WO2011101891A1 - 内燃機関の排気装置 - Google Patents

内燃機関の排気装置 Download PDF

Info

Publication number
WO2011101891A1
WO2011101891A1 PCT/JP2010/000978 JP2010000978W WO2011101891A1 WO 2011101891 A1 WO2011101891 A1 WO 2011101891A1 JP 2010000978 W JP2010000978 W JP 2010000978W WO 2011101891 A1 WO2011101891 A1 WO 2011101891A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
passage
egr
temperature
internal combustion
Prior art date
Application number
PCT/JP2010/000978
Other languages
English (en)
French (fr)
Inventor
木村雄一郎
片山晴之
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2010/000978 priority Critical patent/WO2011101891A1/ja
Priority to EP10787254A priority patent/EP2538064A1/en
Priority to CN201080001826XA priority patent/CN102239324A/zh
Priority to US12/999,825 priority patent/US20110225955A1/en
Priority to JP2010543249A priority patent/JP4953107B2/ja
Publication of WO2011101891A1 publication Critical patent/WO2011101891A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2053By-passing catalytic reactors, e.g. to prevent overheating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/35Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for cleaning or treating the recirculated gases, e.g. catalysts, condensate traps, particle filters or heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust temperature raising device that is provided in an exhaust passage of an internal combustion engine to raise the temperature of exhaust gas, and an exhaust device that has a recirculation device that circulates exhaust gas.
  • EGR exhaust Gas Recirculation
  • NOx nitrogen oxide
  • an EGR passage that connects an exhaust passage and an intake passage on the downstream side of the exhaust purification catalyst is provided.
  • This engine is provided with a bypass passage that connects a point upstream of the exhaust purification catalyst in the exhaust passage and the EGR passage.
  • exhaust gas having a relatively high temperature is obtained from the bypass passage, so that the combustion property of the engine is improved.
  • the engine also includes a burner for heating the filter to burn and remove particulates adhering to the filter carrying the catalyst.
  • the engine disclosed in Patent Document 2 is provided with an EGR cooler that cools exhaust gas in the EGR passage.
  • the cooling water introduced into the EGR cooler is heated when the engine water temperature is low, condensation of moisture in the EGR cooler can be suppressed.
  • the object of the present invention is to promote the removal of condensed water in the EGR passage.
  • An exhaust temperature raising device that is provided in an exhaust passage of the internal combustion engine and raises the temperature of the exhaust gas
  • An exhaust purification catalyst provided in the exhaust passage downstream of the exhaust temperature raising device
  • An EGR passage connecting the exhaust passage downstream of the exhaust purification catalyst and the intake passage of the internal combustion engine
  • a bypass passage connecting the EGR passage with a point downstream of the exhaust temperature raising device in the exhaust passage and upstream of the exhaust purification catalyst
  • a bypass valve for opening and closing the bypass passage
  • An exhaust system for an internal combustion engine comprising a controller for controlling the bypass valve, The controller controls to open the bypass valve when the temperature of the EGR passage is lower than a predetermined reference value, and the exhaust gas heated by the exhaust temperature raising device passes through the EGR passage.
  • An exhaust device for an internal combustion engine to be supplied to an intake passage.
  • the bypass passage is downstream of the exhaust gas temperature raising device and upstream of the exhaust purification catalyst and the EGR passage is connected, the exhaust gas heated by the exhaust gas temperature raising device is It can be supplied to the intake passage through the EGR passage, and a sufficient amount of heat can be obtained by the exhaust gas temperature raising device.
  • the controller controls to open the bypass valve when the temperature of the EGR passage is lower than a predetermined reference value. Therefore, when the engine water temperature is high and the temperature difference from the EGR passage is large (for example, in the cold region) Even in the winter season), condensation of moisture in the EGR passage can be suitably suppressed.
  • the EGR passage has an EGR cooler for cooling the exhaust gas, and the bypass passage is connected to the EGR passage on the intake side of the EGR cooler.
  • the heat from the exhaust temperature raising device via the bypass passage can be applied to a portion of the EGR passage closer to the intake side than the EGR cooler without passing through the EGR cooler. This makes it possible to quickly raise the temperature of the portion.
  • the EGR passage includes an EGR valve that opens and closes the EGR passage closer to the intake side than the connection point of the bypass passage, and the controller controls the EGR valve to close.
  • the exhaust gas that has passed through the bypass passage is supplied to the exhaust side of the EGR passage.
  • the EGR cooler can be suitably heated using an EGR valve when necessary. Further, it is considered that the temperature on the intake side of the EGR cooler is delayed in normal use of the EGR passage. In this aspect, the temperature on the intake side can be suitably increased.
  • the controller controls the EGR valve to raise the temperature of the intake side of the EGR passage after the temperature of the EGR cooler is raised.
  • the EGR valve when necessary, is used to preferentially raise the temperature of the EGR cooler that is highly likely to condense moisture, and then the temperature on the intake side of the EGR passage is raised. Can be suitably suppressed.
  • the EGR passage has an EGR cooler that cools the exhaust gas, and the bypass passage is connected to the EGR passage at a point on the exhaust side of the EGR cooler.
  • heat from the exhaust temperature raising device acts on the EGR cooler via the bypass passage when necessary, so that condensation of moisture in the EGR passage including the EGR cooler can be suitably suppressed.
  • the means for solving the problems in the present invention can be used in combination as much as possible.
  • FIG. 1 is a conceptual diagram of a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing the low-pressure EGR passage heating process in the first embodiment.
  • FIG. 3 is a conceptual diagram of the second embodiment of the present invention.
  • FIG. 4 is a flowchart showing a low pressure EGR passage heating process in the second embodiment.
  • FIG. 5 is a conceptual diagram showing the main part of a modification of the first embodiment.
  • FIG. 6 is a conceptual diagram showing the main part of a second modification of the first embodiment.
  • FIG. 1 shows a first embodiment of the present invention.
  • the engine body 1 is a compression ignition internal combustion engine (diesel engine) using light oil as fuel, but may be another type of internal combustion engine.
  • the engine body 1 has a combustion chamber 2 in each of the four cylinders. Each combustion chamber 2 is provided with an electronically controlled fuel injection valve 3 for injecting fuel.
  • An intake manifold 4 and an exhaust manifold 5 are connected to the combustion chamber 2.
  • the intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake pipe 6.
  • An inlet of the compressor 7 a is connected to an air cleaner 9 via an air flow meter 8.
  • a throttle valve 10 driven by a step motor is disposed in the intake pipe 6.
  • An intercooler 11 for cooling the intake air flowing through the intake pipe 6 is disposed around the intake pipe 6.
  • Engine cooling water is guided into the intercooler 11 and the intake air is cooled by the engine cooling water.
  • the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7.
  • the outlet of the exhaust turbine 7 b is connected to the exhaust purification catalyst 13 via the exhaust pipe 12.
  • a small oxidation catalyst 14 is arranged in the engine exhaust passage upstream of the exhaust purification catalyst 13, that is, in the exhaust pipe 12.
  • the small oxidation catalyst 14 has a smaller volume than the exhaust purification catalyst 13 and a part of the exhaust gas flowing into the exhaust purification catalyst 13 circulates.
  • the exhaust purification catalyst 13 is composed of, for example, an oxidation catalyst, a three-way catalyst, or a NOx catalyst.
  • the small oxidation catalyst 14 is composed of an oxidation catalyst, and as the catalyst material, for example, Pt / CeO 2 , Mn / CeO 2 , Fe / CeO 2 , Ni / CeO 2 , Cu / CeO 2 or the like can be used. Cordierite or metal is used for the base material of the catalysts 13 and 14.
  • a fuel supply valve 15 for supplying fuel to the small oxidation catalyst 14 is arranged with its injection port facing the exhaust pipe 12.
  • the fuel in the fuel tank 44 is supplied to the fuel supply valve 15 via the fuel pump 43.
  • a pipe line, a control valve, and a compressor for supplying combustion air from the outside into the exhaust pipe 12 may be provided.
  • a glow plug 16 is provided in the exhaust pipe 12 on the downstream side of the fuel supply valve 15.
  • the glow plug 16 is arranged so that the fuel added from the fuel supply valve 15 contacts the tip of the glow plug 16.
  • the glow plug 16 is connected to a DC power source and a booster circuit (both not shown) for supplying power to the glow plug 16.
  • a ceramic heater may be used instead of the glow plug.
  • a collision plate for colliding the fuel injected from the fuel supply valve 15 may be disposed in the exhaust pipe 12.
