WO2011099583A1 - 立体選択的オレフィン重合用触媒及び立体選択的ポリオレフィンの製造方法 - Google Patents

立体選択的オレフィン重合用触媒及び立体選択的ポリオレフィンの製造方法 Download PDF

Info

Publication number
WO2011099583A1
WO2011099583A1 PCT/JP2011/052937 JP2011052937W WO2011099583A1 WO 2011099583 A1 WO2011099583 A1 WO 2011099583A1 JP 2011052937 W JP2011052937 W JP 2011052937W WO 2011099583 A1 WO2011099583 A1 WO 2011099583A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
mmol
stereoselective
added
Prior art date
Application number
PCT/JP2011/052937
Other languages
English (en)
French (fr)
Inventor
昭彦 石井
憲男 中田
智之 戸田
司 松尾
Original Assignee
国立大学法人埼玉大学
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人埼玉大学, 住友化学株式会社 filed Critical 国立大学法人埼玉大学
Priority to DE112011100520T priority Critical patent/DE112011100520T5/de
Priority to JP2011553901A priority patent/JPWO2011099583A1/ja
Priority to US13/577,933 priority patent/US20130059991A1/en
Priority to CN2011800090835A priority patent/CN102844337A/zh
Publication of WO2011099583A1 publication Critical patent/WO2011099583A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/10Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C323/11Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/16Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/003Compounds containing elements of Groups 4 or 14 of the Periodic Table without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/18Systems containing only non-condensed rings with a ring being at least seven-membered
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers

Definitions

  • the present invention relates to a stereoselective olefin polymerization catalyst using a hafnium complex and a method for producing a stereoselective polyolefin using the catalyst.
  • metallocene catalysts has been one of the topics in the chemistry of olefin polymerization that has been greatly developed by Ziegler-Natta type magnesium-supported highly active titanium catalysts. Further, recently, development of so-called post metallocene catalysts has attracted attention as a catalyst for constructing a more precise polymerization process.
  • Non-Patent Documents 5 and 6 in Germany synthesized a Group 4 metal complex using a ligand in which the nitrogen atom of the tetradentate ligand was replaced with a sulfur atom.
  • it is expanding to stereoselective polymerization of ⁇ -olefins.
  • stereoselective polymerization reaction of ⁇ -olefin was not achieved.
  • C 2 symmetry of the active centers in the reactions for structural flexibility of cationic species are prepared using a co-catalyst from the complexes (the catalytically active species in the polymerization of ⁇ - olefins) was thought to be lost. Therefore, development of new ligands and catalysts having high activity while maintaining C 2 symmetry is required.
  • Patent Document 1 reports a method of polymerizing propylene using diphenoxy titanium, zirconium or hafnium complex derived from ethane-1,2-dithiol.
  • the present inventor has reported diphenoxy titanium, zirconium and hafnium complexes derived from trans-cyclooctane-1,2-dithiol (Non-patent Document 7), and among these complexes, a zirconium complex was used as a catalyst.
  • Reported a method for polymerizing 1-hexene (Non-patent Document 8).
  • Patent Document 1 The entire description of Patent Document 1 and Non-Patent Document 1-8 is specifically incorporated herein by reference.
  • Non-Patent Document 8 the diphenoxyzirconium complex derived from trans-cyclooctane-1,2-dithiol described in Non-Patent Document 8 enables polymerization with high activity and high isoselectivity. It has been desired to provide a catalyst that produces a high molecular weight polymer and enables isoselective polymerization, and a method for producing a stereoselective polyolefin using the catalyst.
  • an object of the present invention is to produce a polymer having a much higher molecular weight than that of a diphenoxyzirconium complex derived from trans-cyclooctane-1,2-dithiol described in Non-Patent Document 8, and has a high isoselectivity.
  • a catalyst capable of producing a stereoselective polyolefin having a low dispersion (Mw / Mn) and a sharp molecular weight distribution, and a method for producing a stereoselective polyolefin using this catalyst. is there.
  • the present inventor has found that the above-described problems can be solved by the present invention through intensive studies.
  • a highly isoselective polymerization that produces a polymer having a significantly higher molecular weight.
  • a catalyst capable of producing a stereoselective polyolefin having a small dispersion (Mw / Mn) and a sharp molecular weight distribution compared to the diphenoxyzirconium complex derived from trans-cyclooctane-1,2-dithiol described in Non-Patent Document 8, a highly isoselective polymerization that produces a polymer having a significantly higher molecular weight.
  • a catalyst capable of producing a stereoselective polyolefin having a small dispersion (Mw / Mn) and a sharp molecular weight distribution Mw / Mn
  • this catalyst by using this catalyst, it is possible to produce a polyolefin having a high molecular weight, a low dispersion (Mw / Mn), and a sharp molecular weight distribution by performing polymerization with high isoselectivity. .
  • Example 6 The chromatogram of GPC of the poly (1-hexene) obtained in Example 6 is shown.
  • the GPC chromatogram of the poly (1-hexene) obtained in Example 8 is shown.
  • the 13 C-NMR spectrum which investigated the stereoselectivity of the poly (1-hexene) obtained in Example 6 is shown.
  • the 13 C-NMR spectrum which investigated the stereoselectivity of the poly (1-hexene) obtained in Example 8 is shown.
  • 2 shows a GPC chromatogram of poly (4-methyl-1-pentene) obtained in Example 11.
  • FIG. 2 shows a GPC chromatogram of poly (4-methyl-1-pentene) obtained in Example 12.
  • the 13 C-NMR spectrum which investigated the stereoselectivity of the poly (4-methyl-1- pentene) obtained in Example 11 is shown.
  • the 13 C-NMR spectrum which investigated the stereoselectivity of the poly (4-methyl-1- pentene) obtained in Example 12 is shown.
  • the present invention relates to a stereoselective olefin polymerization catalyst containing a complex represented by the following formula (1).
  • R 1 and R 2 are each independently an optionally substituted alkyl group or a halogen atom
  • L is a ligand represented by CH 2 R 3 , a halogen atom, OR 4 , or NR 5 R 6.
  • R 3 is a hydrogen atom, an aromatic group, or a trialkylsilyl group
  • R 4 is a lower alkyl group having 1 to 6 carbon atoms
  • R 5 and R 6 are each independently a hydrogen atom or a lower alkyl group having 1 to 6 carbon atoms.
  • n 2 or 3, but preferably 3.
  • R 1 and R 2 are independently an alkyl group which may have a substituent or a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), and the alkyl group preferably has 1 to 30 carbon atoms
  • An alkyl group more preferably an alkyl group having 1 to 12 carbon atoms.
  • Specific examples of the alkyl group having 1 to 12 carbon atoms include a methyl group, an ethyl group, an isopropyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, a cyclohexyl group, and an adamantyl group. .
  • Examples of the substituent that the alkyl group has include a lower alkyl group having 1 to 6 carbon atoms, a phenyl group that may have a substituent, and a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom).
  • Examples of the substituent that the phenyl group may have include a lower alkyl group having 1 to 6 carbon atoms or a halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom).
  • Two R 1 s may be the same or different, and two R 2 may be the same or different.
  • R 1 and R 2 are preferably an alkyl group, more preferably an alkyl group having 1 to 30 carbon atoms, still more preferably an alkyl group having 1 to 12 carbon atoms, most preferably a t-butyl group, A cyclohexyl group and a 1-adamantyl group.
  • L is CH 2 R 3 (methyl group optionally having substituent R 3 ), halogen atom (fluorine atom, chlorine atom, bromine atom, iodine atom), OR 4 (alkoxy group), or NR 5 R 6 ( An amino group optionally having substituents R 5 and R 6 .
  • R 3 is a hydrogen atom, an aromatic group, or a trialkylsilyl group. Examples of the aromatic group for R 3 include a phenyl group, a 4-methoxyphenyl group, a 4-fluorophenyl group, a 4-chlorophenyl group, and a 4-bromophenyl group.
  • the alkyl of the trialkylsilyl group can be a lower alkyl group having 1 to 6 carbon atoms, and examples of the trialkylsilyl group include a trimethylsilyl group, a triethylsilyl group, and a triisopropylsilyl group.
  • R 4 is a lower alkyl group having 1 to 6 carbon atoms.
  • the lower alkyl group include a methyl group, an ethyl group, an isopropyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, and a cyclohexyl group.
  • R 5 and R 6 are each independently a hydrogen atom or a lower alkyl group having 1 to 6 carbon atoms.
  • the lower alkyl group include a methyl group, an ethyl group, an isopropyl group, a t-butyl group, an n-pentyl group, an n-hexyl group, and a cyclohexyl group.
  • L is preferably CH 2 R 3 , a halogen atom or OR 4 , more preferably CH 2 R 3 or a halogen atom, still more preferably a methyl group, benzyl group, trimethylsilylmethyl group, chlorine atom, bromine An atom, most preferably a methyl group, a benzyl group, or a chlorine atom.
  • the benzyl group directly bonded to the hafnium atom of these compounds was changed to a fluorine atom, chlorine atom, bromine atom, iodine atom, dimethylamino group, diethylamino group, methoxy group, ethoxy group, t-butoxy group, etc.
  • the compound include compounds in which the 8-membered ring portion is changed to a 7-membered ring.
  • the complex represented by the general formula (1) can be produced by the following steps using the compounds represented by the general formulas (2) and (3) as starting materials.
  • Step 1 The tetradentate ligand represented by the compound (4) can be synthesized by the methods described in Non-Patent Documents 7 and 8, for example.
  • N, R 1 and R 2 in the compounds (3) and (4) are the same as those in the general formula (1).
  • trans-cycloheptane-1,2-dithiol or trans-cyclooctane-1,2-dithiol corresponding to compound (2) for example, 2.0 to 4.0 equivalents, preferably 2.0 to 2.5
  • 3,5-disubstituted-2-hydroxybenzyl bromide corresponding to an equivalent amount of compound (3) the corresponding compound represented by formula (4) can be synthesized.
  • Examples of 3,5-disubstituted-2-hydroxybenzyl bromide include the following. These compounds are known compounds.
  • This reaction can be performed under air, helium, argon or nitrogen stream.
  • it is under a helium, argon or nitrogen stream, more preferably under a nitrogen or argon stream.
  • the temperature at which the compound represented by formula (2) and the compound represented by formula (3) are reacted is, for example, in the temperature range of ⁇ 100 ° C. to 100 ° C., preferably in the temperature range of ⁇ 80 ° C. to 80 ° C. is there. However, it is not intended to be limited to this range.
  • the time for reacting the compound represented by the formula (2) and the compound represented by the formula (3) is, for example, 1 minute to 24 hours, preferably 5 minutes to 20 hours, more preferably 30 minutes to 18 hours. It is. However, it is not intended to be limited to this range.
  • L in the compound (5) is CH 2 R 3 (methyl group optionally having substituent R 3 ), halogen atom (chlorine atom, bromine atom, iodine atom), OR 4 (alkoxy group) as described above. Group), NR 5 R 6 (amino group optionally having substituents R 5 and R 6 ).
  • HFL 4 for example, Hf (CH 2 Ph) 4 , Hf (CH 2 SiMe 3) 4, HfF 4, HfCl 4, HfBr 4, HfI 4, Hf (OMe) 4, Hf (OEt) 4, Hf (Oi -Pr) 4 , Hf (On-Bu) 4 , Hf (Oi-Bu) 4 , Hf (Ot-Bu) 4 , Hf (NMe 2 ) 4 , Hf (NEt 2 ) 4 and the like.
  • this reaction is preferably carried out in a helium, argon or nitrogen stream, more preferably in a nitrogen or argon stream.
  • the temperature at which the compound represented by the formula (4) and the compound represented by the formula (5) are reacted is, for example, a temperature range of ⁇ 100 ° C. to 100 ° C., preferably ⁇ 80 ° C. to There is a temperature range of 50 ° C. However, it is not intended to be limited to this range.
  • the time for reacting the compound represented by the formula (5) with the base is, for example, 1 minute to 24 hours, preferably 5 minutes to 12 hours, more preferably 30 minutes to 3 hours. . However, it is not intended to be limited to this range.
  • the compound represented by the formula (5) is HfF 4, HfCl 4, HfBr 4, HFI 4
  • a base for example an organolithium reagent, Grignard reagents, metal hydride such as, Specifically, n-butyllithium, sec-butyllithium, t-butyllithium, lithium hydride, sodium hydride, potassium hydride, etc. are reacted to obtain a reaction product, and the reaction product contains HfF 4 , HfCl It is possible to synthesize by adding any of 4 , HfBr 4 , and HfI 4 .
  • the temperature at which the compound represented by the formula (4) is reacted with the base and the compound represented by the formula (5) is, for example, in the temperature range of ⁇ 100 ° C. to 150 ° C. Yes, preferably in the temperature range of ⁇ 80 ° C. to 50 ° C. However, it is not intended to be limited to this range.
  • the time for reacting the compound represented by the formula (4) with the base and the compound represented by the formula (5) is, for example, 1 minute to 24 hours, preferably The time is 5 minutes to 12 hours, more preferably 30 minutes to 3 hours. However, it is not intended to be limited to this range.
  • the complex represented by the general formula (1) obtained above is reacted with an organolithium reagent or Grignard reagent to synthesize a complex in which L of the complex represented by the general formula (1) is CH 2 R 3. You can also.
  • the solvent used in this reaction is not particularly limited as long as it is a solvent generally used in similar reactions, and examples thereof include a hydrocarbon solvent or an ether solvent, preferably toluene, benzene, o-xylene, m-xylene, p-xylene, hexane, pentane, heptane, cyclohexane, diethyl ether or tetrahydrofuran, more preferably diethyl ether, toluene, tetrahydrofuran, hexane, pentane, heptane or cyclohexane.
  • a hydrocarbon solvent or an ether solvent preferably toluene, benzene, o-xylene, m-xylene, p-xylene, hexane, pentane, heptane, cyclohexane, diethyl ether or tetrahydrofuran, more preferably
  • the complex represented by the general formula (1) of the present invention described above is used as a polymerization catalyst component in the production of a polymer by homopolymerization of a polymerizable monomer or copolymerization of two or more polymerizable monomers. used. Preferably, it is homopolymerization.
  • a polymerization catalyst obtained by bringing the complex represented by the general formula (1) of the present invention and the promoter component (A) into contact with each other is used.
  • the promoter component is not particularly limited as long as it activates the complex represented by the general formula (1) of the present invention and enables polymerization.
  • (A-1) Organoaluminum compound (A-2) It may contain at least one compound selected from the group consisting of boron compounds.
  • (A-1)) As the compound (A-1) used in the present invention, a known organoaluminum compound can be used.
  • (A-1-1) an organoaluminum compound represented by the general formula E 1 a AlY 1 3-a , (A-1-2) a general formula ⁇ —Al (E 2 ) —O— ⁇ b
  • Y 1 represents a hydrogen atom or a halogen atom, and all Y 1 may be the same or different, a is an integer of 0 ⁇ a ⁇ 3, b is an integer of 2 or more, and c is 1 or more. Any one of them, or a mixture of 2 to 3 thereof.
  • organoaluminum compound (A-1-1) represented by the general formula E 1 a AlY 1 3-a include trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, trihexylaluminum and the like.
  • Dialkylaluminum chlorides such as alkylaluminum; dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, diisobutylaluminum chloride, dihexylaluminum chloride; methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride, hexylaluminum dichloride, etc.
  • Alkyl aluminum dichloride dimethylaluminum Arm hydride, diethylaluminum hydride, dipropyl aluminum hydride, diisobutylaluminum hydride, there can be mentioned dialkyl aluminum hydride such as dihexyl aluminum hydride.
  • dialkyl aluminum hydride such as dihexyl aluminum hydride.
  • Trialkylaluminum is preferable, and triethylaluminum and triisobutylaluminum are more preferable.
  • E 2 and E 3 in the linear aluminoxane (A-1-3) having the structure represented by 2 are methyl group, ethyl group, n-propyl group, isopropyl group, and n-butyl group. And alkyl groups such as isobutyl group, n-pentyl group and neopentyl group.
  • b is an integer of 2 or more
  • c is an integer of 1 or more.
  • E 2 and E 3 are a methyl group and an isobutyl group, b is 2 to 40, and c is 1 to 40.
  • aluminoxane can be made by various methods. There is no restriction
  • an aluminoxane is prepared by bringing a solution obtained by dissolving a trialkylaluminum (for example, trimethylaluminum) in an appropriate organic solvent (benzene, toluene, aliphatic hydrocarbon, etc.) into contact with water.
  • a trialkylaluminum for example, trimethylaluminum
  • an appropriate organic solvent benzene, toluene, aliphatic hydrocarbon, etc.
  • the method of making aluminoxane by making trialkylaluminum (for example, trimethylaluminum etc.) contact the metal salt (for example, copper sulfate hydrate etc.) containing crystal water can be illustrated.
  • (A-1-2) the general formula ⁇ -Al (E 2 ) -O— ⁇ b obtained by the above method and a cyclic aluminoxane having a structure represented by the formula (A-1-3)
  • the linear aluminoxane having a structure represented by E 3 ⁇ —Al (E 3 ) —O— ⁇ c AlE 3 2 may be used after distilling off the volatile components if necessary. Further, the compound obtained by distilling off the volatile components and drying may be washed with an appropriate organic solvent (benzene, toluene, aliphatic hydrocarbon, etc.) and dried again.
  • the compound (A-2) includes (A-2-1) a boron compound represented by the general formula BR 11 R 12 R 13 , (A-2-2) a general formula W + (BR 11 R 12 using either the boron compound represented - R 13 R 14) - a boron compound represented by, (a-2-3) general formula (V-H) + (BR 11 R 12 R 13 R 14) .
  • R 11 to R 13 are halogen atoms, 1 to 20 Hydrocarbyl group containing 1 to 20 carbon atoms, halogenated hydrocarbyl group containing 1 to 20 carbon atoms, substituted silyl group containing 1 to 20 carbon atoms, alkoxy group containing 1 to 20 carbon atoms Or a disubstituted amino group containing 2 to 20 carbon atoms, which may be the same or different.
  • Preferred R 11 to R 13 are a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, and a halogenated hydrocarbyl group containing 1 to 20 carbon atoms.
  • (A-2-1) include triphenylborane, tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, tris (2,3,4,5). -Tetrafluorophenyl) borane, tris (3,4,5-trifluorophenyl) borane, tris (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, etc. Triphenylborane and tris (pentafluorophenyl) borane are preferable.
  • W + is an inorganic or organic cation
  • B is a trivalent valence state. It is a boron atom
