WO2017154529A1 - 繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法 - Google Patents

繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法 Download PDF

Info

Publication number
WO2017154529A1
WO2017154529A1 PCT/JP2017/006000 JP2017006000W WO2017154529A1 WO 2017154529 A1 WO2017154529 A1 WO 2017154529A1 JP 2017006000 W JP2017006000 W JP 2017006000W WO 2017154529 A1 WO2017154529 A1 WO 2017154529A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous carbon
carbon nanostructure
gas
catalyst
synthesizer
Prior art date
Application number
PCT/JP2017/006000
Other languages
English (en)
French (fr)
Inventor
野田 優
孝祐 川端
利男 大沢
孝剛 本郷
Original Assignee
学校法人早稲田大学
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学, 日本ゼオン株式会社 filed Critical 学校法人早稲田大学
Priority to CN201780014334.6A priority Critical patent/CN108778992B/zh
Priority to JP2018504333A priority patent/JP6755029B2/ja
Publication of WO2017154529A1 publication Critical patent/WO2017154529A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes

Definitions

  • the present invention relates to a fibrous carbon nanostructure production apparatus and a fibrous carbon nanostructure production method.
  • CNT carbon nanotubes
  • fibrous carbon nanostructures such as CNTs were generally more expensive than other materials due to high manufacturing costs. For this reason, in spite of having the above-mentioned excellent characteristics, its application has been limited. Further, in recent years, a CVD (Chemical Vapor Deposition) method using a catalyst (hereinafter sometimes referred to as “catalytic CVD method”) has been used as a production method capable of producing CNTs and the like with relatively high efficiency. It was. However, even with the catalytic CVD method, the manufacturing cost could not be reduced sufficiently.
  • a method has been proposed in which a fluidized bed is formed by a particulate catalyst carrier, and a raw material gas containing a carbon source is supplied to the fluidized bed to synthesize CNTs on the surface of the catalyst carrier (for example, a patent Reference 1).
  • a catalyst carrier is activated in a catalyst activation reactor, and a CNT synthesizer disposed obliquely downward is provided through a circulation pipe attached to a side surface of the catalyst activation reactor.
  • an activated catalyst carrier is supplied.
  • a fluidized bed is formed by the catalyst support in the reactor, and a raw material gas containing a carbon source is flowed from below to the fluidized bed to synthesize CNTs on the surface of the catalyst support.
  • the side surface of the catalyst activation reactor and the side surface of the CNT synthesizer arranged obliquely are communicated with each other through a circulation pipe, and are stacked above the circulation pipe in the catalyst activation reactor.
  • the configured catalyst carrier is configured to flow into the CNT synthesizer.
  • the activated catalyst carrier is supported. It was necessary for the body to always be laminated to a position higher than the connection position of the circulation pipe.
  • the present invention suppresses inflow of any of the reduction, oxidation, or catalyst adhesion into the synthesizer, that is, the unprepared catalyst carrier, and the prepared catalyst carrier. It aims at providing the fibrous carbon nanostructure manufacturing apparatus and fibrous carbon nanostructure manufacturing method which can improve supply efficiency.
  • the present inventors have intensively studied for the purpose of solving the above problems. Then, the inventors have improved the supply efficiency of the prepared catalyst carrier into the synthesizer by adopting a device configuration in which the synthesizer is arranged below the preparation device having a tapered lower part. In addition, the present inventors have newly found out that an unprepared catalyst carrier can be prevented from flowing into the synthesizer, and completed the present invention.
  • the present invention aims to advantageously solve the above problems, and the apparatus for producing fibrous carbon nanostructures of the present invention uses the supplied carrier particles to form a catalyst on the carrier particles.
  • An apparatus for manufacturing a fibrous carbon nanostructure, the preparation device having a tapered portion that can accommodate the carrier particles and has an inner diameter that decreases downward, and at the bottom of the tapered portion,
  • the manufacturing apparatus has an outlet configured to be able to discharge the catalyst carrier, and the manufacturing apparatus is prepared in the preparation device by communicating the outlet and the inside of the fibrous carbon nanostructure synthesizer.
  • the catalyst carrier is combined with the fibrous carbon nanostructure.
  • a first pipe transferable into the vessel, a first gas supply pipe connected to the first pipe, a first gas supply mechanism for supplying the first gas from the discharge port into the preparation device, A second gas supply mechanism for supplying a second gas into the fibrous carbon nanostructure synthesizer, and above the connection between the preparation device and the first gas supply pipe and the first pipe.
  • the first pipe is not provided with a member capable of blocking the movement of the catalyst carrier transferred into the fibrous carbon nanostructure synthesizer.
  • the apparatus for producing a fibrous carbon nanostructure of the present invention introduces carrier particles and reduces, oxidizes, and catalyzes the carrier particles with the first gas fed into the preparation device from the bottom of the taper portion.
  • a catalyst carrier is prepared by performing any one or more of the treatments, and the prepared catalyst carrier is discharged from the outlet arranged at the bottom of the taper portion. While suppressing inflow of particle
  • carrier particles refer to particles that can be the core of a catalyst support
  • catalyst support refers to particles obtained through a preparation step in a preparation device.
  • the first gas supply mechanism holds at least a part of the carrier particles and / or the catalyst carrier in the preparation device, and the preparation device. It is preferable that a first gas supply control mechanism capable of supplying the first gas at a gas flow rate capable of flowing at least a part of the carrier particles and / or the catalyst carrier inside is preferably provided. This is because the catalyst carrier can be efficiently brought into the prepared state by reliably holding the catalyst carrier in the preparation device.
  • the preparation device and / or the fibrous carbon nanostructure synthesizer further include a heating mechanism for heating the inside. This is because the temperature inside the synthesizer can be reliably raised and the catalyst carrier can be efficiently prepared.
  • the first gas supply mechanism may be capable of supplying at least one of a reducing gas, an oxygen element-containing gas, and a catalyst material gas.
  • the fibrous carbon nanostructure manufacturing apparatus of the present invention is installed in the subsequent stage of the fibrous carbon nanostructure synthesizer, and synthesized from the second gas in the fibrous carbon nanostructure synthesizer. It is preferable to further include a separator that separates a composite formed by arranging fibrous carbon nanostructures on the catalyst support. This is because the catalyst carrier having the fibrous carbon nanostructures on the surface can be efficiently collected to improve the yield of the fibrous carbon nanostructures.
  • the fibrous carbon nanostructure manufacturing apparatus of this invention is the 2nd gas exhaust port from which the said fibrous carbon nanostructure synthesizer discharge
  • the fibrous carbon nanostructure manufacturing method of this invention is fibrous using the fibrous carbon nanostructure manufacturing apparatus mentioned above.
  • a first catalyst is brought into contact with the supplied carrier particles, and a particulate catalyst carrier having a catalyst supported on the carrier particles is continuously produced.
  • Catalyst carrier preparation step for preparing the catalyst carrier in a continuous or semi-continuous manner, and a catalyst carrier supply step for continuously or semi-continuously supplying the obtained catalyst carrier to the fibrous carbon nanostructure synthesizer
  • a composite is formed of the fibrous carbon nanostructure.
  • a recovery step of taking out from the body synthesizer and is characterized in that it comprises a. According to this method, a fibrous carbon nanostructure can be produced efficiently.
  • the catalyst carrier preparation step supplies a catalyst material gas as the first gas into the preparation device and attaches the catalyst material to the carrier particles. It is preferable to include the step to make. According to this method, the fibrous carbon nanostructure can be more efficiently produced.
  • the catalyst carrier preparation step includes a step of heating the catalyst carrier in the heated preparation device, and the catalyst carrier supply step Preferably includes a step of transferring the heated catalyst carrier to the fibrous carbon nanostructure synthesizer while maintaining the heated state. This is because according to such a method, the fibrous carbon nanostructure can be produced more efficiently.
  • the catalyst carrier preparation step supplies a reducing gas as the first gas into the preparation device to obtain the catalyst carrier in a reduced state.
  • the catalyst carrier supplying step includes a step of transferring the reduced catalyst carrier to the fibrous carbon nanostructure synthesizer while maintaining a reducing atmosphere with the reducing gas. This is because according to such a method, the fibrous carbon nanostructure can be produced more efficiently.
  • the present invention it is possible to improve the supply efficiency of the prepared catalyst carrier into the synthesizer and to prevent the unprepared catalyst carrier from flowing into the synthesizer.
  • the fibrous carbon nanostructure production apparatus of the present invention prepares a particulate catalyst carrier in which a catalyst is supported on the carrier particles from the supplied carrier particles, and on the prepared catalyst carrier.
  • a fibrous carbon nanostructure can be produced by synthesizing a fibrous carbon nanostructure.
  • “particulate” means that the aspect ratio is less than 5.
  • the aspect ratio of the carrier particles and the catalyst carrier for example, on the microscope image, the value of 100 carrier particles / catalyst carrier arbitrarily selected (maximum major axis / width perpendicular to the maximum major axis) is calculated. This can be confirmed by calculating the average value.
  • the fibrous carbon nanostructure manufacturing method of this invention can be enforced using the fibrous carbon nanostructure manufacturing apparatus of this invention.
  • the fibrous carbon nanostructure that can be formed using the fibrous carbon nanostructure production apparatus and the fibrous carbon nanostructure production apparatus of the present invention include carbon nanotubes and carbon nanofibers. .
  • FIG. 1 is a schematic view showing an example of the configuration of the fibrous carbon nanostructure production apparatus of the present invention.
  • the fibrous carbon nanostructure manufacturing apparatus 100 of the present invention includes a preparation device 10, a first pipe 20, a first gas supply pipe 30, a fibrous carbon nanostructure synthesizer 40, and a second gas supply pipe 50.
  • the first pipe 20 and the first gas supply pipe 30 are connected by a connection part 60, and the fibrous carbon nanostructure manufacturing apparatus 100 is located above the lower end of the connection part 60, and the preparation device 10 and the first gas supply pipe 30.
  • One pipe 20 is not provided with a member for blocking the movement of the catalyst carrier.
  • the fibrous carbon nanostructure manufacturing apparatus 100 does not include a physical mechanism for blocking the movement of the support particles and / or the catalyst support that can flow down from the preparation device 10.
  • the preparation device 10, the first pipe 20, the first gas supply pipe 30, the fibrous carbon nanostructure synthesizer 40, and the second gas supply pipe 50 are not particularly limited. It can be constituted by a glass tube or a stainless steel tube.
  • the fibrous carbon nanostructure manufacturing apparatus 100 first introduces carrier particles into the preparation device 10, and lowers the first gas that has passed through the first gas supply pipe 30 and the first pipe 20 with respect to the carrier particles.
  • the catalyst is supplied to the carrier and fluidized in the preparation device, whereby the carrier particles are subjected to preparation steps such as catalyst adhesion, oxidation and reduction.
  • the catalyst support body which passed through the preparation process is transferred to the fibrous carbon nanostructure synthesizer 40 through the 1st piping 20, and is provided for the synthesis
  • each component of the fibrous carbon nanostructure manufacturing apparatus 100 will be described in more detail.
  • the preparation device 10 has a main body and a tapered portion 11 whose inner diameter becomes smaller in the downward direction.
  • the main body and the tapered portion 11 or the tapered portion 11 can accommodate the carrier particles and / or the catalyst carrier 70.
  • the taper part 11 is configured to be able to accommodate the carrier particles and / or the particulate catalyst support 70 and to discharge the catalyst support 70 from the discharge port 12 formed at the bottom of the taper part 11.
  • the preparation device 10 may have a carrier particle supply port 10 that supplies carrier particles into the preparation device 10 above the discharge port 12.
  • examples of the carrier particles to be introduced into the preparation device 10 include particles to which no catalyst material is attached, so-called solid particles, particles to which a catalyst material is attached, or used carrier particles with a catalyst material. It is done. That is, in the preparation device 10, the catalyst material can be attached to the carrier particles in a state where the catalyst material has not yet been attached, or treatment such as reduction or oxidation can be performed. In addition, it is possible to carry out treatments such as reduction and oxidation on the carrier particles to which the catalyst material has already adhered, such as a used catalyst carrier, and it is possible to further adhere the catalyst material.
  • the carrier particles and / or the catalyst carrier 70 form a fluidized bed inside the preparation device 10 including the tapered portion 11. Specifically, the carrier particles and / or the catalyst carrier 70 are blown up from the lower side by the first gas through the discharge port 12 and flow in the preparation device 10. When the flow rate of the first gas is sufficiently large, almost all the carrier particles and / or the catalyst carrier 70 flow in the preparation device 10. Further, by setting the flow rate of the first gas to a flow rate lower than the flow rate at which almost all the carrier particles and / or the catalyst support 70 can flow in the preparation device 10, as shown in FIG. While part of the prepared catalyst carrier 70 is caused to flow in the preparation device 10, the other part can be caused to flow down and discharged from the preparation device 10.
  • the first gas may be a catalyst material gas, a reducing gas, a drying gas, and / or an oxygen element-containing gas.
  • the content of the preparation process in the preparation device 10 is determined by the type of the first gas. That is, when the catalyst material gas is supplied as the first gas, the catalyst material can be attached to the carrier particles. Further, if a reducing gas is supplied as the first gas, a reduced catalyst carrier can be obtained. Furthermore, if a dry gas is supplied as the first gas, a dry catalyst carrier can be obtained. Furthermore, if an oxygen element-containing gas is supplied as the first gas, the surface of the carrier particles can be oxidized or the catalyst carrier can be fired.
