part 22, and an introduction part 23.
  • the main reaction section 21 of the reaction tube 2 receives the supply of the source gas from the source gas supply source 51 and the supply of the carrier gas from the carrier gas supply source 52.
  • the nanocarbon material 9 is grown around the catalyst carrier 10 such as ceramic beads.
  • the main reaction part 21 is located on the bottom side of the reaction tube 2.
  • the diameter D1 of the cross section of the main reaction part 21 is 2.5 cm, for example.
  • a carbon source such as a hydrocarbon gas
  • hydrogen, argon, nitrogen or the like is used as the carrier gas.
  • the nanocarbon material 9 grown around the catalyst carrier 10 in the main reaction unit 21 is peeled off from the catalyst carrier 10 and moved to the separation unit 22 along with the carrier gas. A part of the catalyst carrier 10 separated from the nanocarbon material 9 moves to the separation unit 22.
  • the heating part H is a part that promotes the growth of the nanocarbon material 9 by heating the main reaction part 21 when the nanocarbon material 9 is grown in the main reaction part 21.
  • the heating unit H is provided around the main reaction unit 21 and maintains the temperature of the main reaction unit 21 at the time of growing the nanocarbon material 9 at about 800 ° C.
  • the separation unit 22 is a separation unit that is a part where the catalyst carrier 10 that falls without being accompanied by the carrier gas and the nanocarbon material 9 that is accompanied by the carrier gas are separated. 22 is located above the main reaction part 21. Moreover, as shown in FIG. 1, the diameter D2 of the cross section of the separation part 22 is 5 cm, for example, and is larger than the diameter D1 of the cross section of the main reaction part 21. With such a configuration, the cross-sectional area S2 of the separation unit 22 is larger than the cross-sectional area S1 of the main reaction unit 21, and the flow rate in the separation unit 22 is slower than the flow rate U1 of the carrier gas in the main reaction unit 21.
  • the nanocarbon material 9 is entrained by the carrier gas, and the catalyst carrier 10 falls without being entrained by the carrier gas, so that the catalyst carrier 10 and the nanocarbon material 9 are efficiently separated.
  • the nanocarbon material 9 separated from the catalyst carrier 10 is conveyed as an aerosol-like mixture M together with the carrier gas 5.
  • the flow rate U1 is adjusted so as to be equal to or higher than the speed at which the nanocarbon material 9 can be separated from the catalyst carrier 10 by stirring the catalyst carrier 10. Further, the flow velocity U2 is adjusted so as to be equal to or less than the speed (terminal speed) at which the catalyst carrier 10 is jetted from the separation portion 22 to the introduction portion 23.
  • the end on the main reaction part 21 side in the separation part 22 has a tapered shape such that the cross-sectional area becomes smaller toward the main reaction part 21 side, and the end on the introduction part 23 side is the introduction part 23.
  • the taper shape is such that the cross-sectional area decreases toward the side.
  • the introduction part 23 is a part for introducing the mixture M of the nanocarbon material 9 and the carrier gas 5 that has passed through the separation part 22 toward the connecting pipe 4 as shown in FIG.
  • the introduction part 23 is located further above the separation part 22.
  • transducing part 23 is 2.5 cm, for example, and is larger than the diameter D2 of the cross section of the isolation
  • the cross-sectional area S2 of the separation part 22 is larger than the cross-sectional area S3 of the introduction part 23, and the flow rate U3 of the carrier gas in the introduction part 23 is higher than the flow rate U2 of the carrier gas in the separation part 22.
  • the mixture M can be smoothly introduced into the connecting pipe 4 from the separation unit 22.
  • the connecting tube 4 is a portion for introducing the mixture M of the nanocarbon material 9 and the carrier gas 5 from the reaction tube 2 to the recovery tube 3.
  • One end of the connection pipe 4 is connected to the tip portion of the introduction part 23, and the other end is connected to the intermediate part of the recovery pipe 3.
  • the connecting pipe 4 is inclined at a predetermined angle ⁇ so that the mixture M introduced from the introduction part 23 flows while descending toward the recovery pipe 3.
  • This angle ⁇ is appropriately set within a range of 1 ° to 90 °, for example.
  • the diameter D4 of the cross section of the connecting pipe 4 is, for example, 2.5 cm, and is equal to the diameter D3 of the cross section of the introducing portion 23.
  • the flow velocity U4 of the carrier gas in the connecting pipe 4 is equal to the flow velocity U3 of the carrier gas in the introduction part 23.
  • These flow velocities U3 and U4 are adjusted to be faster than the speed at which the nanocarbon material deposited or deposited on the inner wall of the introduction part 23 or the connecting pipe 4 can be swept away.
  • the diameter D3 of the cross section of the introduction part 23 and the diameter D4 of the cross section of the connecting pipe 4 are both smaller than the diameter D1 of the cross section of the main reaction part 21. In this case, the nanocarbon material 9 generated in the main reaction part 21 can be smoothly moved to the recovery pipe 3 via the introduction part 23 and the connecting pipe 4.
  • the recovery tube 3 is a part that recovers the nanocarbon material 9 from the mixture M that has passed through the connecting tube 4.
  • the collection pipe 3 has a capturing part 31 and a discharge part 32.
  • the discharge part 32 is located above the connection part 33 with the connecting pipe 4.
  • the capture part 31 is located directly below the discharge part 32 below the connection part 33 between the connection pipe 4 and the recovery pipe 3.
  • nanocarbon materials 91 and 93 separated from the mixture M by gravity sedimentation are deposited on the capturing unit 31.
  • the nanocarbon material 93 deposited on the capturing unit 31 is recovered to the outside by opening the release valve 7.
  • the above-described discharge unit 32 is provided with a filter F that blocks the nanocarbon material 92.
  • the nanocarbon material 92 can be captured by the filter F. it can.
  • the nanocarbon material 92 captured by the filter F is gravity settled by collecting a certain amount, and is captured by the capturing unit 31.
  • the filter F may be periodically vibrated so that the nanocarbon material 92 drops from the filter F.
  • the flow rate of the carrier gas may be decreased intermittently or may be reversed so that the nanocarbon material 92 drops from the filter F.
  • the diameter D5 of the cross section of the recovery pipe 3 is 8 cm, for example, and is larger than the diameter D4 of the cross section of the connecting pipe 4.
  • the cross-sectional area S5 of the recovery pipe 3 is larger than the cross-sectional area S4 of the connection pipe 4, and the flow rate U5 of the carrier gas in the recovery pipe 3 is higher than the flow rate U4 of the carrier gas in the connection pipe 4.
  • the nanocarbon material 91 tends to be gravity settled against the flow of the carrier gas 5 later.
  • the flow rate U5 is adjusted so that the nanocarbon material deposited on the capturing part 31 of the recovery tube 3 is below the speed at which the nanocarbon material does not rise.
  • FIGS. 2 to 4 show the flow of manufacturing the nanocarbon material intermittently. However, in actuality, the growth of the nanocarbon material is performed for a certain period of time. A series of flows shown in FIG.
  • the nanocarbon material 9 grown in the reaction tube 2 rides on the flow of the carrier gas 5, passes through the connecting tube 4 as a mixture M, and is sent to the recovery tube 3. .
  • the discharge part 32 is provided above the connection part 33 with the connection pipe 4, and the capture part 31 is provided below the connection part 33 with the connection pipe 4. Yes. Therefore, the carrier gas 5 contained in the mixture M flows upward from the connection portion 33 and is discharged from the discharge portion 32, while the nanocarbon material in the mixture M is lowered from the connection portion 33 by gravity settling. It falls and separates from the mixture M and is captured by the capturing unit 31.
  • this nanocarbon material manufacturing apparatus a large amount of nanocarbon material can be easily recovered without performing filter replacement or the like as in the prior art. Further, a large amount of nanocarbon material can be recovered at a time according to the capacity of the capture portion 31 of the recovery tube.
  • nanocarbon material manufacturing apparatus 1 since the nanocarbon material 9 is separated from the catalyst carrier 10 by stirring in advance, it is not necessary to use a purification treatment that damages the nanocarbon material such as acid treatment. Damage to the nanocarbon material due to the purification process is eliminated.
  • the manufacturing method of the nanocarbon material according to the present invention is a manufacturing method using the nanocarbon material manufacturing apparatus 1.
  • a series of steps such as the step of taking out the catalyst carrier from the fluidized bed apparatus in the conventional method for producing a nanocarbon material
  • a huge amount of time is required compared to the growth time of the nanocarbon material (about 10 minutes)
  • the manufacturing method using the nanocarbon material manufacturing apparatus 1 only the nanocarbon material 9 can be separated and recovered from the catalyst carrier 10 only by switching the carrier gas 5 while keeping the temperature constant. For this reason, the time required for a series of steps can be extremely shortened. Thereby, the production efficiency of nanocarbon material can be improved.
  • the nanocarbon material 9 is separated and collected from the catalyst carrier 10 on the flow of the carrier gas 5. Material can be manufactured. Furthermore, in the manufacturing method using the nanocarbon material manufacturing apparatus 1, the nanocarbon material 9 is separated and recovered from the catalyst carrier 10 on the flow of the carrier gas 5, thereby obtaining a high-purity (99 wt%) nanocarbon material. Obtainable. This facilitates various processes in the post process of the nanocarbon material.
  • the cross-sectional shapes of the reaction tube 2, the recovery tube 3, and the connection tube 4 are not limited to a circle, and may be, for example, an ellipse or a rectangle.
  • the discharge portion 32 is positioned directly above the capture portion 31.
  • the discharge portion 32 is above the connection portion 33 with the connecting pipe 4, the discharge portion 32 is directly above the capture portion 31. It may be provided at a position shifted laterally from the position.
  • the inclination angle ⁇ of the connecting pipe 4 may be 90 degrees or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