  • R 11 to R 14 are the same as R 11 to R 13 in the above (A-2-1). That is, R 11 to R 14 include a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, a halogenated hydrocarbyl group containing 1 to 20 carbon atoms, and 1 to 20 carbon atoms.
  • a substituted silyl group, an alkoxy group containing 1 to 20 carbon atoms or a disubstituted amino group containing 2 to 20 carbon atoms which may be the same or different.
  • Preferred R 11 to R 14 are a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, and a halogenated hydrocarbyl group containing 1 to 20 carbon atoms.
  • Examples of the inorganic cation W + include a ferrocenium cation, an alkyl-substituted ferrocenium cation, and a silver cation.
  • Examples of the organic cation W + include a triphenylcarbenium cation. (BR 11 R 12 R 13 R 14 ) — includes tetrakis (pentafluorophenyl) borate, tetrakis (2,3,5,6-tetrafluorophenyl) borate, tetrakis (2,3,4,5-tetrafluoro).
  • Phenyl) borate tetrakis (3,4,5-trifluorophenyl) borate, tetrakis (2,3,4-trifluorophenyl) borate, phenylbis (pentafluorophenyl) borate, tetrakis [3,5-bis (Trifluoromethyl) phenyl] borate and the like.
  • Specific examples of the compound represented by the general formula W + (BR 11 R 12 R 13 R 14 ) — include ferrocenium tetrakis (pentafluorophenyl) borate, 1,1′-dimethylferrocenium tetrakis (pentafluoro). Phenyl) borate, silver tetrakis (pentafluorophenyl) borate, triphenylcarbenium tetrakis (pentafluorophenyl) borate, triphenylcarbeniumtetrakis [3,5-bis (trifluoromethyl) phenyl] borate, etc. Is most preferably triphenylcarbenium tetrakis (pentafluorophenyl) borate.
  • R 11 to R 14 are the same as R 11 to R 13 in (A-2-3) above. That is, R 11 to R 14 include a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, a halogenated hydrocarbyl group containing 1 to 20 carbon atoms, and 1 to 20 carbon atoms.
  • a substituted silyl group, an alkoxy group containing 1 to 20 carbon atoms or a disubstituted amino group containing 2 to 20 carbon atoms which may be the same or different.
  • Preferred R 11 to R 14 are a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, and a halogenated hydrocarbyl group containing 1 to 20 carbon atoms.
  • Examples of (VH) + that is a Bronsted acid include trialkyl-substituted ammonium, N, N-dialkylanilinium, dialkylammonium, triarylphosphonium, and the like (BR 11 R 12 R 13 R 14 ) ⁇ Is the same as described above.
  • the contact of the complex represented by (1), the cocatalyst component As long as the catalyst is brought into contact and a catalyst is formed, any means may be used.
  • the complex represented by (1) and the cocatalyst component can be separately supplied to the polymerization tank and brought into contact with each other in the polymerization tank.
  • the co-catalyst component may be used in combination of a plurality of types, but some of them may be mixed and used in advance, or separately supplied to the polymerization tank and used. Good.
  • the amount of each component used is usually such that the molar ratio of (A-1) to the complex represented by the general formula (1) is 0.01 to 10,000, preferably 1 to 5,000, represented by the general formula (1). It is desirable to use each component so that the molar ratio of (A-2) to the complex is 0.01 to 100, preferably 1.0 to 50.
  • the concentration when each component is supplied in a solution state or suspended or slurried in a solvent is determined depending on the performance of the apparatus for supplying each component to the polymerization reactor, etc.
  • the complex represented by the general formula (1) is usually 0.0001 to 10000 mmol / L, more preferably 0.001 to 1000 mmol / L, still more preferably, 0.01 to 100 mmol / L
  • (A-1) is usually 0.01 to 10000 mmol / L, more preferably 0.05 to 5000 mmol / L, and still more preferably 0.1 to 0.1 mmol, in terms of Al atom.
  • (A-2) is usually 0.001 to 500 mmol / L, more preferably 0.01 to 250 mmol / L, and still more preferably 0.05 to 100 mmol / L. Hope to use each component Arbitrariness.
  • the olefin polymerization catalyst is an olefin polymerization catalyst obtained by contacting the complex represented by the general formula (1) with the above (A-1) and / or (A-2).
  • (A-1) includes the above cyclic aluminoxane (A-1). -2) and / or linear aluminoxane (A-1-3) are preferred.
  • Other preferred embodiments of the olefin polymerization catalyst include a complex represented by the general formula (1) and an olefin polymerization catalyst obtained by contacting (A-1) and (A-2).
  • (A-1) is easy to use, and (A-2) is preferably (A-2-1) or (A-2-2).
  • the method for producing a stereoselective polyolefin of the present invention is a method comprising polymerizing an olefin in the presence of the catalyst of the present invention.
  • the olefin to polymerize may be single or plural, single is more preferable. If a single olefin is polymerized, a homopolymer is obtained, and if a plurality of olefins are polymerized, a copolymer is obtained.
  • the olefin compound used for the polymerization is not particularly limited, but is preferably an olefin that exhibits desired physical properties by stereoselective polymerization.
  • the olefin can be, for example, a monoolefin or a diolefin, with a monoolefin being preferred.
  • monoolefins include 1-alkenes such as propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene ( It may be branched) And cyclopentene, cyclohexene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-phenylnorbornene, 5-benzylnorbornene, tetracyclododecene, tricyclodecene, tricycloundecene, pentacyclopentadecene, Pentacyclohexadecene, 8-methyltetracyclododecene, 8-ethyl
  • Ruken for example, 1,5-hexadiene, 1,4-hexadiene, 1,6-heptadiene, 1,4-pentadiene, 1,7-octadiene, 1,8-nonadiene, 1,9-decadiene, 4-methyl-1,4- Hexadiene, 5-methyl-1,4-hexadiene, 7-methyl-1,6-octadiene, 5-ethylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, 5-methyl-2-norbornene, Norbornadiene, 5-methylene-2-norbornene, 1,5-cyclooctadiene, 5,8-endomethylenehexahydronaphthalene, 1,3-hexadiene, 1,3-octadiene, 1,3-cyclooctadiene, 1, 3-cyclohexadiene, butadiene,
  • the monoolefin is preferably propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene, more preferably propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 4-methyl-1-pentene, more preferably propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl -1-pentene.
  • diolefin Preferably as diolefin, 1,5-hexadiene, 1,6-heptadiene, 5-ethylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, 5-methyl-2-norbornene, norbornadiene, 5-methylene-2-norbornene, 1,5-cyclooctadiene, 1,3-cyclooctadiene, 1,3-cyclohexadiene, butadiene, more preferably 1,5-hexadiene, 1,6-heptadiene, 1,3-cyclohexadiene, butadiene.
  • the polymerization method is not particularly limited.
  • aliphatic hydrocarbons such as butane, pentane, hexane, heptane, and octane, aromatic hydrocarbons such as benzene and toluene, or halogenated hydrocarbons such as methylene dichloride.
  • Solvent polymerization using carbon as a solvent, slurry polymerization, or the like is possible, and either continuous polymerization or batch polymerization is possible.
  • the temperature and time of the polymerization reaction can be determined in consideration of the desired polymerization average molecular weight, the activity of the catalyst and the amount used.
  • the polymerization temperature can usually be in the range of ⁇ 50 ° C.
  • the polymerization time is appropriately determined depending on the kind of the target polymer and the reaction apparatus, but can usually be in the range of 1 minute to 20 hours, preferably in the range of 5 minutes to 18 hours. However, it is not intended to be limited to these ranges.
  • a chain transfer agent such as hydrogen may be added to adjust the molecular weight of the copolymer.
  • the concentration of each compound in the solvent is not particularly limited.
  • the hafnium complex concentration in the solvent is, for example, in the range of 1 ⁇ 10 ⁇ 8 mmol / L to 10 mol / L
  • the promoter concentration is, for example, in the range of 1 ⁇ 10 ⁇ 8 mmol / L to 10 mol / L. can do.
  • the volume ratio of olefin: solvent can be in the range of 100: 0 to 1: 1000. However, these ranges are examples and are not intended to be limited to them. Even when no solvent is used, the concentration can be appropriately set with reference to the above range.
  • the polymer obtained by polymerization can separate monomers when there is a solvent and unreacted monomers as follows.
  • the monomer In the case of a viscous polymer, the monomer can be removed with a vacuum pump. However, this method cannot remove the catalyst.
  • the monomer In the case of a solid polymer, the monomer can be removed by washing with methanol after the solvent is distilled off. With this method, the catalyst can be removed to some extent.
  • Weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw / Mn) It measured on the following conditions by the gel permeation chromatography (GPC). A calibration curve was prepared using standard polystyrene. The molecular weight distribution was evaluated by the ratio (Mw / Mn) between the weight average molecular weight (Mw) and the number average molecular weight (Mn).
  • the peak area of the peak was defined as the area of the signal in the range from the chemical shift of the valley with the adjacent peak on the high magnetic field side to the chemical shift of the valley with the adjacent peak on the low magnetic field side.
  • ⁇ Calculation method 2, poly (4-methyl-1-pentene)> The peak area of a peak having a peak top in the vicinity of 45.61 to 45.66 ppm was determined.
  • the peak area of the peak was defined as the area of the signal in the range from the chemical shift of the valley with the adjacent peak on the high magnetic field side to the chemical shift of the valley with the adjacent peak on the low magnetic field side.
  • the formed precipitate was removed by filtration, and the filtrate was concentrated under reduced pressure.
  • Ether and saturated aqueous ammonium chloride solution were added to the resulting residue, and the ether layer was washed with water and dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography (developing solvent hexane-dichloromethane 1: 1) to obtain 6.74 g (yield 89%) of the title compound as colorless crystals.
  • Table 1 summarizes the experimental conditions and the results of molecular weight measurement of the synthesized poly (1-hexene). The following experiment was performed in a glove box in an argon atmosphere, the molecular weight was determined by ⁇ Molecular Weight Measurement Condition 1>, and the regularity was determined by ⁇ Regularity Measurement Condition 1> and ⁇ Calculation Method 1>.
  • Example 1 In a 50 mL Schlenk tube, 19.4 mg (0.020 mmol) of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylhafnium was added to 1 mL of benzene and hexane. dissolved in 5 mL, this solution tris 25 ° C. (pentafluorophenyl) borane [B (C 6 F 5) 3] 10.2mg of (0.020 mmol) was added and stirred for another 5 minutes.
  • Example 2 In a 50 mL Schlenk tube, 19.4 mg (0.020 mmol) of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylhafnium was added to 1 mL of benzene and hexane. dissolved in 5 mL, this solution tris 25 ° C. (pentafluorophenyl) borane [B (C 6 F 5) 3] 10.2mg of (0.020 mmol) was added and stirred for another 5 minutes.
  • Example 4 In a 50 mL Schlenk tube, dissolve 19.4 mg (0.020 mmol) of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylhafnium in 1 mL of benzene. To this solution, 10.2 mg (0.020 mmol) of tris (pentafluorophenyl) borane [B (C 6 F 5 ) 3 ] was added at 25 ° C., and the mixture was further stirred for 5 minutes.
  • Example 5 In a 50 mL Schlenk tube, dissolve 19.4 mg (0.020 mmol) of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylhafnium in 1 mL of benzene. To this solution, 10.2 mg (0.020 mmol) of tris (pentafluorophenyl) borane [B (C 6 F 5 ) 3 ] was added at 25 ° C., and the mixture was further stirred for 5 minutes.
  • Example 6 In a 50 mL Schlenk tube, dissolve 19.4 mg (0.020 mmol) of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylhafnium in 1 mL of benzene. To this solution, 10.2 mg (0.020 mmol) of tris (pentafluorophenyl) borane [B (C 6 F 5 ) 3 ] was added at 25 ° C., and the mixture was further stirred for 5 minutes.
  • Example 7 In a 50 mL Schlenk tube, dissolve 19.4 mg (0.020 mmol) of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylhafnium in 5 mL of toluene. To this solution, 18.4 mg (0.020 mmol) of triphenylcarbenium tetrakis (pentafluorophenyl) borate [Ph 3 CB (C 6 F 5 ) 4 ] was added at 0 ° C., and the mixture was further stirred for 5 minutes.
  • Example 8 In a 50 mL Schlenk tube, dissolve 19.4 mg (0.020 mmol) of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylhafnium in 5 mL of toluene. To this solution, 18.4 mg (0.020 mmol) of triphenylcarbenium tetrakis (pentafluorophenyl) borate [Ph 3 CB (C 6 F 5 ) 4 ] was added at 0 ° C., and the mixture was further stirred for 5 minutes.
  • Table 2 summarizes the experimental conditions and the results of molecular weight measurement of the synthesized poly (4-methyl-1-pentene). The following experiment was performed in a glove box in an argon atmosphere, the molecular weight was determined by ⁇ Molecular Weight Measurement Condition 2>, and the regularity was determined by ⁇ Regularity Measurement Condition 2> and ⁇ Calculation Method 2>.
  • Example 9 In a 50 mL Schlenk tube, 19.4 mg (0.020 mmol) of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylhafnium was added to 1 mL of benzene and hexane. dissolved in 5 mL, this solution tris 25 ° C. (pentafluorophenyl) borane [B (C 6 F 5) 3] 10.2mg of (0.020 mmol) was added and stirred for another 5 minutes.
  • Example 11 In a 50 mL Schlenk tube, dissolve 19.4 mg (0.020 mmol) of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylhafnium in 5 mL of toluene. To this solution, triphenylcarbenium tetrakis (pentafluorophenyl) borate [Ph 3 CB (C 6 F 5 ) 4 ] was added at 25 ° C., and the mixture was further stirred for 5 minutes.
  • Example 12 Dissolve 19.4 mg (0.020 mmol) of [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylhafnium in 5 mL of dichloromethane in a 50 mL Schlenk tube.
  • triphenylcarbenium tetrakis (pentafluorophenyl) borate [Ph 3 CB (C 6 F 5 ) 4 ] was added at 25 ° C., and the mixture was further stirred for 10 minutes.
  • Isotactic pentad fraction [mmmm]
  • the isotactic pentad fraction is defined as A.I. Zambelli et al., “Macromolecules”, Vol. 6, 925 (1973), that is, isotactic linkage with pentad units in a crystalline polypropylene molecular chain measured using 13 C-NMR, in other words, 5 propylene monomer units. This is the fraction of propylene monomer units at the center of the chain that are continuously meso-bonded.
  • a sample was prepared by uniformly dissolving about 200 mg of polymer in 3 mL of orthodichlorobenzene in a 10 mm ⁇ test tube, and the sample was measured by 13 C-NMR spectrum.
  • Reference Example 8 (Preparation method of d-MMAO-3A) The same procedure as in Reference Example 7 was carried out except that the PMAO-S toluene solution (aluminum content 6.1 wt%) manufactured by Tosoh Finechem was changed to the MMAO-3A toluene solution (aluminum content 7.0 wt%) manufactured by Tosoh Finechem. .
  • Reference Example 9 Method for preparing d-MMAO-4. The same procedure as in Reference Example 7 was carried out except that the PMAO-S toluene solution (aluminum content 6.1 wt%) manufactured by Tosoh Finechem was changed to the MMAO-4 toluene solution (aluminum content 7.4 wt%) manufactured by Tosoh Finechem. .
  • Example 13 An autoclave with a stirrer having an internal volume of 400 mL was vacuum dried and replaced with argon, and then 40 mL of toluene as a solvent and 80 g of propylene as a monomer were charged, and the temperature of the reactor was lowered to 0 ° C. After cooling, 118 mg of d-MAO was added, followed by [cyclooctanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylhafnium (1 ⁇ mol / mL , Toluene solution) 1 mL (1.0 ⁇ mol) was added to initiate polymerization.
  • Example 14 The same procedure as in Example 13 was performed except that the polymerization temperature was 14 ° C.
  • Example 15 The same procedure as in Example 13 was performed except that the polymerization temperature was 40 ° C.
  • Example 16 The same procedure as in Example 13 was performed except that the polymerization temperature was 70 ° C.
  • Example 17 The same procedure as in Example 13 was performed, except that d-MAO was changed to d-MMAO-3A at a polymerization temperature of 40 ° C.
  • Example 18 The same procedure as in Example 13 was performed, except that d-MAO was changed to d-MMAO-4 and the polymerization temperature was 40 ° C.
  • Example 19 An autoclave with a stirrer having an internal volume of 400 mL was vacuum dried and replaced with argon, and then 40 mL of toluene as a solvent and 80 g of propylene as a monomer were charged, and the temperature of the reactor was lowered to 0 ° C.
  • Example 20 The autoclave with a stirrer having an internal volume of 400 mL was vacuum dried and replaced with argon, and then 40 mL of toluene as a solvent and 80 g of propylene as a monomer were charged, and the temperature of the reactor was increased to 40 ° C.
  • Example 21 The autoclave with a stirrer having an internal volume of 400 mL was vacuum dried and replaced with argon, and then 40 mL of toluene as a solvent and 80 g of propylene as a monomer were charged, and the temperature of the reactor was increased to 40 ° C.
  • Example 23 The autoclave with a stirrer having an internal volume of 400 mL was vacuum dried and replaced with argon, and then 40 mL of toluene as a solvent and 80 g of 1-butene as a monomer were charged, and the reactor was heated to 40 ° C.
  • the present invention is useful in the field relating to the production of stereoselective polyolefins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