  • the solid particles or the used catalyst support are supplied to the preparation device 10.
  • a gas containing a catalyst material can be supplied as the first gas.
  • the catalyst material is not particularly limited, and examples thereof include a vapor of a compound containing at least one element selected from the group including Si, Al, Mg, Fe, Co, and Ni.
  • the first gas may contain a plurality of vapors of such compounds.
  • the catalyst component is favorably supported on the carrier particles prior to the catalyst component that functions as a catalyst that contributes to the synthesis of the fibrous carbon nanostructure during the production of the fibrous carbon nanostructure.
  • the metal oxide component for the carrier particles is preferable to deposit on the support particles.
  • Si, Al, and Mg are effective as components that can be used as raw materials for such metal oxide components.
  • a gas containing one or more elements selected from Si, Al, and Mg is usually 0.01 volume.
  • the oxygen element-containing gas is usually 0.01% by volume or more and 21% by volume or less.
  • the first gas may contain 69% by volume or more of an inert gas.
  • Fe, Co, and Ni are components that can form a catalyst on carrier particles or metal oxides.
  • the compound containing such a component include tris (2,4-pentanedionato) iron (III), bis (cyclopentadienyl) iron (II) (hereinafter also referred to as “ferrocene”), iron chloride.
  • Fe-containing catalyst materials such as (III) and iron carbonyl, Co such as tris (2,4-pentanedionato) cobalt (III), bis (cyclopentadienyl) cobalt (II), and cobalt chloride (II)
  • Ni-containing catalyst materials such as bis (2,4-pentanedionato) nickel (II) and bis (cyclopentadienyl) nickel (II).
  • the first gas is usually a vapor of a compound containing at least one element selected from the group including Fe, Co, and Ni, 0.001% by volume to 10% by volume, and an oxygen element-containing gas. May be included in an amount of 0.01% to 21% by volume. In addition to these, the first gas may usually contain 69% by volume or more of an inert gas such as nitrogen.
  • Al and Fe are particularly preferable as components used for supplying the first gas and supporting the catalyst on the carrier particles. More specifically, if a layer made of aluminum oxide, which is a metal oxide, is formed by vapor of a compound containing Al, and the Fe catalyst is supported by such layer, the catalytic activity of the obtained catalyst support is good. Because it becomes.
  • the preparation device 10 by supplying a gas containing oxygen element-containing gas such as oxygen, water vapor, and / or carbon dioxide as the first gas to the preparation device 10, impurities remaining on the carrier particles and carbon components are removed. Oxidized and removed, and then the gas containing the catalyst material can be supplied as the first gas.
  • oxygen element-containing gases can be used in combination of a plurality of types. If the impurities, carbon components, and the like attached on the carrier particles are removed by the oxidation treatment, the catalyst can be favorably supported on the carrier particles. Further, if the surface of the carrier particles is oxidized, the metal oxide or catalyst for supporting the catalyst can be favorably supported.
  • the concentration of the oxygen element-containing gas in the first gas containing the oxygen element-containing gas supplied for the purpose of oxidizing the carrier particle surface is usually 1% by volume or more, preferably 5% by volume or more. This is because the oxidation treatment can be carried out efficiently.
  • the concentration of the reducing gas in the first gas containing the oxygen element-containing gas supplied for the purpose of oxidizing the surface of the carrier particles is usually less than 1% by volume.
  • the catalyst material when the catalyst material is attached to the preparation device 10 or when the catalyst material is attached to the carrier particles in the preparation device 10, reduction of hydrogen or the like as the first gas.
  • a gas containing a reactive gas By supplying a gas containing a reactive gas, a reduced catalyst carrier can be obtained.
  • 1 volume% or more of 1st gas should just be a reducing gas, and 100 volume% may be a reducing gas.
  • the particles to which the catalyst material is attached may be particles that have been attached by a general wet support method or dry support method and have been subjected to the firing treatment or after the firing treatment.
  • the reducing gas is used as the first gas after performing the firing process, if necessary.
  • a reduction treatment can be performed on the carrier particles to obtain a reduced catalyst carrier.
  • Such reduction treatment is not necessarily performed by the preparation device 10, and can also be performed by the fibrous carbon nanostructure synthesizer 40 described later.
  • “reduction treatment” means a step in which the environment surrounding the catalyst carrier carrying the catalyst is set as a reducing gas environment, and the catalyst is reduced to a high temperature environment of a predetermined temperature or higher. .
  • the catalyst is reduced, and the fine particle formation of the catalyst is promoted to be in a state suitable for CNT growth and / or the activity of the catalyst is improved.
  • the catalyst is Fe
  • a catalyst in such a state is suitable for the production of CNTs.
  • the carrier particles and / or the catalyst carrier can be dried by supplying a dry gas as the first gas and bringing it into contact with the carrier particles and / or the catalyst carrier.
  • a dry gas for example, air having a dew point of ⁇ 10 ° C. or lower can be supplied.
  • the carrier particles and / or the catalyst carrier 70 are at a speed higher than the rate at which all of the carrier particles and / or the catalyst carrier 70 fall by their own weight. It is preferable that the first gas flows into the preparation device 10 at a speed lower than the speed at which the carrier 70 can be blown out of the preparation device 10. As a result, it is possible to keep at least a part of the carrier particles and / or the catalyst carrier 70 forming the fluidized bed in the preparation device 10. The falling speed can be determined based on the size and density of the carrier particles and / or the catalyst carrier.
  • the volume of the preparation device 10 can also be determined by the amount of catalyst carrier required, the desired preparation time, and the like.
  • the shape of the tapered portion 11 and the tube diameter and volume of the preparation device 10 can be appropriately determined according to the required amount of catalyst carrier to be prepared, the particle diameter of the carrier particles, the density of the carrier particles, and the like. it can.
  • the ratio of the diameter at the discharge port 12 and the inner diameter of the preparation device 10 (the inner diameter of the preparation device 10: the inner diameter of the discharge port 12) is 3: 1 or more. It is preferable that it is usually 30: 1 or less.
  • the gas flow rate varies depending on the cross-sectional area of the tube through which the gas passes. Therefore, when the ratio of the diameters above and below the taper portion 11 is 3: 1, the gas flow rate at the discharge port 12 corresponding to the lower portion of the taper portion 11 is about 10 times the gas flow rate above the taper portion 11. Become.
  • the gas flow rate in the preparation device 10 can be adjusted in a stepwise manner, and the gas flow rate is sufficient to maintain the fluidized bed in a fluid state. Easy to set.
  • the pipe diameter of the upper part of the taper part 11 is less than 3 times the pipe diameter of the lower part, it may be difficult to adjust the flow rate of the first gas.
  • the inner diameter of the upper portion of the taper portion 11 is more than 30 times the inner diameter of the lower portion, there is a possibility that the uniform flow of the carrier particles and the recovery of the catalyst carrier are difficult.
  • the preparation device 10 further includes a first heating mechanism 14 for heating the inside of the preparation device 10.
  • the 1st heating mechanism 14 is not specifically limited, For example, it can be comprised with various heaters.
  • the first heating mechanism 14 can heat the inside of the preparation device 10 to the reaction temperature.
  • reaction temperature is 400 degreeC or more and 1200 degrees C or less normally.
  • the first pipe 20 is connected to the discharge port 12 of the tapered portion 11. Further, the first pipe 20 may be integrated with the preparation device 10, or may be formed as a separate part and connected to the preparation device 10.
  • the first gas supply mechanism capable of supplying the first gas from the discharge port 12 of the taper part 11 toward the carrier particles and / or the catalyst carrier 70 accommodated in the taper part 11 includes the first gas supply pipe 30. Comprising.
  • the first gas supply pipe 30 is connected to the first pipe 20 at the connection portion 60.
  • the first gas supply pipe 30 preferably includes a first gas supply control mechanism 31 and a first gas source (not shown).
  • the first gas supply control mechanism 31 is not particularly limited as long as the gas flow rate can be adjusted, and can be configured by, for example, a valve, a pump with an inverter, a shutter, and the like.
  • the first gas source is not particularly limited, and may be a cylinder or a tank filled with various gases. In FIG.
  • the first gas supply pipe is shown as a single pipe, but the first gas supply pipe may be mounted as a plurality of pipes connected to various first gas sources.
  • the first gas supply mechanism can supply one or more of various gases at the same time, or can switch and supply one or more of the various gases.
  • (multi) branch switching means such as a switching cock.
  • first gas supply pipe 30 and the first pipe 20 are orthogonal to each other at the connection part 60.
  • these pipes do not necessarily have to be orthogonal to each other. That is, the first gas supply pipe 30 and the first pipe 20 may be arranged in any manner as long as the first gas introduced into the first pipe 20 through the first gas supply pipe 30 is introduced into the preparation device 10. It can be set as an aspect. For example, when the first gas supply pipe 30 is connected to the first pipe 20 by being inclined slightly downward at the connection portion 60, the catalyst carrier enters the first gas supply pipe 30 when the catalyst carrier is transferred. Is more preferable.
  • the upper side of the connection portion 60 in the first pipe 20 in order to direct the first gas introduced into the first pipe 20 through the first gas supply pipe 30 in the direction of the preparation device 10, that is, in the upward direction, the upper side of the connection portion 60 in the first pipe 20. It is necessary to create a pressure gradient between the lower side and the lower side. More specifically, the pipe pressure in the first pipe 20 needs to be relatively low on the upper side of the connection part 60 and relatively high on the lower side of the connection part 60. As shown in FIG. 1, when the fibrous carbon nanostructure manufacturing apparatus 100 is viewed around the first pipe 20, the upper end of the preparation device 10 is open on the upper side of the apparatus. On the lower side, a fibrous carbon nanostructure synthesizer 40 described later is arranged.
  • the pipe pressure in the first pipe is relatively low below the connection portion 60. Get higher. Therefore, the first gas introduced into the first pipe 20 through the first gas supply pipe 30 is directed upward.
  • a first pipe closing mechanism such as a valve (not shown) for the first pipe 20 below the connection portion 60, such a pressure gradient can be formed more easily.
  • the valve or the like is opened in advance. It is preferable to avoid clogging of the pipe 20.
  • the fibrous carbon nanostructure synthesizer 40 is disposed below the preparation device 10.
  • the fibrous carbon nanostructure synthesizer 40 is filled with the prepared catalyst carrier 42 transferred from the preparation device 10.
  • the composite 43 is formed by arranging the fibrous carbon nanostructure on the catalyst carrier.
  • the catalyst carrier 42 filled in the fibrous carbon nanostructure synthesizer 40 include catalyst-supported particles, calcined particles, and reduced particles.
  • the fibrous carbon nanostructure synthesizer 40 a catalyst carrier formed by attaching a catalyst material on carrier particles in the preparation device 10 or a catalyst carrier obtained by firing in the preparation device 10 From the reduced state, the fibrous carbon nanostructure can be synthesized, or the fibrous carbon nanostructure can be synthesized using the catalyst carrier that has been reduced by the preparation device 10.
  • the fibrous carbon nanostructure synthesizer 40 is not particularly limited as long as it is a container that can synthesize a fibrous carbon nanostructure using a particulate catalyst carrier, for example, an airflow layer synthesizer, A fixed bed synthesizer, a moving bed synthesizer, a fluidized bed synthesizer, or the like can be used.
  • the fibrous carbon nanostructure synthesizer 40 is preferably a fluidized bed synthesizer.
  • the fibrous carbon nanostructure synthesizer 40 is arranged so that the longitudinal direction substantially coincides with the longitudinal direction of the preparation device 10, and has a porous plate 41 at the bottom. preferable. Further, in FIG.
  • the fibrous carbon nanostructure synthesizer 40 is connected to a second gas supply pipe 50 that supplies a second gas into the container below the porous plate 41.
  • the second gas may be a reducing gas, a source gas containing a carbon source, an oxygen element-containing gas, a rare gas such as argon, an inert gas such as nitrogen, or a mixed gas thereof.
  • a reducing gas is supplied as the second gas
  • the catalyst carrier can be reduced in the fibrous carbon nanostructure synthesizer 40, and a source gas containing a carbon source is supplied as the second gas.
  • a fibrous carbon nanostructure can be grown on the catalyst support.
  • the supplied catalyst carrier is calcined in the fibrous carbon nanostructure synthesizer 40. Can be processed.
  • the second gas supply pipe 50 constitutes a second gas supply mechanism.
  • the second gas supply mechanism can further include a second gas supply control mechanism, and the control mechanism is not particularly limited as long as the gas flow rate can be adjusted.
  • the control mechanism is not particularly limited, and may be a cylinder or a tank filled with various gases.
  • the second gas supply pipe is shown as a single pipe in FIG. 1, the second gas supply pipe may be mounted as a plurality of pipes respectively connected to various second gas sources. In this case, the second gas supply mechanism can supply one or more of various gases at the same time, or can switch and supply one or more of the various gases.
  • (multi) branch switching means such as a switching cock.
  • the fibrous carbon nanostructure synthesizer 40 has a second gas discharge port 44 for discharging the second gas flowing into the synthesizer.
  • the second gas discharge port 44 communicates with the second gas discharge port 44 and the inside of the separator 80 arranged at the rear stage of the fibrous carbon nanostructure synthesizer 40, and the composite 43 is connected to the second gas discharge port 44.
  • the 2nd piping 90 which can be transferred to the separator 80 with gas is connected.
  • the fibrous carbon nanostructure synthesizer 40 may further include a second heating mechanism 45 that heats the inside.
  • the 2nd heating mechanism 45 is not specifically limited, For example, it can be comprised by various heaters.