  • the small oxidation catalyst 14, the fuel supply valve 15, and the glow plug 16 constitute an exhaust temperature raising device 40, which is controlled by an ECU 50 described later.
  • the exhaust manifold 5 and the intake manifold 4 are connected to each other via a high-pressure EGR passage 18.
  • An electronically controlled EGR control valve 19 is disposed in the high pressure EGR passage 18.
  • a high pressure EGR cooler 20 for cooling the EGR gas flowing in the high pressure EGR passage 18 is disposed.
  • the engine cooling water is guided into the high-pressure EGR cooler 20, and the EGR gas is cooled by the engine cooling water.
  • the exhaust pipe 12 and the intake pipe 6 are connected via a low pressure EGR passage 30.
  • the low pressure EGR passage 30 connects the exhaust pipe 12 on the downstream side of the exhaust turbocharger 7 and the exhaust purification catalyst 13 and the intake pipe 6 on the upstream side of the exhaust turbocharger 7.
  • a bypass passage 31 is provided so as to connect the exhaust pipe 12 and the low pressure EGR passage 30.
  • the bypass passage 31 connects the low-pressure EGR passage 30 to a point in the exhaust pipe 12 downstream of the exhaust temperature raising device 40 and upstream of the exhaust purification catalyst 13. Therefore, the heat of the exhaust gas temperature raising device 40 can raise the temperature of the exhaust gas supplied into the bypass passage 31.
  • the bypass passage 31 is provided with a bypass valve 34 that opens and closes the bypass passage 31.
  • a low pressure EGR cooler 32 for cooling the exhaust gas is disposed around the low pressure EGR passage 30, a low pressure EGR cooler 32 for cooling the exhaust gas is disposed.
  • the bypass passage 31 is connected to the low pressure EGR passage 30 on the intake side of the low pressure EGR cooler 32.
  • the low-pressure EGR passage 30 is provided with a low-pressure EGR valve 33 for opening and closing the low-pressure EGR passage 30 in the normal low-pressure EGR control, closer to the intake side than the connection point with the bypass passage 31.
  • a catalyst inlet valve 35 for opening and closing the exhaust pipe 12 is provided on the upstream side of the exhaust purification catalyst 13 and downstream of the connection point of the bypass passage 31.
  • An exhaust throttle valve 36 for opening and closing the exhaust pipe 12 is provided downstream of the exhaust purification catalyst 13 and downstream of the connection point with the low pressure EGR passage 30.
  • the low-pressure EGR passage 30 is further provided with an FOD (Foreign Object Damage) trapper 37 made of a metal mesh for capturing foreign matter.
  • a low pressure EGR temperature sensor 38 for detecting the temperature in the low pressure EGR passage 30 is installed in the low pressure EGR passage 30 on the intake side of the connection point with the bypass passage 31.
  • the low pressure EGR cooler 32 is provided with a cooler temperature sensor 39 for detecting the internal temperature.
  • the temperature sensors 38 and 39 have a thermistor whose resistance value changes depending on the temperature, and can detect a change in the exhaust temperature based on a change in the resistance value of the thermistor.
  • Each fuel injection valve 3 is connected to a common rail 42 via a fuel supply pipe 41, and this common rail 42 is connected to a fuel tank 44 via an electronically controlled fuel pump 43 with variable discharge amount.
  • the fuel stored in the fuel tank 44 is supplied into the common rail 42 by the fuel pump 43, and the fuel supplied into the common rail 42 is supplied to the fuel injection valve 3 through each fuel supply pipe 41.
  • An electronic control unit (ECU) 50 which is a controller, is composed of a well-known digital computer, and is connected to each other by a bidirectional bus, a ROM (read only memory), a RAM (random access memory), a CPU (microprocessor), an input port. And an output port.
  • ECU electronice control unit
  • the output signals of the temperature sensors 38 and 39 are input to the input port of the ECU 50 via corresponding AD converters.
  • a load sensor 52 that generates an output voltage proportional to the amount of depression of the accelerator pedal 51 is connected to the accelerator pedal 51, and the output voltage of the load sensor 52 is input to the input port via a corresponding AD converter.
  • a crank angle sensor 53 that generates an output pulse every time the crankshaft of the engine body 1 rotates, for example, 15 ° is connected to the input port.
  • an intake air temperature sensor 54 installed in the vicinity of the throttle valve 10 is connected to the input port.
  • the output port of the ECU 50 is used for driving the throttle valve 10, the high pressure EGR control valve 19, the low pressure EGR control valve 33, the bypass valve 34, the catalyst inlet valve 35, and the exhaust throttle valve 36 via corresponding drive circuits. Connected to each step motor. The output port is also connected to the fuel injection valve 3 and the fuel pump 43 via corresponding drive circuits. The operation of these actuators is controlled by the ECU 50.
  • Various programs and reference values / initial values are stored in the ROM of the ECU 50. Such reference values and initial values include temperature reference values Tmin1 and Tmin2 used for processing to be described later.
  • the ECU 50 calculates the fuel supply instruction amount based on parameters indicating the vehicle state including the air flow meter 8, the load sensor 52, and the crank angle sensor 53, particularly the engine operation state, and the fuel injection valve for a time corresponding to the instruction amount.
  • a control signal is output to open 3 and 15. In accordance with this control signal, an amount of fuel corresponding to the fuel supply instruction amount is supplied from the fuel injection valves 3 and 15.
  • the ECU 50 selectively switches the EGR passage for supplying EGR gas according to the engine operating state determined by, for example, the engine load factor KL and the engine speed Ne.
  • the engine load factor KL is the ratio of the engine load to the total load. That is, when the engine load factor KL is lower than a predetermined first set load factor KL1, EGR gas is supplied only through the high-pressure EGR passage 18. In this way, good responsiveness can be ensured, and the amount of EGR gas supplied to the engine can be precisely controlled.
  • the engine load factor KL is higher than the first set load factor KL1 and lower than the predetermined second set load factor KL2
  • EGR gas is supplied only through the low pressure EGR passage 30. . This makes it possible to reliably supply EGR gas to the engine even when the engine load factor KL is high. Further, when the engine load factor KL is higher than the second set load factor KL2, the supply of EGR gas is prohibited.
  • the ECU 50 controls the exhaust temperature raising device 40 to supply and ignite fuel, thereby raising the temperature of the small oxidation catalyst 14. Part or all of the supplied fuel is ignited by the glow plug 16, thereby raising the temperature of the exhaust gas.
  • the ECU 50 supplies fuel to the exhaust purification catalyst 13 by injecting more fuel than necessary for the small-sized oxidation catalyst 14 as necessary, whereby the accumulated particulate matter (PM) is accumulated.
  • the oxidation and combustion and the exhaust purification catalyst 13 are NOx occlusion reduction catalysts, it is also possible to perform NOx reduction processing and SOx poisoning recovery processing on the exhaust purification catalyst 13.
  • the ECU 50 further executes the following low-pressure EGR passage heating process in parallel with the above-described controls. This low pressure EGR passage heating process will be described below with reference to FIG.
  • the processing routine of FIG. 2 is repeatedly executed every predetermined time on condition that an ignition switch (not shown) is turned on and the engine body 1 is operating.
  • the ECU 50 first reads the values of the EGR intake side temperature T1 detected by the low pressure EGR temperature sensor 38 and the low pressure EGR cooler temperature T2 detected by the cooler temperature sensor 39 (S10).
  • the ECU 50 determines whether or not the read EGR intake side temperature T1 is lower than the reference value Tmin1 (S20). If affirmative, that is, if the EGR intake side temperature T1 is lower than the reference value Tmin1, the ECU 50 controls the step motors that drive these valves to open the bypass valve 34 and close the catalyst inlet valve 35. Output is performed (S30).
  • the ECU 50 determines whether or not the previously read low-pressure EGR cooler temperature T2 is lower than the reference value Tmin2 (S40).
  • the reference value Tmin2 is a value lower than the reference value Tmin1, but may be a value higher than the reference value Tmin1 or a value equal to the reference value Tmin1.
  • affirmative determination is made in steps S20 and S40.
  • step S40 If the determination in step S40 is affirmative, that is, if the low-pressure EGR cooler temperature T2 is lower than the reference value Tmin2, the ECU 50 closes the low-pressure EGR valve 33 and opens the exhaust throttle valve 36. A control output is performed on (S50). As a result, as shown by the arrow F2 in FIG. 1, the exhaust gas heated by the exhaust temperature raising device 40 skips the exhaust purification catalyst 13, and bypasses the bypass passage 31, the low pressure EGR cooler 32, and the exhaust throttle valve 36. Flowing through.