下記式(1)で示される錯体を含む立体選択的オレフィン重合用触媒。(式中、nは2または3であり、 R及びRは、独立に、置換基を有してもよいアルキル基またはハロゲン原子であり、LはCH、ハロゲン原子、OR、またはNRで示される配位子であり、 Rは水素原子、芳香族基、またはトリアルキルシリル基であり、 Rは炭素数1~6の低級アルキル基であり、 R及びRは独立に水素原子または炭素数1~6の低級アルキル基である。) この触媒の存在下にオレフィンを重合させることを含む、立体選択的ポリオレフィンの製造方法。本発明は、格段に高分子量のポリマーを生成し、かつ高いアイソ選択的な重合を可能にするとともに、分散(Mw/Mn)が小さく、分子量分布がシャープな立体選択的ポリオレフィンを生成できる触媒と、この触媒を用いた立体選択的ポリオレフィンの製造方法を提供する。

Description

立体選択的オレフィン重合用触媒及び立体選択的ポリオレフィンの製造方法 関連出願の相互参照
 本出願は、2010年2月12日出願の日本特願2010-029191号の優先権を主張し、それらの全記載は、ここに特に開示として援用される。
 本発明は、ハフニウム錯体を用いた立体選択的オレフィン重合用触媒、及びこの触媒を用いる立体選択的ポリオレフィンの製造方法に関する。
 チーグラ・ナッタ型マグネシウム担持高活性チタン触媒により大いに発展したオレフィン重合の化学において、近年、メタロセン触媒の開発がトピックスの一つである。さらに、最近ではさらなる精密な重合プロセスを構築するための触媒として、所謂ポストメタロセン系触媒の開発が注目されている。
 2000年にKolらは、4族金属元素と親和性の高いフェノキシ基と窒素原子を有する四座配位子を用いてC2対称性を有するジルコニウム錯体を開発し、これを触媒とする1-ヘキセンの重合反応が室温で高アイソ選択的に起こることを初めて報告した(非特許文献1~3)。さらに、Kol(非特許文献4)やドイツのOkudaら(非特許文献5,6)は、上記四座配位子の窒素原子を硫黄原子に置き換えた配位子を用いて4族金属錯体を合成し、α-オレフィンの立体選択的重合への展開をしている。しかし、これらの錯体がC2対称性を有するにも関わらず、α-オレフィンの立体選択的重合反応は達成されなかった。その原因としては、これらの錯体から助触媒を用いて調製されるカチオン種(α-オレフィンの重合における触媒活性種となる)の構造的柔軟性のために反応中に活性中心のC2対称性が失われてしまうことが考えられた。そこで、C2対称性を維持しつつ高い活性を有する新たな配位子及び触媒の開発が求められている。
 特許文献1では、エタン-1,2-ジチオールから誘導されるジフェノキシチタン、ジルコニムまたはハフニウム錯体を用いてプロピレンを重合する方法が報告されている。
 本発明者は、trans-シクロオクタン-1,2-ジチオールから誘導されるジフェノキシチタン、ジルコニウム及びハフニウム錯体を報告し(非特許文献7)、さらにこれらの錯体の内、ジルコニウム錯体を触媒として用いて1-ヘキセンを重合する方法を報告した(非特許文献8)。
Journal of American Chemical Society, 2000, Volume 122,10706-10707 Journal of American Chemical Society, 2006, Volume 128,13062-13063 Journal of American Chemical Society, 2008, Volume 130,2144-2145 Inorganic Chemistry, 2007, Volume 46,8114-8116 Journal of American Chemical Society, 2003, Volume 125,4964-4965 Angewandte Chemie International Edition, 2007, Volume 46,4790-4793 戸田ら、第58回錯体化学討論会、講演要旨集1Ab-07、2008年9月20日 Journal of American Chemical Society, 2009, Volume 131,13566-13567
WO2007/075299
 上記特許文献1及び非特許文献1-8の全記載は、ここに特に開示として援用される。
 一方、上記非特許文献8に記載のtrans-シクロオクタン-1,2-ジチオールから誘導されるジフェノキシジルコニウム錯体は、高活性と高アイソ選択的な重合を可能にするものであったが、より高分子量のポリマーを生成し、かつアイソ選択的な重合を可能にする触媒の提供と、この触媒を用いた立体選択的ポリオレフィンの製造方法の提供が望まれていた。
 そこで本発明の目的は、非特許文献8に記載のtrans-シクロオクタン-1,2-ジチオールから誘導されるジフェノキシジルコニウム錯体に比べて、格段に高分子量のポリマーを生成し、かつ高いアイソ選択的な重合を可能にするとともに、分散(Mw/Mn)が小さく、分子量分布がシャープな立体選択的ポリオレフィンを生成できる触媒と、この触媒を用いた立体選択的ポリオレフィンの製造方法を提供することにある。
 本発明者は、鋭意検討することにより本発明により上記課題を解決できることを見出した。
 本発明によれば、非特許文献8に記載のtrans-シクロオクタン-1,2-ジチオールから誘導されるジフェノキシジルコニウム錯体に比べて、格段に高分子量のポリマーを生成する高いアイソ選択的な重合を可能にし、かつ分散(Mw/Mn)が小さく、分子量分布がシャープな立体選択的ポリオレフィンを生成させることができる触媒を提供することができる。さらに、本発明によれば、この触媒を用いることで、高アイソ選択的に重合を行って、高分子量でかつ分散(Mw/Mn)が小さく、分子量分布がシャープなポリオレフィンを製造することができる。
実施例6で得られたポリ(1-ヘキセン)のGPCのクロマトグラムを示す。 実施例8で得られたポリ(1-ヘキセン)のGPCのクロマトグラムを示す。 実施例6で得られたポリ(1-ヘキセン)の立体選択性を調べた13C-NMRスペクトルを示す。 実施例8で得られたポリ(1-ヘキセン)の立体選択性を調べた13C-NMRスペクトルを示す。 実施例11で得られたポリ(4-メチル-1-ペンテン)のGPCのクロマトグラムを示す。 実施例12で得られたポリ(4-メチル-1-ペンテン)のGPCのクロマトグラムを示す。 実施例11で得られたポリ(4-メチル-1-ペンテン)の立体選択性を調べた13C-NMRスペクトルを示す。 実施例12で得られたポリ(4-メチル-1-ペンテン)の立体選択性を調べた13C-NMRスペクトルを示す。
 本発明は、下記式(1)で示される錯体を含む立体選択的オレフィン重合用触媒に関するものである。
Figure JPOXMLDOC01-appb-I000002
(式中、nは2または3であり、
及びRは、独立に、置換基を有してもよいアルキル基またはハロゲン原子であり、LはCH、ハロゲン原子、OR、またはNRで示される配位子であり、
は水素原子、芳香族基、またはトリアルキルシリル基であり、
は炭素数1~6の低級アルキル基であり、
及びRは独立に水素原子または炭素数1~6の低級アルキル基である。)
 本発明の触媒で用いられるハフニウム錯体は上記式(1)で示されるものである。式中、nは2または3であるが、好ましくは3である。
 R及びRは、独立に置換基を有してもよいアルキル基またはハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)であり、アルキル基は、好ましくは炭素数1~30のアルキル基であり、より好ましくは炭素数1~12のアルキル基である。炭素数1~12のアルキル基は、具体的には、メチル基、エチル基、イソプロピル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基、アダマンチル基等を挙げることができる。アルキル基が有する置換基としては、炭素数1~6の低級アルキル基、置換基を有してもよいフェニル基、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を挙げることができる。フェニル基が有することができる置換基としては、炭素数1~6の低級アルキル基またはハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)を挙げることができる。
 2つのRはそれぞれ同一でも異なってもよいし、2つのRはそれぞれ同一でも異なってもよい。
 R及びRとして好ましくはアルキル基であり、より好ましくは炭素数1~30のアルキル基であり、さらに好ましくは炭素数1~12のアルキル基であり、最も好ましくは、t-ブチル基、シクロヘキシル基、1-アダマンチル基である。
 LはCH(置換基Rを有してもよいメチル基)、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、OR(アルコキシ基)、またはNR(置換基R、Rを有してもよいアミノ基)で示される配位子である。Rは水素原子、芳香族基、またはトリアルキルシリル基である。Rの芳香族基としてはフェニル基、4-メトキシフェニル基、4-フルオロフェニル基、4-クロロフェニル基、4-ブロモフェニル基を挙げることができる。トリアルキルシリル基のアルキルは炭素数1~6の低級アルキル基であることができ、トリアルキルシリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基等を挙げることができる。
 Rは炭素数1~6の低級アルキル基である。この低級アルキル基は、具体的には、メチル基、エチル基、イソプロピル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基等である。
 RおよびRは独立に水素原子または炭素数1~6の低級アルキル基である。この低級アルキル基は、具体的には、メチル基、エチル基、イソプロピル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、シクロヘキシル基等である。
 Lとして好ましくは、CH、ハロゲン原子、ORであり、より好ましくは、CH、ハロゲン原子であり、さらに好ましくは、メチル基、ベンジル基、トリメチルシリルメチル基、塩素原子、臭素原子であり、最も好ましくはメチル基、ベンジル基、塩素原子である。
 式(1)で表される錯体の具体例としては下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000003
 また、これらの化合物のハフニウム原子に直接結合しているベンジル基をフッ素原子、塩素原子、臭素原子、ヨウ素原子、ジメチルアミノ基、ジエチルアミノ基、メトキシ基、エトキシ基、t-ブトキシ基等に変更した化合物も挙げられ、8員環部分を7員環に変更した化合物も挙げられる。
 一般式(1)で表される錯体は、一般式(2)および(3)で表される化合物を出発原料として下記の工程により製造することができる。
Figure JPOXMLDOC01-appb-I000004
 以下各工程について詳しく説明する。
[工程1]
 化合物(4)で示される四座配位子は、例えば、非特許文献7及び8に記載の方法により合成することができる。化合物(3)および(4)中のn、R及びRは、一般式(1)と同様である。
 化合物(2)に相当するtrans-シクロヘプタン-1,2-ジチオールもしくはtrans-シクロオクタン-1,2-ジチオールに、例えば、2.0~4.0当量、好ましくは2.0~2.5当量の化合物(3)に相当する臭化3,5-二置換-2-ヒドロキシベンジルを反応させることで、対応する式(4)で表される化合物を合成することができる。
 臭化3,5-二置換-2-ヒドロキシベンジルとしては、以下のものを挙げることができる。これらの化合物は公知の化合物である。
Figure JPOXMLDOC01-appb-I000005
 本反応は、空気、ヘリウム、アルゴンまたは窒素気流下で行うことができる。好ましくは、ヘリウム、アルゴンまたは窒素気流下、より好ましくは、窒素またはアルゴン気流下である。
 本反応では圧力の影響は無視できるため、大気圧下で反応を行うのが一般的である。
 式(2)で表される化合物と式(3)で表せる化合物とを反応させる温度は、例えば、-100℃~100℃の温度範囲であり、好ましくは-80℃~80℃の温度範囲である。但し、この範囲に限定される意図ではない。
 式(2)で表される化合物と式(3)で表せる化合物とを反応させる時間は、例えば、1分間~24時間であり、好ましくは5分間~20時間、より好ましくは30分間~18時間である。但し、この範囲に限定される意図ではない。
 式(4)で表される化合物の具体例としては下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-I000006
 また、これらの化合物の8員環部分を7員環に変更した化合物も挙げられる。
[工程2]
 化合物(5)中のLは、上記と同様に、CH(置換基Rを有してもよいメチル基)、ハロゲン原子(塩素原子、臭素原子、ヨウ素原子)、OR(アルコキシ基)、NR(置換基R、Rを有してもよいアミノ基)で示される配位子である。
 HfL4は、例えば、Hf(CH2Ph)4, Hf(CH2SiMe3)4, HfF4, HfCl4, HfBr4, HfI4, Hf(OMe)4, Hf(OEt)4, Hf(Oi-Pr)4, Hf(O-n-Bu)4, Hf(O-i-Bu)4, Hf(O-t-Bu)4, Hf(NMe24, Hf(NEt24などが挙げられる。好ましくは、Hf(CH2Ph)4, Hf(CH2SiMe3)4, HfCl4, HfBr, Hf(OMe)4, Hf(OEt)4, Hf(Oi-Pr)4, Hf(O-i-Bu)4, Hf(O-t-Bu)4, Hf(NMe24, Hf(NEt24である。
 式(5)で表される化合物がHf(CH2)4, Hf(OR)4, Hf(NR)4の場合は、溶媒中、式(4)で表される化合物とそのまま反応させることができる。
 本反応は、ハフニウム錯体が空気および湿気に対して不安定であることから、好ましくは、ヘリウム、アルゴンまたは窒素気流下、より好ましくは、窒素またはアルゴン気流下で行うことが適当である。
 本反応では圧力の影響は無視できるため、大気圧下で反応を行うのが一般的である。
 本発明において、式(4)で表される化合物と式(5)で表される化合物とを反応させる温度は、例えば、-100℃~100℃の温度範囲であり、好ましくは-80℃~50℃の温度範囲ある。但し、この範囲に限定される意図ではない。
 本発明において、式(5)で表される化合物と塩基とを反応させる時間は、例えば、1分間~24時間であり、好ましくは5分間~12時間、より好ましくは30分間~3時間である。但し、この範囲に限定される意図ではない。
 式(5)で表される化合物がHfF4, HfCl4, HfBr4, HfI4の場合は、式(4)で表される化合物と塩基、例えば有機リチウム試薬、Grignard試薬、水素化金属等、具体的にはn-ブチルリチウム、sec-ブチルリチウム、t-ブチルリチウム、水素化リチウム、水素化ナトリウム、水素化カリウム等とを反応させて反応物を得、該反応物に、HfF4, HfCl4, HfBr4, HfI4のいずれかを加えることにより合成することが可能である。
 本発明において、式(4)で表される化合物と塩基とを反応させた化合物と式(5)で表される化合物とを反応させる温度は、例えば、-100℃~150℃の温度範囲であり、好ましくは-80℃~50℃の温度範囲である。但し、この範囲に限定される意図ではない。
 本発明において、式(4)で表される化合物と塩基とを反応させた化合物と式(5)で表される化合物とを反応させる時間は、例えば、1分間~24時間であり、好ましくは5分間~12時間、より好ましくは30分間~3時間である。但し、この範囲に限定される意図ではない。
 上記で得た一般式(1)で表される錯体に有機リチウム試薬もしくはGrignard試薬等と反応させて、一般式(1)で表される錯体のLがCHである錯体を合成することもできる。
 本反応で用いる溶媒は、類似の反応で一般的に用いられる溶媒であれば特に制限されるものではなく、ハイドロカーボン溶媒またはエーテル系溶媒が挙げられ、好ましくは、トルエン、ベンゼン、o-キシレン、m-キシレン、p-キシレン、ヘキサン、ペンタン、ヘプタン、シクロヘキサン、ジエチルエーテルまたはテトラヒドロフランであり、より好ましくは、ジエチルエーテル、トルエン、テトラヒドロフラン、ヘキサン、ペンタン、ヘプタン、またはシクロヘキサンである。
 上記説明した本発明の一般式(1)で表される錯体は、重合可能なモノマーの単独重合または二種以上の重合可能なモノマーの共重合により重合体を製造するに際して、重合用触媒成分として使用される。好ましくは、単独重合である。
 重合用触媒としては、上記の本発明の一般式(1)で表される錯体および助触媒成分(A)を接触させて得られる重合用触媒が用いられる。かかる助触媒成分は、上記の本発明の一般式(1)で表される錯体を活性化させ、重合可能とするものであれば特に制限はないが、
(A-1)有機アルミニウム化合物
(A-2)ホウ素化合物
よりなる群から選ばれる少なくとも1種の化合物を含んでいてもよい。
〔有機アルミニウム化合物(A-1)〕
 本発明において用いる化合物(A-1)としては、公知の有機アルミニウム化合物が使用できる。好ましくは、(A-1-1)一般式 E1a AlY1 3-a で表される有機アルミニウム化合物、(A-1-2)一般式 {-Al(E2 )-O-}b で表される構造を有する環状のアルミノキサン、及び(A-1-3)一般式 E3 {-Al(E3)-O-}c AlE3 2 で表される構造を有する線状のアルミノキサン(但し、E1 、E2 、E3 は、炭素数1~8のハイドロカルビル基であり、全てのE 、全てのE2 及び全てのEは同じであっても異なっていても良い。Y1は水素原子又はハロゲン原子を表し、全てのY1は同じであっても異なっていても良い。aは0<a≦3の整数で、bは2以上の整数を、cは1以上の整数を表す。)のうちのいずれか、あるいはそれらの2~3種の混合物を例示することができる。