 ナノカーボン材料製造装置1は、原料ガス及びキャリアガスの供給を受けてナノカーボン材料を成長させる反応管2と、反応管2に接続され、ナノカーボン材料とキャリアガスとのエアロゾル状の混合体が通過する連結管4と、連結管4に接続され、混合体からナノカーボン材料を回収する回収管3と、を備え、回収管3は、連結管4との接続部分33よりも上方に位置し、混合体に含まれるキャリアガスを外部に排出する排出部32と、連結管4との接続部分33よりも下方に位置し、重力沈降によって混合体から分離したナノカーボン材料を捕捉する捕捉部31と、を有することを特徴とする。

Description

ナノカーボン材料製造装置及びナノカーボン材料の製造方法
 本発明は、ナノカーボン材料製造装置及びそれを用いたナノカーボン材料の製造方法に関する。
 この種の分野の技術として、例えば特許文献1に記載のカーボンナノチューブの製造装置がある。この装置では、反応管の上部から、炭素源及び触媒を含む原料ガスと、キャリアガスとを供給することにより、反応管を下降する過程でカーボンナノチューブを成長、合成している(いわゆる気相流動法)。また、特許文献2に記載のナノカーボン材料の製造装置では、反応部において、触媒担体に炭素原料及び流動ガスを供給することにより、ナノカーボン材料を成長させている。
国際公開第2009/081645号パンフレット 特開2008-188565号公報
 例えば特許文献1に記載のカーボンナノチューブの製造装置では、反応管で成長したカーボンナノチューブは、キャリアガスの流れに乗って回収装置に送られる。この回収装置は、反応管の下部に設けられた排出管にフィルタを備えており、このフィルタによってカーボンナノチューブが捕捉される。しかしながら、1つのフィルタの捕捉量を超えた多量のカーボンナノチューブを回収するには、フィルタを逐次交換する必要があり、回収作業が煩雑であった。
 また、特許文献2に記載のナノカーボン材料の製造装置では、反応部で触媒担体上に成長させたナノカーボン材料は触媒担体ごと回収装置で回収される。この回収処理の後、ナノカーボン材料を触媒担体と分離するために酸処理などによって精製する必要があり、回収作業が煩雑であった。したがって、従来のナノカーボン材料の回収装置では、多量のナノカーボン材料を容易に回収できる技術が求められていた。
 本発明は、上記課題の解決のためになされたものであり、多量のナノカーボン材料を容易に回収することができるナノカーボン材料製造装置及びそれを用いたナノカーボン材料の製造方法を提供することを目的とする。
 上述の課題を解決するため、本発明のナノカーボン材料製造装置は、原料ガス及びキャリアガスの供給を受けてナノカーボン材料を成長させる反応管と、反応管に接続され、ナノカーボン材料とキャリアガスとのエアロゾル状の混合体が通過する連結管と、連結管に接続され、混合体からナノカーボン材料を回収する回収管と、を備え、回収管は、連結管との接続部分よりも上方に位置し、混合体に含まれるキャリアガスを外部に排出する排出部と、連結管との接続部分よりも下方に位置し、重力沈降によって混合体から分離したナノカーボン材料を捕捉する捕捉部と、を有することを特徴とする。
 このナノカーボン材料製造装置では、反応管で成長したナノカーボン材料は、キャリアガスの流れに乗って混合体として連結管を通過し、回収管に送られる。ここで、このナノカーボン材料製造装置では、連結管との接続部分よりも上方に排出部が設けられ、連結管との接続部分よりも下方に捕捉部が設けられている。したがって、混合体に含まれるキャリアガスは、接続部分から上方に流れて排出部から排出される一方で、混合体中のナノカーボン材料は、重力沈降によって接続部分から下方に落下して混合体から分離し、捕捉部によって捕捉される。したがって、このナノカーボン材料製造装置では、多量のナノカーボン材料を容易に回収できる。
 また、排出部には、ナノカーボン材料を遮断するフィルタが設けられていることが好ましい。
 回収管に送られたナノカーボン材料の一部は、重力沈降によって捕捉部に捕捉される前に、キャリアガスの流れによって連結管との接続部分よりも上方に舞い上がることがある。したがって、排出部にフィルタを設けておくことにより、ナノカーボン材料が排出部に流れることを防止できる。また、フィルタで遮断されたナノカーボン材料は、一定量が集まると重力沈降によって落下し、捕捉部よって捕捉される。これにより、このナノカーボン材料製造装置では、より多量のナノカーボン材料を容易に回収できる。
 また、連結管は、混合体が反応管から回収管に向かって下降しながら流れるように傾斜していることが好ましい。
 このように混合体が反応管から回収管に向かって下降しながら流れるように、連結管を傾斜させることにより、混合体が連結管内に滞留することを抑制し、混合体をスムーズに回収管へ移動させることができる。
 また、反応管は、触媒担体を内部に有し、触媒担体周りのナノカーボン材料の成長と、キャリアガスによる触媒担体の攪拌によって触媒担体からのナノカーボン材料の剥離が行われる主反応部と、主反応部の上方に位置し、キャリアガスに同伴されずに落下する触媒担体と、キャリアガスに同伴されるナノカーボン材料との分離がなされる分離部と、を有し、分離部の断面積は、主反応部の断面積よりも大きくなっていることが好ましい。