  • step S40 that is, if the low pressure EGR cooler temperature T2 is higher than or equal to the reference value Tmin2, the ECU 50 opens these low pressure EGR valves 33 and closes the exhaust throttle valves 36. Control output is performed for each step motor to be driven (S70). As a result, the exhaust gas heated by the exhaust gas temperature raising device 40 flows through the bypass passage 31 and the low pressure EGR valve 33 without passing through the low pressure EGR cooler 32 as indicated by an arrow F3 in FIG.
  • step S20 that is, if the temperature T1 is equal to or greater than the reference value Tmin1, the ECU 50 closes the bypass valve 34, opens the catalyst inlet valve 35, and opens the exhaust throttle valve 36.
  • a control output is performed for each step motor that drives the valve (S60).
  • the bypass passage 31 connects the point on the downstream side of the exhaust temperature raising device 40 and the upstream side of the exhaust purification catalyst 13 to the low pressure EGR passage 30.
  • the exhaust gas heated by the temperature device 40 can be supplied to the intake passage through the low pressure EGR passage 30, and a sufficient amount of heat can be obtained by the exhaust temperature raising device 40.
  • Tmin1 a predetermined reference value
  • the ECU 50 controls the bypass valve 34 to open (S30), so that the engine water temperature is high and the low pressure EGR passage 30 Even when the temperature difference is large (for example, in the severe winter season in a cold region), condensation of moisture in the low-pressure EGR passage 30 can be suitably suppressed.
  • the low pressure EGR passage 30 has the low pressure EGR cooler 32, and the bypass passage 31 is connected to the low pressure EGR passage 30 on the intake side of the low pressure EGR cooler 32.
  • the heat from the exhaust temperature raising device 40 via the bypass passage 31 acts on the portion of the low pressure EGR passage 30 on the intake side of the low pressure EGR cooler 32 without passing through the low pressure EGR cooler 32 ( S ⁇ b> 70), the temperature on the intake side can be quickly raised without loss due to the low pressure EGR cooler 32.
  • the low pressure EGR passage 30 includes an EGR valve 33 that opens and closes the low pressure EGR passage 30 on the intake side of the connection point of the bypass passage 31, and the ECU 50 controls the EGR valve 33 to close.
  • S50 the exhaust gas that has passed through the bypass passage 31 is supplied to the exhaust side of the low-pressure EGR passage 30.
  • the temperature of the low pressure EGR cooler 32 can be suitably raised using the EGR valve 33.
  • the temperature on the intake side in the low-pressure EGR cooler 32 is delayed from the region on the exhaust side. In this aspect, the region on the intake side is preferable. The temperature can be increased.
  • the EGR 50 controls the EGR valve 33 and the low-pressure EGR cooler 32 is heated, so that the EGR 50 is higher than the intake side of the low-pressure EGR passage 30 (ie, the connection point with the bypass passage 31).
  • the temperature of the region near the intake pipe 6 is increased.
  • the EGR valve 33 is used to preferentially raise the temperature of the low-pressure EGR cooler 32 that is highly likely to condense moisture, and thereafter the temperature of the intake side of the low-pressure EGR passage 30 is raised, so that condensed water is generated. Can be suitably suppressed.
  • the bypass passage 31 is connected to the low pressure EGR passage 30 at a point on the exhaust side of the low pressure EGR cooler 62.
  • the configuration of the low pressure EGR cooler 62 is the same as that of the low pressure EGR cooler 32 in the first embodiment described above.
  • the temperature in the low pressure EGR passage 30 is detected only by the cooler temperature sensor 39, and the low pressure EGR temperature sensor 38 is not installed.
  • the reference value stored in the ROM of the ECU 50 includes a temperature reference value Tmin3 used for processing to be described later. Since the remaining mechanical configuration of the second embodiment is the same as that of the first embodiment, the same reference numerals are given and detailed description thereof is omitted.
  • the low pressure EGR passage heating process executed by the ECU 50 in the second embodiment will be described with reference to FIG.
  • the processing routine of FIG. 4 is repeatedly executed every predetermined time on condition that an ignition switch (not shown) is turned on and the engine body 1 is operating.
  • the ECU 50 reads the value of the low pressure EGR cooler temperature T3 detected by the cooler temperature sensor 39 (S110). Next, the ECU 50 determines whether or not the read low pressure EGR cooler temperature T3 is lower than the reference value Tmin3 (S120). In a severe winter season in a cold region, for example, during cold start when the outside air temperature and the temperature T3 are ⁇ 10 ° C. or lower, affirmative determination is made in step S120.
  • step S120 If the determination in step S120 is affirmative, that is, if the low pressure EGR cooler temperature T3 is lower than the reference value Tmin3, the ECU 50 opens the bypass valve 34, closes the catalyst inlet valve 35, closes the exhaust throttle valve 36, and closes the low pressure EGR valve 33. Is output to each step motor that drives these valves (S130). As a result, the exhaust gas heated by the exhaust gas temperature raising device 40 flows through the bypass passage 31 and the low pressure EGR cooler 62 as indicated by an arrow F3 in FIG.
  • step S130 When the process of step S130 is repeated, the temperature of each part of the low-pressure EGR passage 30 is increased, and the temperature T3 rises and the result is negative in step S120. If NO in step S120, that is, if the low pressure EGR cooler temperature T3 is higher than or equal to the reference value Tmin3, the ECU 50 closes the bypass valve 34, opens the catalyst inlet valve 35, and opens the exhaust throttle valve 36. As described above, control output is performed for each step motor that drives these valves (S140).
  • the ECU 50 determines whether a predetermined low-pressure EGR valve open condition is satisfied (S150).
  • the low-pressure EGR valve open condition is, for example, as described above, that the engine load factor KL is higher than the first set load factor KL1 and lower than the predetermined second set load factor KL2. If the determination is affirmative, that is, the low-pressure EGR valve open condition is satisfied, the low-pressure EGR valve 33 is opened (S160). As a result, the exhaust gas heated by the exhaust gas temperature raising device 40 flows through the low pressure EGR passage 30 including the low pressure EGR cooler 62 without passing through the bypass passage 31.
  • step S50 that is, if the low pressure EGR valve open condition is not satisfied, the low pressure EGR valve 33 is closed (S170). As a result, the exhaust gas heated by the exhaust gas temperature raising device 40 flows through the exhaust purification catalyst 13 without passing through the bypass passage 31 and the low pressure EGR passage 30.
  • the bypass passage 31 is connected to the low pressure EGR passage 30 at a point on the exhaust side of the low pressure EGR cooler 62.
  • the heat from the exhaust temperature raising device 40 acts on the low pressure EGR cooler 62 via the bypass passage 31, so that the low pressure EGR cooler 62 is included. Further, the condensation of moisture in the low pressure EGR passage 30 can be suitably suppressed.
  • FIG. 5 shows a modification of the first embodiment.
  • a single switching valve (direction control valve) 64 is used as shown in FIG.
  • the downstream side of the exhaust temperature raising device 40 is connected to the exhaust purification catalyst 13 and the switching valve 64 rotates clockwise in the figure (arrow a direction)
  • the downstream side of the exhaust temperature raising device 40 becomes the bypass passage 31.
  • the opening of the bypass valve 34 and the closing of the catalyst inlet valve 35 and the closing of the bypass valve 34 and the opening of the catalyst inlet valve 35 in the first embodiment are realized by the single switching valve 64.
  • the structure and control can be simplified.
  • the switching valve 64 can also be applied to the second embodiment.
  • FIG. 6 shows a second modification of the first embodiment.
  • the angle ⁇ at which the bypass passage 31 intersects the low pressure EGR passage 30 is an acute angle.
  • a flow (indicated by an arrow F4 in FIG. 6) from the bypass passage 31 toward the intake side of the low pressure EGR passage 30 is preferably formed, and thereby a flow (indicated by an arrow F5) toward the low pressure EGR cooler 32. Therefore, the exhaust throttle valve 36 (see FIG. 1) on the downstream side of the exhaust purification catalyst 13 can be omitted, and the structure and control can be simplified.
  • the temperature reference values Tmin1, Tmin2, and Tmin3 are all fixed values set in advance. However, one or more of these values are dynamically set based on the state of the vehicle (for example, the engine water temperature). May be. Although each valve is in two states of open or closed, the opening degree may be changed between these two states in a multistage manner or continuously.
  • the temperature of the low pressure EGR passage 30 is directly detected by the temperature sensors 38 and 39.
  • the temperature of the low pressure EGR passage is, for example, a detection value of an intake air temperature sensor 54 provided in the vicinity of the throttle valve 10. You may estimate based.
  • the present invention can also be applied to an engine that does not have a turbocharger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