 一般式 E1 a AlY1 3-a で表される有機アルミニウム化合物(A-1-1)の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム等のトリアルキルアルミニウム;ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、ジプロピルアルミニウムクロライド、ジイソブチルアルミニウムクロライド、ジヘキシルアルミニウムクロライド等のジアルキルアルミニウムクロライド;メチルアルミニウムジクロライド、エチルアルミニウムジクロライド、プロピルアルミニウムジクロライド、イソブチルアルミニウムジクロライド、ヘキシルアルミニウムジクロライド等のアルキルアルミニウムジクロライド;ジメチルアルミニウムハイドライド、ジエチルアルミニウムハイドライド、ジプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジヘキシルアルミニウムハイドライド等のジアルキルアルミニウムハイドライド等を例示することができる。好ましくは、トリアルキルアルミニウムであり、より好ましくは、トリエチルアルミニウム、トリイソブチルアルミニウムである。
 一般式 {-Al(E2 )-O-}b で表される構造を有する環状のアルミノキサン(A-1-2)、一般式 E3 {-Al(E3 )-O-}c AlE3  で表される構造を有する線状のアルミノキサン(A-1-3)における、E2 、E3 の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-ペンチル基、ネオペンチル基等のアルキル基を例示することができる。bは2以上の整数であり、cは1以上の整数である。好ましくは、E2 及びE3 はメチル基、イソブチル基であり、bは2~40、cは1~40である。
 上記のアルミノキサンは各種の方法で作られる。その方法については特に制限はなく、公知の方法に準じて作ればよい。例えば、トリアルキルアルミニウム(例えば、トリメチルアルミニウムなど)を適当な有機溶剤(ベンゼン、トルエン、脂肪族ハイドロカーボンなど)に溶かした溶液を水と接触させてアルミノキサンを作る。また、トリアルキルアルミニウム(例えば、トリメチルアルミニウムなど)を結晶水を含んでいる金属塩(例えば、硫酸銅水和物など)に接触させてアルミノキサンを作る方法が例示できる。
 また、上記の方法で得られる(A-1-2)一般式 {-Al(E2 )-O-}b で表される構造を有する環状のアルミノキサン、及び(A-1-3)一般式 E3 {-Al(E3)-O-}c AlE3 2 で表される構造を有する線状のアルミノキサンは、必要に応じて、揮発成分を留去して乾燥して用いてもよい。さらに、揮発成分を留去して乾燥してえられた化合物を適当な有機溶剤(ベンゼン、トルエン、脂肪族ハイドロカーボンなど)で洗浄して、再度乾燥し用いてもよい。
〔ホウ素化合物(A-2)〕
 本発明において化合物(A-2)としては、(A-2-1)一般式BR11 R12 R13で表されるホウ素化合物、(A-2-2)一般式W+ (BR11 R1213 R14 ) で表されるホウ素化合物、(A-2-3)一般式(V-H)+ (BR11 R12 R13 R14で表されるホウ素化合物のいずれかを用いる。
 一般式 BR1112 R13で表されるホウ素化合物(A-2-1)において、Bは3価の原子価状態のホウ素原子であり、R11~R13 はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の 炭素原子を含むハロゲン化ハイドロカルビル基、1~20個の炭素原子を含む置換シリル基、1~20個の炭素原子を含むアルコキシ基または2~20個の炭素原子を含む2置換アミノ基であり、それらは同じであっても異なっていても良い。好ましいR11 ~R13  はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の炭素原子を含むハロゲン化ハイドロカルビル基である。
 (A-2-1)の具体例としては、トリフェニルボラン、トリス(ペンタフルオロフェニル)ボラン、トリス(2,3,5,6-テトラフルオロフェニル)ボラン、トリス(2,3,4,5-テトラフルオロフェニル)ボラン、トリス(3,4,5-トリフルオロフェニル)ボラン、トリス(2,3,4-トリフルオロフェニル)ボラン、フェニルビス(ペンタフルオロフェニル)ボラン等が挙げられるが、最も好ましくは、トリフェニルボラン、トリス(ペンタフルオロフェニル)ボランである。
 一般式W+ (BR11 R1213 R14 )で表されるホウ素化合物(A-2-2)において、Wは無機または有機のカチオンであり、Bは3価の原子価状態のホウ素原子であり、R11 ~R14 は上記の(A-2-1)におけるR11~R13と同様である。即ち、R11 ~R14 はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の 炭素原子を含むハロゲン化ハイドロカルビル基、1~20個の炭素原子を含む置換シリル基、1~20個の炭素原子を含むアルコキシ基または2~20個の炭素原子を含む2置換アミノ基であり、それらは同じであっても異なっていても良い。好ましいR11 ~R14  はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の炭素原子を含むハロゲン化ハイドロカルビル基である。
 無機のカチオンであるW+  としては、フェロセニウムカチオン、アルキル置換フェロセニウムカチオン、銀陽イオンなどが、有機のカチオンであるW+ としては、トリフェニルカルベニウムカチオンなどが挙げられる。(BR11 R12 R1314 )には、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(2,3,5,6-テトラフルオロフェニル)ボレート、テトラキス(2,3,4,5-テトラフルオロフェニル)ボレート、テトラキス(3,4,5-トリフルオロフェニル)ボレート、テトラキス(2,3,4ートリフルオロフェニル)ボレート、フェニルビス(ペンタフルオロフェニル)ボレ-ト、テトラキス[3,5-ビス(トリフルオロメチル)フェニル]ボレートなどが挙げられる。
 一般式W+ (BR11 R1213 R14 )で表される化合物の具体例としては、フェロセニウムテトラキス(ペンタフルオロフェニル)ボレート、1,1’-ジメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレート、銀テトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス[3,5-ビス(トリフルオロメチル)フェニル]ボレートなどを挙げることができるが、最も好ましくは、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートである。
 また、一般式(V-H)+ (BR11 R12 R1314 )で表されるホウ素化合物(A-2-3)おいては、Vは中性ルイス塩基であり、(V-H)+ はブレンステッド酸であり、Bは3価の原子価状態のホウ素原子であり、R11 ~R14は上記の(A-2-3)におけるR11~R13と同様である。即ち、R11 ~R14 はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の 炭素原子を含むハロゲン化ハイドロカルビル基、1~20個の炭素原子を含む置換シリル基、1~20個の炭素原子を含むアルコキシ基または2~20個の炭素原子を含む2置換アミノ基であり、それらは同じであっても異なっていても良い。好ましいR11 ~R14  はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の炭素原子を含むハロゲン化ハイドロカルビル基である。
 ブレンステッド酸である(V-H)+としては、トリアルキル置換アンモニウム、N,N-ジアルキルアニリニウム、ジアルキルアンモニウム、トリアリールホスホニウムなどが挙げられ、(BR11 R12 R1314 )としては、前述と同様のものが挙げられる。
 一般式(V-H)+ (BR11 R12 R1314 )で表される化合物の具体例としては、トリエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス[3,5-ビス(トリフルオロメチル)フェニル]ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-2,4,6-ペンタメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス[3,5-ビス(トリフルオロメチル)フェニル]ボレート、ジイソプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(メチルフェニル)ホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(ジメチルフェニル)ホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどを挙げることができるが、最も好ましくは、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、もしくは、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートである。
 本発明の、上記の(1)で表される錯体と助触媒成分とを接触させて得られるオレフィン重合用触媒を製造する際の接触は、(1)で表される錯体と助触媒成分とが接触し、触媒が形成されるならどのような手段によってもよく、あらかじめ溶媒で希釈して、もしくは希釈せずに(1)で表される錯体と助触媒成分とを混合して接触させる方法や、(1)で表される錯体と助触媒成分とを別々に重合槽に供給して重合槽の中でこれらを接触させる方法を取ることができる。ここで、助触媒成分としては複数種類を組み合わせて使用する場合があるが、それらのうちの一部をあらかじめ混合して使用してもよいし、別々に重合槽に供給して使用してもよい。
 各成分の使用量は通常、一般式(1)で表される錯体に対する(A-1)のモル比が0.01~10000で、好ましくは1~5000、一般式(1)で表される錯体に対する(A-2)のモル比が0.01~100で、好ましくは1.0~50の範囲となるように、各成分を用いることが望ましい。
 重合反応器において重合反応前に触媒を製造する場合、各成分を溶液状態または溶媒に懸濁もしくはスラリー化した状態で供給する場合の濃度は、重合反応器に各成分を供給する装置の性能などの条件により、適宜選択されるが、一般に、一般式(1)で表される錯体が、通常0.0001~10000mmol/Lで、より好ましくは、0.001~1000mmol/L、さらに好ましくは、0.01~100mmol/L、(A-1)が、Al原子換算で、通常0.01~10000mmol/Lで、より好ましくは、0.05~5000mmol/L、さらに好ましくは、0.1~2000mmol/L、(A-2)は、通常0.001~500mmol/Lで、より好ましくは、0.01~250mmol/L、さらに好ましくは、0.05~100mmol/Lの範囲となるように各成分を用いることが望ましい。
 前記オレフィン重合用触媒は、上記の一般式(1)で表される錯体と、上記(A-1)および/または上記(A-2)とを接触させて得られるオレフィン重合用触媒であるが、一般式(1)で表される錯体と(A-1)とを接触させて得られるオレフィン重合用触媒を用いる際は、(A-1)としては、前記の環状のアルミノキサン(A-1-2)および/または線状のアルミノキサン(A-1-3)が好ましい。また他に好ましいオレフィン重合用触媒の態様としては、一般式(1)で表される錯体、(A-1)および(A-2)を接触させて得られるオレフィン重合用触媒が挙げられ、その際の該(A-1)としては前記の(A-1-1)が使用しやすく、(A-2)としては、(A-2-1)または(A-2-2)が好ましい。
〔立体選択的ポリオレフィンの製造方法〕
 本発明の立体選択的ポリオレフィンの製造方法は、上記本発明の触媒の存在下にオレフィンを重合させることを含む方法である。重合するオレフィンは単独でも複数でもよいが、単独がより好ましい。単独のオレフィンを重合すれば、単独重合体が得られ、複数のオレフィンを重合すれば、共重合体が得られる。重合に用いられるオレフィン化合物は特に制限はないが、立体選択的に重合することで、所望の物性を示すオレフィンであることが好ましい。オレフィンは、例えば、モノオレフィンまたはジオレフィンであることができるが、モノオレフィンが好ましい。モノオレフィンの例としては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、4-メチル-1-ペンテンなどの1-アルケン(枝分かれしていても良い)
及び、シクロペンテン、シクロヘキセン、5-メチルノルボルネン、5-エチルノルボルネン、5-ブチルノルボルネン、5-フェニルノルボルネン、5-ベンジルノルボルネン、テトラシクロドデセン、トリシクロデセン、トリシクロウンデセン、ペンタシクロペンタデセン、ペンタシクロヘキサデセン、8-メチルテトラシクロドデセン、8-エチルテトラシクロドデセン、5-アセチルノルボルネン、5-アセチルオキシノルボルネン、5-メトキシカルボニルノルボルネン、5-エトキシカルボニルノルボルネン、5-メチル-5-メトキシカルボニルノルボルネン、5-シアノノルボルネン、8-メトキシカルボニルテトラシクロドデセン、8-メチル-8-テトラシクロドデセン、8-シアノテトラシクロドデセン等などの環状アルケン等を挙げることができる。ジオレフィンとしては、例えば、
1,5-ヘキサジエン、1,4-ヘキサジエン、1,6-ヘプタジエン、1,4-ペンタジエン、1,7-オクタジエン、1,8-ノナジエン、1,9-デカジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエン、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン、5-ビニル-2-ノルボルネン、5-メチル-2-ノルボルネン、ノルボルナジエン、5-メチレン-2-ノルボルネン、1,5-シクロオクタジエン、5,8-エンドメチレンヘキサヒドロナフタレン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロオクタジエン、1,3-シクロヘキサジエン、ブタジエン、等を挙げることができる。モノオレフィンとして好ましくはプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、4-メチル-1-ペンテンであり、より好ましくはプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、4-メチル-1-ペンテンであり、さらに好ましくはプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテンである。
ジオレフィンとして好ましくは、
1,5-ヘキサジエン、1,6-ヘプタジエン、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン、5-ビニル-2-ノルボルネン、5-メチル-2-ノルボルネン、ノルボルナジエン、5-メチレン-2-ノルボルネン、1,5-シクロオクタジエン、1,3-シクロオクタジエン、1,3-シクロヘキサジエン、ブタジエンであり、より好ましくは、
1,5-ヘキサジエン、1,6-ヘプタジエン、1,3-シクロヘキサジエン、ブタジエンである。
 ジオレフィンの場合、R.M.Waymouthら(Journal of American Chemical Society, 1993, Volume 115,91-98)やG.W.Coates(Macromolecular Rapid Communications,2009,Volume 30,1900-1906)らによって報告されているに示す閉環重合体を得ることができる。具体的には、1,5-ヘキサジエンおよび1,6-ヘプタジエンの場合、下記に示すような重合体を得ることができる。
Figure JPOXMLDOC01-appb-I000007
 重合方法も、特に限定されるべきものではないが、例えば、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族ハイドロカーボン、ベンゼン、トルエン等の芳香族ハイドロカーボン、またはメチレンジクロライド等のハロゲン化ハイドロカーボンを溶媒として用いる溶媒重合、またはスラリー重合等が可能であり、また、連続重合、回分式重合のどちらでも可能である。
 重合反応の温度および時間は、所望の重合平均分子量と触媒の活性度および使用量を考慮して決定することができる。重合温度は通常、-50℃~200℃の範囲を取り得るが、特に、-20℃~100℃の範囲が好ましく、重合圧力は通常、常圧~50MPaが好ましい。重合時間は、一般的に、目的とするポリマーの種類、反応装置により適宜決定されるが通常、1分間~20時間の範囲、好ましくは5分間~18時間の範囲を取ることができる。但し、これらの範囲に制限される意図ではない。また、本発明は共重合体の分子量を調節するために水素等の連鎖移動剤を添加することもできる。
 重合反応に溶媒を使用する場合、溶媒中の各化合物の濃度は、特に制限はない。溶媒中のハフニウム錯体の濃度は、例えば、1×10-8mmol/L~10mol/Lの範囲とし、助触媒の濃度は、例えば、1×10-8mmol/L ~10mol/Lの範囲とすることができる。また、オレフィン:溶媒は体積比で100:0~1:1000の範囲とすることができる。但し、これらの範囲は例示であって、それらに限定される意図ではない。また、溶媒を使用しない場合も、上記の範囲を参考に適宜濃度の設定をすることができる。
 重合して得られた重合体は、以下のように溶媒及び未反応のモノマーがある場合にはモノマーを分離することができる。粘性ポリマーの場合は、真空ポンプでモノマーを除去することができる。但し、この方法では触媒は除去できない。固体ポリマーの場合は溶媒留去後、メタノール等で洗浄することでモノマーを除去することができる。この方法であれば、触媒もある程度は除去できる。
 以下、実施例および比較例によって本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
また、実施例1~12及び比較例1~7の各項目の測定値は、下記の方法で測定した。
(1)重量平均分子量(Mw)、数平均分子量(Mn)、および分子量分布(Mw/Mn)
 ゲルパーミエーションクロマトグラフィー(GPC)により、下記の条件で測定した。また、検量線は標準ポリスチレンを用いて作成した。分子量分布は重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)で評価した。
<分子量測定条件1、ポリ(1-ヘキセン)>
   装置     東ソーHLC-8220 GPC apparatus
   カラム    TSKgel SuperHZM-H (10)4.6*150   3本
   測定温度   40℃
   溶媒     テトラヒドロフラン
   サンプル濃度 2mg/2mL
 