 この構成により、主反応部内におけるキャリアガスの流速よりも分離部内におけるキャリアガスの流速を遅くすることができる。よって、主反応部内において、キャリアガスの流速を速くし攪拌を激しくすることで触媒担体からのナノカーボン材料の剥離を促進するとともに、分離部において、キャリアガスの流速を遅くすることで触媒担体の落下を促進することで、触媒担体とナノカーボン材料の分離を容易にできる。これにより、従来のナノカーボン材料の製造装置のように、ナノカーボン材料が成長した触媒担体の回収後にナノカーボン材料を触媒担体と分離して精製する必要がなくなるので、ナノカーボン材料の回収手順が容易となる。
 また、反応管は、分離部の上方に位置し、連結管との接続部分となる導入部を更に有し、分離部の断面積は、導入部の断面積よりも大きくなっていることが好ましい。
 この構成により、分離部内におけるキャリアガスの流速よりも、導入部内におけるキャリアガスの流速を速くすることができる。よって、ナノカーボン材料とキャリアガスとの混合体が導入部内に滞留することが抑制され、混合体を分離部から連結部へスムーズに移動させることができる。
 また、回収管の断面積は、連結管の断面積よりも大きくなっていることが好ましい。
 この構成により、連結管内におけるキャリアガスの流速よりも、回収管内におけるキャリアガスの流速を遅くすることができる。よって、ナノカーボン材料に対するキャリアガスの流れの影響が低くなるので、ナノカーボン材料の重力沈降が効果的に行われて回収管の捕捉部に落ちやすくなる。従って、ナノカーボン材料の回収が効率的に行われる。
 また、回収管は、捕捉部で捕捉されたナノカーボン材料を外部に開放する開放弁を更に備えることが好ましい。
 開放弁を開けることにより、捕捉部で捕捉されたナノカーボン材料を外部に開放し、容易に回収することができる。
 本発明のナノカーボン材料の製造方法は、上述したナノカーボン材料装置を用いた製造方法である。
 従来のナノカーボン材料の製造方法では、成長したナノカーボン材料が付着している触媒担体を充填した流動層装置の内部から触媒担体を取り出す工程、触媒担体からナノカーボン材料を液相処理等によって分離・回収する工程、及び、触媒担体を流動層装置への再充填する工程が不可欠である。加えて、キャリアガスなどの供給工程、ナノカーボン材料の成長工程、混合体からのナノカーボン材料の回収工程が順番に一つずつ行われるバッチ式方法では、触媒担体を取り出す工程の前に流動層装置を停止させて冷却する工程と、触媒担体を再充填する工程の後に流動層装置を立ち上げて昇温する工程がさらに必要となる。これら一連の工程の実施には、ナノカーボン材料の成長時間に比べて膨大な長い時間を要するため、生産効率の面で問題がある。これに対し、本発明の製造方法によれば、温度一定のままキャリアガスの切り替えるだけでナノカーボン材料のみを分離・回収できる。このため、一連の工程に要する時間を極めて短縮することができ、ナノカーボン材料の生産効率を高めることができる。
 また、従来のナノカーボン材料の製造方法では、高温の触媒担体を流動層装置から取り出す機構や、取り出した触媒担体からナノカーボン材料を分離する機構などの付帯設備が必要となり、流動層装置よりも付帯設備の方が大きくなることがある。これに対し、本発明の製造方法では、ナノカーボン材料をキャリアガスの流れに乗せて触媒担体から分離・回収するため、単体の装置でナノカーボン材料を製造できる。
 さらに、従来のナノカーボン材料の製造方法のように、触媒担体ごと流動層装置から取り出した後、触媒担体からナノカーボン材料を液相処理で分離する場合、ナノカーボン材料が処理液に濡れてしまうこととなる。この場合、ナノカーボン材料を乾燥させる必要が生じるが、乾燥時にナノカーボン材料が密に凝集して後処理に制約が生じるおそれがある。また、処理液からの不純物の混入が生じる等、ナノカーボン材料の品質が低下するおそれもある。これに対し、本発明のナノカーボン材料の製造方法では、キャリアガスの流れに乗せて分離・回収することにより、高純度(99wt%)のナノカーボン材料を得ることができる。これにより、ナノカーボン材料の後工程での各種処理が容易になる。
 本発明によれば、多量のナノカーボン材料を容易に回収することができるナノカーボン材料製造装置及びそれを用いたナノカーボン材料の製造方法を提供することができる。
図1は、本発明に係るナノカーボン材料製造装置の一実施形態を示す図である。 図2(a)は、主反応部内の触媒担体に原料ガス及びキャリアガスを供給する状態を示す図である。図2(b)は、主反応部内でナノカーボン材料が成長した状態を示す図である。 図3(a)は、分離部内でナノカーボン材料と触媒担体とを分離する状態を示す図である。図3(b)は、ナノカーボン材料とキャリアガスとの混合体が導入部及び連結管を通過する状態を示す図である。 図4(a)は、ナノカーボン材料が捕捉されるとともに、キャリアガスが排出される状態を示す図である。図4(b)は、フィルタに捕捉されたナノカーボン材料が捕捉部に落下していく状態を示す図である。
 以下、図面を参照しながら、本発明に係るナノカーボン材料製造装置及びそれを用いたナノカーボン材料の製造方法の好適な実施形態について詳細に説明する。
 図1は、本発明に係るナノカーボン材料製造装置の一実施形態を示す図である。同図に示すように、ナノカーボン材料製造装置1は、ナノカーボン材料を成長させる反応管2と、反応管2で成長したナノカーボン材料を回収する回収管3と、反応管2及び回収管3を接続する連結管4と、反応管2を加熱する加熱部Hと、を備える。ここで、ナノカーボン材料とは、少なくとも一方向のサイズがナノメートル単位またはマイクロメートル単位のカーボン材料であり、ファイバ状、チューブ(中空)状などの種々の形状を有するカーボン材料である。