 内燃機関(1)の排気通路(12)に設けられて排ガスを昇温する排気昇温装置(40)と、前記排気昇温装置(40)よりも下流側の前記排気通路(12)に設けられた排気浄化触媒(13)と、前記排気浄化触媒(13)の下流側の前記排気通路(12)と前記内燃機関(1)の吸気通路(6)とを接続するEGR通路(30)と、前記排気通路(12)における前記排気昇温装置(40)よりも下流側であって前記排気浄化触媒(13)よりも上流側の点と前記EGR通路(30)とを接続するバイパス通路(31)と、前記バイパス通路(31)を開閉するバイパス弁(34)と、当該制御弁を制御するコントローラ(50)と、を備えた内燃機関の排気装置であって、前記コントローラ(50)は、前記EGR通路(30)の温度が予め定められた基準値よりも低い場合に、前記バイパス弁(34)を開くように制御して、前記排気昇温装置(40)により昇温された排ガスを前記EGR通路(30)を通じて前記吸気通路(6)に供給させる。

Description

内燃機関の排気装置
 本発明は、内燃機関の排気通路に設けられて排ガスを昇温する排気昇温装置、及び排気ガスを循環させる再循環装置を有する排気装置に関する。
 多くの内燃機関において、排気通路と吸気通路とを接続するEGR(Exhaust Gas Recirculation)通路が設けられている。その目的は、主として排出ガス中の窒素酸化物(NOx)の低減および部分負荷時の燃費向上である。
 特許文献1が開示するエンジンでは、排気浄化触媒の下流側の排気通路と吸気通路とを接続するEGR通路が設けられている。このエンジンでは、排気通路における排気浄化触媒よりも上流側の点とEGR通路とを接続するバイパス通路が設けられている。エンジンの低負荷時に、このバイパス通路に設けられたバイパス弁を開くように制御すると、バイパス通路から比較的高温の排ガスが得られるため、エンジンの燃焼性が向上する。このエンジンはまた、触媒を担持したフィルタに付着した微粒子を燃焼及び除去するために、フィルタを加熱するためのバーナーを備えている。
 特許文献2が開示するエンジンは、EGR通路に排ガスを冷却するEGRクーラを設けている。エンジン水温が低いときに、EGRクーラに導入する冷却水を加熱すると、EGRクーラ内の水分の凝縮を抑制できる。
特開平3‐74513号公報 特開平11‐125151号公報
 しかし、特許文献1のエンジンでは、外気温度がきわめて低い場合(例えば、寒冷地の厳冬季)に、EGR通路に排ガス中の水分が凝縮するおそれがある。凝縮水は、排ガスの量の少ない低負荷時にはEGR通路中に滞留しているが、排ガスの量の多い高負荷時には、排ガスの圧力によって吸気通路に供給され、燃焼室に侵入すればウォーターハンマーによりエンジンを損傷し、ターボチャージャを備える場合にはタービンのインペラを損傷するおそれがある。特許文献1のバーナーは、バイパス通路に供給される排ガスを加熱するようには配置されていない。特許文献2のエンジンでは、冷却水を加熱するための専用のヒータが必要であり、また、エンジン水温が所定値より低い場合にヒータを動作させているので、エンジン水温が低くなくてもEGR通路との温度差が大きい場合(例えば寒冷地での厳冬季)には、水分の凝縮を抑制できない。
 本発明は、EGR通路の内部における凝縮水の除去を促進することを目的とする。
 本発明の1態様は、
 内燃機関の排気通路に設けられて排ガスを昇温する排気昇温装置と、
 前記排気昇温装置よりも下流側の前記排気通路に設けられた排気浄化触媒と、
 前記排気浄化触媒の下流側の前記排気通路と前記内燃機関の吸気通路とを接続するEGR通路と、
 前記排気通路における前記排気昇温装置よりも下流側であって前記排気浄化触媒よりも上流側の点と前記EGR通路とを接続するバイパス通路と、
 前記バイパス通路を開閉するバイパス弁と、
 当該バイパス弁を制御するコントローラと、を備えた内燃機関の排気装置であって、
 前記コントローラは、前記EGR通路の温度が予め定められた基準値よりも低い場合に、前記バイパス弁を開くように制御して、前記排気昇温装置により昇温された排ガスを前記EGR通路を通じて前記吸気通路に供給させる内燃機関の排気装置である。
 この態様では、バイパス通路が排気昇温装置よりも下流側であって排気浄化触媒よりも上流側の点とEGR通路とを接続しているため、排気昇温装置により昇温された排ガスを、EGR通路を通じて吸気通路に供給することができ、排気昇温装置によって十分な熱量が得られる。コントローラは、EGR通路の温度が予め定められた基準値よりも低い場合に、バイパス弁を開くように制御するので、エンジン水温が高く且つEGR通路との温度差が大きい場合(例えば寒冷地の厳冬季)であっても、EGR通路における水分の凝縮を好適に抑制することができる。
 好適には、前記EGR通路は、排ガスを冷却するEGRクーラを有し、前記バイパス通路は、前記EGRクーラよりも吸気側において前記EGR通路に接続している。
 この態様では、必要な場合に、バイパス通路を経由した排気昇温装置からの熱を、EGRクーラを経由せずに、EGR通路のうちEGRクーラよりも吸気側の部分に作用させることができるので、これにより当該部分を迅速に昇温させることができる。
 この場合において、好適には、前記EGR通路は、前記バイパス通路の接続点よりも吸気側に、当該EGR通路を開閉するEGR弁を備え、前記コントローラは、前記EGR弁を閉じるように制御して、前記バイパス通路を経由した排ガスを、前記EGR通路の排気側に供給させる。
 この態様では、必要な場合にEGR弁を利用して、EGRクーラを好適に昇温させることができる。また、EGRクーラにおける吸気側の領域はEGR通路の通常の使用において昇温が遅れるものと考えられるところ、この態様では当該吸気側の領域を好適に昇温させることができる。
 この場合において更に、好適には、前記コントローラは、前記EGR弁を制御して、前記EGRクーラが昇温された後に、EGR通路の吸気側を昇温させる。
 この態様では、必要な場合にEGR弁を利用して、水分の凝結の可能性の高いEGRクーラを優先して昇温させ、その後にEGR通路の吸気側を昇温させるので、凝縮水の生成を好適に抑制することができる。
 本発明の別の態様では、前記EGR通路は、排ガスを冷却するEGRクーラを有し、前記バイパス通路は、前記EGRクーラよりも排気側の点において前記EGR通路に接続している。
 この場合には、必要な場合に排気昇温装置からの熱がバイパス通路を経由してEGRクーラに作用するので、EGRクーラを含めたEGR通路の水分の凝縮を好適に抑制できる。
 なお、本発明における課題を解決するための手段は、可能な限り組み合わせて使用することができる。
 本発明によれば、EGR通路の内部における凝縮水の除去を促進することができる。
図1は本発明の第1実施形態の概念図である。 図2は第1実施形態における低圧EGR通路加熱処理を示すフローチャートである。 図3は本発明の第2実施形態の概念図である。 図4は第2実施形態における低圧EGR通路加熱処理を示すフローチャートである。 図5は第1実施形態の変形例の要部を示す概念図である。 図6は第1実施形態の第2の変形例の要部を示す概念図である。
<第1実施形態>
 本発明の好適な実施形態について、以下に詳細に説明する。図1は本発明の第1実施形態を示す。図1において、エンジン本体1は、軽油を燃料とする圧縮点火式内燃機関(ディーゼルエンジン)であるが、他の形式の内燃機関であってもよい。エンジン本体1は、4つの気筒のそれぞれに燃焼室2を有する。各燃焼室2には、燃料を噴射するための電子制御式の燃料噴射弁3が配置されている。燃焼室2には、吸気マニホールド4および排気マニホールド5が接続されている。吸気マニホールド4は、吸気管6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結されている。コンプレッサ7aの入口は、エアフローメータ8を介してエアクリーナ9に連結されている。
 吸気管6内には、ステップモータにより駆動されるスロットル弁10が配置されている。吸気管6の周りには、吸気管6内を流れる吸入空気を冷却するためのインタークーラ11が配置されている。インタークーラ11内に機関冷却水が導かれ、機関冷却水によって吸入空気が冷却される。
 排気マニホールド5は、排気ターボチャージャ7の排気タービン7bの入口に連結されている。排気タービン7bの出口は、排気管12を介して、排気浄化触媒13に連結されている。この排気浄化触媒13上流の機関排気通路内、即ち排気管12内には、小型酸化触媒14が配置されている。小型酸化触媒14は、排気浄化触媒13よりも体積が小さく、かつ排気浄化触媒13に流入する排気ガスの一部が流通する。
 排気浄化触媒13は、例えば酸化触媒、三元触媒又はNOx触媒から構成されている。小型酸化触媒14は酸化触媒から構成されており、触媒物質としては例えばPt/CeO、Mn/CeO、Fe/CeO、Ni/CeO、Cu/CeO等を用いることができる。触媒13,14の基材には、コージェライトあるいはメタルが用いられている。
 この小型酸化触媒14上流の排気管12内には、小型酸化触媒14に燃料を供給するための燃料供給弁15が、その噴射口を排気管12内部に臨ませて配置される。燃料供給弁15には、燃料タンク44内の燃料が燃料ポンプ43を介して供給される。燃焼を促進させるために、外部から排気管12の内部に燃焼用空気を供給するための管路、制御弁及びコンプレッサを設けても良い。