  • the second heating mechanism 45 can heat the inside of the fibrous carbon nanostructure synthesizer 40 to the reaction temperature.
  • reaction temperature is 400 degreeC or more and 1200 degrees C or less normally.
  • the fibrous carbon nanostructure synthesizer 40 is generated by temporarily supplying a rare gas such as argon or an inert gas such as nitrogen at a high flow rate as the second gas.
  • the composite 43 can also be transferred to the separator 80.
  • the fibrous carbon nanostructure manufacturing apparatus 100 preferably includes a separator 80.
  • the separator 80 is disposed at the subsequent stage of the fibrous carbon nanostructure synthesizer 40, and the second gas and the composite 43 generated in the fibrous carbon nanostructure synthesizer are converted into the second gas and the composite 43. And to separate.
  • the separator 80 is not particularly limited, and can be implemented by any existing apparatus as long as the gas and the composite 43 can be separated.
  • the separator 80 is configured as a container whose longitudinal direction is arranged along the longitudinal direction of the preparation device 10 or the like, and the container gravity settles the complex transferred into the container through the second pipe 90. Collect at the bottom.
  • the separator 80 is preferably provided with a filter 82 above the connection portion 83 between the second pipe 90 and the separator 80. Even if the fibrous carbon nanostructures dropped off from the composite 43 or the composite are risen, they can be captured by the filter 82, so that they can be prevented from being discharged out of the separator exhaust port 81. is there.
  • FIG. 1 shows the gravity settling separator 80 as described above, it is of course possible to mount the separator by, for example, a cyclone or a filter instead of such a separator.
  • the separator 80 is mounted with a filter, the second gas containing the complex 43 is filtered by the filter with the pressure generated by temporarily supplying a large flow of inert gas as described above, and the complex 43 is captured. Can be collected.
  • the composite separated by the separator 80 can be separated into the fibrous carbon nanostructure and the catalyst support by a relatively simple method such as shaking, throwing into the liquid and stirring. .
  • the separated catalyst carrier can optionally be supplied again to the preparation device 10.
  • cross-sectional shape of the various structural parts described as having a circular cross section in the embodiments is not limited to a circular shape, and may be, for example, an ellipse or a rectangle.
  • the method for producing a fibrous carbon nanostructure of the present invention is a method for producing a fibrous carbon nanostructure continuously or semi-continuously using the fibrous carbon nanostructure producing apparatus of the present invention.
  • a catalyst support is prepared by continuously or semi-continuously preparing a particulate catalyst support in which a catalyst is supported on support particles by bringing a first gas into contact with the supplied support particles.
  • a catalyst carrier supplying step for continuously or semi-continuously supplying the obtained catalyst carrier to the fibrous carbon nanostructure synthesizer, and catalyst loading in the fibrous carbon nanostructure synthesizer A growth step of growing a fibrous carbon nanostructure on the body, a recovery step of taking out the composite in which the fibrous carbon nanostructure is arranged on the catalyst carrier from the fibrous carbon nanostructure synthesizer, including.
  • the method for producing a fibrous carbon nanostructure of the present invention can be carried out continuously or semi-continuously.
  • the carrier particles are introduced into the preparation device at a constant speed, and the first gas is supplied to the preparation device at a constant speed and composition.
  • the catalyst carrier is transferred from the preparation device to the fibrous carbon nanostructure synthesizer at a constant speed, and in the growth process, the second gas is transferred to the fibrous carbon nanostructure synthesizer at a constant speed and composition.
  • the fibrous carbon nanostructure can be continuously produced at a constant rate.
  • the supply rate of the carrier particles to the preparation device and the supply rate and composition of the first gas to the preparation device are modulated with respect to time.
  • the transfer rate from the catalyst carrier preparation device to the fibrous carbon nanostructure synthesizer is modulated with respect to time, and in the growth step, the second carbon fiber carbon nanostructure is formed.
  • the preparation device 10 and the fibrous carbon nanostructure synthesizer 40 are held in a heated state.
  • the catalyst carrier preparation step the carrier gas is filled while supplying the first gas at a medium flow rate to the preparation device 10 (filling step), and the first gas as the catalyst material gas is flowed at a large flow rate.
  • a catalyst carrier by attaching the catalyst material to the carrier particles (catalyst attachment step), supplying the first gas as the reducing gas to reduce the catalyst carrier (reduction step), and
  • the catalyst carrier can be transferred to the fibrous carbon nanostructure synthesizer 40 with the gas flow rate lowered or zero in the catalyst carrier supply step.
  • After synthesizing the fibrous carbon nanostructure while fluidizing the catalyst carrier by supplying the second gas as the raw material gas to the fibrous carbon nanostructure synthesizer 40 at a medium flow rate in the growth step.
  • it is preferable to recover the composite by setting the flow rate of the second gas, which is an inert gas, to a high flow rate. And it is preferable to repeat the operation from the filling step to the recovery step.
  • the filling step to the reducing step are performed during the growth process and the recovery process, and the recovery process is completed and the process is emptied. It is preferable to transfer the reduced catalyst carrier to the fibrous carbon nanostructure synthesizer 40.
  • the first gas is brought into contact with the carrier particles.
  • the catalyst carrier preparation step it is preferable to carry out a step of heating the catalyst carrier in a heated preparation device.
  • a gas containing one or more elements selected from Si, Al, and Mg, and oxygen such as oxygen for example, a gas containing one or more elements selected from Si, Al, and Mg, and oxygen such as oxygen If an element-containing gas is introduced, the metal oxide can be supported on the surface of the carrier particles.
  • a gas for example, a gas containing one or more elements selected from Si, Al, and Mg, and oxygen such as oxygen If an element-containing gas is introduced, the metal oxide can be supported on the surface of the carrier particles.
  • such a gas include aluminum isopropoxide (chemical formula: Al (Oi-Pr) 3 [i-Pr is an isopropyl group —CH (CH 3 ) 2 ]).
  • a gas containing a vapor of a compound containing Fe can be supplied as the first gas to deposit the Fe catalyst on the metal oxide.
  • a gas containing a reducing gas such as hydrogen, ammonia or methane is supplied as the first gas to bring the catalyst carrier into a reduced state.
  • Methane can be a carbon source when supplied as the second gas.
  • the catalyst carrier in the preparation device 10 is passed through the first pipe 20 to form a fibrous carbon nanostructure. It can be transferred to the body synthesizer 40.
  • the catalyst carrier supply step includes a step of transferring the reduced catalyst carrier to the fibrous carbon nanostructure synthesizer 40 while maintaining the heating state and the reducing atmosphere. It is preferable to include. If the apparatus configuration includes the fibrous carbon nanostructure synthesizer 40 immediately below the preparation device 10 as shown in FIG. 1, both the preparation device 10 and the fibrous carbon nanostructure synthesizer 40 are heated. Moreover, such a transfer mode can be realized by setting the temperature of the first gas to an appropriate temperature range.
  • the catalyst carrier supply step can be performed after the preparation step is completed. Specifically, after the carrier particles are once introduced into the preparation device 10, various gases are supplied as the first gas and reacted for a predetermined time, and then the flow rate of the first gas is reduced. Alternatively, the supply of the first gas is stopped, and substantially the entire amount of the catalyst carrier in the preparation device 10 is caused to flow down. According to such a process, after the preparation device 10 and the fibrous carbon nanostructure synthesizer 40 are once heated, the catalyst carrier supply step is performed “semi-continuously” and the catalyst carrier after the preparation step is performed. The body can be fed semi-continuously to the fibrous carbon nanostructure synthesizer 40.
  • the catalyst attachment treatment time and the reduction treatment time can be made substantially the same for the carrier particles introduced at the same introduction timing. is there.
  • the resulting catalyst carrier has a substantially uniform catalyst loading amount. Become. For this reason, the fibrous carbon nanostructure synthesized using the obtained catalyst carrier has substantially uniform attributes such as diameter and length.
  • the process may proceed to the catalyst carrier supply process without performing the reduction step.
  • the catalyst carrier transferred to the fibrous carbon nanostructure synthesizer 40 can also be reduced in the fibrous carbon nanostructure synthesizer 40. That is, the reduction step can be performed in either the preparation device 10 or the fibrous carbon nanostructure synthesizer 40.
  • a raw material gas containing a carbon source is fed into the fibrous carbon nanostructure synthesizer 40 as a second gas, and on the catalyst fine particles existing on the surface of the catalyst carrier formed in the reduction step, the fibers -Like carbon nanostructures are grown.
  • the carbon source is not particularly limited and is selected from alkynes and alkenes (olefin hydrocarbons), alkanes (paraffin hydrocarbons), alcohols, ethers, aldehydes, ketones, aromatics, and carbon monoxide.
  • the carbon raw material containing 1 or more types can be used.
  • the concentration of the source gas containing the carbon source in the second gas fed into the fibrous carbon nanostructure synthesizer 40 in the growth step is not particularly limited and is usually 0.5% by volume or more.
  • the air supply pressure of the raw material gas containing the carbon source as the second gas is not particularly limited and can be, for example, 0.001 MPa or more and 1.500 MPa or less.
  • concentration in 2nd gas, etc. can be suitably set according to the property and manufacturing efficiency of a desired fibrous nanostructure.
  • the length of the fibrous carbon nanostructure can be increased by increasing the time of the growth process.
  • the production efficiency can be improved by increasing the ratio of the source gas containing the carbon source in the second gas.
  • the semi-continuous operation since the prepared catalyst carrier is supplied at regular intervals (semi-continuously), the growth process is also performed semi-continuously.
  • the composite of the catalyst carrier and the fibrous carbon nanostructure obtained in the growth step is recovered by using an inert gas as the second gas.
  • At least the catalyst carrier preparation step, the catalyst carrier supply step, the growth step, and the recovery step can proceed simultaneously. That is, the carrier particles, the first gas, and the second gas are constantly supplied to the preparation device 10 and the fibrous carbon nanostructure synthesizer 40 that are kept in a heated state, and the fibrous carbon nanostructure synthesizer is supplied from the preparation device 10.
  • the catalyst carrier particles are transferred to 40 at a constant rate, and the composite of the catalyst carrier and the fibrous carbon nanostructure is transferred from the fibrous carbon nanostructure synthesizer 40 to the separator 80 and recovered. Is possible.
  • solid particles or used carrier particles with catalyst material are supplied to the preparation device 10 at a constant speed, and a catalyst material gas and an oxygen element-containing gas are supplied to the preparation device 10 as a first gas at a constant speed.
  • the catalyst support is prepared by attaching the catalyst material on the support particles and oxidizing the support material.
  • the catalyst carrier is transferred to the fibrous carbon nanostructure synthesizer 40 at a constant speed, the supply speed of the carrier particles to the preparation device 10, and the catalyst carrier preparation device By making the transfer rates from 10 to the fibrous carbon nanostructure synthesizer 40 substantially equal, the inside of the preparation device 10 can be kept in a steady state.
  • a reducible source gas containing a carbon source or a mixed gas of a source gas containing a carbon source and a reducing gas is supplied as a second gas.
  • the prepared catalyst carrier that has been transferred to the fibrous carbon nanostructure synthesizer 40 that is, the oxidized catalyst carrier to which the catalyst material is attached, is reduced, and the fibrous carbon nanostructures are reduced on the catalyst carrier.
  • the longer the catalyst carrier that has been transferred to the fibrous carbon nanostructure synthesizer 40 the longer the fibrous carbon nanostructure grows on the catalyst carrier, and the second gas discharge port 44 is accompanied by the second gas.
  • the flow rate of the second gas when the flow rate of the second gas is small, since the fibrous carbon nanostructure grows long and is accompanied by the gas flow, a long fibrous carbon nanostructure can be obtained. At this time, since the residence time of the catalyst carrier in the fibrous carbon nanostructure synthesizer 40 becomes long, the transfer rate of the catalyst carrier from the preparation device 10 and the preparation rate of the carrier particles to the preparation device 10 are slowed down. It is preferable. On the other hand, if the flow rate of the second gas is large, the fibrous carbon nanostructure is accompanied by the gas flow even if it is short, and therefore it is preferable to speed up the transfer of the catalyst carrier and the supply of the carrier particles.
  • the continuous operation can also be performed in the same manner as the continuous operation by the pattern 1 described above except that the catalyst material gas and the reducing gas are supplied as the first gas. Specifically, the solid particles are supplied to the preparation device 10 at a constant rate, and the catalyst material gas and the reducing gas are supplied as the first gas at a constant rate. The spent catalyst carrier can be transferred to the fibrous carbon nanostructure synthesizer 40 at a constant speed.
  • the continuous operation can also be carried out in the same manner as the continuous operation according to the above-described pattern 1 except that the particles to which the catalyst material is attached are used as the carrier particles and the reducing gas is supplied as the first gas.
  • the carrier particles to which the catalyst material is attached are supplied to the preparation device 10 at a constant speed, and a reducing gas is supplied as the first gas at a constant speed.
  • the flow of an unprepared catalyst carrier into the fibrous carbon nanostructure synthesizer can be suppressed, and the prepared catalyst carrier can be supplied efficiently.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本発明による繊維状炭素ナノ構造体製造装置100は、担体粒子を用いて、担体粒子上に触媒が担持された粒子状の触媒担持体を調製する調製器10と、触媒担持体上に繊維状炭素ナノ構造体を合成する繊維状炭素ナノ構造体合成器40と、を備える。ここで、調製器10は、テーパ部11及びその底部に配置された排出口12を有する。そして、製造装置100は、排出口12と合成器40内とを連通し、調製器10内にて調製された触媒担持体を合成器40内へ移送可能な第1配管20と、第1ガス供給管30と、排出口12から調製器10内へ第1ガスを供給する第1ガス供給機構と、合成器40内へ第2ガスを供給する第2ガス供給機構と、を備える一方で、第1ガス供給管30と第1配管20との接続部60よりも上側に、触媒担持体の移動を遮断しうる部材を備えない。