 反応管2、回収管3、及び連結管4の各々は、例えば断面円形のガラス管やステンレス管である。反応管2は、主反応部21と、分離部22と、導入部23とを有している。反応管2の主反応部21は、図2(a)に示すように、原料ガス供給源51からの原料ガスの供給、及びキャリアガス供給源52からのキャリアガスの供給を受け、図2(b)に示すように、例えばセラミックビーズといった触媒担体10の周りに、ナノカーボン材料9を成長させる部分である。主反応部21は、反応管2の底部側に位置している。また、図1に示すように、主反応部21の断面の直径D1は、例えば2.5cmとなっている。原料ガスには、例えば炭化水素ガスといった炭素原料が用いられる。キャリアガスには、例えば水素、アルゴン、窒素などが用いられる。主反応部21において触媒担体10の周りに成長したナノカーボン材料9は、図3(a)に示すように、触媒担体10から剥離され、キャリアガスに同伴されて分離部22へ移動する。また、ナノカーボン材料9と剥離した触媒担体10の一部は、分離部22へ移動する。
 加熱部Hは、主反応部21におけるナノカーボン材料9の成長を行う際、主反応部21を加熱してナノカーボン材料9の成長を促進する部分である。加熱部Hは、主反応部21の周囲に設けられ、ナノカーボン材料9を成長させる際の主反応部21の温度を約800℃に維持する。
 分離部22は、図3(a)に示すように、キャリアガスに同伴されずに落下する触媒担体10と、キャリアガスに同伴されるナノカーボン材料9との分離がなされる部分である分離部22は、主反応部21の上方に位置している。また、図1に示すように、分離部22の断面の直径D2は、例えば5cmとなっており、主反応部21の断面の直径D1よりも大きくなっている。このような構成により、分離部22の断面積S2は、主反応部21の断面積S1よりも大きくなっており、分離部22内では、主反応部21におけるキャリアガスの流速U1よりも遅い流速U2でナノカーボン材料9がキャリアガスに同伴され、触媒担体10はキャリアガスに同伴されずに落下することで、触媒担体10とナノカーボン材料9が効率良く分離するようになっている。触媒担体10から分離したナノカーボン材料9は、キャリアガス5とともにエアロゾル状の混合体Mとして搬送される。
 なお、上記流速U1は、触媒担体10を攪拌することによりナノカーボン材料9を触媒担体10から分離できる速さ以上となるように調整されている。また、上記流速U2は、触媒担体10が、分離部22を超えて導入部23まで噴き上がる速さ(終端速度)以下となるように調整されている。
 また、分離部22における主反応部21側の端部は、主反応部21側に向かうに従って断面積が小さくなるようなテーパー形状をなしており、導入部23側の端部は、導入部23側に向かうに従って断面積が小さくなるようなテーパー形状をなしている。このような構成により、分離部22の直径が大きくなっていても、分離部22の隅に触媒担体10が溜まりにくくなり、分離部22に進入した触媒担体10を主反応部21に容易に戻すことができる。また、触媒担体10から分離したナノカーボン材料をスムーズに導入部23に流すことができる。
 導入部23は、図3(b)に示すように、分離部22を通過したナノカーボン材料9及びキャリアガス5の混合体Mを連結管4に向けて導入する部分である。導入部23は、分離部22よりもさらに上方に位置している。また、導入部23の断面の直径D3は、例えば2.5cmとなっており、分離部22の断面の直径D2よりも大きくなっている。これにより、分離部22の断面積S2は、導入部23の断面積S3よりも大きくなっており、導入部23内におけるキャリアガスの流速U3は、分離部22内におけるキャリアガスの流速U2よりも速くなり、混合体Mを分離部22から連結管4にスムーズに導入させることができる。
 連結管4は、反応管2から回収管3にナノカーボン材料9及びキャリアガス5の混合体Mを導入させる部分である。連結管4の一端は、導入部23の先端部分に連結され、他端は、回収管3の中間部分に連結されている。また、連結管4は、導入部23から導入された混合体Mが回収管3に向かって下降しながら流れるように、所定の角度θで傾斜した状態となっている。この角度θは、例えば1°以上90°以下の範囲で適宜設定される。
 また、連結管4の断面の直径D4は、例えば2.5cmとなっており、導入部23の断面の直径D3と同等となっている。これにより、連結管4内におけるキャリアガスの流速U4は、導入部23内におけるキャリアガスの流速U3と同等となっている。これらの流速U3,U4は、導入部23あるいは連結管4の内壁に沈積または堆積したナノカーボン材料を押し流せる速さ以上となるように調整されている。なお、導入部23の断面の直径D3及び連結管4の断面の直径D4は、いずれも主反応部21の断面の直径D1よりも小さくなっていることが好ましい。この場合、主反応部21で生成されたナノカーボン材料9を導入部23及び連結管4を経由して回収管3へスムーズに移動させることができる。
 回収管3は、連結管4を通過した混合体Mからナノカーボン材料9を回収する部分である。この回収管3は、捕捉部31と排出部32とを有している。排出部32は、連結管4との接続部分33よりも上方に位置している。キャリアガスはキャリアガス供給源52から大気圧以上で供給されることで、図4(a)に示すように、混合体M中のキャリアガス5が接続部分33から上方に流れて外部に排出される。