<分子量測定条件2、ポリ(4-メチル-1-ペンテン)>
   装置     東ソーHLC-8121GPC/HT apparatus
   カラム    TSKgel GMHHR-H(20) HT 7.8*300   3本
   測定温度   145℃
   溶媒     1,2-ジクロロベンゼン
   サンプル濃度 5mg/5mL
(2)アイソ選択性(mmmm、単位:%)
 カーボン核磁気共鳴法によって、次の測定条件により、カーボン核磁気共鳴スペクトル(13C-NMR)を測定し、下記算出方法より求めた。
<規則性測定条件1、ポリ(1-ヘキセン)>
 装置  :JEOL社製 ECS400
 測定溶媒:クロロホルム-d1
 測定温度:25℃
 測定方法:プロトンデカップリング法
 パルス幅:30度
 パルス繰り返し時間:2秒
 測定基準:重クロロホルム中の残留クロロホルム
 窓関数 :負の指数関数
 
<規則性測定条件2、ポリ(4-メチル-1-ペンテン)>
 装置  :JEOL社製 ECS400
 測定溶媒:テトラクロロエタン-d2
 測定温度:130℃
 測定方法:プロトンデカップリング法
 パルス幅:30度
 パルス繰り返し時間:2秒
 測定基準:重テトラクロロエタン中の残留テトラクロロエタン
 窓関数 :負の指数関数
 
<算出方法1、ポリ(1-ヘキセン)>
 34.60~34.65ppm付近にピークトップを有するピークのピーク面積を求めた。当該ピークのピーク面積は、高磁場側で隣接するピークとの谷のケミカルシフトから、低磁場側で隣接するピークとの谷のケミカルシフトまでの範囲でのシグナルの面積とした。
 
<算出方法2、ポリ(4-メチル-1-ペンテン)>
 45.61~45.66ppm付近にピークトップを有するピークのピーク面積を求めた。当該ピークのピーク面積は、高磁場側で隣接するピークとの谷のケミカルシフトから、低磁場側で隣接するピークとの谷のケミカルシフトまでの範囲でのシグナルの面積とした。
 
(参考例1)
trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタンの合成
 アルゴン雰囲気下、trans-シクロオクタン-1,2-ジチオール2.18g(12.4mmol)と臭化3,5-ジ-t-ブチル-2-ヒドロキシベンジル7.52g(25.1mmol)をテトラヒドロフラン80mLに溶かし0℃に冷却した。そこに、トリエチルアミン3.5mL(24.9mmol)を加え、0℃で1時間、室温で終夜攪拌した。生成した沈殿物を濾過して除き、濾液を減圧下濃縮した。得られた残渣にエーテルと飽和塩化アンモニウム水溶液を加え、エーテル層を水洗、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン-ジクロロメタン 1:1)で精製し無色結晶として表題化合物6.74g(収率89%)を得た。
融点:122-123℃ (ヘキサンより再結晶)
1H-NMR (400 MHz,δ,ppm, CDCl3)
1.12-1.94 (m, 48 H), 2.63-2.65 (m, 2 H), 3.81 (d, J= 13 Hz, 2 H), 3.90 (d, J= 13 Hz, 2 H), 6.92 (d, J= 2 Hz, 2 H), 6.95 (s, 2 H), 7.26 (d, J = 2 Hz, 2 H).
13C-NMR (100.7 MHz,δ, CDCl3)
25.7, 25.8, 29.8, 31.2, 31.6, 34.2, 35.0, 35.4, 49.6, 121.6, 123.7, 125.4, 137.4, 142.0, 152.2. 
元素分析:計算値(C38H60O2S2)C, 74.45%; H, 9.87%. 
実測値: C, 74.39%; H, 10.09%.
文献:A. Ishii, A. Ono, N. Nakata, J. Sulf. Chem. 2009, 30, 236-244. 
(参考例2)
trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロヘキサンの合成
 アルゴン雰囲気下、trans-シクロヘキサン-1,2-ジチオール1.08g(7.3mmol)と臭化3,5-ジ-t-ブチル-2-ヒドロキシベンジル4.58g(15.3mmol)をテトラヒドロフラン90mLに溶かし0℃に冷却した。そこに、トリエチルアミン2.13mL(15.3mmol)を加え、0℃で15時間攪拌した。生成した沈殿物を濾過で除き、濾液を減圧下濃縮した。得られた残渣にエーテルと希塩酸を加え、エーテル層を水洗、無水硫酸マグネシウムで乾燥後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン-ジクロロメタン 1:1)で精製し無色結晶として表題化合物3.86g(収率90%)を得た。
融点:104-106℃ 分解(エタノールより再結晶)
1H-NMR (400 MHz,δ,ppm, CDCl3)
1.19-1.43 (m, 44 H), 2.09-2.15 (m, 2 H), 2.58-2.61 (m, 2 H), 3.79 (s, 4 H), 6.75 (s, 2 H), 6.93 (d, J = 2 Hz, 2 H), 7.25 (d, J = 2 Hz, 2 H).
13C-NMR (100.7 MHz,δ, CDCl3)
24.7, 29.7, 31.6, 32.6, 33.9, 34.2, 35.0, 48.1, 121.6, 123.7, 125.2, 137.3, 142.2, 152.0. 
元素分析:計算値(C36H56O2S2)C, 73.92%; H, 9.34%. 
実測値: C, 74.17%; H, 9.31%.
(参考例3)
 [シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウム 
 以下の実験はアルゴン雰囲気のグローブボックス中で行った。50mLのシュレンク管中、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタン207mg(0.336mmol)をトルエン10mLに溶かし、この溶液に室温でテトラベンジルジルコニウム153mg(0.336mmol)のトルエン溶液10mLを滴下し、さらに1時間攪拌した。トルエンを減圧下留去し、残渣をヘキサン2mLで洗浄後乾燥し、無色結晶として表題化合物216mg(収率76%)を得た。
融点:181-183℃ 分解
1H-NMR (400 MHz,δ, ppm, C6D6)
1.16-1.80 (m, 48 H), 2.16 (d, J = 10Hz, 2 H), 2.42 (m, 2 H), 2.78 (d, J = 10Hz, 2 H), 3.16 (d, J = 14Hz, 2 H), 3.50 (d, J = 14Hz, 2 H), 6.61 (d, J = 2Hz, 2 H), 6.90 (t, J = 8Hz, 2 H), 7.09 (t, J = 8Hz, 4 H), 7.25 (t, J = 8Hz, 4 H), 7.52 (d, J = 2Hz, 2 H). 
13C-NMR (100.4 MHz, δ, ppm, C6D6
25.2, 26.1, 28.6, 30.6, 31.7, 34.2, 34.8, 35.7, 48.7, 64.0, 122.0, 123.1, 124.3, 126.2, 128.5, 128.7, 129.6, 140.9, 145.8, 158.0. 
元素分析:計算値(C52H72O2S2Zr)C, 70.61%; H, 8.21%. 
実測値:C, 70.54%; H, 8.31%.
(参考例4)
[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム
 以下の実験はアルゴン雰囲気のグローブボックス中で行った。100mLのシュレンク管中、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロヘキサン 200.0mg(0.342mmol)をトルエン10mLに溶かし、この溶液に室温でテトラベンジルハフニウム185.7mg(0.342mmol)のトルエン溶液10mLを滴下し、さらに1時間攪拌した。トルエンを減圧下留去し、残渣をヘキサン2mLで3回洗浄後乾燥し、無色結晶として表題化合物のジアステレオマー混合物として201.3mg(収率62%)を得た。ジアステレオマー比は、64/36であった。
Major:1H-NMR (400 MHz,δ, ppm, CD3C6D5)
1.06-1.92 (m, 44H), 2.55(d, J = 12.0Hz, 2H), 2.84(d, J = 12.0Hz, 2H), 3.21(d, J = 14.0Hz, 2H), 3.37(d, J = 14.0Hz, 2H), 6.62 (d, J = 2.4Hz, 2H), 6.74-6.81(m, 2H), 7.04-7.12(m, 6H), 7.25(d, J = 7.6Hz, 4H), 7.54 (d, J = 2.4Hz, 2H).
Minor:1H-NMR (400 MHz,δ, ppm, CD3C6D5)
1.06-1.92 (m, 44H), 2.38(d, J = 11.6Hz, 2H), 2.85(d, J = 14.0Hz, 2H), 2.94(d, J = 11.6Hz, 2H), 3.18(d, J = 14.0Hz, 2H), 6.59 (d, J = 2.4Hz, 2H), 6.74-6.81(m, 2H), 7.04-7.12(m, 6H), 7.31(d, J = 7.6Hz, 4H), 7.47 (d, J = 2.4Hz, 2H).
Figure JPOXMLDOC01-appb-I000008
[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム 
 以下の実験はアルゴン雰囲気のグローブボックス中で行った。50mLのシュレンク管中、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタン192mg(0.313mmol)をトルエン10mLに溶かし、この溶液に室温でテトラベンジルジルコニウム170mg(0.313mmol)のトルエン溶液10mLを滴下し、さらに1時間攪拌した。トルエンを減圧下留去し、残渣をヘキサン2mLで洗浄後乾燥し、無色結晶として表題化合物209mg(収率69%)を得た。
融点:203℃ 分解
1H-NMR (400 MHz,δ, ppm, C6D6)
1.18-1.94 (m, 48H), 2.35 (m, 2H), 2.61 (d, J = 12Hz, 2H), 2.88 (d, J = 12Hz, 2H), 3.13 (d, J = 14Hz, 2 H), 3.41 (d, J = 14Hz, 2 H), 6.62 (d, J = 2Hz, 2H), 6.78 (t, J = 8Hz, 2H), 7.10 (t, J = 8Hz, 4H), 7.29 (t, J = 8Hz, 4H), 7.57 (d, J = 2Hz, 2H)
13C-NMR (100.4 MHz, δ, ppm, C6D6
25.1, 26.2, 28.8, 30.5, 31.8, 32.1, 34.2, 35.6, 49.1, 77.2, 121.4, 121.8, 124.6, 125.6, 126.0, 129.3, 138.5, 141.1, 148.4, 157.9.
元素分析:計算値(C52H72O2S2Hf)C, 64.27%; H, 7.47%. 
実測値:C, 63.87%; H, 7.59%.
(参考例6)
 [シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロハフニウム 
 以下の実験はアルゴン雰囲気下で行った。100mLのシュレンク管中、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロオクタン1.00g(1.63mmol)をジエチルエーテル20mLに溶かし、この溶液にn-ブチルリチウム 2mL(1.65mol/l, 3.30mmol)を0℃で30分間攪拌した。この溶液を室温でテトラクロロハフニウム530mg(1.65mmol)のジエチルエーテル溶液50mLへと滴下し、さらに終夜攪拌した。生成した沈殿物を濾過して除き、濾液を減圧下濃縮した。残渣をペンタン5mLで洗浄後乾燥し、無色結晶として表題化合物558mg(収率40%)を得た。
1H-NMR (400 MHz,δ, ppm, C6D6)
0.54-1.86 (m, 48 H), 2.56 (br s, 2 H), 3.20 (d, J = 14Hz, 2 H), 4.35 (d, J = 14Hz, 2 H), 6.56 (br s, 2 H), 7.56 (br s, 2 H). 
13C-NMR (100.4 MHz, δ, ppm, C6D6
24.9, 26.1, 28.8, 30.4, 31.8, 34.3, 35.5, 36.0, 49.3, 120.3, 125.1, 125.7, 139.4, 142.1, 157.3. 
 表1に実験条件と合成したポリ(1-ヘキセン)の分子量測定の結果をまとめる。また、以下の実験はアルゴン雰囲気のグローブボックス中で行い、分子量は<分子量測定条件1>、規則性は<規則性測定条件1>と<算出方法1>により求めた。
(実施例1)
Figure JPOXMLDOC01-appb-I000009
 50mLのシュレンク管中、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム19.4mg(0.020mmol)をベンゼン1mLとヘキサン5mLに溶かし、この溶液に25℃でトリス(ペンタフルオロフェニル)ボラン [B(C6F5)3] 10.2mg(0.020mmol)を加え、さらに5分間攪拌した。この溶液に25℃で1-ヘキセン3g(35.6mmol)を加え、さらに10分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 0.62g(収率21%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性(mmmm)99.3%であり、Mw=120000、Mw/Mn=1.3であった。
(実施例2)
 50mLのシュレンク管中、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム19.4mg(0.020mmol)をベンゼン1mLとヘキサン5mLに溶かし、この溶液に25℃でトリス(ペンタフルオロフェニル)ボラン [B(C6F5)3] 10.2mg(0.020mmol)を加え、さらに5分間攪拌した。この溶液に25℃で1-ヘキセン3g(35.6mmol)を加え、さらに20分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 1.20g(収率40%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性(mmmm)98.9%であり、Mw=185000、Mw/Mn=1.5であった。
(実施例3)
 50mLのシュレンク管中、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム19.4mg(0.020mmol)をベンゼン1mLとヘキサン5mLに溶かし、この溶液に25℃でトリス(ペンタフルオロフェニル)ボラン [B(C6F5)3] 10.2mg(0.020mmol)を加え、さらに5分間攪拌した。この溶液に25℃で1-ヘキセン3g(35.6mmol)を加え、さらに30分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 2.16g(収率72%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性(mmmm)97.0%であり、Mw=227000、Mw/Mn=1.7であった。
(実施例4)
 50mLのシュレンク管中、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム19.4mg(0.020mmol)をベンゼン1mLに溶かし、この溶液に25℃でトリス(ペンタフルオロフェニル)ボラン [B(C6F5)3] 10.2mg(0.020mmol)を加え、さらに5分間攪拌した。この溶液に25℃で1-ヘキセン3g(35.6mmol)を加え、さらに4分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 0.29g(収率10%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性(mmmm)99.2%であり、Mw=100000、Mw/Mn=1.3であった。
(実施例5)
 50mLのシュレンク管中、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム19.4mg(0.020mmol)をベンゼン1mLに溶かし、この溶液に25℃でトリス(ペンタフルオロフェニル)ボラン [B(C6F5)3] 10.2mg(0.020mmol)を加え、さらに5分間攪拌した。この溶液に25℃で1-ヘキセン3g(35.6mmol)を加え、さらに7分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 0.95g(収率32%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性(mmmm)99.3%であり、Mw=170000、Mw/Mn=1.5であった。
(実施例6)
 50mLのシュレンク管中、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム19.4mg(0.020mmol)をベンゼン1mLに溶かし、この溶液に25℃でトリス(ペンタフルオロフェニル)ボラン [B(C6F5)3] 10.2mg(0.020mmol)を加え、さらに5分間攪拌した。この溶液に25℃で1-ヘキセン3g(35.6mmol)を加え、さらに10分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 2.02g(収率67%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性(mmmm)98.9%であり、Mw=191000、Mw/Mn=1.8であった。
(実施例7)
 50mLのシュレンク管中、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム19.4mg(0.020mmol)をトルエン5mLに溶かし、この溶液に0℃でトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート[Ph3CB(C6F5)4] 18.4mg(0.020mmol)を加え、さらに5分間攪拌した。この溶液に25℃で1-ヘキセン3g(35.6mmol)を加え、さらに15分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 0.76g(収率25%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性(mmmm)98.2%であり、Mw=256000、Mw/Mn=1.5であった。
(実施例8)
 50mLのシュレンク管中、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム19.4mg(0.020mmol)をトルエン5mLに溶かし、この溶液に0℃でトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート[Ph3CB(C6F5)4] 18.4mg(0.020mmol)を加え、さらに5分間攪拌した。この溶液に25℃で1-ヘキセン3g(35.6mmol)を加え、さらに30分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 2.20g(収率73%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性(mmmm)99.7%であり、Mw=421000、Mw/Mn=1.6であった。
(比較例1)
 50mLのシュレンク管中、25℃で[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウム17.7mg(0.020mmol)とトリス(ペンタフルオロフェニル)ボラン[B(C6F5)3] 10.2mg(0.020mmol)に無溶媒で1-ヘキセン3g(35.6mmol)を加え、さらに5分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 2.68g(収率89%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性(mmmm)95.3%であり、Mw=43000、Mw/Mn=1.9であった。
(比較例2)
 50mLのシュレンク管中、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウム17.7mg(0.020mmol)をベンゼン1mLとヘキサン5mLに溶かし、この溶液に25℃でトリス(ペンタフルオロフェニル)ボラン [B(C6F5)3] 10.2mg(0.020mmol)を加え、さらに5分間攪拌した。この溶液に25℃で1-ヘキセン3g(35.6mmol)を加え、さらに10分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 2.86g(収率95%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性(mmmm)97.6%であり、Mw=43000、Mw/Mn=1.9であった。
(比較例3)
 50mLのシュレンク管中、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウム17.7mg(0.020mmol)をベンゼン1mLとヘキサン5mLに溶かし、この溶液に25℃でトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート[Ph3CB(C6F5)4] 18.4mg(0.020mmol)を加え、さらに5分間攪拌した。この溶液に25℃で1-ヘキセン3g(35.6mmol)を加え、さらに10分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 2.90g(収率97%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性(mmmm)97.4%であり、Mw=41000、Mw/Mn=2.1であった。
(比較例4)
 50mLのシュレンク管中、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウム17.7mg(0.020mmol)をベンゼン2mLとヘキサン10mLに溶かし、この溶液に25℃でトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート[Ph3CB(C6F5)4] 18.4mg(0.020mmol)を加え、さらに5分間攪拌した。この溶液に0℃で1-ヘキセン3g(35.6mmol)を加え、さらに10分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 2.76g(収率92%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性(mmmm)98.7%であり、Mw=120000、Mw/Mn=1.6であった。
(比較例5)
 50mLのシュレンク管中、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウム1.8mg(0.0020mmol)をベンゼン1mLに溶かし、この溶液に25℃でトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート[Ph3CB(C6F5)4] 1.8mg(0.0020mmol)を加え、さらに5分間攪拌した。この溶液に25℃で1-ヘキセン3g(35.6mmol)を加え、さらに10分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 0.83g(収率28%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性(mmmm)97.9%であり、Mw=59000、Mw/Mn=1.7であった。
(比較例6)
 50mLのシュレンク管中、[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム18.9mg(0.020mmol)をベンゼン1mLとヘキサン5mLに溶かし、この溶液に25℃でトリス(ペンタフルオロフェニル)ボラン [B(C6F5)3] 10.2mg(0.020mmol)を加え、さらに5分間攪拌した。この溶液に25℃で1-ヘキセン3g(35.6mmol)を加え、さらに10分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 0.03g(収率1%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性(mmmm)86.2%であり、Mw=28400、Mw/Mn=1.9であった。
(比較例7)
 50mLのシュレンク管中、[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム18.9mg(0.020mmol)をトルエン5mLに溶かし、この溶液に25℃でトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート[Ph3CB(C6F5)4] 18.4mg(0.020mmol)を加え、さらに5分間攪拌した。この溶液に0℃で1-ヘキセン3g(35.6mmol)を加え、さらに15分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 0.03g(収率1%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性(mmmm)88.6%であり、Mw=56000、Mw/Mn=1.9であった。
 