Description

繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法
 本発明は、繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法に関するものである。
 近年、導電性、熱伝導性および機械的特性に優れる材料として、繊維状炭素材料、特にはカーボンナノチューブ(以下、「CNT」と称することがある。)等の繊維状炭素ナノ構造体が注目されている。CNTは、炭素原子により構成される筒状グラフェンシートからなり、その直径はナノメートルオーダーである。
 ここで、CNT等の繊維状炭素ナノ構造体は、概して、製造コストが高いため他の材料よりも高価であった。このため、上述したような優れた特性を有するにもかかわらず、その用途は限られていた。さらに、近年、比較的高効率でCNT等を製造することができる製造方法として、触媒を用いたCVD(Chemical Vapor Deposition)法(以下、「触媒CVD法」と称することがある)が用いられてきた。しかし、触媒CVD法でも、製造コストを十分に低減することができなかった。
 そこで、粒子状の触媒担持体により流動層を形成し、流動層に対して炭素源を含む原料ガスを供給して触媒担持体表面にてCNTを合成する方法が提案されてきた(例えば、特許文献1参照)。具体的には、特許文献1では、触媒賦活反応器にて触媒担持体を賦活し、触媒賦活反応器の側面に取り付けられた循環管を介して、斜め下方向に配置されたCNT合成器に対して、賦活した触媒担持体を供給する。そして、反応器内で触媒担持体により流動層を形成して、かかる流動層に対して下から炭素源を含む原料ガスをして流動させて、触媒担持体表面でCNTを合成する。
国際公開第2008/128437号
 ここで、特許文献1にかかる装置では、触媒賦活反応器の側面と、斜め下に配置されたCNT合成器の側面とを循環管で連通させ、触媒賦活反応器内で循環管より上に積層された触媒担持体がCNT合成器内に流入する構成となっている。しかし、このような構成では、触媒担持体の移動効率に改善の余地があり、さらに、未賦活の触媒担持体がCNT合成器内に流入することを抑制するためには、賦活された触媒担持体が常に循環管の接続位置よりも高い位置にまで積層されている必要があった。このため、特許文献1にかかる装置では、触媒担持体の移動効率を向上して、賦活された触媒担持体の、CNT合成器内への供給効率を向上させる必要があった。また、特許文献1にかかる装置では、触媒賦活中に未賦活の触媒担持体を補充して追加する際に、未賦活の触媒担持体がCNT合成器内に流入することを抑制する必要があった。
 そこで、本願発明は、合成器内へ、還元、酸化、触媒付着の何れかの処理がなされていない、即ち未調製の触媒担持体が流入することを抑制すると共に、調製された触媒担持体の供給効率を向上させることができる、繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者らは、下部がテーパ状に構成された調製器の下方に合成器を配置した装置構成を採用することで、合成器内への調製された触媒担持体の供給効率を向上させるとともに、未調製の触媒担持体が合成器内に流入することを抑制することができることを新たに見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の繊維状炭素ナノ構造体製造装置は、供給された担体粒子を用いて、前記担体粒子上に触媒が担持された粒子状の触媒担持体を調製する調製器と、前記調製器で得られた前記触媒担持体上に繊維状炭素ナノ構造体を合成する繊維状炭素ナノ構造体合成器と、を備える、繊維状炭素ナノ構造体の製造装置であって、前記調製器は、前記担体粒子を収容可能な、下方に向かって内径が小さくなるテーパ部を有するとともに、前記テーパ部の底部には、前記触媒担持体を排出可能に構成された排出口を有し、前記製造装置は、前記排出口と前記繊維状炭素ナノ構造体合成器内とを連通し、前記調製器内にて調製された前記触媒担持体を前記繊維状炭素ナノ構造体合成器内へ移送可能な第1配管と、前記第1配管に接続された第1ガス供給管と、前記排出口から前記調製器内へ第1ガスを供給する、第1ガス供給機構と、前記繊維状炭素ナノ構造体合成器内へ第2ガスを供給する、第2ガス供給機構と、を備え、前記調製器、及び前記第1ガス供給管と前記第1配管との接続部よりも上側の前記第1配管に、前記繊維状炭素ナノ構造体合成器内へ移送される前記触媒担持体の移動を遮断しうる部材を備えないことを特徴とする。本発明の繊維状炭素ナノ構造体製造装置は、担体粒子を導入して、テーパ部の底部より調製器内に送気された第1ガスにより、担体粒子に対して、還元、酸化、及び触媒担持のうちの何れか1以上の処理を施して触媒担持体を調製し、テーパ部の底部に配置された排出口から、調製された触媒担持体を排出するため、合成器内へ未調製の粒子が流入することを抑制すると共に、調製された触媒担持体の供給効率を向上させることができる。
 なお、本明細書において、「担体粒子」とは、触媒担持体の核となりうる粒子をいい、「触媒担持体」とは、調製器における調製工程を経て得られる粒子をいう。
 また、本発明の繊維状炭素ナノ構造体製造装置は、前記第1ガス供給機構が、前記担体粒子及び/または前記触媒担持体の少なくとも一部を前記調製器内に保持するとともに、該調製器内において前記担体粒子及び/または前記触媒担持体の少なくとも一部を流動させうるガス流量にて、前記第1ガスを供給可能な、第1ガス供給制御機構を備えることが好ましい。触媒担持体を調製器内に確実に保持することで、効率的に触媒担持体を調製状態とすることができるからである。
 また、本発明の繊維状炭素ナノ構造体製造装置は、前記調製器及び/又は前記繊維状炭素ナノ構造体合成器が、内部を加熱する加熱機構を更に備えることが好ましい。合成器内部を確実に昇温して、効率的に触媒担持体を調製状態とすることができるからである。
 また、本発明の繊維状炭素ナノ構造体製造装置は、前記第1ガス供給機構が、還元性ガス、酸素元素含有ガス、及び触媒材料ガスのうち少なくとも1つを供給可能でありうる。
 また、本発明の繊維状炭素ナノ構造体製造装置は、前記繊維状炭素ナノ構造体合成器の後段に設置され、前記第2ガスから、前記繊維状炭素ナノ構造体合成器内で合成された繊維状炭素ナノ構造体が前記触媒担持体上に配置されてなる複合体を分離する分離器を更に備えることが好ましい。繊維状炭素ナノ構造体を表面に有する触媒担持体を効率的に捕集して、繊維状炭素ナノ構造体の収率を向上させることができるからである。
 また、本発明の繊維状炭素ナノ構造体製造装置は、前記繊維状炭素ナノ構造体合成器が、該繊維状炭素ナノ構造体合成器内に流入した第2ガスを排出する第2ガス排出口を有し、前記繊維状炭素ナノ構造体合成器の前記第2ガス排出口と前記分離器内とを連通し、前記繊維状炭素ナノ構造体合成器内の前記複合体を前記第2ガスとともに前記分離器へ移送可能な第2配管を更に備えることが好ましい。繊維状炭素ナノ構造体を表面に有する触媒担持体を一層効率的に捕集して、繊維状炭素ナノ構造体の収率を一層向上させることができるからである。
 さらに、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の繊維状炭素ナノ構造体製造方法は、上述した繊維状炭素ナノ構造体製造装置を用いて繊維状炭素ナノ構造体を連続的又は半連続的に製造するにあたり、供給された担体粒子に対して第1ガスを接触させて、前記担体粒子上に触媒が担持された粒子状の触媒担持体を連続的又は半連続的に調製する触媒担持体調製工程と、得られた前記触媒担持体を、前記繊維状炭素ナノ構造体合成器に対して連続的又は半連続的に供給する触媒担持体供給工程と、前記繊維状炭素ナノ構造体合成器内で前記触媒担持体上に繊維状炭素ナノ構造体を成長させる成長工程と、前記触媒担持体上に前記繊維状炭素ナノ構造体が配置されてなる複合体を、前記繊維状炭素ナノ構造体合成器から取り出す回収工程と、を含むことを特徴とするものである。かかる方法によれば、効率的に繊維状炭素ナノ構造体を製造することができる。
 また、本発明の繊維状炭素ナノ構造体の製造方法において、前記触媒担持体調製工程は、前記調製器内に前記第1ガスとして触媒材料ガスを供給して前記担体粒子に前記触媒材料を付着させるステップを含むことが好ましい。かかる方法によれば、一層効率的に繊維状炭素ナノ構造体を製造することができる。
 また、本発明の繊維状炭素ナノ構造体の製造方法において、前記触媒担持体調製工程は、加熱状態の前記調製器内にて前記触媒担持体を加熱するステップを含み、前記触媒担持体供給工程は、加熱された状態の前記触媒担持体を、加熱状態を維持しつつ前記繊維状炭素ナノ構造体合成器に移送するステップを含むことが好ましい。かかる方法によれば、一層効率的に繊維状炭素ナノ構造体を製造することができるからである。
 また、本発明の繊維状炭素ナノ構造体の製造方法において、前記触媒担持体調製工程は、前記調製器内に前記第1ガスとして還元性ガスを供給して還元状態の前記触媒担持体を得るステップを含み、前記触媒担持体供給工程は、前記還元性ガスによる還元雰囲気を維持しつつ前記還元状態の触媒担持体を前記繊維状炭素ナノ構造体合成器に移送するステップを含むことが好ましい。かかる方法によれば、一層効率的に繊維状炭素ナノ構造体を製造することができるからである。
 本発明によれば、調製された触媒担持体の合成器内への供給効率を向上させるとともに、未調製の触媒担持体が合成器内に流入することを抑制することができる。
本発明の繊維状炭素ナノ構造体製造装置の構成の一例を示す概略図である。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の繊維状炭素ナノ構造体製造装置は、供給された担体粒子から担体粒子上に触媒が担持された粒子状の触媒担持体を調製し、調製された触媒担持体上にて繊維状炭素ナノ構造体を合成することで、繊維状炭素ナノ構造体を製造することができる。なお、本発明において、「粒子状」とは、アスペクト比が5未満であることをいう。担体粒子や触媒担持体のアスペクト比は、例えば、顕微鏡画像上で、任意に選択した100個の担体粒子/触媒担持体について(最大長径/最大長径に直交する幅)の値を算出し、その平均値を算出することで、確認することができる。また、本発明の繊維状炭素ナノ構造体製造方法は、本発明の繊維状炭素ナノ構造体製造装置を用いて実施することができる。
 また、本発明の繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造装置を用いて形成しうる繊維状炭素ナノ構造体としては、例えば、カーボンナノチューブ、及びカーボンナノファイバー等が挙げられる。
(繊維状炭素ナノ構造体製造装置)