 一方、捕捉部31は、連結管4と回収管3との接続部分33よりも下方において、排出部32の真下に位置している。この捕捉部31には、図4(a)に示すように、重力沈降によって混合体Mから分離したナノカーボン材料91,93が堆積する。そして、捕捉部31に堆積したナノカーボン材料93は、開放弁7の開放によって外部に回収される。
 また、上述した排出部32には、ナノカーボン材料92を遮断するフィルタFが設けられている。これにより、重力沈降によって捕捉部31に捕捉される前にキャリアガス5の流れによって接続部分33よりも上方にナノカーボン材料92が舞い上がったとしても、フィルタFでナノカーボン材料92を捕捉することができる。フィルタFで捕捉されたナノカーボン材料92は、図4(b)に示すように、一定量が集まることによって重力沈降し、捕捉部31で捕捉される。なお、フィルタFに定期的に振動を与え、フィルタFからのナノカーボン材料92の落下を促すようにしてもよい。また、キャリアガス流量を間歇的に低下させて、ないしは逆流させて、フィルタFからのナノカーボン材料92の落下を促すようにしてもよい。
 このような回収管3の断面の直径D5は、例えば8cmとなっており、連結管4の断面の直径D4よりも大きくなっている。これにより、回収管3の断面積S5は、連結管4の断面積S4よりも大きくなっており、回収管3内におけるキャリアガスの流速U5は、連結管4内におけるキャリアガスの流速U4よりも遅くなり、キャリアガス5の流れに逆らってナノカーボン材料91が重力沈降し易いようになっている。なお、この流速U5は、回収管3の捕捉部31に堆積したナノカーボン材料が舞い上がらない速度以下となるように調整されている。
 また、回収管3の断面の直径D5は、分離部22の断面の直径D2以上となっていることが好ましい。この場合、回収管3の捕捉部31の容量が十分確保され、ナノカーボン材料91,92,93の回収量を大きくすることができる。なお、説明の便宜上、図2~図4では、ナノカーボン材料の製造の流れを断続的に示したが、実際にはナノカーボン材料の成長は一定時間実施されるものであり、図2~図4に示される一連の流れが連続的に行われている。
 以上のように、このナノカーボン材料製造装置1では、反応管2で成長したナノカーボン材料9がキャリアガス5の流れに乗って混合体Mとして連結管4を通過し、回収管3に送られる。ここで、このナノカーボン材料製造装置1では、連結管4との接続部分33よりも上方に排出部32が設けられ、連結管4との接続部分33よりも下方に捕捉部31が設けられている。よって、混合体Mに含まれるキャリアガス5は、接続部分33から上方に流れて排出部32から排出される一方で、混合体M中のナノカーボン材料は、重力沈降によって接続部分33から下方に落下して混合体Mから分離し、捕捉部31によって捕捉される。したがって、このナノカーボン材料製造装置1では、従来のようにフィルタの交換等を行わずとも、多量のナノカーボン材料を容易に回収できる。また、回収管の捕捉部31の容量に応じて、一度に多量のナノカーボン材料を回収できる。
 また、このナノカーボン材料製造装置1では、あらかじめ攪拌によって触媒担体10からナノカーボン材料9を分離するので、酸処理などのナノカーボン材料にダメージを与える精製処理を用いる必要がなくなるので、このような精製処理に起因するナノカーボン材料へのダメージがなくなる。
 本発明に係るナノカーボン材料の製造方法は、ナノカーボン材料製造装置1を用いた製造方法である。従来のナノカーボン材料の製造方法における触媒担体を流動層装置から取り出す工程等の一連の工程の実施には、ナノカーボン材料の成長時間(約10分間)に比べて膨大な時間(数時間~数日)を要するため、生産効率の面で問題がある。これに対し、このナノカーボン材料製造装置1を用いた製造方法では、温度一定のままキャリアガス5の切り替えだけでナノカーボン材料9のみを触媒担体10から分離・回収できる。このため、一連の工程に要する時間を極めて短縮することができる。これにより、ナノカーボン材料の生産効率を高めることができる。
 また、ナノカーボン材料製造装置1を用いた製造方法では、キャリアガス5の流れに乗せてナノカーボン材料9を触媒担体10から分離・回収することにより、単体のナノカーボン材料製造装置1でナノカーボン材料を製造できる。さらに、ナノカーボン材料製造装置1を用いた製造方法では、キャリアガス5の流れに乗せてナノカーボン材料9を触媒担体10から分離・回収することにより、高純度(99wt%)のナノカーボン材料を得ることができる。これにより、ナノカーボン材料の後工程での各種処理が容易になる。
 以上、本実施形態におけるナノカーボン材料製造装置1及びナノカーボン材料製造装置1を用いた製造方法を説明したが、本発明はこれらに限定されない。例えば、反応管2、回収管3、及び連結管4の断面形状は、円形に限られず、例えば楕円や矩形などでもよい。また、図1に示す例では、排出部32が捕捉部31の真上に位置するが、排出部32は、連結管4との接続部分33よりも上方であれば、捕捉部31の真上から横にずれた位置に設けられていてもよい。さらに、連結管4内を流れるキャリアガスの流速U4が、ナノカーボン材料を移動させるに足りるほど速い場合には、連結管4の傾斜の角度θが90度以上であってもよい。
 1…ナノカーボン材料製造装置、2…反応管、21…主反応部、22…分離部、23…導入部、3…回収管、31…捕捉部、32…排出部、33…接続部分、4…連結管、7…開放弁、11…取り出し部、F…フィルタ、H…加熱部、51…原料ガス供給源、52…キャリアガス供給源、9,91,92,93…ナノカーボン材料。