Figure JPOXMLDOC01-appb-T000010
 表2に実験条件と合成したポリ(4-メチル-1-ペンテン)の分子量測定の結果をまとめる。
 以下の実験はアルゴン雰囲気のグローブボックス中で行い、分子量は<分子量測定条件2>、規則性は<規則性測定条件2>と<算出方法2>により求めた。
(実施例9)
Figure JPOXMLDOC01-appb-I000011
 50mLのシュレンク管中、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム19.4mg(0.020mmol)をベンゼン1mLとヘキサン5mLに溶かし、この溶液に25℃でトリス(ペンタフルオロフェニル)ボラン [B(C6F5)3] 10.2mg(0.020mmol)を加え、さらに5分間攪拌した。この溶液に25℃で4-メチル-1-ペンテン3g(35.6mmol)を加え、さらに5分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、白色固体を濾別し、70℃で真空下乾燥し、ポリ(4-メチル-1-ペンテン) 0.09g(3%)を得た。得られたポリ(4-メチル-1-ペンテン)の13C-NMRを測定したが、アイソ選択性(mmmm)以外のスペクトルは確認できなかった。
(実施例10)
 50mLのシュレンク管中、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム19.4mg(0.020mmol)をベンゼン1mLとヘキサン5mLに溶かし、この溶液に25℃でトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート[Ph3CB(C6F5)4] 18.4mg(0.020mmol)を加え、さらに5分間攪拌した。この溶液に25℃で4-メチル-1-ペンテン3g(35.6mmol)を加え、さらに5分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、白色固体を濾別し、70℃で真空下乾燥し、ポリ(4-メチル-1-ペンテン) 0.21g(7%)を得た。得られたポリ(4-メチル-1-ペンテン)の13C-NMRを測定したが、アイソ選択性(mmmm)以外のスペクトルは確認できなかった。
(実施例11)
 50mLのシュレンク管中、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム19.4mg(0.020mmol)をトルエン5mLに溶かし、この溶液に25℃でトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート[Ph3CB(C6F5)4]を加え、さらに5分間攪拌した。この溶液に25℃で4-メチル-1-ペンテン1g(11.9mmol)を加え、さらに10分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、白色固体を濾別し、70℃で真空下乾燥し、ポリ(4-メチル-1-ペンテン) 0.10g(10%)を得た。得られたポリ(4-メチル-1-ペンテン)の13C-NMRを測定したが、アイソ選択性(mmmm)以外のスペクトルは確認できなかった。
(実施例12)
 50mLのシュレンク管中、[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム19.4mg(0.020mmol)をジクロロメタン5mLに溶かし、この溶液に25℃でトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート[Ph3CB(C6F5)4]を加え、さらに10分間攪拌した。この溶液に25℃で4-メチル-1-ペンテン1.0g(11.9mmol)を加え、さらに5分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、白色固体を濾別し、70℃で真空下乾燥し、ポリ(4-メチル-1-ペンテン) 0.34g(34%)を得た。得られたポリ(4-メチル-1-ペンテン)の13C-NMRを測定したが、アイソ選択性(mmmm)以外のスペクトルは確認できなかった。
Figure JPOXMLDOC01-appb-T000012
 また、実施例13~21及び比較例8の各項目の測定値は、下記の方法で測定した。
(1)融点
 熱分析装置 示差走査熱量計(Diamond DSC Perkin Elmer社製)を用いて下記の方法で測定した。
1)サンプル約10mgを窒素雰囲気下、220℃ 5分間保持
2)冷却   150℃~50℃(5℃/分)1分間保持
3)測定   50℃~180℃(5℃/分)
(2)分子量および分子量分布
 ゲルパーミエーションクロマトグラフィー(GPC)により、下記の条件で測定した。検量線は標準ポリスチレンを用いて作成した。分子量分布は重量平均分子量(M)と数平均分子量(M)との比(M/M)で評価した。
機種:  ミリポアウオーターズ社製 150C型
カラム: TSK-GEL GMH-HT 7.5×600×2本
測定温度:152℃
溶媒:  オルトジクロロベンゼン、
測定濃度:5mg/5mL
(3)アイソタクチック・ペンタッド分率([mmmm])
 アイソタクチック・ペンタッド分率とは、A.Zambelliらによって「Macromolecules」、Vol.6、925(1973)に発表されている方法、すなわち13C-NMRを使用して測定される結晶性ポリプロピレン分子鎖中のペンタッド単位でのアイソタクチック連鎖、換言すればプロピレンモノマー単位が5個連続してメソ結合した連鎖の中心にあるプロピレンモノマー単位の分率である。10mmΦの試験管中で約200mgの重合体を3mLのオルトジクロロベンゼンに均一に溶解させて試料を調製し、その試料を13C-NMRスペクトルで測定した。核磁気共鳴装置(ブルカー社製AVANCE600)を使用し、以下の条件で測定された値である。NMR吸収ピークの帰属に関しては、F.A.Boveyらの「Macromolecules」、Vol.8、687(1975)に従った。
測定温度:135℃;
パルス繰り返し時間:10秒;
パルス幅:45°;
積算回数:2500回;
(4)固有粘度([η])(単位:dl/g)
 ウベローデ型粘度計を用い、測定温度135℃にて溶媒にテトラリンを用いて測定した。
(参考例7)
(d-MAOの調製方法)
 3方コックを取り付けた攪拌子入りの200mL2口フラスコを窒素置換し、東ソー・ファインケム社製PMAO-Sトルエン溶液(アルミニウム含量6.1wt%)を100mLシリンジで測り取り、フラスコに投入した。この溶液を減圧し揮発成分を除去した。得られた白色固体を脱水トルエン100mLに再溶解した後、揮発成分を減圧除去した。この操作を更に2回繰り返し、白色粉末14.1gを得た。
(参考例8)
(d-MMAO-3Aの調製方法)
 東ソー・ファインケム社製PMAO-Sトルエン溶液(アルミニウム含量6.1wt%)を東ソー・ファインケム社製MMAO-3Aトルエン溶液(アルミニウム含量7.0wt%)にしたこと以外は参考例7と同様に実施した。
(参考例9)
(d-MMAO-4の調製方法)
 東ソー・ファインケム社製PMAO-Sトルエン溶液(アルミニウム含量6.1wt%)を東ソー・ファインケム社製MMAO-4トルエン溶液(アルミニウム含量7.4wt%)にしたこと以外は参考例7と同様に実施した。
(実施例13)
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換後、溶媒としてトルエン40mL、モノマーとしてプロピレン80gを仕込み、反応器を0℃まで降温した。降温後、d-MAO 118mgを投入し、続いて[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム(1μmol/mL、トルエン溶液)1mL(1.0μmol)を投入して重合を開始した。温度を0℃に保ちながら、60分間重合を行った。
 重合の結果0.5gのポリプロピレンが得られた。重合活性5.0×10 g/mol、融点=156.2℃、M=50400、M/M=2.1、[mmmm]=93.7%であった。
(実施例14)
 重合温度を14℃にしたこと以外は実施例13と同様に実施した。
(実施例15)
 重合温度を40℃にしたこと以外は実施例13と同様に実施した。
(実施例16)
 重合温度を70℃にしたこと以外は実施例13と同様に実施した。
(実施例17)
 d-MAOをd-MMAO-3Aに重合温度を40℃にしたこと以外は実施例13と同様に実施した。
(実施例18)
 d-MAOをd-MMAO-4に重合温度を40℃にしたこと以外は実施例13と同様に実施した。
(実施例19)
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換後、溶媒としてトルエン40mL、モノマーとしてプロピレン80gを仕込み、反応器を0℃まで降温した。降温後、d-MAO 118mgを投入し、続いて[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロハフニウム(0.33μmol/mL、トルエン溶液)1.5mL(0.5μmol)を投入して重合を開始した。温度を70℃に保ちながら、60分間重合を行った。
 重合の結果11.3gのポリプロピレンが得られた。重合活性2.3×10 g/mol、融点=139.7℃、M=16500、M/M=2.3、[mmmm]=85.4%、[η] = 0.22であった。
(比較例8)
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換後、溶媒としてトルエン40mL、モノマーとしてプロピレン80gを仕込み、反応器を40℃まで昇温した。昇温後、d-MAO 118mgを投入し、続いて[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム(0.456μmol/mL、トルエン溶液)1.1mL(0.50μmol)を投入して重合を開始した。温度を40℃に保ちながら、60分間重合を行った。
 重合の結果1.5gのポリプロピレンが得られた。重合活性3.0×10 g/mol、融点=76.9℃、M= 6900  、M/M=1.7、[mmmm]=40.5%、[η] = 0.12、であった。
(実施例20)
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換後、溶媒としてトルエン40mL、モノマーとしてプロピレン80gを仕込み、反応器を40℃まで昇温した。昇温後、トリイソブチルアルミニウム (1.0mol/L、トルエン溶液)0.5mL(0.5mmol)を投入し、続いて[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム(1.85μmol/mL、トルエン溶液)2.7mL(5.00μmol)、さらに続いてトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(4.0μmol/mL、トルエン溶液)6.25mL(25.00μmol)を投入して重合を開始した。温度を40℃に保ちながら、60分間重合を行った。
 重合の結果17.1gのポリプロピレンが得られた。重合活性3.4×10 g/mol、融点=148.5℃、M= 31900  、M/M=2.4、[mmmm]=90.9%、[η] = 0.36であった。
(実施例21)
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換後、溶媒としてトルエン40mL、モノマーとしてプロピレン80gを仕込み、反応器を40℃まで昇温した。昇温後、トリイソブチルアルミニウム (1.0mol/L、トルエン溶液)0.5mL(0.5mmol)を投入し、続いて[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロハフニウム(0.33μmol/mL、トルエン溶液)3.0mL(1.00μmol)、さらに続いてトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(4.0μmol/mL、トルエン溶液)1.25mL(5.00μmol)を投入して重合を開始した。温度を40℃に保ちながら、60分間重合を行った。
 重合の結果2.6gのポリプロピレンが得られた。重合活性2.6×10 g/mol、融点=140.0℃、M= 11800  、M/M=2.2、[mmmm]=86.4%、[η] = 0.18であった。
 実施例13~21および比較例8で得られた重合結果を表3に示す。
Figure JPOXMLDOC01-appb-T000013
(実施例22)
 ハフニウム錯体量を5.0μmolに重合温度を40℃にモノマーを1-ブテンにしたこと以外は実施例13と同様に実施した。
 重合の結果20.0gのポリブテンが得られた。重合活性4.0×10 g/mol、融点=107.0℃、A= 4190 、M/M=2.2、[mmmm]=96.0%であった。
(実施例23)
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換後、溶媒としてトルエン40mL、モノマーとして1-ブテン80gを仕込み、反応器を40℃まで昇温した。昇温後、トリイソブチルアルミニウム (1.0mol/L、トルエン溶液)0.5mL(0.5mmol)を投入し、続いて[シクロオクタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルハフニウム(1.85μmol/mL、トルエン溶液)2.7mL(5.00μmol)、さらに続いてトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(4.0μmol/mL、トルエン溶液)6.25mL(25.00μmol)を投入して重合を開始した。温度を40℃に保ちながら、60分間重合を行った。
 重合の結果7.7gのポリブテンが得られた。重合活性1.5×10 g/mol、融点=107.7℃、A=1900、M/M=2.0、[η] = 0.45、[mmmm]=96.1%であった。
 本発明は、立体選択的ポリオレフィンの製造に関する分野に有用である。