 図1は、本発明の繊維状炭素ナノ構造体製造装置の構成の一例を示す概略図である。本発明の繊維状炭素ナノ構造体製造装置100は、調製器10、第1配管20、第1ガス供給管30、繊維状炭素ナノ構造体合成器40、及び第2ガス供給管50を備える。第1配管20と第1ガス供給管30とは接続部60にて接続されており、繊維状炭素ナノ構造体製造装置100は、かかる接続部60の下端よりも上側において、調製器10及び第1配管20に、触媒担持体の移動を遮断するための部材を備えない。換言すれば、繊維状炭素ナノ構造体製造装置100は、調製器10内から流下しうる担体粒子及び/又は触媒担持体の移動を遮断するための物理的な機構を備えない。なお、調製器10、第1配管20、第1ガス供給管30、繊維状炭素ナノ構造体合成器40、及び第2ガス供給管50は、特に限定されることなく、例えば、断面形状が円形であるガラス管やステンレス管により構成されうる。
 繊維状炭素ナノ構造体製造装置100は、まず、調製器10内に担体粒子を導入し、かかる担体粒子に対して、第1ガス供給管30及び第1配管20を経た第1ガスを下側から供給して、調製器内で流動させることで、担体粒子に対して触媒付着、酸化や還元などの調製工程を実施する。そして、調製工程を経た触媒担持体は、第1配管20を通じて繊維状炭素ナノ構造体合成器40へと移送され、繊維状炭素ナノ構造体の合成に供される。
 以下、繊維状炭素ナノ構造体製造装置100の各構成部についてより詳細に説明する。
<調製器>
 調製器10は、本体と下方に向かって内径が小さくなるテーパ部11とを有し、本体とテーパ部11、又はテーパ部11にて担体粒子及び/又は触媒担持体70を収容可能である。テーパ部11は、担体粒子及び/又は粒子状の触媒担持体70を収容可能であるともに、テーパ部11の底部に形成された排出口12から触媒担持体70を排出可能に構成されている。なお、図示しないが、調製器10は排出口12よりも上側に、調製器10内に担体粒子を供給する担体粒子供給口10を有しうる。
 ここで、調製器10に導入する担体粒子としては、例えば、触媒材料を付着していない粒子、いわゆる無垢の粒子や、触媒材料の付着した粒子、あるいは、使用済みの触媒材料付き担体粒子が挙げられる。すなわち、調製器10では、未だ触媒材料を付着させていない状態の担体粒子に対して触媒材料を付着させることもできるし、還元、酸化などの処理をすることもできる。また、使用済みの触媒担持体など、既に触媒材料が付着している担体粒子に対して、還元、酸化などの処理をすることもできるし、更に触媒材料を付着させることもできる。
 担体粒子及び/又は触媒担持体70は、テーパ部11を含む調製器10の内部において流動層を形成している。具体的には、担体粒子及び/又は触媒担持体70は、排出口12を介して第1ガスにより下方向から吹きあげられて調製器10内にて流動する。そして、第1ガスの流量が十分に大きい場合には、略全ての担体粒子及び/又は触媒担持体70が調製器10内にて流動する。また、第1ガスの流量を、略全ての担体粒子及び/又は触媒担持体70を調製器10内にて流動させることができる流量よりも低い流量とすることで、図1に示すように、調製された触媒担持体70の一部を調製器10内にて流動させつつ、他の一部を流下させて、調製器10から排出させることもできる。
 ここで、第1ガスは、触媒材料ガス、還元性ガス、乾燥ガス、及び/又は酸素元素含有ガスでありうる。第1ガスの種類により、調製器10における調製処理の内容が決定される。即ち、第1ガスとして触媒材料ガスを供給すれば、担体粒子に対して触媒材料を付着させることができる。また、第1ガスとして還元性ガスを供給すれば、還元状態の触媒担持体を得ることができる。さらに、第1ガスとして乾燥ガスを供給すれば、乾燥した触媒担持体を得ることができる。さらにまた、第1ガスとして酸素元素含有ガスを供給すれば、担体粒子表面を酸化させ、或いは、触媒担持体を焼成することができる。
 具体的には、調製器10に対して、無垢の粒子又は使用済みの触媒担持体(即ち、触媒材料を付着しているものの十分な触媒能を発揮しえない状態の触媒担持体)を供給した場合には、第1ガスとして、触媒材料を含むガスを供給することができる。なお、触媒材料としては、特に限定されることなく、Si、Al、Mg、Fe、Co、及びNiを含む群より選択される少なくとも一種の元素を含有する化合物の蒸気が挙げられる。第1ガスには、かかる化合物の蒸気を複数種含有させることもできる。ここで、触媒を担持させるにあたり、繊維状炭素ナノ構造体の製造時に繊維状炭素ナノ構造体の合成に寄与する触媒として機能する触媒成分に先立って、かかる触媒成分を担体粒子上に良好に担持させるための金属酸化物成分を担体粒子上に付着させることが好適である。そして、触媒材料として列挙した上記成分の中でも、Si、Al、及びMgが、このような金属酸化物成分の原料となりうる成分として有効である。なお、担体粒子表面に金属酸化物を担持させる目的において供給する第1ガス中では、Si、Al、及びMgの中から選択される1種以上の元素を含有するガスが、通常0.01体積%以上10体積%以下であり、酸素元素含有ガスが、通常0.01体積%以上21体積%以下である。これらの他に、第1ガスは、不活性ガスを、通常、69体積%以上含みうる。
 他方、上記成分の中でも、Fe、Co、及びNiは、担体粒子上又は金属酸化物上にて触媒を形成しうる成分である。そのような成分を含む化合物としては、例えば、トリス(2,4-ペンタンジオナト)鉄(III)、ビス(シクロペンタジエニル)鉄(II)(以下、「フェロセン」とも称する)、塩化鉄(III)、及び鉄カルボニル等のFe含有触媒材料、トリス(2,4-ペンタンジオナト)コバルト(III)、ビス(シクロペンタジエニル)コバルト(II)、及び塩化コバルト(II)等のCo含有触媒材料、及び、ビス(2,4-ペンタンジオナト)ニッケル(II)、及びビス(シクロペンタジエニル)ニッケル(II)等のNi含有触媒材料などが挙げられる。この場合、第1ガスは、通常、Fe、Co、及びNiを含む群より選択される少なくとも一種の元素を含有する化合物の蒸気を、0.001体積%以上10体積%以下、酸素元素含有ガスを、0,01体積%以上21体積%以下含みうる。これらの他に、第1ガスは、窒素などの不活性ガスを、通常、69体積%以上含みうる。
 さらに、第1ガスとして供給して担体粒子上に触媒を担持させるために用いる成分としては、Al及びFeが特に好ましい。より具体的には、Alを含む化合物の蒸気により、金属酸化物である酸化アルミニウムからなる層を形成し、かかる層によりFe触媒を担持させれば、得られた触媒担持体の触媒活性が良好となるからである。
 さらに、調製器10に対して、第1ガスとして酸素、水蒸気、及び/又は、二酸化炭素等の酸素元素含有ガスを含むガスを供給することで、担体粒子上に残留した不純物や、炭素成分を酸化して除去し、次いで、触媒材料を含むガスを第1ガスとして供給することができる。これらの酸素元素含有ガスは、複数種を混合して用いることもできる。酸化処理により、担体粒子上に付着した不純物や炭素成分等を除去すれば、担体粒子上で触媒を良好に担持させることができるようになる。また、担体粒子の表面を酸化すれば、触媒を担持するための金属酸化物や触媒を良好に担持することができるようになる。なお、担体粒子表面を酸化する目的において供給する酸素元素含有ガスを含む第1ガス中における酸素元素含有ガスの濃度は、通常、1体積%以上であり、好ましくは5体積%以上である。酸化処理を効率的に実施することができるからである。また、担体粒子表面を酸化する目的において供給する酸素元素含有ガスを含む第1ガス中における還元性ガスの濃度は、通常、1体積%未満である。
 また、調製器10に対して触媒材料を付着した粒子を供給した場合や、調製器10内にて担体粒子に対して触媒材料を付着させた場合には、第1ガスとして、水素等の還元性ガスを含有するガスを供給することで、還元状態の触媒担持体を得ることができる。この際、第1ガスの1体積%以上が還元性ガスであればよく、100体積%が還元性ガスであってもよい。なお、触媒材料を付着した粒子は、一般的な湿式担持法又は乾式担持法にて触媒材料を付着させ、焼成処理を施す前又は焼成処理を施した後の粒子でありうる。そして、調製器10に、触媒材料の付着した粒子であって焼成処理を施す前の粒子を供給した場合には、必要に応じて、焼成処理を施した上で、第1ガスとして還元性ガスを供給すれば、担体粒子に対して還元処理を施して還元状態の触媒担持体を得ることができる。なお、かかる還元処理は、必ずしも調製器10で実施する必要はなく、後述する繊維状炭素ナノ構造体合成器40にて実施することもできる。また、本明細書において「還元処理」とは、触媒を担持した触媒担持体の周囲環境を還元ガス環境とすると共に、所定の温度以上の高温環境として、触媒を還元状態とするステップを意味する。還元ステップにより、触媒は還元されるとともに、触媒の微粒子化が促進されてCNTの成長に適合した状態となるか、及び/又は、触媒の活性が向上する。例えば、触媒がFeである場合、還元ステップを経ることで、Feは還元されて微粒子化し、触媒担持体上にてナノメートルオーダーの微粒子が多数形成される。このような状態の触媒(還元状態の触媒)はCNTの製造に好適である。
 さらに、調製器10では、第1ガスとして乾燥ガスを供給して担体粒子及び/又は触媒担持体と接触させることで、担体粒子及び/又は触媒担持体を乾燥させることができる。なお、乾燥ガスとしては、例えば、露点が-10℃以下の空気を供給することができる。
 調製器10内で担体粒子及び/又は触媒担持体70により流動層を形成するにあたり、担体粒子及び/又は触媒担持体70の全てが自重で落下する速度以上であって、担体粒子及び/又は触媒担持体70が調製器10外に飛ばされうる速度未満の速度で、第1ガスを調製器10内に流入させることが好ましい。これにより、流動層を形成する担体粒子及び/又は触媒担持体70の少なくとも一部を調製器10内にて流動状態を保つことが可能となる。なお、落下の速度は担体粒子及び/又は触媒担持体の大きさや密度に基づいて決定することができる。さらに、必要とする触媒担持体の量や、所望の調製処理時間等により、調製器10の容積も定めることができる。このように、テーパ部11の形状及び調製器10の管径及び容積は、必要とする触媒担持体の調製量、担体粒子の粒子径、及び担体粒子の密度等に応じて適宜決定することができる。
 さらに、第1ガスの流速の調節を容易にする観点から、例えば、排出口12における径及び調製器10の内径の比率(調製器10の内径:排出口12の内径)は、3:1以上であることが好ましく、通常30:1以下である。ガス流速はガスが通過する管の断面積に応じて異なる。したがって、テーパ部11の上下において径の比率が3:1である場合には、テーパ部11の下部に相当する排出口12におけるガス流速はテーパ部11よりも上側におけるガス流速の約10倍となる。よって、排出口12におけるガス流速を微調整することで、調製器10内におけるガス流速を適度に段階的に調節することができ、流動層を流動状態に保つために必要十分であるガス流速に設定することが容易になる。なお、テーパ部11の上部の管径が下部の管径の3倍未満であれば、第1ガスの流量の調節が難しくなる虞がある。また、テーパ部11の上部の内径が下部の内径の30倍超であれば、担体粒子の均一な流動や、触媒担持体の回収が難しくなる虞がある。
 さらに、調製器10は、調製器10内部を加熱する第1加熱機構14をさらに備える。第1加熱機構14は、特に限定されることなく、例えば各種ヒーターにより構成されうる。さらに、第1加熱機構14は調製器10の内部を反応温度まで加熱することができる。なお、反応温度は、通常、400℃以上1200℃以下である。