Claims (8)

  1.  原料ガス及びキャリアガスの供給を受けてナノカーボン材料を成長させる反応管と、
     前記反応管に接続され、前記ナノカーボン材料と前記キャリアガスとのエアロゾル状の混合体が通過する連結管と、
     前記連結管に接続され、前記混合体から前記ナノカーボン材料を回収する回収管と、
    を備え、
     前記回収管は、
     前記連結管との接続部分よりも上方に位置し、前記混合体に含まれる前記キャリアガスを外部に排出する排出部と、
     前記連結管との接続部分よりも下方に位置し、重力沈降によって前記混合体から分離した前記ナノカーボン材料を捕捉する捕捉部と、を有するナノカーボン材料製造装置。
  2.  前記排出部には、前記ナノカーボン材料を遮断するフィルタが設けられている請求項1記載のナノカーボン材料製造装置。
  3.  前記連結管は、前記混合体が前記反応管から前記回収管に向かって下降しながら流れるように傾斜している請求項1又は2記載のナノカーボン材料製造装置。
  4.  前記反応管は、
     触媒担体を内部に有し、前記触媒担体周りの前記ナノカーボン材料の成長が行われ、前記キャリアガスによる前記触媒担体の攪拌によって前記触媒担体からの前記ナノカーボン材料の剥離がなされる主反応部と、
     前記主反応部の上方に位置し、前記キャリアガスに同伴されずに落下する前記触媒担体と前記キャリアガスに同伴される前記剥離されたナノカーボン材料の分離がなされる分離部と、を有し、
     前記分離部の断面積は、前記主反応部の断面積よりも大きくなっている請求項1~3のいずれか一項記載のナノカーボン材料製造装置。
  5.  前記反応管は、
     前記分離部の上方に位置し、前記連結管との接続部分となる導入部を更に有し、
     前記分離部の断面積は、前記導入部の断面積よりも大きくなっている請求項4記載のナノカーボン材料製造装置。
  6.  前記回収管の断面積は、前記連結管の断面積よりも大きくなっている請求項1~5のいずれか一項記載のナノカーボン材料製造装置。
  7.  前記回収管は、前記捕捉部で捕捉された前記ナノカーボン材料を外部に開放する開放弁を更に備える請求項1~6のいずれか一項記載のナノカーボン材料製造装置。
  8.  請求項1~7のいずれか一項記載のナノカーボン材料製造装置を用いたナノカーボン材料の製造方法。
PCT/JP2011/053420 2010-02-19 2011-02-17 ナノカーボン材料製造装置及びナノカーボン材料の製造方法 WO2011102433A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN2011800078890A CN102741162A (zh) 2010-02-19 2011-02-17 纳米碳材料制造装置及纳米碳材料的制造方法
US13/579,627 US9315384B2 (en) 2010-02-19 2011-02-17 Apparatus for producing nanocarbon material and method for producing nanocarbon material
KR1020127016883A KR101864455B1 (ko) 2010-02-19 2011-02-17 나노카본재료 제조장치 및 나노카본재료 제조방법
EP11744719.3A EP2537799B1 (en) 2010-02-19 2011-02-17 Apparatus for producing nanocarbon material and method for producing nanocarbon material
CA2790021A CA2790021C (en) 2010-02-19 2011-02-17 Apparatus for producing carbon nanomaterial and method for producing carbon nanomaterial
JP2012500647A JP5862559B2 (ja) 2010-02-19 2011-02-17 ナノカーボン材料製造装置及びナノカーボン材料の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010035239 2010-02-19
JP2010-035239 2010-02-19