 燃料供給弁15よりも下流側の排気管12内には、グロープラグ16が設けられている。グロープラグ16は、その先端部に燃料供給弁15から添加される燃料が接触するように配置されている。グロープラグ16には、これに給電するための直流電源及び昇圧回路(いずれも不図示)が接続されている。着火するための手段としては、グロープラグに代えてセラミックヒータを用いてもよい。燃料の微粒化を促進するために、燃料供給弁15から噴射された燃料を衝突させるための衝突板を排気管12内に配置してもよい。小型酸化触媒14、燃料供給弁15およびグロープラグ16は、排気昇温装置40を構成し、この排気昇温装置40は、後述するECU50によって制御される。
 排気マニホールド5と吸気マニホールド4とは、高圧EGR通路18を介して互いに接続されている。高圧EGR通路18内には、電子制御式のEGR制御弁19が配置される。高圧EGR通路18の周りには、高圧EGR通路18内を流れるEGRガスを冷却するための高圧EGRクーラ20が配置される。機関冷却水が高圧EGRクーラ20内に導かれ、機関冷却水によってEGRガスが冷却される。
 排気管12と吸気管6とは、低圧EGR通路30を介して接続されている。低圧EGR通路30は、排気ターボチャージャ7及び排気浄化触媒13の下流側の排気管12と、排気ターボチャージャ7の上流側の吸気管6とを接続する。
 排気管12と低圧EGR通路30とを接続するように、バイパス通路31が設けられている。バイパス通路31は、排気管12における排気昇温装置40よりも下流側であって排気浄化触媒13よりも上流側の点と、低圧EGR通路30とを接続する。したがって、排気昇温装置40の熱が、バイパス通路31内に供給される排ガスを昇温させることが可能である。バイパス通路31には、当該バイパス通路31を開閉するバイパス弁34が設けられている。
 低圧EGR通路30の周りには、排ガスを冷却する低圧EGRクーラ32が配置されている。バイパス通路31は、低圧EGRクーラ32よりも吸気側において、低圧EGR通路30に接続している。
 低圧EGR通路30には、バイパス通路31との接続点よりも吸気側に、通常の低圧EGR制御において低圧EGR通路30を開閉するための低圧EGR弁33が設けられている。
 排気浄化触媒13の上流側であってバイパス通路31の接続点よりも下流側には、排気管12を開閉する触媒入口弁35が設けられている。排気浄化触媒13の下流側であって低圧EGR通路30との接続点よりも下流側には、排気管12を開閉する排気絞り弁36が設けられている。低圧EGR通路30には更に、異物を捕捉するための金属製メッシュからなるFOD(Foreign Object Damage)トラッパ37が設けられている。
 バイパス通路31との接続点よりも吸気側の低圧EGR通路30内には、低圧EGR通路30内の温度を検出するための低圧EGR温度センサ38が設置されている。低圧EGRクーラ32には、その内部の温度を検出するためのクーラ温度センサ39が設置されている。温度センサ38,39は、温度により抵抗値が変化するサーミスタを有し、排気温の変化をサーミスタの抵抗値変化で検出することができる。
 各燃料噴射弁3は、燃料供給管41を介してコモンレール42に連結され、このコモンレール42は電子制御式の吐出量可変な燃料ポンプ43を介して燃料タンク44に連結される。燃料タンク44内に貯蔵されている燃料は燃料ポンプ43によってコモンレール42内に供給され、コモンレール42内に供給された燃料は各燃料供給管41を介して燃料噴射弁3に供給される。
 コントローラである電子制御ユニット(ECU)50は、周知のデジタルコンピュータからなり、双方向性バスによって互いに接続されたROM(リードオンリメモリ)、RAM(ランダムアクセスメモリ)、CPU(マイクロプロセッサ)、入力ポートおよび出力ポートを具備する。
 温度センサ38,39の出力信号は、対応するAD変換器を介してECU50の入力ポートに入力される。アクセルペダル51には、アクセルペダル51の踏込み量に比例した出力電圧を発生する負荷センサ52が接続され、負荷センサ52の出力電圧は、対応するAD変換器を介して入力ポートに入力される。更に入力ポートには、エンジン本体1のクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ53が接続される。更に入力ポートには、スロットル弁10の近傍に設置された吸気温度センサ54が接続される。
 他方、ECU50の出力ポートは、対応する各駆動回路を介して、スロットル弁10、高圧EGR制御弁19、低圧EGR制御弁33、バイパス弁34、触媒入口弁35および排気絞り弁36の駆動用の各ステップモータに接続される。出力ポートはまた、対応する各駆動回路を介して燃料噴射弁3及び燃料ポンプ43に接続される。これらアクチュエータ類の動作は、ECU50によって制御される。ECU50のROMには、各種プログラム及び基準値・初期値が格納されている。このような基準値及び初期値は、後述する処理に使用される温度の基準値Tmin1,Tmin2を含む。
 ECU50は、エアフローメータ8、負荷センサ52及びクランク角センサ53を含む車両の状態とくにエンジンの動作状態を示すパラメータに基づいて、燃料供給指示量を算出し、指示量に応じた時間だけ燃料噴射弁3,15を開くべく制御信号を出力する。この制御信号に従って、燃料供給指示量に応じた量の燃料が燃料噴射弁3,15から供給される。
 また、ECU50は、例えば機関負荷率KL及び機関回転数Neにより定まる機関運転状態に応じて、EGRガスを供給するEGR通路を選択的に切り換える。ここで、機関負荷率KLは全負荷に対する機関負荷の割合をいう。すなわち、機関負荷率KLが予め定められた第1の設定負荷率KL1よりも低いときには、高圧EGR通路18のみを介してEGRガスが供給される。このようにすると、良好な応答性を確保することができ、機関に供給されるEGRガスの量を精密に制御することができる。これに対し、機関負荷率KLが第1の設定負荷率KL1よりも高くかつあらかじめ定められた第2の設定負荷率KL2よりも低いときには、低圧EGR通路30のみを介してEGRガスが供給される。このようにすると、機関負荷率KLが高いときにもEGRガスを確実に機関に供給することが可能になる。さらに、機関負荷率KLが第2の設定負荷率KL2よりも高いときには、EGRガスの供給が禁止される。
 また、ECU50は、排気昇温装置40を制御して、燃料の供給及び着火を行い、これにより小型酸化触媒14を昇温させる。供給された燃料の一部又は全部はグロープラグ16により着火され、これによって排ガスが昇温される。なお、ECU50は必要に応じて、小型酸化触媒14の必要量よりも多くの燃料を噴射することで、排気浄化触媒13に対する燃料の供給を行い、これにより、堆積した粒子状物質(PM)の酸化及び燃焼、並びに排気浄化触媒13がNOx吸蔵還元触媒である場合には、排気浄化触媒13に対するNOx還元処理及びSOx被毒回復処理を実施することも可能である。
 ECU50はさらに、上記各制御と並行して、以下の低圧EGR通路加熱処理を実行する。この低圧EGR通路加熱処理について、以下に図2に従って説明する。図2の処理ルーチンは、不図示のイグニッションスイッチがオンされ且つエンジン本体1が動作していることを条件に、所定時間ごとに繰返し実行される。図2において、まずECU50は、低圧EGR温度センサ38により検出されるEGR吸気側温度T1、及びクーラ温度センサ39により検出される低圧EGRクーラ温度T2の値を読み込む(S10)。
 次にECU50は、読み込まれたEGR吸気側温度T1が、基準値Tmin1より低いかを判断する(S20)。肯定、すなわちEGR吸気側温度T1が基準値Tmin1より低い場合には、ECU50はバイパス弁34をオープンさせ、触媒入口弁35をクローズさせるように、これらの弁を駆動する各ステップモータに対して制御出力を行う(S30)。
 次に、ECU50は、先に読み込まれた低圧EGRクーラ温度T2が、基準値Tmin2より低いかを判断する(S40)。基準値Tmin2は基準値Tmin1より低い値とするが、基準値Tmin1より高い値あるいは基準値Tmin1と等しい値であってもよい。寒冷地での厳冬季、例えば外気温及び温度T1,T2が-10°C以下のときの冷間始動時には、ステップS20及びS40で肯定される。
 ステップS40で肯定、すなわち低圧EGRクーラ温度T2が基準値Tmin2より低い場合には、ECU50は低圧EGR弁33をクローズさせ、排気絞り弁36をオープンさせるように、これらの弁を駆動する各ステップモータに対して制御出力を行う(S50)。その結果、排気昇温装置40によって昇温された排ガスは、図1において矢印F2で示されるように、排気浄化触媒13をスキップして、バイパス通路31、低圧EGRクーラ32及び排気絞り弁36を通って流れる。
 ステップS40で否定、すなわち低圧EGRクーラ温度T2が基準値Tmin2より高いかあるいはTmin2に等しい場合には、ECU50は低圧EGR弁33をオープンさせ、排気絞り弁36をクローズさせるように、これらの弁を駆動する各ステップモータに対して制御出力を行う(S70)。その結果、排気昇温装置40によって昇温された排ガスは、図1において矢印F3で示されるように、低圧EGRクーラ32を経由することなく、バイパス通路31及び低圧EGR弁33を通って流れる。