<第1配管>
 第1配管20は、テーパ部11の排出口12に連結されている。さらに、第1配管20は、調製器10と一体であっても良いし、別個の部品として形成されたものが調製器10と接続されたものであっても良い。
<第1ガス供給機構>
 テーパ部11の排出口12からテーパ部11内に収容されている担体粒子及び/又は触媒担持体70に向けて第1ガスを供給可能な第1ガス供給機構は、第1ガス供給管30を含んでなる。第1ガス供給管30は、接続部60にて第1配管20に対して接続されている。さらに、第1ガス供給管30は、第1ガス供給制御機構31、及び第1ガス源(図示しない)を備えることが好ましい。第1ガス供給制御機構31は、ガス流量を調節できる限りにおいて特に限定されることなく、例えば、バルブ、インバーターつきのポンプ、及びシャッター等により構成されうる。さらに、第1ガス源は、特に限定されることなく、各種ガスを充てんしたボンベやタンクでありうる。図1では、第1ガス供給管を単一の管として示したが、第1ガス供給管は、各種第1ガス源とそれぞれ接続された複数の管として実装されても良い。この場合、第1ガス供給機構は、各種ガスのうちの一種又は複数種を同時供給可能であるか、或いは、各種ガスのうちの一種又は複数種を切り替えて供給可能な、(マルチ)分岐管及び切替コック等の(マルチ)分岐切替手段を有しうる。
 また、図1では、接続部60にて第1ガス供給管30と第1配管20とが直交する態様を示すが、かかる接続部60では、これらの管は必ずしも直交していなくても良い。すなわち、第1ガス供給管30と第1配管20とは、第1ガス供給管30を経て第1配管20に導入された第1ガスが、調製器10内へと導かれる限りにおいて、あらゆる配置態様とすることができる。例えば、第1ガス供給管30は、接続部60にてやや下方に傾いて第1配管20に接続されていると、触媒担持体の移送時に第1ガス供給管30に触媒担持体が入ることを防止できて、一層好適である。ここで、第1ガス供給管30を経て第1配管20に導入された第1ガスを、調製器10方向、即ち上方向に方向づけるためには、第1配管20内において、接続部60の上側と下側との間に圧力勾配を形成する必要がある。より具体的には、第1配管20内の管圧が、接続部60の上側で比較的低く、接続部60の下側で比較的高くなっている必要がある。図1に示すように、第1配管20を中心として繊維状炭素ナノ構造体製造装置100を見た場合に、装置の上側では、調製器10の上端が開放しており、反対に、装置の下側には、後述する繊維状炭素ナノ構造体合成器40が配置されている。このため、第1ガス供給管30を介して、第1ガスを繊維状炭素ナノ構造体製造装置100内に導入すれば、第1配管内の管圧は、接続部60の下側で比較的高くなる。よって、第1ガス供給管30を経て第1配管20に導入された第1ガスは、上方向に方向づけられる。なお、接続部60より下側で、第1配管20に対してバルブ(図示しない)等の第1配管閉塞機構を設けることで、このような圧力勾配を一層容易に形成することができる。なお、第1ガスの流速を弱める、或いは第1ガスの供給を停止して、調製器10内の少なくとも一部の触媒担持体を流下させる場合には、あらかじめかかるバルブ等を開放し、第1配管20に目詰まりが生じることを回避することが好ましい。
<繊維状炭素ナノ構造体合成器>
 繊維状炭素ナノ構造体合成器40は、調製器10の下方に配置されている。繊維状炭素ナノ構造体合成器40には、調製器10から移送された、調製された触媒担持体42が充填されている。触媒担持体42上に繊維状炭素ナノ構造体が形成されると、触媒担持体上に繊維状炭素ナノ構造体が配置されてなる複合体43となる。繊維状炭素ナノ構造体合成器40内に充填される触媒担持体42としては、例えば、触媒担持済みの粒子や、焼成済みの粒子、更には、還元済みの粒子が挙げられる。即ち、繊維状炭素ナノ構造体合成器40では、調製器10にて担体粒子上に触媒材料が付着されて形成された触媒担持体や、調製器10にて焼成されて得られた触媒担持体を還元状態としてから、繊維状炭素ナノ構造体を合成することもできるし、調製器10にて還元状態とされた触媒担持体を用いて繊維状炭素ナノ構造体を合成することもできる。
 そして、繊維状炭素ナノ構造体合成器40は、粒子状の触媒担持体を用いて繊維状炭素ナノ構造体を合成できる容器である限りにおいて特に限定されることなく、例えば、気流層合成器、固定層合成器、移動層合成器、及び流動層合成器等を用いることができる。特に、繊維状炭素ナノ構造体合成器40は、流動層合成器であることが好ましい。例えば、図1に示すように、繊維状炭素ナノ構造体合成器40は、長手方向が調製器10の長手方向に略一致するように配置されており、下部に多孔質板41を有することが好ましい。さらに、図1では、繊維状炭素ナノ構造体合成器40は、多孔質板41の下方に、第2ガスを器内に供給する第2ガス供給管50が接続されている。なお、第2ガスは、還元性ガス、炭素源を含む原料ガス、酸素元素含有ガス、アルゴン等の希ガス及び窒素等の不活性ガス、又はこれらの混合ガスでありうる。第2ガスとして還元性ガスを供給した場合には、繊維状炭素ナノ構造体合成器40内にて触媒担持体を還元状態とすることができ、第2ガスとして炭素源を含む原料ガスを供給した場合には、触媒担持体上に繊維状炭素ナノ構造体を成長させることができる。さらには、触媒担持体を還元状態とすることに先立ち、第2ガスとして酸素元素含有ガスを導入した際には、供給された触媒担持体を繊維状炭素ナノ構造体合成器40内にて焼成処理することができる。
 なお、第2ガス供給管50は、第2ガス供給機構を構成する。第2ガス供給機構は、図示しないが第2ガス供給制御機構をさらに備えることができ、かかる制御機構は、ガス流量を調節できる限りにおいて特に限定されることなく、例えば、バルブ、インバーターつきのポンプ、及びシャッター等により構成されうる。さらに、第2ガス源は、特に限定されることなく、各種ガスを充てんしたボンベやタンクでありうる。図1では、第2ガス供給管を単一の管として示したが、第2ガス供給管は、各種第2ガス源とそれぞれ接続された複数の管として実装されても良い。この場合、第2ガス供給機構は、各種ガスのうちの一種又は複数種を同時供給可能であるか、或いは、各種ガスのうちの一種又は複数種を切り替えて供給可能な、(マルチ)分岐管及び切替コック等の(マルチ)分岐切替手段を有しうる。
 さらに、繊維状炭素ナノ構造体合成器40は、合成器内に流入した第2ガスを排出する第2ガス排出口44を有する。そして、第2ガス排出口44には、該第2ガス排出口44と、繊維状炭素ナノ構造体合成器40の後段に配置された分離器80内とを連通し、複合体43を第2ガスとともに分離器80へ移送可能な第2配管90が接続されている。
 さらに、繊維状炭素ナノ構造体合成器40は、内部を加熱する第2加熱機構45をさらに備えうる。第2加熱機構45は、特に限定されることなく、例えば各種ヒーターにより構成されうる。さらに、第2加熱機構45は繊維状炭素ナノ構造体合成器40の内部を反応温度まで加熱することができる。なお、反応温度は、通常、400℃以上1200℃以下である。
 なお、繊維状炭素ナノ構造体合成器40は、第2ガスとして、例えば、上述したような、アルゴン等の希ガスや、窒素等の不活性ガスを一時的に大流量で供給して、生成した複合体43を分離器80へ移送することもできる。
<分離器>
 繊維状炭素ナノ構造体製造装置100は、分離器80を備えることが好ましい。分離器80は、繊維状炭素ナノ構造体合成器40の後段に配置され、第2ガスと、繊維状炭素ナノ構造体合成器内で生成された複合体43を、第2ガスと複合体43とに分離する。分離器80は、特に限定されることなく、ガスと複合体43とを分離できる限りにおいて既存のあらゆる態様の装置により実装可能である。例えば、分離器80は、長手方向が調製器10等の長手方向に沿って配置された容器として構成され、該容器は、第2配管90を経てかかる容器内に移送された複合体を重力沈降によって下部にて収集する。そして、複合体43を分離した残りのガスを、分離器排気口81から排気する。なお、分離器80は、第2配管90と分離器80との接続部83よりも上側に、フィルタ82を備えることが好ましい。複合体43や複合体から脱落した繊維状炭素ナノ構造体が舞い上がったとしても、フィルタ82により捕捉することができるので、これらが分離器排気口81より外に排出されることを防止できるからである。
 なお、図1には、上述したような重力沈降式の分離器80を示したが、かかる分離器に代えて、例えばサイクロンやフィルタにより分離器を実装することももちろん可能である。なお、分離器80をフィルタにより実装する場合、上述した不活性ガスの一時的な大流量供給等により発生した圧力により複合体43を含む第2ガスをフィルタでろ過して、複合体43を捕集することができる。
 分離器80にて分離した複合体は、例えば、振とうする、液中に投入して撹拌する等の比較的簡易な方法で繊維状炭素ナノ構造体と触媒担持体とに分離することができる。そして、分離された触媒担持体は、任意で、調製器10に再度供給することができる。
 なお、実施例にて断面円形であるとして説明した各種構造部の断面形状は、円形に限られず、例えば楕円や矩形などでもよい。
(繊維状炭素ナノ構造体製造方法)
 本発明の繊維状炭素ナノ構造体製造方法は、本発明の繊維状炭素ナノ構造体製造装置を用いて繊維状炭素ナノ構造体を連続的又は半連続的に製造する方法である。かかる製造方法は、供給された担体粒子に対して第1ガスを接触させて、担体粒子上に触媒が担持された粒子状の触媒担持体を連続的又は半連続的に調製する触媒担持体調製工程と、得られた触媒担持体を、繊維状炭素ナノ構造体合成器に対して連続的又は半連続的に供給する触媒担持体供給工程と、繊維状炭素ナノ構造体合成器内で触媒担持体上に繊維状炭素ナノ構造体を成長させる成長工程と、触媒担持体上に繊維状炭素ナノ構造体が配置されてなる複合体を、繊維状炭素ナノ構造体合成器から取り出す回収工程と、を含む。本発明の繊維状炭素ナノ構造体製造方法は、連続的、又は半連続的に実施することができる。連続的に実施する際には、触媒担持体調製工程にて、担体粒子を一定速度で調製器に導入し、第1ガスを一定の速度及び組成で調製器に供給し、触媒担持体供給工程にて、触媒担持体を一定の速度で調製器から繊維状炭素ナノ構造体合成器へ移送し、成長工程にて、第2ガスを繊維状炭素ナノ構造体合成器へ一定の速度及び組成で供給し、繊維状炭素ナノ構造体を一定速度で連続的に製造することができる。半連続的に実施する際には、触媒担持体調製工程にて、担体粒子の調製器への供給速度と、第1ガスの調製器への供給速度及び組成と、を時間に対して変調し、触媒担持体供給工程にて、触媒担持体の調製器から繊維状炭素ナノ構造体合成器への移送速度を時間に対して変調し、成長工程にて、第2ガスの繊維状炭素ナノ構造体合成器への供給速度を時間に対して変調し、調製工程と成長工程の少なくとも一部を同時に行うことで、繊維状炭素ナノ構造体を半連続的に製造することができる。