Publications (1)

Publication Number Publication Date
WO2011102433A1 true WO2011102433A1 (ja) 2011-08-25

Family

ID=44483019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/053420 WO2011102433A1 (ja) 2010-02-19 2011-02-17 ナノカーボン材料製造装置及びナノカーボン材料の製造方法

Country Status (7)

Country Link
US (1) US9315384B2 (ja)
EP (1) EP2537799B1 (ja)
JP (1) JP5862559B2 (ja)
KR (1) KR101864455B1 (ja)
CN (1) CN102741162A (ja)
CA (1) CA2790021C (ja)
WO (1) WO2011102433A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015521146A (ja) * 2012-04-18 2015-07-27 エクソンモービル アップストリーム リサーチ カンパニー 連続反応器流出物からのカーボンナノチューブの除去
WO2017145952A1 (ja) * 2016-02-27 2017-08-31 学校法人早稲田大学 粒子処理装置、並びに触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法
WO2017154529A1 (ja) * 2016-03-08 2017-09-14 学校法人早稲田大学 繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105271164B (zh) * 2014-07-17 2019-08-20 山东大展纳米材料有限公司 一种连续化制备碳纳米管的装置及方法
US10773405B2 (en) 2016-06-30 2020-09-15 The Gillette Company Llc Shaving aid for razor cartridges comprising a nano-filament comprising a core and sheath
BR112018077509A2 (pt) 2016-06-30 2019-04-09 Gillette Co Llc auxiliar de barbeamento ou depilação para cartuchos de aparelho de barbear ou depilar que compreende filamentos
US11020865B2 (en) 2016-06-30 2021-06-01 The Gillette Company Llc Shaving aid for razor cartridges comprising a nano-filament
KR102047370B1 (ko) * 2016-07-14 2019-11-22 주식회사 엘지화학 카본나노튜브 제품 건조 및 회수 장치 및 이를 이용한 카본나노튜브 제조방법
KR102388564B1 (ko) * 2017-07-03 2022-04-20 에스케이이노베이션 주식회사 유동층 반응기에서 카본 나노튜브 제조 방법
JP7411966B2 (ja) 2019-02-26 2024-01-12 学校法人早稲田大学 二次電池用負極、二次電池、および二次電池用負極の製造方法
EP4317055A1 (en) 2021-03-25 2024-02-07 IHI Corporation Hydrogen production device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265209A (ja) * 2001-03-12 2002-09-18 Kazuyuki Taji カーボンナノチューブの精製方法
JP2004091959A (ja) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd カーボンナノファイバーの製造方法及び装置
JP2004269298A (ja) * 2003-03-06 2004-09-30 Mitsubishi Chemicals Corp フラーレンの製造方法及びその製造装置
JP2005008456A (ja) * 2003-06-17 2005-01-13 Frontier Carbon Corp フラーレンの製造方法及びその設備
JP2006232595A (ja) * 2005-02-23 2006-09-07 Mitsubishi Heavy Ind Ltd ナノカーボン材料の製造装置及びナノカーボン材料の製造システム
JP2008188565A (ja) 2007-02-07 2008-08-21 Mitsubishi Heavy Ind Ltd 流動触媒及びそれを用いたナノカーボン材料の製造装置及びシステム
WO2009081645A1 (ja) 2007-12-26 2009-07-02 Nikkiso Co., Ltd. カーボンナノチューブまたはカーボンナノファイバの製造装置、回収装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141250C (zh) * 2001-05-25 2004-03-10 清华大学 一种流化床连续化制备碳纳米管的方法及其反应装置
US6887291B2 (en) * 2001-08-30 2005-05-03 Tda Research, Inc. Filter devices and methods for carbon nanomaterial collection
AU2003252658A1 (en) * 2002-07-17 2004-02-02 Bussan Nanotech Research Institute Inc. Method for producing fine carbon fiber
CA2500766A1 (en) * 2005-03-14 2006-09-14 National Research Council Of Canada Method and apparatus for the continuous production and functionalization of single-walled carbon nanotubes using a high frequency induction plasma torch
JP4966801B2 (ja) 2007-09-26 2012-07-04 株式会社日立製作所 映像表示装置
KR100977147B1 (ko) * 2007-12-31 2010-08-23 세메스 주식회사 유동층 탄소나노튜브 생성 장치 및 그것을 사용한탄소나노튜브 생성 설비 및 방법
EP2269950A4 (en) * 2008-03-07 2015-04-22 Hitachi Chemical Co Ltd METHOD FOR MANUFACTURING CARBON NANOTUBES AND APPARATUS FOR MANUFACTURING CARBON NANOTUBES