 ステップS50及びS70の処理が繰返し行われると、低圧EGR通路30の各部が昇温されるため、温度T1,T2が上昇してステップS20で否定されるようになる。ステップS20で否定、すなわち温度T1が基準値Tmin1と等しいかこれより大きい場合には、ECU50はバイパス弁34をクローズさせ、触媒入口弁35をオープンさせ、排気絞り弁36をオープンさせるように、これらの弁を駆動する各ステップモータに対して制御出力を行う(S60)。その結果、排気昇温装置40によって昇温された排ガスは、図1において矢印F1で示されるように、バイパス通路31を通らずに、排気浄化触媒13及び排気絞り弁36を通って流れる。
 なお、本ルーチンとは別途のEGR弁制御ルーチンに従い、所定の低圧EGR弁オープン条件が成立している場合には、低圧EGR弁33がオープンされて、低圧EGR通路30を経由して排ガスが吸気通路に再循環される。
 以上のとおり、本実施形態では、バイパス通路31が排気昇温装置40よりも下流側であって排気浄化触媒13よりも上流側の点と低圧EGR通路30とを接続しているため、排気昇温装置40により昇温された排ガスを、低圧EGR通路30を通じて吸気通路に供給することができ、排気昇温装置40によって十分な熱量が得られる。ECU50は、低圧EGR通路30の温度が予め定められた基準値Tmin1よりも低い場合に(S20)、バイパス弁34を開くように制御するので(S30)、エンジン水温が高く且つ低圧EGR通路30との温度差が大きい場合(例えば寒冷地の厳冬季)であっても、低圧EGR通路30における水分の凝縮を好適に抑制することができる。
 また、本実施形態では、低圧EGR通路30が低圧EGRクーラ32を有し、バイパス通路31が低圧EGRクーラ32よりも吸気側において低圧EGR通路30に接続している。このため、バイパス通路31を経由した排気昇温装置40からの熱が、低圧EGRクーラ32を経由せずに、低圧EGR通路30のうち低圧EGRクーラ32よりも吸気側の部分に作用するので(S70)、低圧EGRクーラ32による損失なしに、当該吸気側の部分を迅速に昇温させることができる。
 さらに、本実施形態では、低圧EGR通路30が、バイパス通路31の接続点よりも吸気側に、低圧EGR通路30を開閉するEGR弁33を備え、ECU50が、EGR弁33を閉じるように制御して(S50)、バイパス通路31を経由した排ガスを、低圧EGR通路30の排気側に供給させる。このため、EGR弁33を利用して、低圧EGRクーラ32を好適に昇温させることができる。また、低圧EGRクーラ32における吸気側の領域は、低圧EGR通路30の通常の使用において、その排気側の領域よりも昇温が遅れるものと考えられるところ、この態様では当該吸気側の領域を好適に昇温させることができる。
 さらに、本実施形態では、EGR50が、EGR弁33を制御して、低圧EGRクーラ32が昇温したことを条件に、低圧EGR通路30の吸気側(すなわち、バイパス通路31との接続点よりも吸気管6に近い領域)を昇温させる。このため、EGR弁33を利用して、水分の凝結の可能性の高い低圧EGRクーラ32を優先して昇温させ、その後に低圧EGR通路30の吸気側を昇温させるので、凝縮水の生成を好適に抑制することができる。
<第2実施形態>
 次に、本発明の第2実施形態について説明する。図3に示される第2実施形態では、バイパス通路31が、低圧EGRクーラ62よりも排気側の点において、低圧EGR通路30に接続している。低圧EGRクーラ62の構成は、上述した第1実施形態における低圧EGRクーラ32と同様である。低圧EGR通路30内の温度の検出はクーラ温度センサ39のみによって行われ、低圧EGR温度センサ38は設置されていない。ECU50のROMに格納されている基準値は、後述する処理に使用される温度の基準値Tmin3を含む。第2実施形態の残余の機械的構成は、上記第1実施形態と同様であるため、同一符号を付してその詳細の説明は省略する。
 第2実施形態においてECU50によって実行される低圧EGR通路加熱処理について、図4に従って説明する。図4の処理ルーチンは、不図示のイグニッションスイッチがオンされエンジン本体1が動作していることを条件に、所定時間ごとに繰返し実行される。
 図4において、まずECU50は、クーラ温度センサ39により検出される低圧EGRクーラ温度T3の値を読み込む(S110)。次にECU50は、読み込まれた低圧EGRクーラ温度T3が、基準値Tmin3より低いかを判断する(S120)。寒冷地での厳冬季、例えば外気温及び温度T3が-10°C以下のときの冷間始動時には、ステップS120で肯定される。
 ステップS120で肯定、すなわち低圧EGRクーラ温度T3が基準値Tmin3より低い場合には、ECU50はバイパス弁34をオープンさせ、触媒入口弁35をクローズさせ、排気絞り弁36をクローズさせ、低圧EGR弁33をオープンさせるように、これらの弁を駆動する各ステップモータに対して制御出力を行う(S130)。その結果、排気昇温装置40によって昇温された排ガスは、図3において矢印F3で示されるように、バイパス通路31及び低圧EGRクーラ62を通って流れる。
 ステップS130の処理が繰返し行われると、低圧EGR通路30の各部が昇温されるため、温度T3が上昇してステップS120で否定されるようになる。ステップS120で否定、すなわち低圧EGRクーラ温度T3が基準値Tmin3より高いかあるいはTmin3に等しい場合には、ECU50はバイパス弁34をクローズさせ、触媒入口弁35をオープンさせ、排気絞り弁36をオープンさせるように、これらの弁を駆動する各ステップモータに対して制御出力を行う(S140)。
 次にECU50は、予め定められた低圧EGR弁オープン条件が成立しているかを判断する(S150)。この低圧EGR弁オープン条件は、例えば上述したように、機関負荷率KLが第1の設定負荷率KL1よりも高くかつあらかじめ定められた第2の設定負荷率KL2よりも低いことである。肯定すなわち低圧EGR弁オープン条件が成立している場合には、低圧EGR弁33がオープンされる(S160)。その結果、排気昇温装置40によって昇温された排ガスは、バイパス通路31を通ることなく、低圧EGRクーラ62を含む低圧EGR通路30を通って流れる。
 ステップS50で否定、すなわち低圧EGR弁オープン条件が成立していない場合には、低圧EGR弁33がクローズされる(S170)。その結果、排気昇温装置40によって昇温された排ガスは、バイパス通路31及び低圧EGR通路30を通ることなく、排気浄化触媒13を通って流れる。
 以上のとおり、本実施形態では、バイパス通路31が低圧EGRクーラ62よりも排気側の点において低圧EGR通路30に接続している。このため、上記第1実施形態と同様の効果が得られることに加え、排気昇温装置40からの熱がバイパス通路31を経由して低圧EGRクーラ62に作用するので、低圧EGRクーラ62を含めた低圧EGR通路30の水分の凝縮を好適に抑制できる。
<変形例1>
 図5は上記第1実施形態の変形例を示す。この変形例は、上記第1実施形態におけるバイパス弁34及び触媒入口弁35に代えて、図5に示されるように、単一の切換弁(方向制御弁)64を用いている。図示の状態では、排気昇温装置40の下流側が排気浄化触媒13に接続され、切替弁64が図中時計回り(矢印a方向)に回転すると、排気昇温装置40の下流側がバイパス通路31に接続される。切替弁64のシール性を促進するために、弁体の周囲にガスケット65を配置するのが好適である。この変形例によれば、上記第1実施形態におけるバイパス弁34のオープン及び触媒入口弁35のクローズ、並びにバイパス弁34のクローズ及び触媒入口弁35のオープンが、単一の切替弁64により実現され、構造及び制御を単純化することができる。なお、この切替弁64は上記第2実施形態に適用することも可能である。
<変形例2>
 図6は上記第1実施形態の第2の変形例を示す。この変形例は、図6に示されるように、バイパス通路31が低圧EGR通路30と交わる角度αを、鋭角としたものである。この構成によれば、バイパス通路31から低圧EGR通路30の吸気側に向かう流れ(図6において矢印F4で示される)が好適に形成され、これによって、低圧EGRクーラ32に向かう流れ(矢印F5で示される)が抑制されるため、排気浄化触媒13の下流側の排気絞り弁36(図1参照)を省略することができ、構造及び制御を単純化することができる。
 本発明をある程度の具体性をもって説明したが、クレームされた発明の精神や範囲から離れることなしに、さまざまな改変や変更が可能であることは理解されなければならない。上記各実施形態では温度の基準値Tmin1,Tmin2,Tmin3をいずれも予め定められた固定値としたが、これらのうち一つ以上は、車両の状態(例えばエンジン水温)に基づいて動的に設定してもよい。また各弁をオープン又はクローズの2状態としたが、これら2状態の間で多段階的あるいは連続的に開度を変化させてもよい。
 上記各実施形態では、低圧EGR通路30の温度を、温度センサ38,39により直接検出したが、低圧EGR通路の温度は、例えばスロットル弁10の近傍に設けられた吸気温度センサ54の検出値に基づいて推定してもよい。また本発明は、ターボチャージャを有しないエンジンに適用することも可能である。
 4 吸気マニホールド
 5 排気マニホールド
 6 吸気管
 7 ターボチャージャ
 12 排気管
 13 排気浄化触媒
 14 小型酸化触媒
 18 高圧EGR通路
 30 低圧EGR通路
 31 バイパス通路
 32 低圧EGRクーラ
 40 排気昇温装置
 50 ECU