 また、本発明の繊維状炭素ナノ構造体製造方法では、担体粒子として供給する粒子や、第1ガス及び第2ガスとして供給するガス種の組み合わせに応じて、種々の処理を実施することができる。以下、繊維状炭素ナノ構造体製造方法の一例を説明する。まず、調製器10及び繊維状炭素ナノ構造体合成器40を加熱状態に保持する。そして、上記触媒担持体調製工程にて、調製器10に対して中程度の流量で第1ガスを供給しつつ担体粒子を充填し(充填ステップ)、触媒材料ガスである第1ガスを大流量で供給して担体粒子に触媒材料を付着させて触媒担持体を得て(触媒付着ステップ)、還元性ガスである第1ガスを供給して触媒担持体を還元状態として(還元ステップ)、上記触媒担持体供給工程にてガス流量を低下又はゼロとして触媒担持体を繊維状炭素ナノ構造体合成器40に移送することができる。さらに、上記成長工程にて繊維状炭素ナノ構造体合成器40に原料ガスである第2ガスを中程度の流量で供給して触媒担持体を流動化しつつ繊維状炭素ナノ構造体を合成した後に、上記回収工程にて不活性ガスである第2ガスの流量を大流量として複合体を回収することが好ましい。そして、上記充填ステップから回収工程までの操作を繰り返すことが好ましい。そして、半連続的に本発明による製造方法を実施する場合には、上記成長工程及び回収工程を行っている間に、上記充填ステップ~還元ステップを実施して、回収工程を終えて空になった繊維状炭素ナノ構造体合成器40に対して還元済みの触媒担持体を移送することが好ましい。連続的に本発明による製造方法を実施する場合には、上記充填ステップ~回収工程までをすべて同時進行で実施することも可能である。
 以下、半連続的操作により本発明による製造方法を実施する場合と、連続的操作により本発明による製造方法を実施する場合についてそれぞれ例を挙げて説明する。なお、各工程において用いる各種ガスとしては、上述したガスと同様のガスを用いることができる。
―半連続操作―
<触媒担持体調製工程>
 触媒担持体調製工程では、担体粒子に対して第1ガスを接触させる。触媒担持体調製工程では、加熱状態の調製器内にて触媒担持体を加熱するステップを実施することが好ましい。そして、加熱状態の調製器内にて、触媒付着ステップにおいて、第1ガスとして、例えば、Si、Al、及びMgの中から選択される1種以上の元素を含有するガスと、酸素等の酸素元素含有ガスとを導入すれば、担体粒子表面に金属酸化物を担持させることができる。なお、そのようなガスとしては、例えば、アルミニウムイソプロポキシド(化学式:Al(O-i-Pr)3[i-Prはイソプロピル基-CH(CH])が挙げられる。そして、例えば、Feを含む化合物の蒸気を含むガスを第1ガスとして供給して金属酸化物上にFe触媒を付着させることができる。そして、還元ステップを実施するにあたり、第1ガスとして、水素、アンモニア、メタン等の還元性ガスを含有するガスを供給して、触媒担持体を還元状態とする。なお、メタンは、第2ガスとして供給された場合には炭素源となりうる。
<触媒担持体供給工程>
 そして、調製器10内に導入する第1ガスの流速を小さくする、或いは第1ガスの供給を停止することで、調製器10内の触媒担持体を、第1配管20を通じて繊維状炭素ナノ構造体合成器40に移送することができる。調製工程において還元ステップを実施した場合には、触媒担持体供給工程は、還元された触媒担持体を、加熱状態かつ還元雰囲気を維持しつつ繊維状炭素ナノ構造体合成器40に移送するステップを含むことが好ましい。図1に示すような、調製器10の直下に繊維状炭素ナノ構造体合成器40が備えられる装置構成であれば、調製器10及び繊維状炭素ナノ構造体合成器40の双方を加熱状態とし、また第1ガスの温度を適度な温度範囲とすることで、このような移送態様を実現することができる。
 ここで、半連続操作では、調製工程を完了した後に触媒担持体供給工程を実施することができる。具体的には、調製器10に対して、担体粒子を一旦導入した後に追加で導入することなく、各種ガスを第1ガスとして供給し、所定時間反応させた後に、第1ガスの流速を小さくし、或いは第1ガスの供給を停止して、調製器10内の触媒担持体の略全量を流下させる。かかる処理によれば、一旦調製器10と繊維状炭素ナノ構造体合成器40とを加熱状態とした後に、触媒担持体供給工程を「半連続的に」実施して、調製工程を経た触媒担持体を半連続的に繊維状炭素ナノ構造体合成器40に供給することができる。
 特に、調製器10において、触媒付着ステップ及び還元ステップを実施する場合には、同じ投入タイミングで投入された担体粒子について、触媒付着処理時間及び還元処理時間を略同一に揃えることができるため有利である。さらに、このような半連続的な触媒付着処理及び触媒還元処理を繰り返した場合に、各回の触媒付着処理時間を同一とすれば、得られる触媒担持体が略均一な触媒担持量を有することとなる。このため、得られた触媒担持体を用いて合成した繊維状炭素ナノ構造体は、径や長さ等の属性が略均一となる。なお、例えば、還元ステップのみを調製器10にて実施する場合であっても、触媒担持体供給工程を「半連続的に」実施する態様によれば、得られる繊維状炭素ナノ構造体を均質化することが可能である。
 また、調製工程において触媒付着ステップを行ったあと、還元ステップを行わずに触媒担持体供給工程へと移行しても良い。繊維状炭素ナノ構造体合成器40に移送された触媒担持体を、繊維状炭素ナノ構造体合成器40内で還元することもできる。すなわち、還元ステップは、調製器10或いは繊維状炭素ナノ構造体合成器40の何れにおいても実施することができる。
<成長工程>
 成長工程では、炭素源を含む原料ガスを第2ガスとして繊維状炭素ナノ構造体合成器40内に送気し、還元ステップにて形成された触媒担持体表面に存在する触媒微粒子上で、繊維状炭素ナノ構造体を成長させる。なお、炭素源としては、特に限定されることなく、アルキン及びアルケン(オレフィン炭化水素)、アルカン(パラフィン炭化水素)、アルコール、エーテル、アルデヒド、ケトン、芳香族、及び一酸化炭素の中から選択される1種以上を含む炭素原料を用いることができる。成長工程で繊維状炭素ナノ構造体合成器40内に送気する第2ガス中における炭素源を含む原料ガスの濃度は、特に限定されることなく、通常0.5体積%以上である。なお、第2ガスとしての炭素源を含む原料ガスの送気圧力は、特に限定されることなく、例えば、0.001MPa以上1.500MPa以下とすることができる。そして、成長工程に要する時間や、第2ガス中における炭素原料濃度等は、所望の繊維状ナノ構造体の性状及び製造効率に応じて、適宜設定することができる。例えば、成長工程の時間を長くすることで繊維状炭素ナノ構造体の長さを長くすることができる。また、第2ガス中における炭素源を含む原料ガスの割合を上げることで、製造効率を向上させることができる。なお、半連続的な操作では、調製された触媒担持体が一定時間ごとに(半連続的に)供給されるため、成長工程も半連続的に実施することとなる。
<回収工程>
 回収工程では、成長工程で得られた、触媒担持体と繊維状炭素ナノ構造体との複合体を、第2ガスとしての不活性ガスを用いることにより、回収する。
<分離工程>
 そして、分離工程では、第2ガスより複合体を分離する。
―連続操作(パターン1)―
 連続操作では、少なくとも、触媒担持体調製工程、触媒担持体供給工程、成長工程、及び回収工程を同時進行することが可能である。すなわち、加熱状態を保った調製器10と繊維状炭素ナノ構造体合成器40に、担体粒子、第1ガスおよび第2ガスを一定で供給し、調製器10から繊維状炭素ナノ構造体合成器40へ触媒担持体粒子を一定で移送し、繊維状炭素ナノ構造体合成器40から分離器80へ触媒担持体と繊維状炭素ナノ構造体との複合体を一定で移送し、回収することが可能である。具体的には、無垢の粒子、ないし使用済みの触媒材料付き担体粒子を調製器10に一定速度で供給し、第1ガスとして、触媒材料ガス及び酸素元素含有ガスを調製器10に一定速度で供給すると、担体粒子上に触媒材料が付着し酸化処理された触媒担持体が調製される。第1ガス流量を適度に調整することで、触媒担持体が一定速度で繊維状炭素ナノ構造体合成器40に移送され、担体粒子の調製器10への供給速度と、触媒担持体の調製器10から繊維状炭素ナノ構造体合成器40への移送速度を略等しくすることで、調製器10内を定常状態に保つことができる。繊維状炭素ナノ構造体合成器40へは、第2ガスとして、炭素源を含む還元性の原料ガス、或いは、炭素源を含む原料ガスと還元性ガスの混合ガスを一定で供給する。繊維状炭素ナノ構造体合成器40へ移送された、調製された触媒担持体、即ち、触媒材料の付着した酸化処理された触媒担持体は、還元され、触媒担持体上にて繊維状炭素ナノ構造体を成長させ始める。繊維状炭素ナノ構造体合成器40へ移送されてからの時間が長い触媒担持体ほど、その上に繊維状炭素ナノ構造体が長く成長し、第2ガスに同伴されて第2ガス排出口44から第2配管90を経て分離器80へと移送される。また、第2ガスの流量が小さいと、繊維状炭素ナノ構造体が長く成長してからガス流に同伴されるようになるので、長い繊維状炭素ナノ構造体を得ることができる。このとき、触媒担持体の繊維状炭素ナノ構造体合成器40内の滞留時間が長くなるため、調製器10からの触媒担持体の移送速度および調製器10への担体粒子の調製速度を遅くすることが好ましい。他方、第2ガスの流量が大きいと繊維状炭素ナノ構造体は短くてもガス流に同伴されるようになるので、触媒担持体の移送と、担体粒子の供給を速めることが好ましい。
―連続操作(パターン2)―
 第1ガスとして触媒材料ガス及び還元性ガスを供給すること以外は、上述したパターン1による連続操作と同様として、連続操作を実施することもできる。具体的には、調製器10に対して、無垢の粒子を一定速度で供給するとともに、第1ガスとして触媒材料ガス及び還元性ガスを一定速度で供給し、得られた触媒材料付着済みかつ還元済みの触媒担持体を一定速度で繊維状炭素ナノ構造体合成器40へと移送することができる。
―連続操作(パターン3)―
 担体粒子として触媒材料の付着した粒子を用い、第1ガスとして還元性ガスを供給すること以外は、上述したパターン1による連続操作と同様として、連続操作を実施することもできる。具体的には、調製器10に対して、触媒材料の付着した担体粒子を一定速度で供給するとともに、第1ガスとして還元性ガスを一定速度で供給し、得られた還元済みの触媒担持体を一定速度で繊維状炭素ナノ構造体合成器40へと移送することができる。
 本発明によれば、繊維状炭素ナノ構造体合成器内への、未調製の触媒担持体の流入を抑制するとともに、調製された触媒担持体を効率的に供給することができる。
10  調製器
11  テーパ部
12  排出口
14  第1加熱機構
20  第1配管
30  第1ガス供給管
31  第1ガス供給制御機構
40  繊維状炭素ナノ構造体合成器
41  多孔質板
42  調製された触媒担持体
43  複合体
44  第2ガス排出口
45  第2加熱機構
50  第2ガス供給管
60  接続部
70  担体粒子及び/又は触媒担持体
80  分離器
81  分離器排気口
82  フィルタ
83  接続部
90  第2配管
100 繊維状炭素ナノ構造体製造装置
 