Claims (10)

  1. 下記式(1)で示される錯体を含む立体選択的オレフィン重合用触媒。
    Figure JPOXMLDOC01-appb-I000001
    (式中、nは2または3であり、
    及びRは、独立に、置換基を有してもよいアルキル基またはハロゲン原子であり、LはCH、ハロゲン原子、OR、またはNRで示される配位子であり、
    は水素原子、芳香族基、またはトリアルキルシリル基であり、
    は炭素数1~6の低級アルキル基であり、
    及びRは独立に水素原子または炭素数1~6の低級アルキル基である。)
  2. nが3である請求項1に記載の触媒。
  3. 及びRが、独立に、置換基を有してもよい炭素数1~30のアルキル基である、請求項1または2に記載の触媒。
  4. 助触媒としてホウ素化合物または有機アルミニウム化合物をさらに含有する請求項1~3のいずれか1項に記載の触媒。
  5. ホウ素化合物が、BR1112 R13、W+ (BR11 R12 R1314 )または(V-H)+ (BR11 R12 R1314 )である、請求項4に記載の触媒。
    (式中、R11~R14 はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、
    1~20個の 炭素原子を含むハロゲン化ハイドロカルビル基、
    1~20個の炭素原子を含む置換シリル基、
    1~20個の炭素原子を含むアルコキシ基または2~20個の炭素原子を含む2置換アミノ基であり、
    それらは同じであっても異なっていても良く、
    + は無機または有機のカチオンであり、
    Vは中性ルイス塩基であり、(V-H)+ はブレンステッド酸である。)
  6. 有機アルミニウム化合物が、環状のアルミノキサンおよび/または線状のアルミノキサンである、請求項4に記載の触媒。
  7. 請求項1~6のいずれかに記載の触媒の存在下にオレフィンを重合させることを含む、立体選択的ポリオレフィンの製造方法。
  8. オレフィンがモノオレフィンまたはジオレフィンである請求項7に記載の製造方法。
  9. モノオレフィンが、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、および4-メチル-1-ペンテンから成る群から選ばれる少なくとも1種のオレフィンである請求項8に記載の製造方法。
  10. ジオレフィンが、ブタジエン、1,5-ヘキサジエンおよび1,6-ヘプタジエンから成る群から選ばれる少なくとも1種のオレフィンである請求項8に記載の製造方法。
PCT/JP2011/052937 2010-02-12 2011-02-10 立体選択的オレフィン重合用触媒及び立体選択的ポリオレフィンの製造方法 WO2011099583A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112011100520T DE112011100520T5 (de) 2010-02-12 2011-02-10 Katalysator zur stereoselektiven Olefinpolymerisation und Verfahren zur Herstellung von stereoselektivem Polyolefin
JP2011553901A JPWO2011099583A1 (ja) 2010-02-12 2011-02-10 立体選択的オレフィン重合用触媒及び立体選択的ポリオレフィンの製造方法
US13/577,933 US20130059991A1 (en) 2010-02-12 2011-02-10 Catalyst for stereoselective olefin polymerization and method for manufacturing stereoselective polyolefin
CN2011800090835A CN102844337A (zh) 2010-02-12 2011-02-10 立体选择烯烃聚合用催化剂和立体选择聚烯烃的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-029191 2010-02-12
JP2010029191 2010-02-12

Publications (1)

Publication Number Publication Date
WO2011099583A1 true WO2011099583A1 (ja) 2011-08-18

Family

ID=44367853

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2011/052937 WO2011099583A1 (ja) 2010-02-12 2011-02-10 立体選択的オレフィン重合用触媒及び立体選択的ポリオレフィンの製造方法
PCT/JP2011/052938 WO2011099584A1 (ja) 2010-02-12 2011-02-10 エチレン系重合用触媒及びエチレン系重合体の製造方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052938 WO2011099584A1 (ja) 2010-02-12 2011-02-10 エチレン系重合用触媒及びエチレン系重合体の製造方法

Country Status (5)

Country Link
US (2) US20130059991A1 (ja)
JP (2) JPWO2011099584A1 (ja)
CN (2) CN102791745A (ja)
DE (2) DE112011100521T5 (ja)
WO (2) WO2011099583A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111780A1 (ja) * 2011-02-18 2012-08-23 住友化学株式会社 オレフィン重合用触媒及びオレフィン重合体の製造方法
WO2013022102A1 (ja) * 2011-08-11 2013-02-14 住友化学株式会社 エチレン系重合用触媒およびエチレン系重合体の製造方法
WO2013022108A1 (ja) * 2011-08-11 2013-02-14 住友化学株式会社 オレフィン重合用触媒及びオレフィン重合体の製造方法
WO2013022103A1 (ja) * 2011-08-11 2013-02-14 住友化学株式会社 4族遷移金属錯体を用いるオレフィンブロックポリマーの製造方法
CN110612313A (zh) * 2017-03-23 2019-12-24 埃克森美孚化学专利公司 催化剂体系及其制备和使用方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111779A1 (ja) * 2011-02-18 2012-08-23 住友化学株式会社 エチレン系重合用触媒及びエチレン系重合体の製造方法
WO2012111778A1 (ja) * 2011-02-18 2012-08-23 住友化学株式会社 オレフィン重合用触媒及びオレフィン重合体の製造方法
CN103958548B (zh) * 2011-12-02 2016-05-18 住友化学株式会社 使用多种过渡金属催化剂的烯烃嵌段聚合物的制造方法
CA3041067A1 (en) * 2016-10-27 2018-05-03 Univation Technologies, Llc Method of preparing a molecular catalyst
BR112023000804A2 (pt) * 2020-07-17 2023-02-07 Dow Global Technologies Llc Processos para polimerizar monômeros de olefina e de polimerização
CN116234834A (zh) * 2020-07-17 2023-06-06 陶氏环球技术有限责任公司 双苯基苯氧基金属-配体络合物的烃基改性甲基铝氧烷助催化剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003327612A (ja) * 2002-05-09 2003-11-19 Sumitomo Chem Co Ltd 重合用触媒およびオレフィン系重合体の製造方法
JP2005523952A (ja) * 2002-04-24 2005-08-11 ビーピー ケミカルズ リミテッド 重合触媒
JP2006516668A (ja) * 2003-02-07 2006-07-06 バーゼル、ポリオレフィン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 重合触媒、有機遷移金属化合物、ポリオレフィンの製造方法及びポリオレフィン

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003247806B2 (en) 2002-07-08 2009-11-12 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
WO2007075299A2 (en) 2005-12-16 2007-07-05 Dow Global Technologies Inc. Polydentate heteroatom ligand containing metal complexes, catalysts and methods of making and using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005523952A (ja) * 2002-04-24 2005-08-11 ビーピー ケミカルズ リミテッド 重合触媒
JP2003327612A (ja) * 2002-05-09 2003-11-19 Sumitomo Chem Co Ltd 重合用触媒およびオレフィン系重合体の製造方法
JP2006516668A (ja) * 2003-02-07 2006-07-06 バーゼル、ポリオレフィン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 重合触媒、有機遷移金属化合物、ポリオレフィンの製造方法及びポリオレフィン

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012111780A1 (ja) * 2011-02-18 2012-08-23 住友化学株式会社 オレフィン重合用触媒及びオレフィン重合体の製造方法
WO2013022102A1 (ja) * 2011-08-11 2013-02-14 住友化学株式会社 エチレン系重合用触媒およびエチレン系重合体の製造方法
WO2013022108A1 (ja) * 2011-08-11 2013-02-14 住友化学株式会社 オレフィン重合用触媒及びオレフィン重合体の製造方法
WO2013022103A1 (ja) * 2011-08-11 2013-02-14 住友化学株式会社 4族遷移金属錯体を用いるオレフィンブロックポリマーの製造方法
US9593194B2 (en) 2011-08-11 2017-03-14 Sumitomo Chemical Company, Limited Method for producing olefin block polymer using group 4 transition metal complex
CN110612313A (zh) * 2017-03-23 2019-12-24 埃克森美孚化学专利公司 催化剂体系及其制备和使用方法

Also Published As

Publication number Publication date
US20130059991A1 (en) 2013-03-07
DE112011100521T5 (de) 2012-11-29
CN102844337A (zh) 2012-12-26
US20130035462A1 (en) 2013-02-07
DE112011100520T5 (de) 2012-11-29
WO2011099584A1 (ja) 2011-08-18
CN102791745A (zh) 2012-11-21
JPWO2011099584A1 (ja) 2013-06-17
JPWO2011099583A1 (ja) 2013-06-17

Similar Documents

Publication Publication Date Title
WO2011099583A1 (ja) 立体選択的オレフィン重合用触媒及び立体選択的ポリオレフィンの製造方法
RU2228937C2 (ru) Способ сополимеризации олефинов с мостиковыми гафноценами
US6579998B2 (en) Stereospecific living polymerization of olefins by a novel Ziegler-Natta catalyst composition
KR101088657B1 (ko) 희토류 금속 착물, 중합 촉매 및 중합체 제조 방법
KR20140049452A (ko) 신규한 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀계 중합체의 제조방법
EP1141049B1 (en) Catalyst system for olefin polymerization
US20180051103A1 (en) Oligomer production method and catalyst
CN111148748B (zh) 新的基于茚的过渡金属化合物、包含其的过渡金属催化剂组合物、以及通过使用其制备乙烯均聚物或乙烯与α-烯烃的共聚物的方法
WO2012111779A1 (ja) エチレン系重合用触媒及びエチレン系重合体の製造方法
JP2013166898A (ja) オレフィン重合用触媒およびオレフィン重合体の製造方法
WO2012111780A1 (ja) オレフィン重合用触媒及びオレフィン重合体の製造方法
JP6453483B2 (ja) メタロセン担持触媒およびこれを用いるポリオレフィンの製造方法
JP2013166735A (ja) 新規錯体、当該錯体を含む重合用触媒およびオリゴマー化用触媒、ならびにこれらの利用
CN113039190B (zh) 过渡金属化合物和包含其的催化剂组合物
WO2012169641A1 (ja) 錯体、オレフィン重合用触媒及びオレフィン重合体の製造方法
KR20150084733A (ko) 다금속 메탈로센 화합물을 이용한 에틸렌, 프로필렌 및 디엔을 포함하는 공중합체의 제조방법
JP2014198744A (ja) オレフィン重合用触媒及びオレフィン重合体の製造方法
WO2013022102A1 (ja) エチレン系重合用触媒およびエチレン系重合体の製造方法
WO2012111777A1 (ja) オレフィン重合用触媒及びオレフィン重合体の製造方法
KR20030012098A (ko) 다핵으로 연결된 전이금속 화합물 촉매 및 이를 이용한중합체 제조방법
JP2714564B2 (ja) ヘプタジエン重合体及びその製造方法
WO2012111778A1 (ja) オレフィン重合用触媒及びオレフィン重合体の製造方法
JP2005089497A (ja) オレフィンブロック共重合体、及びその製造方法
JP2013166897A (ja) オレフィン重合用触媒およびオレフィン重合体の製造方法
CN116410223A (zh) 四芳基乙氧基侧链单茂金属化合物、包含其的催化剂体系及应用进行的聚烯烃合成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180009083.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11742326

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011553901

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112011100520

Country of ref document: DE

Ref document number: 1120111005202

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 13577933

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11742326

Country of ref document: EP

Kind code of ref document: A1