Claims (5)

  1. 内燃機関の排気通路に設けられて排ガスを昇温する排気昇温装置と、
     前記排気昇温装置よりも下流側の前記排気通路に設けられた排気浄化触媒と、
     前記排気浄化触媒の下流側の前記排気通路と前記内燃機関の吸気通路とを接続するEGR通路と、
     前記排気通路における前記排気昇温装置よりも下流側であって前記排気浄化触媒よりも上流側の点と前記EGR通路とを接続するバイパス通路と、
     前記バイパス通路を開閉するバイパス弁と、
     当該バイパス弁を制御するコントローラと、を備えた内燃機関の排気装置であって、
     前記コントローラは、前記EGR通路の温度が予め定められた基準値よりも低い場合に、前記バイパス弁を開くように制御して、前記排気昇温装置により昇温された排ガスを前記EGR通路を通じて前記吸気通路に供給させる内燃機関の排気装置。
  2.  請求項1に記載の内燃機関の排気装置であって、
     前記EGR通路は、排ガスを冷却するEGRクーラを有し、前記バイパス通路は、前記EGRクーラよりも吸気側において前記EGR通路に接続している内燃機関の排気装置。
  3.  請求項2に記載の内燃機関の排気装置であって、
     前記EGR通路は、前記バイパス通路の接続点よりも吸気側に、当該EGR通路を開閉するEGR弁を備え、
     前記コントローラは、前記EGR弁を閉じるように制御して、前記バイパス通路を経由した排ガスを、前記EGR通路の排気側に供給させる内燃機関の排気装置。
  4.  請求項3に記載の内燃機関の排気装置であって、
     前記コントローラは、前記EGR弁を制御して、前記EGRクーラが昇温された後に、EGR通路の吸気側を昇温させる内燃機関の排気装置。
  5.  請求項1に記載の内燃機関の排気装置であって、
     前記EGR通路は、排ガスを冷却するEGRクーラを有し、前記バイパス通路は、前記EGRクーラよりも排気側において前記EGR通路に接続している内燃機関の排気装置。
PCT/JP2010/000978 2010-02-17 2010-02-17 内燃機関の排気装置 WO2011101891A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2010/000978 WO2011101891A1 (ja) 2010-02-17 2010-02-17 内燃機関の排気装置
EP10787254A EP2538064A1 (en) 2010-02-17 2010-02-17 Exhaust device of internal combustion engine
CN201080001826XA CN102239324A (zh) 2010-02-17 2010-02-17 内燃机的排气装置
US12/999,825 US20110225955A1 (en) 2010-02-17 2010-02-17 Exhaust apparatus for internal combustion engine
JP2010543249A JP4953107B2 (ja) 2010-02-17 2010-02-17 内燃機関の排気装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/000978 WO2011101891A1 (ja) 2010-02-17 2010-02-17 内燃機関の排気装置

Publications (1)

Publication Number Publication Date
WO2011101891A1 true WO2011101891A1 (ja) 2011-08-25

Family

ID=44482517

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000978 WO2011101891A1 (ja) 2010-02-17 2010-02-17 内燃機関の排気装置

Country Status (5)