Claims (10)

  1.  供給された担体粒子を用いて、前記担体粒子上に触媒が担持された粒子状の触媒担持体を調製する調製器と、前記調製器で得られた前記触媒担持体上に繊維状炭素ナノ構造体を合成する繊維状炭素ナノ構造体合成器と、を備える、繊維状炭素ナノ構造体の製造装置であって、
     前記調製器は、前記担体粒子を収容可能な、下方に向かって内径が小さくなるテーパ部を有するとともに、前記テーパ部の底部に、前記触媒担持体を排出可能に構成された排出口を有し、
     前記製造装置は、
     前記排出口と前記繊維状炭素ナノ構造体合成器内とを連通し、前記調製器内にて調製された前記触媒担持体を前記繊維状炭素ナノ構造体合成器内へ移送可能な第1配管と、
     前記第1配管に接続された第1ガス供給管と、
     前記排出口から前記調製器内へ第1ガスを供給する、第1ガス供給機構と、
     前記繊維状炭素ナノ構造体合成器内へ第2ガスを供給する、第2ガス供給機構と、を備え、
     前記調製器、及び前記第1ガス供給管と前記第1配管との接続部よりも上側の前記第1配管に、前記繊維状炭素ナノ構造体合成器内へ移送される前記触媒担持体の移動を遮断しうる部材を備えない、
    繊維状炭素ナノ構造体製造装置。
  2.  前記第1ガス供給機構が、前記担体粒子及び/または前記触媒担持体の少なくとも一部を前記調製器内に保持するとともに、該調製器内において前記担体粒子及び/または前記触媒担持体の少なくとも一部を流動させうるガス流量にて、前記第1ガスを供給可能な、第1ガス供給制御機構を備える、
    請求項1に記載の繊維状炭素ナノ構造体製造装置。
  3.  前記調製器及び/又は前記繊維状炭素ナノ構造体合成器が、内部を加熱する加熱機構を更に備える、請求項1又は2に記載の繊維状炭素ナノ構造体製造装置。
  4.  前記第1ガス供給機構が、還元性ガス、酸素元素含有ガス、及び触媒材料ガスのうち少なくとも1つを供給可能な、請求項1~3記載のいずれかに記載の繊維状炭素ナノ構造体製造装置。
  5.  前記繊維状炭素ナノ構造体合成器の後段に設置され、前記第2ガスから、前記繊維状炭素ナノ構造体合成器内で合成された繊維状炭素ナノ構造体が前記触媒担持体上に配置されてなる複合体を分離する分離器を更に備える、請求項1~4のいずれかに記載の繊維状炭素ナノ構造体製造装置。
  6.  前記繊維状炭素ナノ構造体合成器が、該繊維状炭素ナノ構造体合成器内に流入した第2ガスを排出する第2ガス排出口を有し、前記繊維状炭素ナノ構造体合成器の前記第2ガス排出口と前記分離器内とを連通し、前記繊維状炭素ナノ構造体合成器内の前記複合体を前記第2ガスとともに前記分離器へ移送可能な第2配管を更に備える、請求項5に記載の繊維状炭素ナノ構造体製造装置。
  7.  請求項1~6の何れかに記載の繊維状炭素ナノ構造体製造装置を用いて、繊維状炭素ナノ構造体を連続的又は半連続的に製造する方法であって、
     供給された担体粒子に対して第1ガスを接触させて、前記担体粒子上に触媒が担持された粒子状の触媒担持体を連続的又は半連続的に調製する触媒担持体調製工程と、
     得られた前記触媒担持体を、前記繊維状炭素ナノ構造体合成器に対して連続的又は半連続的に供給する触媒担持体供給工程と、
     前記繊維状炭素ナノ構造体合成器内で前記触媒担持体上に繊維状炭素ナノ構造体を成長させる成長工程と、
     前記触媒担持体上に前記繊維状炭素ナノ構造体が配置されてなる複合体を、前記繊維状炭素ナノ構造体合成器から取り出す回収工程と、
     を含む、繊維状炭素ナノ構造体の製造方法。
  8.  前記触媒担持体調製工程は、前記調製器内に前記第1ガスとして触媒材料ガスを供給して前記担体粒子に前記触媒材料を付着させるステップを含む、請求項7に記載の繊維状炭素ナノ構造体の製造方法。
  9.  前記触媒担持体調製工程は、加熱状態の前記調製器内にて前記触媒担持体を加熱するステップを含み、
     前記触媒担持体供給工程は、加熱された状態の前記触媒担持体を、加熱状態を維持しつつ前記繊維状炭素ナノ構造体合成器に移送するステップを含む、請求項7又は8に記載の繊維状炭素ナノ構造体の製造方法。
  10.  前記触媒担持体調製工程は、前記調製器内に前記第1ガスとして還元性ガスを供給して還元状態の前記触媒担持体を得るステップを含み、
     前記触媒担持体供給工程は、前記還元性ガスによる還元雰囲気を維持しつつ前記還元状態の触媒担持体を前記繊維状炭素ナノ構造体合成器に移送するステップを含む、請求項7~9のいずれかに記載の繊維状炭素ナノ構造体の製造方法。
     
PCT/JP2017/006000 2016-03-08 2017-02-17 繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法 WO2017154529A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780014334.6A CN108778992B (zh) 2016-03-08 2017-02-17 纤维状碳纳米结构体制造装置以及纤维状碳纳米结构体制造方法
JP2018504333A JP6755029B2 (ja) 2016-03-08 2017-02-17 繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016044574 2016-03-08
JP2016-044574 2016-03-08

Publications (1)

Publication Number Publication Date
WO2017154529A1 true WO2017154529A1 (ja) 2017-09-14

Family

ID=59790388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/006000 WO2017154529A1 (ja) 2016-03-08 2017-02-17 繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法

Country Status (3)

Country Link
JP (1) JP6755029B2 (ja)
CN (1) CN108778992B (ja)
WO (1) WO2017154529A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004526660A (ja) * 2001-05-25 2004-09-02 チンフアダーシェイ ナノ凝集体流動層を用いたカーボンナノチューブの連続製造方法及びその反応装置
CN101348249A (zh) * 2008-09-05 2009-01-21 清华大学 一种在颗粒内表面制备碳纳米管阵列的方法
WO2009110591A1 (ja) * 2008-03-07 2009-09-11 日立化成工業株式会社 カーボンナノチューブの製造方法及びカーボンナノチューブ製造装置
JP2010100518A (ja) * 2008-09-25 2010-05-06 Nissin Electric Co Ltd カーボンナノコイルの製造方法および製造装置
WO2010084721A1 (ja) * 2009-01-20 2010-07-29 日本電気株式会社 ナノカーボン複合体の製造方法
CN102120570A (zh) * 2011-01-22 2011-07-13 广州市白云化工实业有限公司 一种连续化生产碳纳米管的装置及工艺方法
WO2011102433A1 (ja) * 2010-02-19 2011-08-25 国立大学法人東京大学 ナノカーボン材料製造装置及びナノカーボン材料の製造方法
JP2014189431A (ja) * 2013-03-27 2014-10-06 Hitachi Zosen Corp 繊維状カーボン材料の回収システムおよび回収方法
JP2015145340A (ja) * 2009-09-10 2015-08-13 国立大学法人 東京大学 カーボンナノチューブ及び水素の同時製造方法、並びに、カーボンナノチューブ及び水素の同時製造装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19847647A1 (de) * 1998-10-15 2000-04-20 Elenac Gmbh Wirbelschichtverfahren und Reaktor zur Behandlung von Katalysatoren und Katalysatorträgern
JP2014213289A (ja) * 2013-04-26 2014-11-17 トヨタ自動車株式会社 触媒コンバーター
KR101535388B1 (ko) * 2013-07-19 2015-07-08 주식회사 엘지화학 담지촉매, 이의 제조방법 및 이를 이용하여 제조된 탄소나노구조체의 2차구조물
KR101783512B1 (ko) * 2014-06-13 2017-09-29 주식회사 엘지화학 유동층 반응기 및 이를 이용한 탄소 나노구조물의 제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004526660A (ja) * 2001-05-25 2004-09-02 チンフアダーシェイ ナノ凝集体流動層を用いたカーボンナノチューブの連続製造方法及びその反応装置
WO2009110591A1 (ja) * 2008-03-07 2009-09-11 日立化成工業株式会社 カーボンナノチューブの製造方法及びカーボンナノチューブ製造装置
CN101348249A (zh) * 2008-09-05 2009-01-21 清华大学 一种在颗粒内表面制备碳纳米管阵列的方法
JP2010100518A (ja) * 2008-09-25 2010-05-06 Nissin Electric Co Ltd カーボンナノコイルの製造方法および製造装置
WO2010084721A1 (ja) * 2009-01-20 2010-07-29 日本電気株式会社 ナノカーボン複合体の製造方法
JP2015145340A (ja) * 2009-09-10 2015-08-13 国立大学法人 東京大学 カーボンナノチューブ及び水素の同時製造方法、並びに、カーボンナノチューブ及び水素の同時製造装置
WO2011102433A1 (ja) * 2010-02-19 2011-08-25 国立大学法人東京大学 ナノカーボン材料製造装置及びナノカーボン材料の製造方法
CN102120570A (zh) * 2011-01-22 2011-07-13 广州市白云化工实业有限公司 一种连续化生产碳纳米管的装置及工艺方法
JP2014189431A (ja) * 2013-03-27 2014-10-06 Hitachi Zosen Corp 繊維状カーボン材料の回収システムおよび回収方法

Also Published As

Publication number Publication date
JPWO2017154529A1 (ja) 2019-01-17
CN108778992B (zh) 2022-07-08
CN108778992A (zh) 2018-11-09
JP6755029B2 (ja) 2020-09-16

Similar Documents

Publication Publication Date Title
JP6056904B2 (ja) カーボンナノチューブ及び水素の同時製造方法、並びに、カーボンナノチューブ及び水素の同時製造装置
JP5549941B2 (ja) ナノ炭素の製造方法及び製造装置
JP5081453B2 (ja) 方法
JP5447367B2 (ja) カーボンナノチューブの製造方法及びカーボンナノチューブ製造装置
JP5594961B2 (ja) 狭小な直径のカーボン単層ナノチューブの合成
JP2006136878A (ja) ナノフィルター濾材の製造方法及びその製造装置
JP2018511544A (ja) カーボンナノ構造物の製造方法、これによって製造されたカーボンナノ構造物及びこれを含む複合材
JP2021175705A (ja) 複合品を製造するシステム及び方法
WO2014034739A1 (ja) 熱交換式反応管
JP5364904B2 (ja) カーボンナノファイバー集合体の製造方法
JP5672008B2 (ja) ナノカーボン複合体の製造方法および製造装置
JP6403144B2 (ja) 気相法微細炭素繊維の製造方法
WO2017154529A1 (ja) 繊維状炭素ナノ構造体製造装置及び繊維状炭素ナノ構造体製造方法
JP2006027948A (ja) 単層カーボンナノチューブの製法
JP6875705B2 (ja) 粒子処理装置、並びに触媒担持体及び/又は繊維状炭素ナノ構造体の製造方法
WO2010035439A1 (ja) カーボンナノコイルの製造方法および製造装置
WO2020085170A1 (ja) 触媒付着体の製造方法及び製造装置、並びに、繊維状炭素ナノ構造体の製造方法及び製造装置
KR20230083719A (ko) 활성화 전처리된 촉매를 포함하는 유동화 반응기를 이용하는 수소 및 탄소체 제조방법 및 제조장치
JP2006027947A (ja) 単層カーボンナノチューブの製法
KR100844115B1 (ko) 클라도포라형 탄소와 그 제조 방법 및 그 제조 장치
Shen et al. Synthesis of high-specific volume carbon nanotube structures for gas-phase applications
JP2006088082A (ja) 水素吸蔵材料及びその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018504333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17762872

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17762872

Country of ref document: EP

Kind code of ref document: A1