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002265209A (ja) * 2001-03-12 2002-09-18 Kazuyuki Taji カーボンナノチューブの精製方法
JP2004091959A (ja) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd カーボンナノファイバーの製造方法及び装置
JP2004269298A (ja) * 2003-03-06 2004-09-30 Mitsubishi Chemicals Corp フラーレンの製造方法及びその製造装置
JP2005008456A (ja) * 2003-06-17 2005-01-13 Frontier Carbon Corp フラーレンの製造方法及びその設備
JP2006232595A (ja) * 2005-02-23 2006-09-07 Mitsubishi Heavy Ind Ltd ナノカーボン材料の製造装置及びナノカーボン材料の製造システム
JP2008188565A (ja) 2007-02-07 2008-08-21 Mitsubishi Heavy Ind Ltd 流動触媒及びそれを用いたナノカーボン材料の製造装置及びシステム
WO2009081645A1 (ja) 2007-12-26 2009-07-02 Nikkiso Co., Ltd. カーボンナノチューブまたはカーボンナノファイバの製造装置、回収装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015521146A (ja) * 2012-04-18 2015-07-27 エクソンモービル アップストリーム リサーチ カンパニー 連続反応器流出物からのカーボンナノチューブの除去
US10343104B2 (en) 2012-04-18 2019-07-09 Exxonmobil Upstream Research Company Removing carbon nanotubes from a continuous reactor effluent
WO2017145952A1 (ja) * 2016-02-27 2017-08-31 学校法人早稲田大学 粒子処理装置、並びに触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法
JPWO2017145952A1 (ja) * 2016-02-27 2018-12-13 学校法人早稲田大学 粒子処理装置、並びに触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法
WO2017154529A1 (ja) * 2016-03-08 2017-09-14 学校法人早稲田大学 繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法
JPWO2017154529A1 (ja) * 2016-03-08 2019-01-17 学校法人早稲田大学 繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法

Also Published As

Publication number Publication date
CN102741162A (zh) 2012-10-17
US9315384B2 (en) 2016-04-19
KR20120132471A (ko) 2012-12-05
EP2537799B1 (en) 2019-09-11
JP5862559B2 (ja) 2016-02-16
US20130017142A1 (en) 2013-01-17
CA2790021A1 (en) 2011-08-25
KR101864455B1 (ko) 2018-06-04
CA2790021C (en) 2017-08-29
JPWO2011102433A1 (ja) 2013-06-17
EP2537799A4 (en) 2016-06-15
EP2537799A1 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP5862559B2 (ja) ナノカーボン材料製造装置及びナノカーボン材料の製造方法
US8354088B2 (en) Methods and apparatus for recovery of silicon and silicon carbide from spent wafer-sawing slurry
TWI477447B (zh) 透過單矽烷之熱裂解製造二矽烷之方法及裝置
EP2828212A1 (en) Removing carbon nanotubes from a water system
JP2005501789A (ja) カーボンナノ材料を連続製造するためのフィルター装置及び方法
KR20110112223A (ko) 실리콘 및 탄화규소의 제조방법 및 제조장치
JPWO2007125816A1 (ja) カーボンナノホーンの製造装置及び製造方法
US8945293B2 (en) Silicon oxide removal apparatus and facility for recycling inert gas for use in silicon single crystal manufacturing apparatus
JP5533601B2 (ja) 高純度シリコン微粉末の製造装置
US20120285194A1 (en) Dry dust removal method in organic chlorosilane production
JP5423418B2 (ja) トリクロロシラン製造装置
US11459236B2 (en) Hydrogen sulfide production method and sulfur recovery method
JP2660007B2 (ja) 昇華性有機化合物の捕集方法およびその装置
EP1712521A1 (en) Apparatus and method for preparing fullerene
CN108778992B (zh) 纤维状碳纳米结构体制造装置以及纤维状碳纳米结构体制造方法
WO2006077717A1 (ja) 高純度シリカ粉の製造方法及び装置、並びに高純度シリカ粉
US11241648B2 (en) Apparatus and method for cleaning a stream
JP2001139302A (ja) 炭素資源から水素を製造する装置
JPH029728A (ja) 石英ガラス微粒子の回収方法および装置
JP2008037661A (ja) カーボンナノホーン粒子の製造方法およびその製造装置
JPH07278153A (ja) 無水ピロメリット酸の捕集方法
JP2006169002A (ja) 分別捕集装置、および分別捕集方法
JP2004231637A (ja) 芳香族カルボン酸の製造方法
CN102659115A (zh) 处理四氯化硅氢化副产物的方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180007889.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11744719

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012500647

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127016883

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2790021

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011744719

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13579627

Country of ref document: US