Country Link
US (1) US20110225955A1 (ja)
EP (1) EP2538064A1 (ja)
JP (1) JP4953107B2 (ja)
CN (1) CN102239324A (ja)
WO (1) WO2011101891A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847280A (ja) * 1994-08-04 1996-02-16 Fanuc Ltd Acサーボモータの制御方法
JP2013144934A (ja) * 2012-01-13 2013-07-25 Toyota Motor Corp 冷却システムの制御装置
JP5299572B2 (ja) * 2010-07-07 2013-09-25 トヨタ自動車株式会社 内燃機関
JP2014208986A (ja) * 2013-04-16 2014-11-06 本田技研工業株式会社 内燃機関の排気還流制御装置
JP2014218954A (ja) * 2013-05-09 2014-11-20 日野自動車株式会社 Egrシステム
JP2014218955A (ja) * 2013-05-09 2014-11-20 日野自動車株式会社 Egrシステム
JP2015516543A (ja) * 2012-05-15 2015-06-11 ヴァレオ システム ドゥ コントロール モトゥール 排ガス回路からのエネルギーの回収装置
JP2015519509A (ja) * 2012-05-09 2015-07-09 ヴァレオ システム ドゥ コントロール モトゥール 排気ガス回路におけるエネルギー回収システム
JP2016217287A (ja) * 2015-05-22 2016-12-22 カルソニックカンセイ株式会社 エンジンの排気循環装置
US20180058285A1 (en) * 2011-10-03 2018-03-01 Volvo Technology Corporation Internal combustion engine system and method for increasing the temperature in at least one part of the internal combustion engine system

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2837808B1 (en) * 2012-04-12 2019-01-23 Toyota Jidosha Kabushiki Kaisha Device for controlling flow rate of internal combustion engine
DE102012015907B3 (de) * 2012-08-10 2013-10-17 Neander Motors Ag Hubkolbenbrennkraftmaschine, umfassend zumindest einen Hubkolben
US9429110B2 (en) * 2013-01-16 2016-08-30 Ford Global Technologies, Llc Method and system for vacuum control
US9394858B2 (en) * 2013-03-11 2016-07-19 Ford Global Technologies, Llc Charge air cooling control for boosted engines to actively maintain targeted intake manifold air temperature
WO2014207915A1 (ja) * 2013-06-28 2014-12-31 トヨタ自動車株式会社 内燃機関の凝縮水処理装置
US9506426B2 (en) * 2014-03-24 2016-11-29 Ford Global Technologies, Llc Methods and systems for recycling engine feedgas cold-start emissions
JP6364895B2 (ja) * 2014-04-02 2018-08-01 株式会社デンソー 内燃機関のegrシステム
JP6072752B2 (ja) * 2014-11-12 2017-02-01 本田技研工業株式会社 内燃機関の冷却制御装置
US20150377108A1 (en) * 2015-09-04 2015-12-31 Caterpillar Inc. Dual fuel engine system
KR101846886B1 (ko) * 2016-04-21 2018-05-24 현대자동차 주식회사 엔진 시스템 및 이를 이용한 엔진 제어 방법
US10167795B2 (en) * 2017-04-05 2019-01-01 GM Global Technology Operations LLC Exhaust gas treatment system warm-up methods
JP6834741B2 (ja) * 2017-04-20 2021-02-24 いすゞ自動車株式会社 排気再循環装置および内燃機関
US10598109B2 (en) * 2017-05-26 2020-03-24 Garrett Transportation I Inc. Methods and systems for aftertreatment preheating
DE102018208983B4 (de) * 2018-06-07 2021-07-08 Ford Global Technologies, Llc Anordnung zum Rezirkulieren von Abgas
US11105233B2 (en) * 2019-01-30 2021-08-31 Toyota Motor North America, Inc. Systems and methods for regulating performance characteristics of an exhaust system with a tri-modal valve
CN111963351B (zh) * 2020-08-07 2022-04-05 中国北方发动机研究所(天津) 一种压燃式发动机冷起动催化加热辅助装置
US11698014B1 (en) 2022-07-20 2023-07-11 Garrett Transportation I Inc. Flow estimation for secondary air system
US11885250B1 (en) 2023-05-10 2024-01-30 GM Global Technology Operations LLC Vehicle systems and methods for aftertreatment preheating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248777A (ja) * 2004-03-03 2005-09-15 Toyota Motor Corp Egrシステム
JP2010065601A (ja) * 2008-09-10 2010-03-25 Fuji Heavy Ind Ltd ディーゼルエンジンの排気ガス再循環装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4089396B2 (ja) * 2002-11-15 2008-05-28 いすゞ自動車株式会社 ターボチャージャーを備えた内燃機関のegrシステム
US7681394B2 (en) * 2005-03-25 2010-03-23 The United States Of America, As Represented By The Administrator Of The U.S. Environmental Protection Agency Control methods for low emission internal combustion system
EP1963646B1 (en) * 2005-12-20 2010-12-15 BorgWarner, Inc. Controlling exhaust gas recirculation in a turbocharged compression-ignition engine system
US7418335B2 (en) * 2006-05-31 2008-08-26 Caterpillar Inc. Method and system for estimating injector fuel temperature
JP4285528B2 (ja) * 2006-11-06 2009-06-24 トヨタ自動車株式会社 内燃機関の排気再循環システム
JP4878305B2 (ja) * 2007-02-08 2012-02-15 ヤンマー株式会社 エンジン用egr装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248777A (ja) * 2004-03-03 2005-09-15 Toyota Motor Corp Egrシステム
JP2010065601A (ja) * 2008-09-10 2010-03-25 Fuji Heavy Ind Ltd ディーゼルエンジンの排気ガス再循環装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0847280A (ja) * 1994-08-04 1996-02-16 Fanuc Ltd Acサーボモータの制御方法
JP5299572B2 (ja) * 2010-07-07 2013-09-25 トヨタ自動車株式会社 内燃機関
US20180058285A1 (en) * 2011-10-03 2018-03-01 Volvo Technology Corporation Internal combustion engine system and method for increasing the temperature in at least one part of the internal combustion engine system
JP2013144934A (ja) * 2012-01-13 2013-07-25 Toyota Motor Corp 冷却システムの制御装置
JP2015519509A (ja) * 2012-05-09 2015-07-09 ヴァレオ システム ドゥ コントロール モトゥール 排気ガス回路におけるエネルギー回収システム
JP2015516543A (ja) * 2012-05-15 2015-06-11 ヴァレオ システム ドゥ コントロール モトゥール 排ガス回路からのエネルギーの回収装置
JP2014208986A (ja) * 2013-04-16 2014-11-06 本田技研工業株式会社 内燃機関の排気還流制御装置
JP2014218954A (ja) * 2013-05-09 2014-11-20 日野自動車株式会社 Egrシステム
JP2014218955A (ja) * 2013-05-09 2014-11-20 日野自動車株式会社 Egrシステム
JP2016217287A (ja) * 2015-05-22 2016-12-22 カルソニックカンセイ株式会社 エンジンの排気循環装置

Also Published As

Publication number Publication date
EP2538064A1 (en) 2012-12-26
JP4953107B2 (ja) 2012-06-13
US20110225955A1 (en) 2011-09-22
JPWO2011101891A1 (ja) 2013-06-17
CN102239324A (zh) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4953107B2 (ja) 内燃機関の排気装置
US9188050B2 (en) Engine cooling system
US7587893B2 (en) Particulate filter regeneration system for an internal combustion engine
CN101484684A (zh) 内燃机的排气再循环装置及其控制方法
JP2009191686A (ja) エンジンの過給装置
US20080060350A1 (en) Regeneration control system for a particulate filter
US10815873B2 (en) Methods and systems for a two-stage turbocharger
JP4720647B2 (ja) 内燃機関の排気還流装置
JP5316695B2 (ja) 内燃機関の排気浄化システム
JP2005264821A (ja) 内燃機関の排気還流システム
JP2010163924A (ja) 内燃機関の制御装置
JP5240514B2 (ja) エンジンの排気還流装置
CN112105804B (zh) 内燃机的排气净化装置的温度控制方法以及内燃机的控制装置
JP3743232B2 (ja) 内燃機関の白煙排出抑制装置
JP2012167562A (ja) ディーゼルエンジン
JP2012122411A (ja) 内燃機関の制御装置
JP5299560B2 (ja) 内燃機関の排気装置
WO2011114381A1 (ja) 内燃機関の排気装置
JP6613882B2 (ja) エンジンの制御装置
JP4775196B2 (ja) エンジンの過給装置
JP2020008018A (ja) エンジン作業機
JP2015140707A (ja) 排気浄化装置
JP2013238241A (ja) ディーゼルエンジンのフィルタ再生方法
JP2015178786A (ja) エンジンのegrガス掃気装置
JP2010133327A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001826.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010543249

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12999825

Country of ref document: US

Ref document number: 2010787254

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10787254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE