WO2012111777A1 - オレフィン重合用触媒及びオレフィン重合体の製造方法 - Google Patents

オレフィン重合用触媒及びオレフィン重合体の製造方法 Download PDF

Info

Publication number
WO2012111777A1
WO2012111777A1 PCT/JP2012/053728 JP2012053728W WO2012111777A1 WO 2012111777 A1 WO2012111777 A1 WO 2012111777A1 JP 2012053728 W JP2012053728 W JP 2012053728W WO 2012111777 A1 WO2012111777 A1 WO 2012111777A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
ring
olefin
aralkyl
Prior art date
Application number
PCT/JP2012/053728
Other languages
English (en)
French (fr)
Inventor
正行 長谷川
昭彦 石井
憲男 中田
啓太 伊久間
智之 戸田
Original Assignee
住友化学株式会社
国立大学法人埼玉大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 国立大学法人埼玉大学 filed Critical 住友化学株式会社
Publication of WO2012111777A1 publication Critical patent/WO2012111777A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene

Definitions

  • the present invention relates to a catalyst for olefin polymerization using a zirconium complex and a method for producing an olefin polymer.
  • metallocene catalysts has been one of the topics in the chemistry of olefin polymerization that has been greatly developed by Ziegler-Natta type magnesium-supported highly active titanium catalysts. Further, recently, development of so-called post metallocene catalysts has attracted attention as a catalyst for constructing a more precise polymerization process.
  • Patent Document 1 reports propylene polymerization using a diphenoxytitanium complex, a zirconium complex or a hafnium complex derived from ethane-1,2-dithiol, but the resulting polymer is improved from the viewpoint of stereoregularity. There is room for.
  • Non-patent Document 1 diphenoxytitanium complex, zirconium complex and hafnium complex derived from trans-cyclooctane-1,2-dithiol have been reported (Non-patent Document 1), and among these complexes, zirconium complex was used as a catalyst. -Hexene polymerization has also been reported (Non-Patent Document 2).
  • the problem to be solved by the present invention is to use an olefin polymerization catalyst capable of producing a polymer obtained by polymerizing an olefin having 3 to 10 carbon atoms with excellent stereoregularity, and the olefin polymerization catalyst. It is providing the manufacturing method of an olefin polymer.
  • the present inventor has found that the above-mentioned problems can be solved by intensive studies.
  • the present invention relates to an olefin polymerization catalyst having 3 to 10 carbon atoms containing a complex represented by the following general formula (1).
  • R 1 and R 5 are each independently Hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An alkenyl group having 2 to 20 carbon atoms, An alkynyl group having 2 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, Or a substituted silyl group, R 2 to R 4 and R 6 to R 12 are each independently a hydrogen atom, a halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An alkenyl group having 2 to 20 carbon atoms, An alkynyl group having 2 to 20 carbon atoms
  • the alkyl group, the cycloalkyl group, the alkenyl group, the alkynyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the heterocyclic compound in R 1 to R 12 The residue may have a substituent.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , R 7 and R 8 , R 9 And R 10 , and R 11 and R 12 may be independently connected to each other to form a ring, and these rings may have a substituent.
  • Each X independently represents a hydrogen atom, a halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An alkenyl group having 2 to 20 carbon atoms, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, Substituted silyl groups, A substituted amino group, It represents a substituted thiolate group or a carboxylate group having 1 to 20 carbon atoms.
  • the alkyl group, the cycloalkyl group, the alkenyl group, the aralkyl group, the aryl group, the alkoxy group, the aralkyloxy group, the aryloxy group, and the carboxylate group in X may have a substituent. Good. Adjacent Xs may be connected to each other to form a ring. L represents a neutral Lewis base. When there are a plurality of L, the plurality of L may be the same or different. l is 0, 1, or 2. )
  • the present invention also relates to a method for producing an olefin homopolymer or olefin copolymer, wherein an olefin having 3 to 10 carbon atoms is polymerized using the polymerization catalyst.
  • a polymer obtained by polymerizing an olefin having 3 to 10 carbon atoms can be produced with excellent stereoregularity.
  • R 1 and R 5 are preferably each independently a hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aralkyloxy group having 7 to 30 carbon atoms, An aryloxy group having 6 to 30 carbon atoms or a substituted silyl group, More preferably, each independently a halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, Or it is a substituted silyl group.
  • R 1 and R 5 are the same, An alkyl group having 1 to 20 carbon atoms.
  • R 2 to R 4 and R 6 to R 8 are preferably each independently a hydrogen atom, A halogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, Or a substituted silyl group, More preferably, each independently a hydrogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, Or a substituted silyl group,
  • R 9 to R 12 are preferably each independently a hydrogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, An alkoxy group having 1 to 20 carbon atoms, An aryloxy group having 6 to 30 carbon atoms, A substituted silyl group, More preferably, each independently a hydrogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring, An aralkyl group having 7 to 30 carbon atoms, An aryl group having 6 to 30 carbon atoms, Or a substituted silyl group, More preferably, each independently a hydrogen atom, An alkyl group having 1 to 20 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms constituting the ring
  • alkyl group, cycloalkyl group, aralkyl group, aryl group, alkoxy group, and aryloxy group may have a substituent.
  • Examples of the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms in R 1 to R 12 include a perfluoromethyl group, a perfluoroethyl group, a perfluoro-n-propyl group, a perfluoroisopropyl group, and a perfluoro group.
  • the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms in R 2 to R 4 and R 6 to R 12 is preferably a perfluoromethyl group, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, n -Butyl group, sec-butyl group, isobutyl group, tert-butyl group, n-pentyl group, isopentyl group, tert-pentyl group, neopentyl group, n-hexyl group, texyl group, neohexyl group, n-heptyl group, n
  • An alkyl group having 4 to 10 carbon atoms such as an octyl group and an n-decyl group, more preferably a perfluoromethyl group, a methyl group, an isopropyl group, an isobutyl group, a ter
  • Examples of the substituted or unsubstituted cycloalkyl group having 3 to 10 carbon atoms constituting the ring in R 1 to R 12 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • Examples of the substituted or unsubstituted alkenyl group having 2 to 20 carbon atoms in R 1 to R 12 include vinyl group, allyl group, propenyl group, 2-methyl-2-propenyl group, homoallyl group, pentenyl group, hexenyl group, A heptenyl group, an octenyl group, a nonenyl group, a decenyl group and the like can be mentioned.
  • An alkenyl group having 3 to 6 carbon atoms is preferable, and an allyl group and a homoallyl group are more preferable.
  • Examples of the substituted or unsubstituted alkynyl group having 2 to 20 carbon atoms in R 1 to R 12 include an ethynyl group, a 1-propynyl group, a 2-propynyl group, a 1-butynyl group, and a 3-methyl-1-butynyl group.
  • Examples of the substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms in R 1 to R 12 include benzyl group, (2-methylphenyl) methyl group, (3-methylphenyl) methyl group, (4-methyl Phenyl) methyl group, (2,3-dimethylphenyl) methyl group, (2,4-dimethylphenyl) methyl group, (2,5-dimethylphenyl) methyl group, (2,6-dimethylphenyl) methyl group, ( 3,4-dimethylphenyl) methyl group, (3,5-dimethylphenyl) methyl group, (2,3,4-trimethylphenyl) methyl group, (2,3,5-trimethylphenyl) methyl group, (2, 3,6-trimethylphenyl) methyl group, (3,4,5-trimethylphenyl) methyl group, (2,4,6-trimethylphenyl) methyl group, (2,3,4,5-te Lamethylphenyl) methyl group,
  • Examples of the substituted or unsubstituted aryl group having 6 to 30 carbon atoms in R 2 to R 4 and R 6 to R 12 include a phenyl group, a 2-tolyl group, a 3-tolyl group, a 4-tolyl group, 2 , 3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, 2,6-xylyl group, 3,4-xylyl group, 3,5-xylyl group, 2,3,4-trimethylphenyl group 2,3,5-trimethylphenyl group, 2,3,6-trimethylphenyl group, 2,4,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2,3,4,5-tetra Methylphenyl group, 2,3,4,6-tetramethylphenyl group, 2,3,5,6-tetramethylphenyl group, pentamethylphenyl group, ethylphenyl group, n-propylphenyl group, isopropy
  • Examples of the substituted silyl group in R 1 to R 12 include trimethylsilyl group, triethylsilyl group, tri-n-propylsilyl group, triisopropylsilyl group, tri-n-butylsilyl group, triisobutylsilyl group, tert-butyldimethyl group.
  • Examples include silyl group, methyldiphenylsilyl group, dimethyl (phenyl) silyl group, tert-butyldiphenylsilyl group, triphenylsilyl group, methylbis (trimethylsilyl) silyl group, dimethyl (trimethylsilyl) silyl group, and tris (trimethylsilyl) silyl group.
  • a trialkylsilyl group having 3 to 20 carbon atoms such as trimethylsilyl group, triethylsilyl group, tri-n-propylsilyl group, triisopropylsilyl group, tert-butyldimethylsilyl group; Methylsilyl) silyl group, dimethyl (trimethylsilyl) silyl group, and a silyl group having as a substituent a hydrocarbyl silyl group having 3 to 20 carbon atoms, such as tris (trimethylsilyl) silyl group.
  • Examples of the substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms in R 1 to R 12 include a perfluoromethoxy group, a perfluoroethoxy group, a perfluoro-n-propoxy group, a perfluoroisopropoxy group, a perfluoro group, Fluoro-n-butoxy group, perfluoro-sec-butoxy group, perfluoroisobutoxy group, perfluoro-n-pentyloxy group, perfluoronepentyloxy group, perfluoro-n-hexyloxy group, perfluoro-n -Heptyloxy group, perfluoro-n-octyloxy group, perfluoro-n-decyloxy group, perfluoro-n-dodecyloxy group, perfluoro-n-pentadecyloxy group, perfluoro-n-eicosyloxy group Methoxy group, ethoxy group,
  • Examples of the substituted or unsubstituted aryloxy group having 6 to 30 carbon atoms in R 1 to R 12 include, for example, phenoxy group, 2,3,4-trimethylphenoxy group, 2,3,5-trimethylphenoxy group, 2, 3,6-trimethylphenoxy group, 2,4,6-trimethylphenoxy group, 3,4,5-trimethylphenoxy group, 2,3,4,5-tetramethylphenoxy group, 2,3,4,6-tetra Methylphenoxy group, 2,3,5,6-tetramethylphenoxy group, pentamethylphenoxy group, 2,6-diisopropylphenoxy group, 2-fluorophenoxy group, 3-fluorophenoxy group, 4-fluorophenoxy group, pentafluoro Phenoxy group, 2-trifluoromethylphenoxy group, 3-trifluoromethylphenoxy group, 4-trifluoro Methylphenoxy group, 2,3-difluorophenoxy group, 2,4-fluorophenoxy group, 2,5-difluorophenoxy group
  • Examples of the substituted or unsubstituted aralkyloxy group having 7 to 30 carbon atoms in R 1 to R 12 include, for example, benzyloxy group, (2-methylphenyl) methoxy group, (3-methylphenyl) methoxy group, (4 -Methylphenyl) methoxy group, (2,3-dimethylphenyl) methoxy group, (2,4-dimethylphenyl) methoxy group, (2,5-dimethylphenyl) methoxy group, (2,6-dimethylphenyl) methoxy group (3,4-dimethylphenyl) methoxy group, (3,5-dimethylphenyl) methoxy group, (2,3,4-trimethylphenyl) methoxy group, (2,3,5-trimethylphenyl) methoxy group, 2,3,6-trimethylphenyl) methoxy group, (2,4,5-trimethylphenyl) methoxy group, (2,4,6-trimethylphenyl) Ny
  • heterocyclic compound residue having 3 to 20 carbon atoms constituting the ring in R 2 to R 4 and R 6 to R 12 which are substituted or unsubstituted include thienyl group, furyl group, 1-pyrrolyl group 1-imidazolyl group, 1-pyrazolyl group, pyridyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, 2-isoindolyl group, 1-indolyl group, quinolyl group, dibenzo-1H-pyrrol-1-yl group, Preferred are thienyl group, furyl group, 1-pyrrolyl group, pyridyl group, pyrimidinyl group, 2-isoindolyl group, 1-indolyl group, quinolyl group, and dibenzo-1H-pyrrol-1-yl group.
  • R 1 and R 2 , R 2 and R 3 , R 3 and R 4 , R 5 and R 6 , R 6 and R 7 , and R 7 and R 8 are Each independently may be linked to each other to form a ring, which ring may have a substituent, and preferably a 4- to 10-membered hydrocarbyl group containing two carbon atoms on the benzene ring. It is a bill ring or a heterocyclic ring, and the ring may have a substituent.
  • the ring include cyclobutene ring, cyclopentene ring, cyclopentadiene ring, cyclohexene ring, cycloheptene ring, cyclooctene ring, benzene ring or naphthalene ring, furan ring, 2,5-dimethylfuran ring, thiophene ring, 2, 5-dimethylthiophene ring, pyridine ring and the like can be mentioned, and preferred are cyclobutene ring, cyclopentene ring, cyclopentadiene ring, cyclohexene ring, benzene ring or naphthalene ring, and more preferred are R 1 and R 2 and R 5 A cyclopentene ring, a cyclopentadiene ring, a cyclohexene ring, a benzene ring, and a naphthalene ring in which at least one of
  • R 9 and R 10 , and R 11 and R 12 may be independently connected to each other to form a ring, and the ring has a substituent. It may be.
  • An aryl group having 6 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aralkyloxy group having 7 to 30 carbon atoms, an aryloxy group having 6 to 30 carbon atoms, and a substituted silyl group are represented by R 2 to R 4. And the same groups as those described above for R 6 to R 12 .
  • Examples of the substituted amino group in X include 2 to 14 carbon atoms such as dimethylamino group, diethylamino group, di-n-butylamino group, di-n-propylamino group, diisopropylamino group, dibenzylamino group, or diphenylamino group. And a dimethylamino group, a diethylamino group, a di-n-propylamino group, a diisopropylamino group, or a dibenzylamino group.
  • Examples of the substituted thiolate group in X include a thiophenoxy group, 2,3,4-trimethylthiophenoxy group, 2,3,5-trimethylthiophenoxy group, 2,3,6-trimethylthiophenoxy group, 2,4 , 6-trimethylthiophenoxy group, 3,4,5-trimethylthiophenoxy group, 2,3,4,5-tetramethylthiophenoxy group, 2,3,4,6-tetramethylthiophenoxy group, 2,3,5 , 6-tetramethylphenoxy group, pentamethylphenoxy group, 2-fluorothiophenoxy group, 3-fluorothiophenoxy group, 4-fluorophenoxy group, pentafluorothiophenoxy group, 2-trifluoromethylthiophenoxy group, 3-tri Fluoromethylthiophenoxy group, 4-trifluoromethylthiophenoxy group, 2, -Difluorothiophenoxy group, 2,4-fluorothiophenoxy group, 2,5-difluorothiophenoxy group, 2-chloro
  • Examples of the substituted or unsubstituted carboxylate group having 1 to 20 carbon atoms in X include an acetate group, propionate group, butyrate group, pentanate group, hexanoate group, 2-ethylhexanoate group or trifluoroacetate group.
  • Preferred are hydrocarbyl carboxylate groups having 2 to 10 carbon atoms, and more preferred are acetate groups, propionate groups, 2-ethylhexanoate groups or trifluoroacetate groups.
  • X is preferably a fluorine atom, a chlorine atom, a bromine atom, an alkyl group having 1 to 20 carbon atoms, an aralkyl group having 7 to 30 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or 6 to 6 carbon atoms.
  • An amino group particularly preferably a chlorine atom, a methyl group, a benzyl group, an isopropoxy group, a phenoxy group, a dimethylamino group, and most preferably, a chlorine atom, a benzyl group.
  • R 1 to R 12 and X may each independently have a substituent containing a halogen atom, an oxygen atom, a silicon atom, a nitrogen atom, a phosphorus atom, or a sulfur atom.
  • L represents a neutral Lewis base. When there are a plurality of L, the plurality of L may be the same or different. l is 0, 1, or 2.
  • L examples include ethers, amines or thioethers, and specific examples include tetrahydrofuran, diethyl ether, 1,4-dioxane and pyridine. L is preferably tetrahydrofuran.
  • L is preferably 1 or 0, more preferably 0.
  • Examples thereof also include compounds in which the groups corresponding to R 9 to R 12 in each of the above compounds are substituted with a methyl group or an ethyl group.
  • Preferred examples of the complex (1) include the following compounds.
  • More preferable examples of the complex (1) include the following compounds.
  • the complex represented by the general formula (1) can be synthesized, for example, with reference to the method described in Non-Patent Document 2, and specifically, the compounds represented by the general formulas (2) and (3) are synthesized. Although it can manufacture with the following scheme 1 as a starting material, it should not be limited to this method.
  • ZrX 4 examples include Zr (CH 2 Ph) 4 , ZrCl 2 (CH 2 Ph) 2 , Zr (CH 2 SiMe 3 ) 4 , ZrF 4 , ZrCl 4 , ZrBr 4 , ZrI 4 , Zr (OMe) 4 , Zr (OEt) 4 , Zr (Oi-Pr) 4 , ZrCl 2 (Oi-Pr) 2 , Zr (On-Bu) 4 , Zr (Oi-Bu) 4 , Zr ( Ot-Bu) 4 , Zr (OPh) 4 , Zr (NMe 2 ) 4 , ZrCl 2 (NMe 2 ) 2 , Zr (NEt 2 ) 4 .
  • the compound (2) and the compound (3) may be reacted as they are, or the compound (3) may be reacted after reacting the compound (2) with a base as necessary.
  • the base to be used include an organic lithium reagent, a Grignard reagent, and a metal hydride.
  • methyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, lithium diisopropylamide, lithium hexamethyl examples thereof include disilazane, potassium hexamethyldisilazane, sodium hydride and potassium hydride, and preferably n-butyllithium, lithium diisopropylamide, potassium hexamethyldisilazane, sodium hydride or potassium hydride.
  • the reaction can be carried out under dehydration and deoxygenation. preferable. Specifically, it is under dry nitrogen and dry argon.
  • the amount of the compound (2) used may be 1 molar equivalent or more with respect to the compound (3), and preferably 1.0 to 1.5 molar equivalents. Moreover, when the compound (2) remains in the course of the reaction, the compound (3) may be added during the reaction.
  • the temperature at which compound (2) and compound (3) are reacted is in the temperature range of ⁇ 100 ° C. to 150 ° C., preferably in the temperature range of ⁇ 80 ° C. to 50 ° C. However, it is not intended to be limited to this range.
  • the reaction of the compound (2) and the compound (3) may be carried out until the time when the yield of the product becomes the highest, preferably 5 minutes to 48 hours, more preferably 10 minutes to 24 hours.
  • the temperature at which the compound (2) reacts with the base is in the temperature range of ⁇ 100 ° C. to 150 ° C., preferably in the temperature range of ⁇ 80 ° C. to 50 ° C. However, it is not intended to be limited to this range.
  • the reaction time of the compound (2) and the base may be carried out until the product yield becomes the highest, and is 5 minutes to 24 hours, preferably 10 minutes to 12 hours, more preferably 30 minutes to 3 hours.
  • the reaction time of the compound produced by reacting the compound (2) with the base and the compound (3) may be the time until the yield of the product becomes the highest, and is 5 minutes to 48 hours. Preferably, it is 10 minutes to 24 hours.
  • the solvent to be used is not particularly limited as long as it is a solvent generally used in similar reactions, and examples thereof include a hydrocarbon solvent or an ether solvent.
  • Preferred is toluene, benzene, o-xylene, m-xylene, p-xylene, hexane, pentane, heptane, cyclohexane, diethyl ether or tetrahydrofuran, and more preferred is diethyl ether, toluene, tetrahydrofuran, hexane, pentane, heptane. Or cyclohexane.
  • Compound (2) can be synthesized, for example, according to the method described in Non-Patent Document 2. Specifically, although it can manufacture by the following scheme 2, it should not be limited to this method. Hereinafter, each process will be described in detail.
  • R 1 to R 12 in the compounds (5) to (7) are the same as those in the general formula (1).
  • X ′ represents an anionic leaving group, for example, halogen atom, acetate group, trifluoroacetate group, benzoate group, CF 3 SO 3 group, CH 3 SO 3 group, 4-MeC 6 H 4 SO 3 group or PhSO 3 A group such as a chlorine atom, a bromine atom, an iodine atom, a CF 3 SO 3 group, a CH 3 SO 3 group, a 4-MeC 6 H 4 SO 3 group or a PhSO 3 group.
  • the base is not particularly limited, and examples thereof include inorganic bases such as potassium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and calcium carbonate, and amine bases such as triethylamine and triisobutylamine. Preferably, it is an amine base.
  • This reaction can be performed in an atmosphere of air, helium, argon, or nitrogen.
  • it is under a helium, argon or nitrogen atmosphere, more preferably under a nitrogen or argon atmosphere.
  • the compound (6) may be purified as necessary.
  • a purification method for example, an ammonium chloride aqueous solution, a hydrochloric acid aqueous solution or a sodium chloride aqueous solution is added to the reaction solution, followed by addition of ethyl acetate or diethyl ether, and an extraction operation is performed to remove excess base or salt.
  • the purity can be increased by a purification operation such as distillation, recrystallization or silica gel chromatography.
  • Compound (2) can be synthesized by reacting compound (6) with 1.0 to 4.0 equivalents, preferably 1.0 to 1.5 equivalents of compound (7) in the presence of a base.
  • the base examples include inorganic bases such as potassium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and calcium carbonate, and amine bases such as triethylamine and triisobutylamine, with amine bases being preferred.
  • inorganic bases such as potassium carbonate, calcium carbonate, sodium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate and calcium carbonate
  • amine bases such as triethylamine and triisobutylamine, with amine bases being preferred.
  • This reaction can be performed in an atmosphere of air, helium, argon, or nitrogen.
  • it is under a helium, argon or nitrogen atmosphere, more preferably under a nitrogen or argon atmosphere.
  • the compound (2) may be purified as necessary.
  • a purification method for example, an ammonium chloride aqueous solution, a hydrochloric acid aqueous solution or a sodium chloride aqueous solution is added to the reaction solution, followed by addition of ethyl acetate or diethyl ether, and an extraction operation is performed to remove excess base or salt.
  • the purity can be increased by a purification operation such as distillation, recrystallization or silica gel chromatography.
  • the compound (2) can also be obtained by reacting the compound (6) and the compound (7) produced in the reactor by controlling the reaction conditions of [step 1].
  • R 1 is the same as R 5
  • R 2 is the same as R 6
  • R 3 is the same as R 7
  • R 4 is the same as R 8
  • the combination of R 9 and R 10 is R
  • the compound (2) can also be synthesized by reacting preferably 2.0 to 4.0 equivalents in the presence of a base.
  • Specific examples of the compound (2) include the following compounds.
  • Examples thereof also include compounds in which groups corresponding to R 3 and R 7 of these compounds are substituted with a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group.
  • Examples thereof also include compounds in which the groups corresponding to R 9 to R 12 in each of the above compounds are substituted with a methyl group or an ethyl group.
  • Examples thereof also include compounds in which a group corresponding to R 3 or R 7 of these compounds is substituted with a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or a methyl group.
  • Examples thereof also include compounds in which the groups corresponding to R 9 to R 12 in each of the above compounds are substituted with a methyl group or an ethyl group.
  • the complex represented by the general formula (1) of the present invention described above is used as a catalyst component for polymerization in producing a polymer by homopolymerization of olefin or copolymerization of two or more polymerizable olefins.
  • it is a catalyst component for homopolymerization.
  • a polymerization catalyst obtained by contacting the complex (1) of the present invention and the promoter component (A) is used.
  • promoter components include activation promoter components containing Group 13 elements of the Periodic Table, such as (A-1) Organoaluminum compound (A-2) At least one compound selected from the group consisting of boron compounds can be mentioned.
  • (A-1) Organoaluminum compound (A-2)
  • At least one compound selected from the group consisting of boron compounds can be mentioned.
  • Organic aluminum compound (A-1) As the organoaluminum compound (A-1) used in the present invention, a known organoaluminum compound can be used.
  • (A-1-1) an organoaluminum compound represented by the general formula E 1 a AlY 1 3-a , (A-1-2) a general formula ⁇ —Al (E 2 ) —O— ⁇ b
  • Y 1 represents a hydrogen atom or a halogen atom, and all Y 1 may be the same or different, a is an integer of 0 ⁇ a ⁇ 3, b is an integer of 2 or more, and c is 1 or more. Any one of them, or a mixture of 2 to 3 thereof.
  • organoaluminum compound (A-1-1) represented by the general formula E 1 a AlY 1 3-a include trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, trihexylaluminum and the like.
  • Dialkylaluminum chlorides such as alkylaluminum; dimethylaluminum chloride, diethylaluminum chloride, dipropylaluminum chloride, diisobutylaluminum chloride, dihexylaluminum chloride; methylaluminum dichloride, ethylaluminum dichloride, propylaluminum dichloride, isobutylaluminum dichloride, hexylaluminum dichloride, etc.
  • Alkyl aluminum dichloride dimethyl aluminum Um hydride, diethylaluminum hydride, dipropyl aluminum hydride, diisobutylaluminum hydride, there can be mentioned dialkyl aluminum hydride such as dihexyl aluminum hydride.
  • Trialkylaluminum is preferable, and triethylaluminum and triisobutylaluminum are more preferable.
  • E 2 and E 3 in the linear aluminoxane (A-1-3) having the structure represented by 2 are methyl group, ethyl group, n-propyl group, isopropyl group, normal butyl group, Examples of the alkyl group include an isobutyl group, an n-pentyl group, and a neopentyl group.
  • b is an integer of 2 or more
  • c is an integer of 1 or more.
  • E 2 and E 3 are a methyl group and an isobutyl group, b is 2 to 40, and c is 1 to 40.
  • aluminoxane can be made by various methods. There is no restriction
  • an aluminoxane is prepared by bringing a solution obtained by dissolving a trialkylaluminum (for example, trimethylaluminum) in an appropriate organic solvent (benzene, toluene, aliphatic hydrocarbon, etc.) into contact with water.
  • a trialkylaluminum for example, trimethylaluminum
  • an appropriate organic solvent benzene, toluene, aliphatic hydrocarbon, etc.
  • the method of making aluminoxane by making trialkylaluminum (for example, trimethylaluminum etc.) contact the metal salt (for example, copper sulfate hydrate etc.) containing crystal water can be illustrated.
  • (A-1-2) the general formula ⁇ -Al (E 2 ) -O— ⁇ b obtained by the above method and a cyclic aluminoxane having a structure represented by the formula (A-1-3)
  • the linear aluminoxane having a structure represented by E 3 ⁇ —Al (E 3 ) —O— ⁇ c AlE 3 2 may be used after distilling off the volatile components if necessary.
  • the compound obtained by distilling off the volatile components and drying may be washed with an appropriate organic solvent (benzene, toluene, aliphatic hydrocarbon, etc.), and dried again for use.
  • the boron compound (A-2) includes (A-2-1) a boron compound represented by the general formula BR 13 R 14 R 15 , (A-2-2) a general formula W + (BR 13 R 14 R 15 R 16 ) — or a boron compound represented by (A-2-3) general formula (VH) + (BR 13 R 14 R 15 R 16 ) — Use.
  • B is a trivalent boron atom
  • R 13 to R 15 are halogen atoms, 1 to 20 Hydrocarbyl group containing 1 to 20 carbon atoms, halogenated hydrocarbyl group containing 1 to 20 carbon atoms, substituted silyl group containing 1 to 20 carbon atoms, alkoxy group containing 1 to 20 carbon atoms Or a disubstituted amino group containing 2 to 20 carbon atoms, which may be the same or different.
  • Preferred R 13 to R 15 are a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, and a halogenated hydrocarbyl group containing 1 to 20 carbon atoms.
  • boron compound (A-2-1) examples include triphenylborane, tris (pentafluorophenyl) borane, tris (2,3,5,6-tetrafluorophenyl) borane, tris (2,3,4). , 5-tetrafluorophenyl) borane, tris (3,4,5-trifluorophenyl) borane, tris (2,3,4-trifluorophenyl) borane, phenylbis (pentafluorophenyl) borane, and the like. Most preferred are triphenylborane and tris (pentafluorophenyl) borane.
  • W + is an inorganic or organic cation
  • B is a trivalent valence state.
  • R 13 to R 16 are the same as R 13 to R 15 in the boron compound (A-2-1). That is, R 13 to R 16 include a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, a halogenated hydrocarbyl group containing 1 to 20 carbon atoms, and 1 to 20 carbon atoms.
  • a substituted silyl group, an alkoxy group containing 1 to 20 carbon atoms or a disubstituted amino group containing 2 to 20 carbon atoms which may be the same or different.
  • Preferred R 13 to R 16 are a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, and a halogenated hydrocarbyl group containing 1 to 20 carbon atoms.
  • W + that is an inorganic cation examples include a ferrocenium cation, an alkyl-substituted ferrocenium cation, and a silver cation.
  • W + that is an organic cation examples include a triphenylcarbenium cation. (BR 13 R 14 R 15 R 16 ) — includes tetrakis (pentafluorophenyl) borate, tetrakis (2,3,5,6-tetrafluorophenyl) borate, tetrakis (2,3,4,5-tetrafluoro).
  • Phenyl) borate tetrakis (3,4,5-trifluorophenyl) borate, tetrakis (2,2,4-trifluorophenyl) borate, phenylbis (pentafluorophenyl) borate, tetrakis (3,5-bistri) Fluoromethylphenyl) borate and the like.
  • Specific examples of the compound represented by the general formula W + (BR 13 R 14 R 15 R 16 ) — include ferrocenium tetrakis (pentafluorophenyl) borate and 1,1′-dimethylferrocenium tetrakis (pentafluoro).
  • Phenyl) borate silver tetrakis (pentafluorophenyl) borate, triphenylcarbenium tetrakis (pentafluorophenyl) borate, triphenylcarbenium tetrakis (3,5-bistrifluoromethylphenyl) borate, etc.
  • Triphenylcarbenium tetrakis (pentafluorophenyl) borate is preferable.
  • R 13 to R 16 are the same as R 13 to R 15 in the boron compound (A-2-3). is there. That is, R 13 to R 16 include a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, a halogenated hydrocarbyl group containing 1 to 20 carbon atoms, and 1 to 20 carbon atoms.
  • a substituted silyl group, an alkoxy group containing 1 to 20 carbon atoms or a disubstituted amino group containing 2 to 20 carbon atoms which may be the same or different.
  • Preferred R 13 to R 16 are a halogen atom, a hydrocarbyl group containing 1 to 20 carbon atoms, and a halogenated hydrocarbyl group containing 1 to 20 carbon atoms.
  • Examples of (VH) + that is a Bronsted acid include trialkyl-substituted ammonium, N, N-dialkylanilinium, dialkylammonium, triarylphosphonium, and the like (BR 13 R 14 R 15 R 16 ) ⁇ Is the same as described above.
  • Specific examples of the compound represented by the general formula (VH) + (BR 13 R 14 R 15 R 16 ) ⁇ include triethylammonium tetrakis (pentafluorophenyl) borate and tripropylammonium tetrakis (pentafluorophenyl) borate.
  • the contact at the time of manufacturing the catalyst for olefin polymerization obtained by contacting the complex represented by the above general formula (1) and the promoter component (A) of the present invention is represented by the general formula (1).
  • the complex represented by the general formula (1) may be used by any means as long as the catalyst and the promoter component (A) are in contact with each other to form a catalyst.
  • the cocatalyst component (A) are mixed and brought into contact with each other, or the complex represented by the general formula (1) and the cocatalyst component (A) are separately supplied to the polymerization tank, and these are contained in the polymerization tank. You can take a way to contact.
  • the co-catalyst component (A) may be used in combination of a plurality of types, but some of them may be mixed in advance or used separately by supplying them to the polymerization tank. May be.
  • the complex (1) an isolated one may be used, or a compound obtained by contacting the compound (2) and the compound (3) may be used as it is.
  • the amount of each component used is usually such that the molar ratio of the organoaluminum compound (A-1) to the complex (1) is in the range of 0.01 to 10,000, preferably in the range of 1 to 5000. It is desirable to use each component so that the molar ratio of the boron compound (A-2) to) is in the range of 0.01 to 100, preferably in the range of 1.0 to 50.
  • the concentration when each component is supplied in a solution state or suspended or slurried in a solvent is determined depending on the performance of the apparatus for supplying each component to the polymerization reactor, etc.
  • the complex represented by the general formula (1) is usually 0.0001 to 10000 mmol / L, more preferably 0.001 to 1000 mmol / L, and still more preferably, 0.01 to 100 mmol / L
  • the organoaluminum compound (A-1) is usually 0.01 to 10000 mmol / L, more preferably 0.05 to 5000 mmol / L, still more preferably 0, in terms of Al atom.
  • the boron compound (A-2) is usually from 0.001 to 500 mmol / L, more preferably from 0.01 to 2000 mmol / L. 50 mmol / L, more preferably, it is desirable to use each component to be in the range of 0.05 ⁇ 100mmol / L.
  • the olefin polymerization catalyst is an olefin polymerization catalyst obtained by contacting the complex (1) with the organoaluminum compound (A-1) and / or the boron compound (A-2).
  • the organoaluminum compound (A-1) is the cyclic aluminoxane (A-1-2).
  • / or linear aluminoxane (A-1-3) is preferred.
  • Another preferred embodiment of the olefin polymerization catalyst is an olefin polymerization catalyst obtained by contacting the complex (1), the organoaluminum compound (A-1) and the boron compound (A-2).
  • the stereoselective polyolefin production method of the present invention is a method comprising homopolymerization or copolymerization of an olefin having 3 to 10 carbon atoms, preferably 3 to 6 carbon atoms, in the presence of the catalyst of the present invention. is there.
  • homopolymerization of olefins having 3 to 6 carbon atoms More preferred is homopolymerization of propylene, 1-butene, 1-hexene, 4-methyl-1-pentene and 1,5-hexadiene. .
  • the type of olefin to be polymerized may be single or plural. If a single olefin is polymerized, a homopolymer is obtained, and if a plurality of olefins are polymerized, a copolymer is obtained.
  • the olefin used for the copolymerization is not particularly limited, but is preferably an olefin that exhibits desired physical properties by stereoselective polymerization.
  • the olefin can be, for example, a monoolefin or a diolefin.
  • monoolefins examples include carbons such as propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene, vinylcyclohexane, etc.
  • 1-alkene having 3 to 10 atoms (which may be branched), cyclopentene, cyclohexene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-phenylnorbornene, 5-benzylnorbornene, tetra Cyclododecene, tricyclodecene, tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 5-acetylnorbornene, 5-acetyloxynorbornene, 5 -Methoxycarboni Norbornene, 5-ethoxycarbonylnorbornene, 5-methyl-5-methoxycarbonylnorbornene, 5-cyanonorbornene, 8-methoxycarbonyltetra
  • the monoolefin is preferably propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, 4-methyl-1-pentene, vinylcyclohexane, More preferred are propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene, 4-methyl-1-pentene and vinylcyclohexane, and further preferred are propylene and 1-butene.
  • diolefin examples include 1,5-hexadiene, 1,4-hexadiene, 1,6-heptadiene, 1,4-pentadiene, 1,7-octadiene, 1,8-nonadiene, 1,9-decadiene, 4 -Methyl-1,4-hexadiene, 5-methyl-1,4-hexadiene, 7-methyl-1,6-octadiene, 5-ethylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, 5 -Methyl-2-norbornene, norbornadiene, 5-methylene-2-norbornene, 1,5-cyclooctadiene, 5,8-endomethylenehexahydronaphthalene, 1,3-hexadiene, 1,3-octadiene, 1,3 -Mention may be made of cyclooctadiene, 1,3-cyclohexa
  • the diolefin is preferably 1,5-hexadiene, 1,6-heptadiene, 5-ethylidene-2-norbornene, dicyclopentadiene, 5-vinyl-2-norbornene, 5-methyl-2-norbornene, norbornadiene, 5 -Methylene-2-norbornene, 1,5-cyclooctadiene, 1,3-cyclooctadiene, 1,3-cyclohexadiene, butadiene, isoprene, more preferably 1,5-hexadiene, 1,6- Heptadiene, 1,3-cyclohexadiene, and butadiene.
  • isotactic pentad fraction [mmmm] (%) is used.
  • the isotactic pentad fraction referred to here is A.I.
  • the polymer has a structure including a cyclized polymer portion and a 1,2-insert portion.
  • the cyclized polymer portion may have four structures stereochemically (cis; iso), (cis; syndio), (trans; iso), and (trans; syndio).
  • diene ring-closed polymers are known to vary greatly in polymer properties depending on the degree of stereoregularity (cis, trans; iso, syndio) and the degree of ring-close polymerization (ring-closed polymerization, 1,2-insertion). . There are a large number of such combinations, detailed studies have not been conducted, and the degree of stereoselectivity of known polymers is insufficient.
  • the diene ring-closed polymer polymerized with a high ring-closing ratio and a high stereoregularity can be used as a liquid crystalline material that is lightweight and excellent in workability.
  • Liquid crystal polymers have a high degree of molecular chain orientation without any operations such as stretching, so that high-performance fibers such as high-strength and high-modulus fibers can be obtained. Degree of dimensional stability, creep resistance, etc.
  • diene ring-closing polymers can be used as polymer-type nucleating agents by controlling their stereoselectivity.
  • Polyolefin-based crystalline polymers typified by polypropylene have the disadvantage that the polymer crystallization rate is generally slow in heat-melt molding such as injection molding, film processing, spinning processing, flat yarn molding, and hollow molding. is there.
  • Highly stereoselective diene ring-closing polymer is a polymer type nucleating agent that is excellent in dispersibility and miscibility in crystalline polyolefin, has little bleed-out, and has little odor or taste transfer problems generated from nucleating agents. Can be used as
  • an optically active diene ring closure polymer can be obtained by using an optically active catalyst.
  • an optically active catalyst By making the diene ring-closing polymer optically active, improvement in heat resistance, improvement in liquid crystallinity, and improvement in performance as a polymer nucleating agent can be expected.
  • the polymerization method is not particularly limited.
  • aliphatic hydrocarbons such as butane, pentane, hexane, heptane, and octane
  • aromatic hydrocarbons such as benzene and toluene
  • halogenated hydrocarbons such as methylene dichloride.
  • Solvent polymerization using carbon as a solvent, slurry polymerization, or the like is possible, and either continuous polymerization or batch polymerization is possible.
  • the temperature and time of the polymerization reaction can be determined in consideration of the desired polymerization average molecular weight, and the activity and usage of the catalyst.
  • the polymerization temperature is usually in the range of ⁇ 50 ° C. to 200 ° C., but the range of ⁇ 20 ° C. to 100 ° C. is particularly preferable.
  • the polymerization pressure is usually preferably from normal pressure to 50 MPa.
  • the polymerization time is appropriately determined depending on the kind of the target polymer and the reaction apparatus, but it is usually in the range of 1 minute to 20 hours, preferably in the range of 5 minutes to 18 hours. However, it is not intended to be limited to these ranges.
  • a chain transfer agent such as hydrogen may be added to adjust the molecular weight of the copolymer.
  • the concentration of each compound in the solvent is not particularly limited.
  • the concentration of the zirconium complex in the solvent can be selected, for example, in the range of 1 ⁇ 10 ⁇ 8 mmol / L to 10 mol / L, and the concentration of the promoter component is, for example, 1 ⁇ 10 ⁇ 8 mmol / L to 10 mol / L.
  • a range can be selected.
  • the volume ratio of olefin: solvent can be selected from 100: 0 to 1: 1000.
  • these ranges are examples and are not intended to be limited to them. Even when no solvent is used, the concentration can be appropriately set with reference to the above range.
  • ⁇ Measurement conditions 1 Polypropylene
  • Apparatus TSK HLC-8121GPC / HT (manufactured by Tosoh Corporation) Column: TSKgel GMHHR-H (20) 2 measurement temperature: 152 ° C
  • Solvent o-dichlorobenzene (0.05% BHT added)
  • Solvent flow rate 1 ml / min
  • Sample concentration 0.05%
  • ⁇ Measurement conditions 2 Poly (1-hexene
  • HLC-8220 GPC Manufactured by Tosoh Corporation
  • Isotactic pentad fraction of polypropylene [mmmm] (%)
  • the [mmmm] fraction of polypropylene is that of the 21.64 to 22.02 ppm mmmm pentad relative to the peak area attributed to 19.4 to 22.2 ppm methyl carbon in the 13 C-NMR spectrum measured under the following conditions. It calculated
  • the peak area of the peak was defined as the area of the signal in the range from the chemical shift of the valley with the adjacent peak on the high magnetic field side to the chemical shift of the valley with the adjacent peak on the low magnetic field side.
  • Apparatus ECS400 manufactured by JEOL Measurement solvent: chloroform-d 1 Measurement temperature: 25 ° C Measurement method: Coupling method with proton Pulse width: 30 ° Pulse repetition time: 2 seconds Measurement standard: Residual chloroform window function in deuterated chloroform: Negative exponential function (6) Intrinsic viscosity ([ ⁇ ]) (unit: dl / g) Using an Ubbelohde viscometer, tetralin was used as a solvent at a measurement temperature of 135 ° C.
  • the formed precipitate was removed by filtration, and the filtrate was concentrated under reduced pressure.
  • Ether and dilute hydrochloric acid were added to the obtained residue, the ether layer was washed with water and dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure.
  • the obtained residue was purified by silica gel column chromatography (developing solvent hexane-dichloromethane 1: 1) to obtain 3.86 g (yield 90%) of the title compound as colorless crystals.
  • Example 1 The autoclave with a stirrer having an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 40 mL of toluene as a solvent and 80 g of propylene as a monomer were charged, and the reactor was heated to 40 ° C.
  • Example 2 The autoclave with a stirrer having an internal volume of 400 mL was vacuum-dried and replaced with argon, and then 40 mL of toluene as a solvent and 80 g of propylene as a monomer were charged, and the reactor was heated to 40 ° C. After raising the temperature, 121.4 mg of d-MAO was added, followed by [cycloheptanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylzirconium (5 ⁇ mol). / ML, toluene solution) 0.10 mL (0.50 ⁇ mol) was added to initiate polymerization. Polymerization was carried out for 60 minutes while maintaining the temperature at 40 ° C.
  • Example 3 instead of [cycloheptanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylzirconium, [cycloheptanediyl-trans-1,2-bis (2 -Oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorozirconium was used in the same manner as in Example 1.
  • Example 4 Using 103.9 mg of d-MAO, instead of [cycloheptanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylzirconium, [cycloheptanediyl- The same procedure as in Example 2 was performed except that trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorozirconium was used.
  • Table 1 shows the polymerization conditions and polymerization results of Examples 1-4 and Comparative Examples 1-2.
  • Example 5 In a 100 mL Schlenk tube, 17 mg (0.020 mmol) of [cycloheptanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylzirconium in 5 mL of toluene Into this solution was added 18 mg (0.020 mmol) of triphenylcarbenium tetrakis (pentafluorophenyl) borate [Ph 3 CB (C 6 F 5 ) 4 ] at 0 ° C., and the mixture was further stirred for 5 minutes.
  • Example 6 In a 100 mL Schlenk tube, 17 mg (0.020 mmol) of [cycloheptanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylzirconium in 1 mL of toluene Into this solution was added B (C 6 F 5 ) 3 10 mg (0.020 mmol) at 25 ° C., and the mixture was further stirred for 5 minutes. To this solution, 3 g (0.0356 mmol) of 1-hexene was added at 25 ° C., and the mixture was further stirred for 10 minutes.
  • Example 7 In a 100 mL Schlenk tube, 17 mg (0.020 mmol) of [cycloheptanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dibenzylzirconium in 5 mL of toluene Then, 18 mg (0.020 mmol) of triphenylcarbenium tetrakis (pentafluorophenyl) borate [Ph 3 CB (C 6 F 5 ) 4 ] was added to this solution at 25 ° C., and the mixture was further stirred for 5 minutes.
  • Example 8 In a 100 mL Schlenk tube, 15 mg (0.020 mmol) of [cycloheptanediyl-trans-1,2-bis (2-oxoyl-3,5-di-tert-butylbenzylsulfanyl)] dichlorozirconium in 5 mL of toluene After dissolution, 290 mg (5.0 mmol) of d-MAO was added to this solution at 25 ° C., and the mixture was further stirred for 3 minutes. To this solution was added 3 g (0.0356 mmol) of 1-hexene at 25 ° C., and the mixture was further stirred for 3 minutes.
  • the present invention is useful in the field relating to the production of polyolefins.

Abstract

 炭素原子数3~10のオレフィンを重合して得られる重合体を、優れた立体規則性で製造し得るオレフィン重合用触媒、および前記オレフィン重合用触媒を用いるオレフィン重合体の製造方法を提供するため、本発明は、一般式(1)で表される錯体を含む、炭素原子数3~10のオレフィン重合用触媒、および該重合用触媒を用いてオレフィンを単独重合または共重合する、オレフィン単独重合体またはオレフィン共重合体の製造方法である。

Description

オレフィン重合用触媒及びオレフィン重合体の製造方法
 本発明は、ジルコニウム錯体を用いたオレフィン重合用触媒及びオレフィン重合体の製造方法に関する。
 チーグラ・ナッタ型マグネシウム担持高活性チタン触媒により大いに発展したオレフィン重合の化学において、近年、メタロセン触媒の開発がトピックスの一つである。さらに、最近ではさらなる精密な重合プロセスを構築するための触媒として、所謂ポストメタロセン系触媒の開発が注目されている。
 特許文献1では、エタン-1,2-ジチオールから誘導されるジフェノキシチタン錯体、ジルコニム錯体またはハフニウム錯体を用いたプロピレン重合が報告されているが、得られる重合体は立体規則性の観点から改善の余地がある。
 一方、trans-シクロオクタン-1,2-ジチオールから誘導されるジフェノキシチタン錯体、ジルコニウム錯体及びハフニウム錯体が報告され(非特許文献1)、さらにこれらの錯体のうち、ジルコニウム錯体を触媒とした1-ヘキセンの重合についても報告されている(非特許文献2)。
WO2007/075299
戸田ら、第58回錯体化学討論会、講演要旨集1Ab-07、2008年9月20日 Journal of American Chemical Society, 2009, Volume 131, 13566-13567
 本発明が解決しようとする課題は、炭素原子数3~10のオレフィンを重合して得られる重合体を、優れた立体規則性で製造し得るオレフィン重合用触媒、および前記オレフィン重合用触媒を用いるオレフィン重合体の製造方法を提供することにある。
 本発明者は、鋭意検討することにより上記課題を解決できることを見出した。
 本発明は、下記一般式(1)で表される錯体を含む炭素原子数3~10のオレフィン重合用触媒に関するものである。
Figure JPOXMLDOC01-appb-C000002
(式中、
およびRは、それぞれ独立して、
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数2~20のアルケニル基、
炭素原子数2~20のアルキニル基、
炭素原子数7~30のアラルキル基、
炭素原子数1~20のアルコキシ基、
炭素原子数7~30のアラルキルオキシ基、
炭素原子数6~30のアリールオキシ基、
または、置換シリル基を表し、
~RおよびR~R12は、それぞれ独立して、水素原子、ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数2~20のアルケニル基、
炭素原子数2~20のアルキニル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数7~30のアラルキルオキシ基、
炭素原子数6~30のアリールオキシ基、
置換シリル基、
または環を構成する炭素原子数が3~20のヘテロ環式化合物残基を表す。
~R12における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アルキニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記ヘテロ環式化合物残基は置換基を有していてもよい。
上記R~R12の定義に関わらず、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、およびR11とR12とは、それぞれ独立に、互いに連結して環を形成してもよく、これらの環は置換基を有していてもよい。
Xは、それぞれ独立して、水素原子、ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数2~20のアルケニル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数7~30のアラルキルオキシ基、
炭素原子数6~30のアリールオキシ基、
置換シリル基、
置換アミノ基、
置換チオラート基、または
炭素原子数1~20のカルボキシラート基を表す。
Xにおける上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記カルボキシラート基は置換基を有していてもよい。
隣接するX同士は、相互に連結して環を形成してもよい。
Lは中性のルイス塩基を表す。Lが複数ある場合は、複数のLは同一でも異なっていてもよい。lは、0、1、または2である。)
 また、本発明は上記重合用触媒を用いて炭素原子数3~10のオレフィンを重合する、オレフィン単独重合体またはオレフィン共重合体の製造方法に関する。
 本発明によれば、炭素原子数3~10のオレフィンを重合して得られる重合体を、優れた立体規則性で製造することができる。
 式(1)で表される錯体について説明する。
Figure JPOXMLDOC01-appb-C000003
 RおよびRとして好ましくは、それぞれ独立して
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数1~20のアルコキシ基、
炭素原子数7~30のアラルキルオキシ基、
炭素原子数6~30のアリールオキシ基
または置換シリル基であり、
より好ましくは、それぞれ独立して
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
または置換シリル基である。
とRの最も好ましい形態は、RとRが同一であって、
炭素原子数1~20のアルキル基である。
~RおよびR~Rとして好ましくは、それぞれ独立して
水素原子、
ハロゲン原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数6~30のアリールオキシ基、
または置換シリル基であり、
より好ましくは、それぞれ独立して
水素原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
または置換シリル基、
、R、RおよびRとして、さらに好ましくは、水素原子である。
およびRとしてさらに好ましくは、
炭素原子数1~20のアルキル基
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
または置換シリル基であり、
最も好ましくは、
炭素原子数1~20のアルキル基である。
~R12として好ましくは、それぞれ独立して
水素原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
炭素原子数1~20のアルコキシ基、
炭素原子数6~30のアリールオキシ基、
置換シリル基であり、
より好ましくは、それぞれ独立して
水素原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基、
炭素原子数7~30のアラルキル基、
炭素原子数6~30のアリール基、
または置換シリル基であり、
さらに好ましくは、それぞれ独立して
水素原子、
炭素原子数1~20のアルキル基、
環を構成する炭素原子数が3~10のシクロアルキル基であり、
最も好ましくは、
水素原子である。
 上記した、アルキル基、シクロアルキル基、アラルキル基、アリール基、アルコキシ基、およびアリールオキシ基は置換基を有していてもよい。
 R~R12における炭素原子数1~20の置換または無置換のアルキル基としては、例えば、パーフルオロメチル基、パーフルオロエチル基、パーフルオロ-n-プロピル基、パーフルオロイソプロピル基、パーフルオロ-n-ブチル基、パーフルオロ-sec-ブチル基、パーフルオロイソブチル基、パーフルオロ-tert-ブチル基、パーフルオロ-n-ペンチル基、パーフルオロイソペンチル基、パーフルオロ-tert-ペンチル基、パーフルオロネオペンチル基、パーフルオロ-n-ヘキシル基、パーフルオロ-n-ヘプチル基、パーフルオロ-n-オクチル基、パーフルオロ-n-デシル基、パーフルオロ-n-ドデシル基、パーフルオロ-n-ペンタデシル基、パーフルオロ-n-エイコシル基、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基、ネオヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基、n-ドデシル基、n-ペンタデシル基、n-エイコシル基が挙げられる。
 RおよびRにおける炭素原子数1~20の置換または無置換のアルキル基として好ましくは、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基、ネオヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基などの炭素原子数4~10のアルキル基であり、より好ましくは、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、テキシル基、などの炭素原子数4~8のアルキル基であり、さらに好ましくは、tert-ブチル基、tert-ペンチル基、テキシル基などの炭素原子数4~8の第3級アルキル基である。
 R~RおよびR~R12における炭素原子数1~20の置換または無置換のアルキル基として好ましくは、パーフルオロメチル基、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、イソブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、n-ヘキシル基、テキシル基、ネオヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基などの炭素原子数4~10のアルキル基であり、より好ましくは、パーフルオロメチル基、メチル基、イソプロピル基、イソブチル基、tert-ブチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、テキシル基などの炭素原子数1~8のアルキル基であり、さらに好ましくは、パーフルオロメチル基、メチル基、イソプロピル基、イソブチル基、tert-ブチル基といった炭素原子数1~4のアルキル基である。
 R~R12における環を構成する炭素原子数が3~10の置換または無置換のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、1-メチルシクロペンチル基、1-メチルシクロヘキシル基、1-フェニルシクロヘキシル基、1-インダニル基、2-インダニル基、ノルボルニル基、ボルニル基、メンチル基、1-アダマンチル基、2-アダマンチル基、3,5-ジメチルアダマンチル基、3,5、7-トリメチルアダマンチル基、3,5-ジエチルアダマンチル基、3,5,7-トリエチルアダマンチル基、3,5-ジイソプロピルアダマンチル基、3,5,7-トリイソプロピルアダマンチル基、3,5-ジイソブチルアダマンチル基、3,5,7-トリイソブチルアダマンチル基、3,5-ジフェニルアダマンチル基、3,5,7-トリフェニルアダマンチル基、3,5-ジ(p-トルイル)アダマンチル基、3,5,7-トリ(p-トルイル)アダマンチル基、3,5-ジ(3,5-キシリル)アダマンチル基、3,5、7-トリ(3,5-キシリル)アダマンチル基が挙げられ、好ましくはシクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、1-メチルシクロペンチル基、1-メチルシクロヘキシル基、1-インダニル基、2-インダニル基、ノルボルニル基、ボルニル基、メンチル基、1-アダマンチル基、2-アダマンチル基、3,5-ジメチルアダマンチル基、3,5-ジエチルアダマンチル基、3,5-ジフェニルアダマンチル基、3,5-ジ(p-トルイル)アダマンチル基、3,5-ジ(3,5-キシリル)アダマンチル基などの炭素原子数(環を構成する炭素原子以外の炭素原子も含めた数)5~26のシクロアルキル基であり、より好ましくは、シクロヘキシル基、1-メチルシクロヘキシル基、ノルボルニル基、ボルニル基、1-アダマンチル基、2-アダマンチル基、3,5-ジメチルアダマンチル基、3,5-ジエチルアダマンチル基などの炭素原子数(環を構成する炭素原子以外の炭素原子も含めた数)6~14のシクロアルキル基である。
 R~R12における炭素原子数2~20の置換または無置換のアルケニル基としては、ビニル基、アリル基、プロペニル基、2-メチル-2-プロペニル基、ホモアリル基、ペンテニル基、ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基、デセニル基などが挙げられ、好ましくは炭素原子数3~6のアルケニル基であり、より好ましくはアリル基、ホモアリル基である。
 R~R12における炭素原子数2~20の置換または無置換のアルキニル基としては、例えばエチニル基、1-プロピニル基、2-プロピニル基、1-ブチニル基、3-メチル-1-ブチニル基、3,3-ジメチル-1-ブチニル基、2-ブチニル基、3-ブチニル基、1-ペンチニル基、4-メチル-1-ペンチニル基、2-ペンチニル基、3-ペンチニル基、4-ペンチニル基、4-メチル-1-ペンテニル基、1-ヘキシニル基、1-オクチニル基、フェニルエチニル基が挙げられ、好ましくは炭素原子数3~8のアルキニル基であり、より好ましくは3-メチル-1-ブチニル基、3,3-ジメチル-1-ブチニル基、4-メチル-1-ペンテニル基またはフェニルエチニル基である。
 R~R12における炭素原子数7~30の置換または無置換のアラルキル基としては、例えば、ベンジル基、(2-メチルフェニル)メチル基、(3-メチルフェニル)メチル基、(4-メチルフェニル)メチル基、(2,3-ジメチルフェニル)メチル基、(2,4-ジメチルフェニル)メチル基、(2,5-ジメチルフェニル)メチル基、(2,6-ジメチルフェニル)メチル基、(3,4-ジメチルフェニル)メチル基、(3,5-ジメチルフェニル)メチル基、(2,3,4-トリメチルフェニル)メチル基、(2,3,5-トリメチルフェニル)メチル基、(2,3,6-トリメチルフェニル)メチル基、(3,4,5-トリメチルフェニル)メチル基、(2,4,6-トリメチルフェニル)メチル基、(2,3,4,5-テトラメチルフェニル)メチル基、(2,3,4,6-テトラメチルフェニル)メチル基、(2,3,5,6-テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(エチルフェニル)メチル基、(n-プロピルフェニル)メチル基、(イソプロピルフェニル)メチル基、(n-ブチルフェニル)メチル基、(sec-ブチルフェニル)メチル基、(tert-ブチルフェニル)メチル基、(イソブチルフェニル)メチル基、(n-ペンチルフェニル)メチル基、(ネオペンチルフェニル)メチル基、(n-ヘキシルフェニル)メチル基、(n-オクチルフェニル)メチル基、(n-デシルフェニル)メチル基、ナフチルメチル基、アントラセニルメチル基、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(エチル)(フェニル)メチル基、メチル(ジフェニル)メチル基、メチルビス(4-メチルフェニル)メチル基、トリフェニルメチル基が挙げられ、好ましくはベンジル基、ナフチルメチル基、アントラセニルメチル基、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(エチル)(フェニル)メチル基、メチル(ジフェニル)メチル基、メチルビス(4-メチルフェニル)メチル基、トリフェニルメチル基であり、より好ましくは、ジメチル(フェニル)メチル基、ジメチル(4-メチルフェニル)メチル基、ジメチル(1-ナフチル)メチル基、ジメチル(2-ナフチル)メチル基、メチル(エチル)(フェニル)メチル基、メチル(ジフェニル)メチル基、メチルビス(4-メチルフェニル)メチル基、トリフェニルメチル基などの炭素原子数9~20の第3級アラルキル基である。
 R~RおよびR~R12における炭素原子数6~30の置換または無置換のアリール基としては、例えば、フェニル基、2-トリル基、3-トリル基、4-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,4,6-トリメチルフェニル基、3,4,5-トリメチルフェニル基、2,3,4,5-テトラメチルフェニル基、2,3,4,6-テトラメチルフェニル基、2,3,5,6-テトラメチルフェニル基、ペンタメチルフェニル基、エチルフェニル基、n-プロピルフェニル基、イソプロピルフェニル基、n-ブチルフェニル基、sec-ブチルフェニル基、tert-ブチルフェニル基、イソブチルフェニル基、n-ペンチルフェニル基、ネオペンチルフェニル基、n-ヘキシルフェニル基、n-オクチルフェニル基、n-デシルフェニル基、n-ドデシルフェニル基、n-テトラデシルフェニル基、ナフチル基、アントラセニル基、3,5-ジイソプロピルフェニル基、2,6-ジイソプロピルフェニル基、3,5-ジtert-ブチルフェニル基、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、ペンタフルオロフェニル基、2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、2-クロロフェニル基、2,3-ジクロロフェニル基、2,4-ジクロロフェニル基、2,5-ジクロロフェニル基、2-ブロモフェニル基、3-ブロモフェニル基、4-ブロモフェニル基、2,3-ジブロモフェニル基、2,4-ジブロモフェニル基、あるいは2,5-ジブロモフェニル基が挙げられ、好ましくは、フェニル基、2-トリル基、3-トリル基、4-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,4,6-トリメチルフェニル基、3,4,5-トリメチルフェニル基、エチルフェニル基、n-プロピルフェニル基、イソプロピルフェニル基、3,5-ジイソプロピルフェニル基、2,6-ジイソプロピルフェニル基、3,5-ジtert-ブチルフェニル基などの炭素原子数6~20のフェニル基;2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、ペンタフルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基などのフッ素化フェニル基;2-トリフルオロメチルフェニル基、3-トリフルオロメチルフェニル基、4-トリフルオロメチルフェニル基などのフッ素化アルキルフェニル基であり、より好ましくは、フェニル基、2-トリル基、3-トリル基、4-トリル基、2,6-キシリル基、3,5-キシリル基、2,4,6-トリメチルフェニル基、3,5-ジイソプロピルフェニル基、2,6-ジイソプロピルフェニル基、3,5-ジtert-ブチルフェニル基、2-フルオロフェニル基、ペンタフルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、2,4,6-トリフルオロフェニル基である。
 R~R12における置換シリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリ-n-プロピルシリル基、トリイソプロピルシリル基、トリ-n-ブチルシリル基、トリイソブチルシリル基、tert-ブチルジメチルシリル基、メチルジフェニルシリル基、ジメチル(フェニル)シリル基、tert-ブチルジフェニルシリル基、トリフェニルシリル基、メチルビス(トリメチルシリル)シリル基、ジメチル(トリメチルシリル)シリル基、トリス(トリメチルシリル)シリル基が挙げられ、好ましくはトリメチルシリル基、トリエチルシリル基、トリ-n-プロピルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基などの炭素原子数3~20のトリアルキルシリル基;メチルビス(トリメチルシリル)シリル基、ジメチル(トリメチルシリル)シリル基、トリス(トリメチルシリル)シリル基などの炭素原子数3~20のハイドロカルビルシリル基を置換基として有するシリル基が挙げられる。
 R~R12における炭素原子数1~20の置換または無置換のアルコキシ基としては、例えば、パーフルオロメトキシ基、パーフルオロエトキシ基、パーフルオロ-n-プロポキシ基、パーフルオロイソプロポキシ基、パーフルオロ-n-ブトキシ基、パーフルオロ-sec-ブトキシ基、パーフルオロイソブトキシ基、パーフルオロ-n-ペンチルオキシ基、パーフルオロネオペンチルオキシ基、パーフルオロ-n-ヘキシルオキシ基、パーフルオロ-n-ヘプチルオキシ基、パーフルオロ-n-オクチルオキシ基、パーフルオロ-n-デシルオキシ基、パーフルオロ-n-ドデシルオキシ基、パーフルオロ-n-ペンタデシルオキシ基、パーフルオロ-n-エイコシルオキシ基、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、sec-ブトキシ基、イソブトキシ基、n-ペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-デシルオキシ基、n-ドデシルオキシ基、n-ペンタデシルオキシ基、n-エイコシルオキシ基が挙げられ、好ましくは炭素原子数1~4のアルコキシ基であり、より好ましくはメトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基である。
 R~R12における炭素原子数6~30の置換または無置換のアリールオキシ基としては、例えばフェノキシ基、2,3,4-トリメチルフェノキシ基、2,3,5-トリメチルフェノキシ基、2,3,6-トリメチルフェノキシ基、2,4,6-トリメチルフェノキシ基、3,4,5-トリメチルフェノキシ基、2,3,4,5-テトラメチルフェノキシ基、2,3,4,6-テトラメチルフェノキシ基、2,3,5,6-テトラメチルフェノキシ基、ペンタメチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、2-フルオロフェノキシ基、3-フルオロフェノキシ基、4-フルオロフェノキシ基、ペンタフルオロフェノキシ基、2-トリフルオロメチルフェノキシ基、3-トリフルオロメチルフェノキシ基、4-トリフルオロメチルフェノキシ基、2,3-ジフルオロフェノキシ基、2,4-フルオロフェノキシ基、2,5-ジフルオロフェノキシ基、2-クロロフェノキシ基、2,3-ジクロロフェノキシ基、2,4-ジクロロフェノキシ基、2,5-ジクロロフェノキシ基、2-ブロモフェノキシ基、3-ブロモフェノキシ基、4-ブロモフェノキシ基、2,3-ジブロモフェノキシ基、2,4-ジブロモフェノキシ基、あるいは2,5-ジブロモフェノキシ基が挙げられ、好ましくは炭素原子数6~14のアリールオキシ基であり、より好ましくは2,4,6-トリメチルフェノキシ基、3,4,5-トリメチルフェノキシ基、2,6-ジイソプロピルフェノキシ基、ペンタフルオロフェノキシ基である。
 R~R12における炭素原子数7~30の置換または無置換のアラルキルオキシ基としては、例えば、ベンジルオキシ基、(2-メチルフェニル)メトキシ基、(3-メチルフェニル)メトキシ基、(4-メチルフェニル)メトキシ基、(2,3-ジメチルフェニル)メトキシ基、(2,4-ジメチルフェニル)メトキシ基、(2,5-ジメチルフェニル)メトキシ基、(2,6-ジメチルフェニル)メトキシ基、(3,4-ジメチルフェニル)メトキシ基、(3,5-ジメチルフェニル)メトキシ基、(2,3,4-トリメチルフェニル)メトキシ基、(2,3,5-トリメチルフェニル)メトキシ基、(2,3,6-トリメチルフェニル)メトキシ基、(2,4,5-トリメチルフェニル)メトキシ基、(2,4,6-トリメチルフェニル)メトキシ基、(3,4,5-トリメチルフェニル)メトキシ基、(2,3,4,5-テトラメチルフェニル)メトキシ基、(2,3,4,6-テトラメチルフェニル)メトキシ基、(2,3,5,6-テトラメチルフェニル)メトキシ基、(ペンタメチルフェニル)メトキシ基、(エチルフェニル)メトキシ基、(n-プロピルフェニル)メトキシ基、(イソプロピルフェニル)メトキシ基、(n-ブチルフェニル)メトキシ基、(sec-ブチルフェニル)メトキシ基、(tert-ブチルフェニル)メトキシ基、(n-ヘキシルフェニル)メトキシ基、(n-オクチルフェニル)メトキシ基、(n-デシルフェニル)メトキシ基、(n-テトラデシルフェニル)メトキシ基、ナフチルメトキシ基、アントラセニルメトキシ基が挙げられ、好ましくは炭素原子数7~12のアラルキルオキシ基であり、より好ましくはベンジルオキシ基である。
 R~RおよびR~R12における環を構成する炭素原子数が置換または無置換の3~20のヘテロ環式化合物残基としては、例えば、チエニル基、フリル基、1-ピロリル基、1-イミダゾリル基、1-ピラゾリル基、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、2-イソインドリル基、1-インドリル基、キノリル基、ジベンゾ-1H-ピロール-1-イル基が挙げられ、好ましくはチエニル基、フリル基、1-ピロリル基、ピリジル基、ピリミジニル基、2-イソインドリル基、1-インドリル基、キノリル基、ジベンゾ-1H-ピロール-1-イル基である。
 上記R~Rの定義に関わらず、RとR、RとR、RとR、RとR、RとR、およびRとRは、それぞれ独立に、互いに連結して環を形成してもよく、該環は置換基を有していてもよく、好ましくは、ベンゼン環上の2つの炭素原子を含む4~10員環のハイドロカルビル環または複素環であり、該環は置換基を有していてもよい。
 該環として具体的には、シクロブテン環、シクロペンテン環、シクロペンタジエン環、シクロヘキセン環、シクロヘプテン環、シクロオクテン環、ベンゼン環またはナフタレン環、フラン環、2,5-ジメチルフラン環、チオフェン環、2,5-ジメチルチオフェン環、ピリジン環などが挙げられ、好ましくは、シクロブテン環、シクロペンテン環、シクロペンタジエン環、シクロヘキセン環、ベンゼン環またはナフタレン環であり、より好ましくは、RとRおよびRとRとの少なくとも何れか一方の組が連結したシクロペンテン環、シクロペンタジエン環、シクロヘキセン環、ベンゼン環、ナフタレン環である。
 上記R~R12の定義に関わらず、RとR10、およびR11とR12は、それぞれ独立に、互いに連結して環を形成してもよく、該環は置換基を有していてもよい。
 Xにおける炭素原子数1~20のアルキル基、環を構成する炭素原子数が3~10のシクロアルキル基、炭素原子数2~20のアルケニル基、炭素原子数7~30のアラルキル基、炭素原子数6~30のアリール基、炭素原子数1~20のアルコキシ基、炭素原子数7~30のアラルキルオキシ基、炭素原子数6~30のアリールオキシ基、置換シリル基は、R~RおよびR~R12における前記の基と同様である。
 Xにおける置換アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジn-ブチルアミノ基、ジn-プロピルアミノ基、ジイソプロピルアミノ基、ジベンジルアミノ基またはジフェニルアミノ基といった炭素原子数2~14のハイドロカルビルアミノ基が挙げられ、好ましくは、ジメチルアミノ基、ジエチルアミノ基、ジn-プロピルアミノ基、ジイソプロピルアミノ基またはジベンジルアミノ基である。
 Xにおける置換チオラート基としては、例えば、チオフェノキシ基、2,3,4-トリメチルチオフェノキシ基、2,3,5-トリメチルチオフェノキシ基、2,3,6-トリメチルチオフェノキシ基、2,4,6-トリメチルチオフェノキシ基、3,4,5-トリメチルチオフェノキシ基、2,3,4,5-テトラメチルチオフェノキシ基、2,3,4,6-テトラメチルチオフェノキシ基、2,3,5,6-テトラメチルフェノキシ基、ペンタメチルフェノキシ基、2-フルオロチオフェノキシ基、3-フルオロチオフェノキシ基、4-フルオロフェノキシ基、ペンタフルオロチオフェノキシ基、2-トリフルオロメチルチオフェノキシ基、3-トリフルオロメチルチオフェノキシ基、4-トリフルオロメチルチオフェノキシ基、2,3-ジフルオロチオフェノキシ基、2,4-フルオロチオフェノキシ基、2,5-ジフルオロチオフェノキシ基、2-クロロチオフェノキシ基、2,3-ジクロロチオフェノキシ基、2,4-ジクロロチオフェノキシ基、2,5-ジクロロチオフェノキシ基、2-ブロモチオフェノキシ基、3-ブロモチオフェノキシ基、4-ブロモチオフェノキシ基、2,3-ジブロモチオフェノキシ基、2,4-ジブロモチオフェノキシ基、あるいは2,5-ジブロモチオフェノキシ基といった炭素原子数6~12のハイドロカルビルチオラート基が挙げられ、好ましくはチオフェノキシ基、2,4,6-トリメチルチオフェノキシ基、3,4,5-トリメチルチオフェノキシ基、2,3,4,5-テトラメチルチオフェノキシ基、2,3,4,6-テトラメチルチオフェノキシ基、2,3,5,6-テトラメチルチオフェノキシ基、ペンタメチルチオフェノキシ基、ペンタフルオロチオフェノキシ基である。
 Xにおける炭素原子数1~20の置換または無置換のカルボキシラート基としては、例えば、アセテート基、プロピオネート基、ブチレート基、ペンタネート基、ヘキサノエート基、2-エチルヘキサノエート基またはトリフルオロアセテート基が挙げられ、好ましくは炭素原子数2~10ハイドロカルビルカルボキシラート基であり、より好ましくは、アセテート基、プロピオネート基、2-エチルヘキサノエート基またはトリフルオロアセテート基である。
 Xは、好ましくは、フッ素原子、塩素原子、臭素原子、炭素原子数1~20のアルキル基、炭素原子数7~30のアラルキル基、炭素原子数1~20のアルコキシ基、炭素原子数6~30のアリールオキシ基、または炭素原子数1~20のハイドロカルビルアミノ基であり、より好ましくは、塩素原子、臭素原子、炭素原子数1~6のアルキル基、炭素原子数7~10のアラルキル基、炭素原子数1~6のアルコキシ基、炭素原子数6~10のアリールオキシ基、炭素原子数2~10のハイドロカルビルアミノ基であり、さらに好ましくは、塩素原子、メチル基、エチル基、n-ブチル基、tert-ブチル基、ベンジル基、メトキシ基、エトキシ基、イソプロポキシ基、tert-ブトキシ基、フェノキシ基ジメチルアミノ基、ジエチルアミノ基であり、特に好ましくは、塩素原子、メチル基、ベンジル基、イソプロポキシ基、フェノキシ基、ジメチルアミノ基であり、最も好ましくは、塩素原子、ベンジル基である。
 R~R12およびXは、それぞれ独立に、ハロゲン原子、酸素原子、ケイ素原子、窒素原子、リン原子、硫黄原子を含む置換基を有していてもよい。
 Lは中性のルイス塩基を表す。Lが複数ある場合は、複数のLは同一でも異なっていてもよい。lは、0、1、または2である。
 Lとしては、エーテル類、アミン類またはチオエーテル類などが挙げられ具体的には、テトラヒドロフラン、ジエチルエーテル、1,4-ジオキサンまたはピリジンなどが挙げられる。Lとして好ましくは、テトラヒドロフランである。
 lは好ましくは1または0であり、さらに好ましくは、0である。
 式(1)で表される錯体の具体例としては、例えば下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
 また、これらの化合物のジルコニウム原子に直接結合しているベンジル基を、塩素原子、メチル基、ジメチルアミノ基、イソプロポキシ基、tert-ブトキシ基、またはフェノキシ基に変更した化合物も挙げられる。
 上記それぞれの化合物のRおよびRに相当する基を水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子またはメチル基に変更した化合物も挙げることができる。
 上記それぞれの化合物におけるR~R12に相当する基をメチル基、またはエチル基で置換した化合物も挙げることができる。
 錯体(1)として好ましくは下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 また、これらの化合物のジルコニウム原子に直接結合しているベンジル基を、塩素原子、またはメチル基に変更した化合物も挙げられる。
 上記それぞれの化合物のRおよびRに相当する基を水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基に変更した化合物も挙げることができる。
 錯体(1)としてさらに好ましくは下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 また、これらの化合物のジルコニウム原子に直接結合しているベンジル基を、塩素原子に変更した化合物も挙げられる。
 上記それぞれの化合物のRおよびRに相当する基をメチル基に変更した化合物も挙げることができる。
 一般式(1)で表される錯体は、例えば、非特許文献2に記載の方法を参考に合成することができ、具体的には一般式(2)および(3)で表される化合物を出発原料として下記scheme1により製造することができるが、本方法に限定されるべきものではない。
Figure JPOXMLDOC01-appb-C000012
 化合物(3)中のXは、一般式(1)と同様である。ZrXとしては、例えば、Zr(CHPh),ZrCl(CHPh),Zr(CHSiMe),ZrF,ZrCl,ZrBr,ZrI,Zr(OMe),Zr(OEt),Zr(O-i-Pr),ZrCl(O-i-Pr),Zr(O-n-Bu),Zr(O-i-Bu),Zr(O-t-Bu),Zr(OPh),Zr(NMe),ZrCl(NMe),Zr(NEt)が挙げられる。好ましくは、Zr(CHPh),ZrCl(CHPh),Zr(CHSiMe),ZrCl,ZrBr,Zr(OMe),Zr(OEt),Zr(O-i-Pr),Zr(O-i-Bu),Zr(O-t-Bu),Zr(OPh),Zr(NMe),ZrCl(NMe),Zr(NEt)である。
 錯体(1)は、化合物(2)と化合物(3)とをそのまま反応させてもよく、必要に応じて化合物(2)を塩基と反応させた後に化合物(3)を反応させてもよい。用いる塩基としては、例えば有機リチウム試薬、Grignard試薬、金属水素化物が挙げられ、具体的には、メチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、リチウムジイソプロピルアミド、リチウムヘキサメチルジシラザン、カリウムヘキサメチルジシラザン、水素化ナトリウムまたは水素化カリウムを挙げることができ、好ましくは、n-ブチルリチウム、リチウムジイソプロピルアミド、カリウムヘキサメチルジシラザン、水素化ナトリウムまたは水素化カリウムである。
 錯体(1)および化合物(3)、ならびに化合物(2)と塩基とを反応させて得られる化合物は、通常空気および湿気に対して不安定であるため、反応は脱水脱酸素下で行うことが好ましい。具体的には、乾燥窒素、乾燥アルゴン下である。
 化合物(2)の使用量は、化合物(3)に対して1モル当量以上であればよく、好ましくは、1.0~1.5モル当量の範囲で用いればよい。また、反応の過程で化合物(2)が残存する場合は、反応の途中で化合物(3)を追加してもよい。
 化合物(2)と化合物(3)とを反応させる温度は、-100℃~150℃の温度範囲であり、好ましくは-80℃~50℃の温度範囲である。ただし、この範囲に限定される意図ではない。
 化合物(2)と化合物(3)との反応は、生成物の収率が最も高くなる時間まで行えばよく、好ましくは5分間~48時間であり、より好ましくは10分間~24時間である。
 化合物(2)と塩基とを反応させる温度は-100℃~150℃の温度範囲であり、好ましくは-80℃~50℃の温度範囲である。ただし、この範囲に限定される意図ではない。
 化合物(2)と塩基とを反応させる時間は、生成物の収率が最も高くなる時間まで行えばよく、5分間~24時間であり、好ましくは10分間~12時間、より好ましくは30分間~3時間である。
 化合物(2)と塩基とを反応させて生じた化合物と、化合物(3)とを反応させる温度は、-100℃~150℃の温度範囲であり、好ましくは-80℃~50℃の温度範囲ある。ただし、この範囲に限定される意図ではない。
 化合物(2)と塩基とを反応させて生じた化合物と、化合物(3)とを反応させる時間は、生成物の収率が最も高くなる時間まで行えばよく、5分間~48時間であり、好ましくは10分間~24時間である。
 用いる溶媒は、類似の反応で一般的に用いられる溶媒であれば特に制限されるものではなく、ハイドロカーボン溶媒またはエーテル系溶媒が挙げられる。好ましくは、トルエン、ベンゼン、o-キシレン、m-キシレン、p-キシレン、ヘキサン、ペンタン、ヘプタン、シクロヘキサン、ジエチルエーテルまたはテトラヒドロフランであり、より好ましくは、ジエチルエーテル、トルエン、テトラヒドロフラン、ヘキサン、ペンタン、ヘプタン、またはシクロヘキサンである。
 化合物(2)は、例えば、非特許文献2に記載の方法に準じて合成することができる。
具体的には下記scheme2により製造することができるが、本方法に限定されるべきものではない。以下各工程について詳しく説明する。
Figure JPOXMLDOC01-appb-C000013
 化合物(5)~(7)中のR~R12は、一般式(1)と同様である。
 X’はアニオン性脱離基を表し、例えばハロゲン原子、アセテート基、トリフルオロアセテート基、ベンゾエート基、CFSO基、CHSO基、4-MeCSO基またはPhSO基などであり、好ましくは塩素原子、臭素原子、ヨウ素原子、CFSO基、CHSO基、4-MeCSO基またはPhSO基である。
[step1]
 trans-シクロオクタン-1,2-ジチオール(4)に1.0~4.0当量、好ましくは1.0~1.5当量の化合物(5)を塩基存在下で反応させ、化合物(6)を合成することができる。
 塩基としては、特に限定されるべきものではないが、炭酸カリウム、炭酸カルシウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸カルシウム等の無機塩基やトリエチルアミン、トリイソブチルアミン等のアミン塩基が挙げられ、好ましくはアミン塩基である。
 本反応は、空気、ヘリウム、アルゴンまたは窒素雰囲気下で行うことができる。好ましくは、ヘリウム、アルゴンまたは窒素雰囲気下、より好ましくは、窒素またはアルゴン雰囲気下である。
 反応終了後、必要に応じて化合物(6)を精製してもよい。精製方法としては、例えば、反応溶液に対して塩化アンモニウム水溶液、塩酸水溶液または塩化ナトリウム水溶液を加え、次に酢酸エチルまたはジエチルエーテルを加え、抽出操作を行い、過剰の塩基または塩を除去する方法が挙げられる。さらに蒸留、再結晶またはシリカゲルクロマトグラフィー等の精製操作により、純度を高めることができる。
[step2]
 化合物(6)に1.0~4.0当量、好ましくは1.0~1.5当量の化合物(7)を塩基存在下で反応させ、化合物(2)を合成することができる。
 塩基としては、炭酸カリウム、炭酸カルシウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸カルシウム等の無機塩基やトリエチルアミン、トリイソブチルアミン等のアミン塩基が挙げられ、好ましくはアミン塩基である。
 本反応は、空気、ヘリウム、アルゴンまたは窒素雰囲気下で行うことができる。好ましくは、ヘリウム、アルゴンまたは窒素雰囲気下、より好ましくは、窒素またはアルゴン雰囲気下である。
 反応終了後、必要に応じて化合物(2)を精製してもよい。精製方法としては、例えば、反応溶液に対して塩化アンモニウム水溶液、塩酸水溶液または塩化ナトリウム水溶液を加え、次に酢酸エチルまたはジエチルエーテルを加え、抽出操作を行い、過剰の塩基または塩を除去する方法が挙げられる。さらに蒸留、再結晶またはシリカゲルクロマトグラフィー等の精製操作により、純度を高めることができる。
 [step1]の反応条件を制御することで、反応器内で生成した化合物(6)と化合物(7)とを反応させ、化合物(2)を得ることもできる。
 RがRと同じであり、R2がRと同じであり、R3がR7と同じであり、RがRと同じであり、かつRとR10の組み合わせがR11とR12の組み合わせと同じである場合、化合物(5)と化合物(7)とを合わせて、trans-シクロオクタン-1,2-ジチオール(4)に対して2.0~8.0当量、好ましくは2.0~4.0当量を塩基存在下で反応させることで、化合物(2)を合成することもできる。
 化合物(2)の具体例としては、例えば下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 これらの化合物のRおよびRに相当する基を水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基で置換した化合物も挙げることができる。
 上記それぞれの化合物におけるR~R12に相当する基をメチル基、またはエチル基で置換した化合物も挙げることができる。
 化合物(5)および化合物(7)の具体例としては、例えば下記の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
 これらの化合物のRまたはRに相当する基を水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、またはメチル基で置換した化合物も挙げることができる。
 上記それぞれの化合物におけるR~R12に相当する基をメチル基、またはエチル基で置換した化合物も挙げることができる。
 上記で説明した本発明の一般式(1)で表される錯体は、オレフィンの単独重合または二種以上の重合可能なオレフィンの共重合により重合体を製造するに際して、重合用触媒成分として使用され、好ましくは、単独重合用触媒成分である。
 重合用触媒としては、上記の本発明の錯体(1)および助触媒成分(A)を接触させて得られる重合用触媒が用いられる。かかる助触媒成分としては、周期律表第13族元素を含む活性化助触媒成分が挙げられ、例えば、
(A-1)有機アルミニウム化合物
(A-2)ホウ素化合物
 よりなる群から選ばれる少なくとも1種の化合物を挙げることができる。
〔有機アルミニウム化合物(A-1)〕
 本発明において用いる有機アルミニウム化合物(A-1)としては、公知の有機アルミニウム化合物が使用できる。好ましくは、(A-1-1)一般式E1a AlY1 3-a で表される有機アルミニウム化合物、(A-1-2)一般式 {-Al(E2 )-O-}b で表される構造を有する環状のアルミノキサン、及び(A-1-3)一般式 E3 {-Al(E3)-O-}c AlE3 2 で表される構造を有する線状のアルミノキサン(但し、E1 、E2 、E3 は、炭素数1~8のハイドロカルビル基であり、全てのE1、全てのE2 及び全てのE3 は同じであっても異なっていてもよい。Y1は水素原子又はハロゲン原子を表し、全てのY1は同じであっても異なっていてもよい。aは0<a≦3の整数で、bは2以上の整数を、cは1以上の整数を表す。)のうちのいずれか、あるいはそれらの2~3種の混合物を例示することができる。
 一般式 E1 a AlY1 3-a で表される有機アルミニウム化合物(A-1-1)の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウム、トリヘキシルアルミニウム等のトリアルキルアルミニウム;ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、ジプロピルアルミニウムクロライド、ジイソブチルアルミニウムハクロライド、ジヘキシルアルミニウムクロライド等のジアルキルアルミニウムクロライド;メチルアルミニウムジクロライド、エチルアルミニウムジクロライド、プロピルアルミニウムジクロライド、イソブチルアルミニウムジクロライド、ヘキシルアルミニウムジクロライド等のアルキルアルミニウムジクロライド;ジメチルアルミニウムハイドライド、ジエチルアルミニウムハイドライド、ジプロピルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジヘキシルアルミニウムハイドライド等のジアルキルアルミニウムハイドライド等を例示することができる。好ましくは、トリアルキルアルミニウムであり、より好ましくは、トリエチルアルミニウム、トリイソブチルアルミニウムである。
 一般式 {-Al(E2 )-O-}b で表される構造を有する環状のアルミノキサン(A-1-2)、一般式 E3 {-Al(E3 )-O-}c AlE3 2 で表される構造を有する線状のアルミノキサン(A-1-3)における、E2 、E3 の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、ノルマルブチル基、イソブチル基、n-ペンチル基、ネオペンチル基等のアルキル基を例示することができる。bは2以上の整数であり、cは1以上の整数である。好ましくは、E2 及びE3 はメチル基、イソブチル基であり、bは2~40、cは1~40である。
 上記のアルミノキサンは各種の方法で作られる。その方法については特に制限はなく、公知の方法に準じて作ればよい。例えば、トリアルキルアルミニウム(例えば、トリメチルアルミニウムなど)を適当な有機溶剤(ベンゼン、トルエン、脂肪族ハイドロカーボンなど)に溶かした溶液を水と接触させてアルミノキサンを作る。また、トリアルキルアルミニウム(例えば、トリメチルアルミニウムなど)を結晶水を含んでいる金属塩(例えば、硫酸銅水和物など)に接触させてアルミノキサンを作る方法が例示できる。
 また、上記の方法で得られる(A-1-2)一般式 {-Al(E2 )-O-}b で表される構造を有する環状のアルミノキサン、及び(A-1-3)一般式 E3 {-Al(E3)-O-}c AlE3 2 で表される構造を有する線状のアルミノキサンは、必要に応じて、揮発成分を留去して乾燥して用いてもよい。さらに、揮発成分を留去して乾燥して得られた化合物を適当な有機溶剤(ベンゼン、トルエン、脂肪族ハイドロカーボンなど)で洗浄して、再度乾燥し用いてもよい。
〔ホウ素化合物(A-2)〕
 本発明においてホウ素化合物(A-2)としては、(A-2-1)一般式BR13 14 15で表されるホウ素化合物、(A-2-2)一般式W+ (BR13 14 15 16 で表されるホウ素化合物、(A-2-3)一般式(V-H)+ (BR13 14 15 16で表されるホウ素化合物のいずれかを用いる。
 一般式 BR1314 15で表されるホウ素化合物(A-2-1)において、Bは3価の原子価状態のホウ素原子であり、R13~R15はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の炭素原子を含むハロゲン化ハイドロカルビル基、1~20個の炭素原子を含む置換シリル基、1~20個の炭素原子を含むアルコキシ基または2~20個の炭素原子を含む2置換アミノ基であり、それらは同じであっても異なっていてもよい。好ましいR13~R15はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の炭素原子を含むハロゲン化ハイドロカルビル基である。
 ホウ素化合物(A-2-1)の具体例としては、トリフェニルボラン、トリス(ペンタフルオロフェニル)ボラン、トリス(2,3,5,6-テトラフルオロフェニル)ボラン、トリス(2,3,4,5-テトラフルオロフェニル)ボラン、トリス(3,4,5-トリフルオロフェニル)ボラン、トリス(2,3,4-トリフルオロフェニル)ボラン、フェニルビス(ペンタフルオロフェニル)ボラン等が挙げられるが、最も好ましくは、トリフェニルボラン、トリス(ペンタフルオロフェニル)ボランである。
 一般式W+ (BR13 14 15 16で表されるホウ素化合物(A-2-2)において、W+ は無機または有機のカチオンであり、Bは3価の原子価状態のホウ素原子であり、R13~R16は上記のホウ素化合物(A-2-1)におけるR13~R15と同様である。即ち、R13~R16はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の炭素原子を含むハロゲン化ハイドロカルビル基、1~20個の炭素原子を含む置換シリル基、1~20個の炭素原子を含むアルコキシ基または2~20個の炭素原子を含む2置換アミノ基であり、それらは同じであっても異なっていてもよい。好ましいR13~R16はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の炭素原子を含むハロゲン化ハイドロカルビル基である。
 無機のカチオンであるW+ としては、フェロセニウムカチオン、アルキル置換フェロセニウムカチオン、銀陽イオンなどが挙げられる。有機のカチオンであるW+ としては、トリフェニルカルベニウムカチオンなどが挙げられる。(BR13 14 15 16には、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(2,3,5,6-テトラフルオロフェニル)ボレート、テトラキス(2,3,4,5-テトラフルオロフェニル)ボレート、テトラキス(3,4,5-トリフルオロフェニル)ボレート、テトラキス(2,2,4ートリフルオロフェニル)ボレート、フェニルビス(ペンタフルオロフェニル)ボレ-ト、テトラキス(3,5-ビストリフルオロメチルフェニル)ボレートなどが挙げられる。
 一般式W+ (BR13 14 15 16で表される化合物の具体例としては、フェロセニウムテトラキス(ペンタフルオロフェニル)ボレート、1,1’-ジメチルフェロセニウムテトラキス(ペンタフルオロフェニル)ボレート、銀テトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(3,5-ビストリフルオロメチルフェニル)ボレートなどを挙げることができるが、最も好ましくは、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートである。
 また、一般式(V-H)+ (BR13 14 15 16で表されるホウ素化合物(A-2-3)おいては、Vは中性ルイス塩基であり、(V-H)+ はブレンステッド酸であり、Bは3価の原子価状態のホウ素原子であり、R13~R16は上記のホウ素化合物(A-2-3)におけるR13~R15と同様である。即ち、R13~R16はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の炭素原子を含むハロゲン化ハイドロカルビル基、1~20個の炭素原子を含む置換シリル基、1~20個の炭素原子を含むアルコキシ基または2~20個の炭素原子を含む2置換アミノ基であり、それらは同じであっても異なっていてもよい。好ましいR13~R16はハロゲン原子、1~20個の炭素原子を含むハイドロカルビル基、1~20個の炭素原子を含むハロゲン化ハイドロカルビル基である。
 ブレンステッド酸である(V-H)+としては、トリアルキル置換アンモニウム、N,N-ジアルキルアニリニウム、ジアルキルアンモニウム、トリアリールホスホニウムなどが挙げられ、(BR13 14 15 16としては、前述と同様のものが挙げられる。
 一般式(V-H)+ (BR13 14 15 16-で表される化合物の具体例としては、トリエチルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(n-ブチル)アンモニウムテトラキス(3,5-ビストリフルオロメチルフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジエチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-2,4,6-ペンタメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(3,5-ビストリフルオロメチルフェニル)ボレート、ジイソプロピルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、ジシクロヘキシルアンモニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(メチルフェニル)ホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(ジメチルフェニル)ホスホニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートなどを挙げることができるが、最も好ましくは、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、トリ(ノルマルブチル)アンモニウムテトラキス(ペンタフルオロフェニル)ボレート、もしくは、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレートである。
 本発明の、上記の一般式(1)で表される錯体と助触媒成分(A)とを接触させて得られるオレフィン重合用触媒を製造する際の接触は、一般式(1)で表される錯体と助触媒成分(A)とが接触し、触媒が形成されるならどのような手段によってもよく、あらかじめ溶媒で希釈して、もしくは希釈せずに一般式(1)で表される錯体と助触媒成分(A)とを混合して接触させる方法や、一般式(1)で表される錯体と助触媒成分(A)とを別々に重合槽に供給して重合槽の中でこれらを接触させる方法を取ることができる。ここで、助触媒成分(A)としては複数種類を組み合わせて使用する場合があるが、それらのうちの一部をあらかじめ混合して使用してもよいし、別々に重合槽に供給して使用してもよい。
 錯体(1)は単離したものを用いてもよく、また、化合物(2)と化合物(3)とを接触させたものをそのまま用いてもよい。
 各成分の使用量は通常、錯体(1)に対する有機アルミニウム化合物(A-1)のモル比が0.01~10000の範囲、好ましくは1~5000の範囲となるように、また、錯体(1)に対するホウ素化合物(A-2)のモル比が0.01~100の範囲、好ましくは1.0~50の範囲となるように、各成分を用いることが望ましい。
 重合反応器において重合反応前に触媒を製造する場合、各成分を溶液状態または溶媒に懸濁もしくはスラリー化した状態で供給する場合の濃度は、重合反応器に各成分を供給する装置の性能などの条件により、適宜選択されるが、一般に、一般式(1)で表される錯体が、通常0.0001~10000mmol/Lで、より好ましくは、0.001~1000mmol/L、さらに好ましくは、0.01~100mmol/L、有機アルミニウム化合物(A-1)が、Al原子換算で、通常0.01~10000mmol/Lで、より好ましくは、0.05~5000mmol/L、さらに好ましくは、0.1~2000mmol/L、ホウ素化合物(A-2)は、通常0.001~500mmol/Lで、より好ましくは、0.01~250mmol/L、さらに好ましくは、0.05~100mmol/Lの範囲となるように各成分を用いることが望ましい。
 前記オレフィン重合用触媒は、錯体(1)と、上記有機アルミニウム化合物(A-1)および/または上記ホウ素化合物(A-2)とを接触させて得られるオレフィン重合用触媒であるが、錯体(1)と有機アルミニウム化合物(A-1)とを接触させて得られるオレフィン重合用触媒を用いる際は、有機アルミニウム化合物(A-1)としては、前記の環状のアルミノキサン(A-1-2)および/または線状のアルミノキサン(A-1-3)が好ましい。また他に好ましいオレフィン重合用触媒の態様としては、錯体(1)、有機アルミニウム化合物(A-1)およびホウ素化合物(A-2)を接触させて得られるオレフィン重合用触媒が挙げられ、その際の該有機アルミニウム化合物(A-1)としては前記の有機アルミニウム化合物(A-1-1)が使用しやすく、ホウ素化合物(A-2)としては、ホウ素化合物A-2-1)またはホウ素化合物(A-2-2)が好ましい。
〔立体選択的ポリオレフィンの製造方法〕
 本発明の立体選択的ポリオレフィンの製造方法は、上記本発明の触媒の存在下に炭素原子数3~10、好ましくは炭素原子数3~6のオレフィンを単独重合または共重合させることを含む方法である。より好ましくは、炭素原子数3~6のオレフィンの単独重合であり、最も好ましくは、プロピレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテンおよび1,5-ヘキサジエンの単独重合である。
 重合するオレフィンの種類は単独でも複数でもよい。単独のオレフィンを重合すれば、単独重合体が得られ、複数のオレフィンを重合すれば、共重合体が得られる。共重合に用いられるオレフィンは特に制限はないが、立体選択的に重合することで、所望の物性を示すオレフィンであることが好ましい。
 オレフィンは、例えば、モノオレフィンまたはジオレフィンであることができる。
 モノオレフィンの例としては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、4-メチル-1-ペンテン、ビニルシクロヘキサンなどの炭素原子数3~10の1-アルケン(枝分かれしていてもよい)、または、シクロペンテン、シクロヘキセン、5-メチルノルボルネン、5-エチルノルボルネン、5-ブチルノルボルネン、5-フェニルノルボルネン、5-ベンジルノルボルネン、テトラシクロドデセン、トリシクロデセン、トリシクロウンデセン、ペンタシクロペンタデセン、ペンタシクロヘキサデセン、8-メチルテトラシクロドデセン、8-エチルテトラシクロドデセン、5-アセチルノルボルネン、5-アセチルオキシノルボルネン、5-メトキシカルボニルノルボルネン、5-エトキシカルボニルノルボルネン、5-メチル-5-メトキシカルボニルノルボルネン、5-シアノノルボルネン、8-メトキシカルボニルテトラシクロドデセン、8-メチル-8-テトラシクロドデセン、8-シアノテトラシクロドデセン等などの環状アルケンを挙げることができる。また、本明細書におけるモノオレフィンには、モノオレフィン(例えば、エチレン)の一部の水素原子が芳香族基で置換されているスチレン等も含まれる。
 モノオレフィンとして、好ましくは、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、4-メチル-1-ペンテン、ビニルシクロヘキサンであり、より好ましくはプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、4-メチル-1-ペンテン、ビニルシクロヘキサンであり、さらに好ましくはプロピレン、1-ブテンである。
 ジオレフィンとしては、例えば、1,5-ヘキサジエン、1,4-ヘキサジエン、1,6-ヘプタジエン、1,4-ペンタジエン、1,7-オクタジエン、1,8-ノナジエン、1,9-デカジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエン、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン、5-ビニル-2-ノルボルネン、5-メチル-2-ノルボルネン、ノルボルナジエン、5-メチレン-2-ノルボルネン、1,5-シクロオクタジエン、5,8-エンドメチレンヘキサヒドロナフタレン、1,3-ヘキサジエン、1,3-オクタジエン、1,3-シクロオクタジエン、1,3-シクロヘキサジエン、ブタジエン、イソプレンを挙げることができる。
 ジオレフィンとして、好ましくは、1,5-ヘキサジエン、1,6-ヘプタジエン、5-エチリデン-2-ノルボルネン、ジシクロペンタジエン、5-ビニル-2-ノルボルネン、5-メチル-2-ノルボルネン、ノルボルナジエン、5-メチレン-2-ノルボルネン、1,5-シクロオクタジエン、1,3-シクロオクタジエン、1,3-シクロヘキサジエン、ブタジエン、イソプレンであり、より好ましくは、1,5-ヘキサジエン、1,6-ヘプタジエン、1,3-シクロヘキサジエン、ブタジエンである。
 アイソタクチック立体規則性の尺度としては、アイソタクチック・ペンタッド分率[mmmm](%)が用いられる。ここでいうアイソタクチック・ペンタッド分率とは、A.ZambelliらによってMacromolecules、1973年、6号,925~926ページに発表されている方法、すなわち13C-NMRを使用して測定される結晶性ポリプロピレン分子鎖中のペンタッド単位でのアイソタクチック連鎖、換言すればプロピレンモノマー単位が5個連続してメソ結合した連鎖の中心にあるプロピレンモノマー単位の分率である。
 本発明においてオレフィンとしてジオレフィンを用いる場合、R.M.Waymouthら(Journal of AmericanChemical Society, 1993, Volume 115,91-98)、G.W.Coates(Macromolecular Rapid Communications,2009,Volume 30,1900-1906)、Naofumi Nagaら(Macromolecules,2009,Volume 42,7631-7633)によって報告されている閉環重合体を得ることもできる。具体的には、例えば、1,5-ヘキサジエン、1,6-ヘプタジエンを重合する場合、下記に示す重合体を得ることができる。
 該重合体は、環化重合体部分と1,2-挿入体部分とを含む構造を有している。また、該環化重合体部分には、立体化学的に(シス;アイソ)、(シス;シンジオ)、(トランス;アイソ)、(トランス;シンジオ)の4通りの構造があり得る。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 これらジエン閉環重合体は、立体規則性の程度(シス、トランス;アイソ、シンジオ)、閉環重合の程度(閉環重合、1,2-挿入)により、ポリマー物性が大きく変化することが知られている。それら組み合わせは多数であり、詳細な検討は行われていなく、公知の重合体の立体選択性の程度も不十分である。
 ジエン閉環重合体の材料としての応用としては、以下に挙げる例が知られている。
 ジエンの閉環重合において、高い閉環率で、かつ高立体規則的に重合されたジエン閉環重合体は、軽量で、加工性に優れた液晶性の材料として用いることができる。液晶ポリマーは、延伸等の操作をすることなく分子鎖が高度に配向するため、高性能繊維、例えば高強度・高弾性率繊維が得られるという特徴をはじめ、成型品にした場合でも、低伸度で寸法安定性、耐クリープ性などが良好であるという性能を示す。
 また、これらジエン閉環重合体は、その立体選択性を制御することにより、ポリマー型造核剤として用いることができる。ポリプロピレンに代表されるポリオレフィン系結晶性高分子は、射出成型、フィルム加工、紡糸加工、フラットヤーン成形、および中空成形などの加熱溶融成形において、高分子の結晶化速度が一般的に遅いという欠点がある。高立体選択性のジエン閉環重合体は、結晶性ポリオレフィンへの分散性、混和性に優れ、ブリードアウトが少なく、かつ造核剤から発生する臭気や味の移行性問題の少ないポリマー型造核剤として用いることができる。
 ジエン閉環重合において、光学活性な触媒を用いることにより、光学活性なジエン閉環重合体を得ることができる。ジエン閉環重合体を光学活性とすることにより、耐熱性の向上、液晶性の向上、ポリマー造核剤としての性能向上が期待できる。
 重合方法も、特に限定されるべきものではないが、例えば、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン等の脂肪族ハイドロカーボン、ベンゼン、トルエン等の芳香族ハイドロカーボン、またはメチレンジクロライド等のハロゲン化ハイドロカーボンを溶媒として用いる溶媒重合、またはスラリー重合等が可能であり、また、連続重合、回分式重合のどちらでも可能である。
 重合反応の温度および時間は、所望の重合平均分子量、ならびに触媒の活性度および使用量を考慮して決定することができる。重合温度は通常、-50℃~200℃の範囲を採用し得るが、特に、-20℃~100℃の範囲が好ましい。重合圧力は通常、常圧~50MPaが好ましい。重合時間は、一般的に、目的とするポリマーの種類、反応装置により適宜決定されるが通常、1分間~20時間の範囲、好ましくは5分間~18時間の範囲を採用することができる。但し、これらの範囲に制限される意図ではない。また、本発明は共重合体の分子量を調節するために水素等の連鎖移動剤を添加することもできる。
 重合反応に溶媒を使用する場合、溶媒中の各化合物の濃度は、特に制限はない。溶媒中のジルコニウム錯体の濃度は、例えば、1×10-8mmol/L~10mol/Lの範囲を選択でき、助触媒成分の濃度は、例えば、1×10-8mmol/L~10mol/Lの範囲を選択することができる。また、オレフィン:溶媒は体積比で100:0~1:1000の範囲を選択することができる。但し、これらの範囲は例示であって、それらに限定される意図ではない。また、溶媒を使用しない場合も、上記の範囲を参考に適宜濃度の設定をすることができる。
 以下、実施例および比較例によって本発明をさらに詳細に説明する。実施例中の各項目の測定値は、下記の方法で測定した。
(1)融点
 熱分析装置 示差走査熱量計(Diamond DSC Perkin Elmer社製)を用いて下記の方法で測定した。
 1)サンプル約10mgを窒素雰囲気下、220℃ 5分間保持
 2)冷却   220℃~20℃(5℃/分)2分間保持
 3)測定   20℃~220℃(5℃/分)
(2)分子量および分子量分布
 各重合体のポリスチレン換算重量平均分子量(Mw(PS))およびポリスチレン換算数平均分子量(Mn(PS)は、ゲルパーミエーションクロマトグラフィー(GPC)により下記条件で測定した。
<測定条件・1(ポリプロピレン)>
装置  :TSK HLC-8121GPC/HT (東ソー社製)
カラム :TSKgel GMHHR‐H(20) 2本
測定温度:152℃
溶媒  :o-ジクロロベンゼン(0.05%BHT添加)
溶媒流量:1ml/min
試料濃度:0.05%
<測定条件・2(ポリ(1-ヘキセン)>
装置  :HLC-8220 GPC (東ソー社製)
カラム :TSK-GEL SUPERHZM-HZM-H 4.6×150×3本
測定温度:40℃
溶媒  :テトラヒドロフラン
測定濃度:2mg/2ml
 ポリプロピレンの分子量(Mw,Mn)は、ポリスチレンのQファクター(Q(PS))を41.3、ポリプロピレンのQファクター(Q(PP))を26.4として下記式より算出した。
ポリプロピレン重量平均分子量(Mw)=Mw(PS)×Q(PP)/Q(PS)
ポリプロピレン数平均分子量(Mn)=Mn(PS)×Q(PP)/Q(PS)
 ポリ(1-ヘキセン)の分子量(Mw,Mn)は、ポリスチレン換算分子量とした。
(3)ポリプロピレンのアイソタクチック・ペンタッド分率([mmmm](%))
 ポリプロピレンの[mmmm]分率は、下記条件で測定した13C-NMRスペクトルにおける、19.4~22.2ppmのメチル炭素に帰属されるピーク面積に対する、21.64~22.02ppmのmmmmペンタッドのメチル炭素に帰属されるピーク面積の割合として求めた。
<測定条件>
装置  :Bruker社製 AVANCE600 10mmクライオプローブ
測定溶媒:1,2-ジクロロベンゼン/1,2-ジクロロベンゼン-d=75/25(容積比)の混合液
測定温度:130℃
測定方法:プロトンデカップリング法
パルス幅:45度
パルス繰り返し時間:4秒
化学シフト値基準:テトラメチルシラン
(4)ポリプロピレン2,1-挿入率、1,3-挿入率(%)
 上記条件により測定した13C-NMRスペクトルおいて、以下のように定義する範囲のピーク面積から、2,1-挿入率、1,3-挿入率(%)を求めた。
<算出方法>
ピーク面積の定義
I(CH):19.4~22.2ppmのピーク面積の合計
I(2,1):16.4~18.8ppmと14.5~15.8ppmのピーク面積の合計I(1,3):27.6~27.8ppmのピーク面積
2,1%算出式
2,1% = 0.5×I(2,1)/(I(CH)+I(2,1)+I(1,3))×100
1,3%算出式
1,3% =I(1,3)/(I(CH)+I(2,1)+I(1,3))×100
(5)ポリ(1-ヘキセン) アイソタクチック・ペンタッド分率([mmmm](%))
 ポリ(1-ヘキセン)の[mmmm]分率は、下記条件で測定した13C-NMRスペクトルにおける、34.60~34.65ppm付近にピークトップを有するピークのピーク面積から算出した。当該ピークのピーク面積は、高磁場側で隣接するピークとの谷のケミカルシフトから、低磁場側で隣接するピークとの谷のケミカルシフトまでの範囲でのシグナルの面積とした。
<測定条件>
装置  :JEOL社製 ECS400
測定溶媒:クロロホルム-d
測定温度:25℃
測定方法:プロトンでカップリング法
パルス幅:30度
パルス繰り返し時間:2秒
測定基準:重クロロホルム中の残留クロロホルム
窓関数 :負の指数関数
(6)固有粘度([η])(単位:dl/g)
 ウベローデ型粘度計を用い、測定温度135℃にて溶媒にテトラリンを用いて測定した。
(参考例1)
trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロヘプタンの合成
 アルゴン雰囲気下、trans-シクロヘプタン-1,2-ジチオール1.64 g(10.1 mmol)と臭化3,5-ジ-tert-ブチル-2-ヒドロキシベンジル6.04 g(20.2 mmol)とをテトラヒドロフラン110 mLに溶解し、0℃に冷却した。そこに、トリエチルアミン2.8 mL(20.2 mmol)を加え、0℃で12時間攪拌した。生成した沈殿物を濾過で除き、濾液を減圧下濃縮した。得られた残渣にエーテルおよび希塩酸を加え、エーテル層を水洗し、無水硫酸ナトリウムで乾燥した後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン-ジクロロメタン 1:1)で精製し無色結晶として標記化合物3.79 g(収率63%)を得た。
融点:109-110 ℃分解
1H NMR (500 MHz, δ, CDCl3)
1.14-1.93 (m, 46H,), 2.68-2.69 (m, 2H), 3.71-3.79 (m, 4H), 6.80 (s,2H), 6.89 (d, J = 3 Hz, 2H), 7.25 (d, J = 3 Hz, 2H).
13C NMR (100.7 MHz, δ, CDCl3)
25.0, 28.7, 29.7, 31.6, 31.9, 34.2, 34.6, 35.0, 50.3, 121.4, 123.7, 125.1, 137.3, 142.1, 152.1.
元素分析:計算値(C37H56O2S2)C, 74.19%; H, 9.42% 実測値: C, 74.08%; H,9.84%
(参考例2)
[シクロヘプタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロジルコニウムの合成
 以下の実験はアルゴン雰囲気下で行った。100 mLのシュレンク管中、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロヘプタン 1.00 g(1.67 mmol)をジエチルエーテル15 mLに溶解し、この溶液にノルマルブチルリチウム 2.2 mL(1.67 mol/L, 3.67 mmol)を加え、0℃で1時間攪拌した。この溶液を-78℃でテトラクロロジルコニウム400 mg(1.72 mmol)のジエチルエーテル溶液20 mLへと滴下し、さらに終夜攪拌した。生成した沈殿物を濾過して除き、濾液を減圧下濃縮した。残渣をヘキサン8 mLで洗浄した後、乾燥し、無色結晶として標記化合物803 mg(収率63%)を得た。
1H NMR (500 MHz, δ, ppm, C6D6)
0.67-1.95 (m, 46H), 2.37 (s, 2H), 3.17 (d, J = 14 Hz, 2H), 4.34 (d, J = 14 Hz, 2H), 6.55 (s, 2H), 7.53 (d, J = 1 Hz, 2H).
13C NMR (100.7 MHz, δ, ppm, C6D6)
25.8, 29.6, 30.5, 31.0, 31.8, 34.4 35.6, 36.0, 49.7, 120.8, 124.8, 125.8, 138.6, 142.7, 157.2.
(参考例3)
[シクロヘプタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウムの合成
 以下の実験はアルゴン雰囲気下で行った。50 mLのシュレンク管中、[シクロヘプタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロジルコニウム 205 mg(0.270 mmol)をジエチルエーテル15 mLに溶解し、この溶液に-78℃でベンジルグリニャール600 μL(1.0 mol/L, 0.60 mmol)を滴下し、さらに終夜攪拌した。生成した沈殿物を濾過して除き、濾液を減圧下濃縮した。残渣をヘキサン6 mLで洗浄した後、乾燥し、黄色結晶として標記化合物198 mg(収率84%)を得た。
1H-NMR (500 MHz, δ, ppm, C6D6)
0.78-2.05 (m, 46H), 2.23-2.27 (m, 4H), 2.83 (d, J = 11 Hz, 2H), 3.17 (d, J = 15 Hz, 2H), 3.52 (d, J = 15 Hz, 2H), 6.61 (d, J = 2 Hz, 2H), 6.88 (t, J = 8 Hz, 2H), 7.08 (t, J = 8 Hz, 4H), 7.26 (d, J = 8 Hz, 4H), 7.53 (d, J = 2 Hz, 2H). 
 13C NMR (100.7 MHz, δ, ppm, C6D6)
25.7, 29.8, 30.6, 30.9, 31.8, 34.2, 34.7, 35.7, 49.0, 64.9, 122.1, 123.1, 123.4, 124.3, 129.3, 129.6, 137.8, 141.1, 146.0, 158.0
(参考例4)
trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロヘキサンの合成
 アルゴン雰囲気下、trans-シクロヘキサン-1,2-ジチオール1.08g(7.3mmol)と臭化3,5-ジ-t-ブチル-2-ヒドロキシベンジル4.58g(15.3mmol)とをテトラヒドロフラン90mLに溶解し、0℃に冷却した。そこに、トリエチルアミン2.13mL(15.3mmol)を加え、0℃で15時間攪拌した。生成した沈殿物を濾過で除き、濾液を減圧下濃縮した。得られた残渣にエーテルおよび希塩酸を加え、エーテル層を水洗し、無水硫酸マグネシウムで乾燥した後、減圧下溶媒を留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(展開溶媒 ヘキサン-ジクロロメタン 1:1)で精製し無色結晶として標記化合物3.86g(収率90%)を得た。
融点:104-106℃分解(エタノールより再結晶)
1H-NMR (400 MHz,δ, ppm, CDCl3)
1.19-1.43 (m, 44 H), 2.09-2.15 (m, 2 H), 2.58-2.61 (m, 2 H), 3.79 (s, 4 H), 6.75 (s, 2 H), 6.93 (d, J = 2 Hz, 2 H), 7.25 (d, J = 2 Hz, 2 H).
13C-NMR (100.7 MHz,δ, CDCl3)
24.7, 29.7, 31.6, 32.6, 33.9, 34.2, 35.0, 48.1, 121.6, 123.7, 125.2, 137.3, 142.2, 152.0. 
元素分析:計算値(C36H56O2S2)C, 73.92%; H, 9.34%.
実測値: C, 74.17%; H, 9.31%.
(参考例5)
[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウムの合成
 以下の実験はアルゴン雰囲気のグローブボックス中で行った。50 mLのシュレンク管中、trans-1,2-ビス(2-ヒドロキシ-3,5-ジ-tert-ブチルベンジルスルファニル)シクロヘキサン 300 mg(0.513 mmol)をトルエン5 mLに溶解し、この溶液に室温でテトラベンジルジルコニウム234 mg(0.513 mmol)のトルエン溶液5 mLを滴下し、さらに2時間攪拌した。トルエンを減圧下留去し、残渣をペンタン2 mLで洗浄した後、乾燥し、無色結晶として標記化合物176 mg(収率40%)を得た。
1H-NMR (500 MHz,δ, ppm, C6D6)
0.42-1.08 (m, 8 H, major, minor), 1.22 (s, 18 H, major), 1.24 (s, 18 H, minor), 1.57-1.61 (m, 2 H, major), 1.77 (s, 18 H, major), 1.80 (s, 18 H, minor), 1.84 (d, J = 9 Hz, 2 H, major), 1.96-2.02 (m, 2 H, minor), 2.16 (d, J = 10 Hz, 2 H, minor), 2.64 (d, J = 9 Hz, 2 H, major), 2.79 (d, J = 10 Hz, 2 H, minor), 2.94 (d, J = 12 Hz, 2 H, major), 3.22 (d, J = 15 Hz, 2 H, major), 3.23 (d, J = 15 Hz, 2 H, minor), 3.52 (d, J = 15 Hz, 2 H, minor), 6.57 (d, J = 2 Hz, 2 H, major), 6.63 (d, J = 2 Hz, 2 H, minor), 6.90-7.27 (m, 10 H, major, minor), 7.42 (d, J = 2 Hz, 2 H, major), 7.52 (d, J = 2 Hz, 2 H, minor).
(参考例6)
(d-MAO(乾燥メチルアルミノキサン)の調製方法)
 3方コックを取り付けた攪拌子入りの200mL2つ口フラスコを窒素置換し、東ソー・ファインケム社製PMAO-Sトルエン溶液(アルミニウム含量6.1wt%)を100mLシリンジで測り取り、フラスコに投入した。この溶液を減圧し揮発成分を除去した。得られた白色固体を脱水トルエン100mLに再溶解した後、揮発成分を減圧除去した。この操作を更に2回繰り返し、白色粉末14.1gを得た。
[実施例1]
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換した後、溶媒としてトルエン40mL、モノマーとしてプロピレン80gを仕込み、反応器を40℃まで昇温した。昇温後、トリイソブチルアルミニウム(1.0mmol/mL、トルエン溶液)0.5mL(0.5mmol)を投入し、続いて[シクロヘプタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウム(5μmol/mL、トルエン溶液)0.10mL(0.50μmol)、さらに続いてトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(4.0μmol/mL、トルエン溶液)0.625mL(2.5μmol)を投入して重合を開始した。温度を40℃に保ちながら、60分間重合を行った。
 重合の結果3.0gのポリプロピレンが得られた。重合活性6.0×10g/mol/h、融点=135.3℃、M=13,700、M/M=2.0、[mmmm]=81.4%、2,1-挿入=0.19%であり、1,3-挿入=0%であった。
[実施例2]
 内容積400mLの撹拌機付きオートクレーブを真空乾燥してアルゴンで置換した後、溶媒としてトルエン40mL、モノマーとしてプロピレン80gを仕込み、反応器を40℃まで昇温した。昇温後、d-MAO121.4mgを投入し、続いて[シクロヘプタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウム(5μmol/mL、トルエン溶液)0.10mL(0.50μmol)を投入して重合を開始した。温度を40℃に保ちながら、60分間重合を行った。
 重合の結果3.0gのポリプロピレンが得られた。重合活性6.0×10g/mol/h、融点=134.1℃、M=16,100、M/M=2.0、[mmmm]=82.3%、2,1-挿入=0.26%であり、1,3-挿入=0であった。
[実施例3]
 [シクロヘプタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウムの代わりに[シクロヘプタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロジルコニウムを用いたこと以外は実施例1と同様に実施した。
[実施例4]
 d-MAO 103.9mgを用い、[シクロヘプタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウムの代わりに[シクロヘプタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロジルコニウムを用いたこと以外は実施例2と同様に実施した。
[比較例1]
 [シクロヘプタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロジルコニウムの代わりに、[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウムを用いたこと以外は実施例1と同様に実施した。
[比較例2]
 [シクロヘプタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロジルコニウムの代わりに、[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウムを用い、d-MAO 92.0mgを用いたこと以外は実施例2と同様に実施した。
 実施例1~4、比較例1~2の重合条件および重合結果を表1に示す。
Figure JPOXMLDOC01-appb-T000023
[実施例5]
 100 mLのシュレンク管中、[シクロヘプタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウム17 mg(0.020 mmol)をトルエン5 mLに溶解し、この溶液に0℃でトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボラート[Ph3CB(C6F5)4] 18 mg(0.020 mmol)を加え、さらに5分間攪拌した。この溶液に0℃で1-ヘキセン3 g(0.0356 mmol)を加え、さらに10分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 2.68 g(収率90%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性([mmmm])98.9%であり、M= 148,000、M/M= 1.9であった。
[実施例6]
 100 mLのシュレンク管中、[シクロヘプタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウム17 mg(0.020 mmol)をトルエン1 mLとヘキサン5 mLとの混合溶液に溶解し、この溶液に25 ℃でB(C6F5)3 10 mg(0.020 mmol)を加え、さらに5分間攪拌した。この溶液に25 ℃で1-ヘキセン3 g(0.0356 mmol)を加え、さらに10分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70 ℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 1.24 g(収率41%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性([mmmm])96.4%であり、M= 86,000、M/M= 1.9であった。
[実施例7]
 100 mLのシュレンク管中、[シクロヘプタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウム17 mg(0.020 mmol)をトルエン5 mLに溶解し、この溶液に25℃でトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボラート[Ph3CB(C6F5)4] 18 mg(0.020 mmol)を加え、さらに5分間攪拌した。この溶液に25℃で1-ヘキセン3 g(0.0356 mmol)を加え、さらに10分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 1.80 g(収率60%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性([mmmm])95.6%であり、M= 88,000、M/M= 1.9であった。
[実施例8]
 100 mLのシュレンク管中、[シクロヘプタンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジクロロジルコニウム15 mg(0.020 mmol)をトルエン5 mLに溶解し、この溶液に25℃でd-MAO 290 mg(5.0 mmol)を加え、さらに3分間攪拌した。この溶液に25℃で1-ヘキセン3 g(0.0356 mmol)を加え、さらに3分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、トルエンと希塩酸を加えた。トルエン層を水洗し、無水硫酸ナトリウムで乾燥した後、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 2.56 g(収率85%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性([mmmm])96.2%であり、M= 113,000、M/M= 1.9であった。
[比較例3]
 50 mLのシュレンク管中、[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウム17.1 mg(0.020 mmol)をベンゼン1 mLとヘキサン5 mLとの混合溶液に溶解し、この溶液に25℃でトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボラート[Ph3CB(C6F5)4] 18.4 mg(0.020 mmol)を加え、さらに5分間攪拌した。この溶液に0℃で1-ヘキセン3 g(35.6 mmol)を加え、さらに15分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 0.97 g(収率32%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性([mmmm])96.2%であり、M= 66,000、M/M= 1.9であった。
[比較例4]
 50 mLのシュレンク管中、[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウム17.1 mg(0.020 mmol)をベンゼン1 mLとヘキサン5 mLとの混合溶液に溶解し、この溶液に25℃でトリス(ペンタフルオロフェニル)ボラン [B(C6F5)3] 10.2 mg(0.020 mmol)を加え、さらに5分間攪拌した。この溶液に25℃で1-ヘキセン3 g(35.6 mmol)を加え、さらに15分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 1.84 g(収率61%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性([mmmm])93.7%であり、M= 40,500、M/M= 1.9であった。
[比較例5]
 50 mLのシュレンク管中、[シクロヘキサンジイル-trans-1,2-ビス(2-オキソイル-3,5-ジ-tert-ブチルベンジルスルファニル)]ジベンジルジルコニウム17.1 mg(0.020 mmol)をベンゼン1 mLとヘキサン5 mLとの混合溶液に溶かし、この溶液に25℃でトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボラート[Ph3CB(C6F5)4] 18.4 mg(0.020 mmol)を加え、さらに5分間攪拌した。この溶液に25℃で1-ヘキセン3 g(35.6 mmol)を加え、さらに15分間攪拌した。この反応溶液にメタノールを加えて反応を停止し、70℃で揮発成分を真空ポンプを用いて留去し、ポリ(1-ヘキセン) 1.85 g(収率62%)を得た。得られたポリ(1-ヘキセン)の立体選択性は13C-NMRよりアイソ選択性([mmmm])92.1%であり、M= 44,000、M/M= 1.9であった。
Figure JPOXMLDOC01-appb-T000024
 本発明は、ポリオレフィンの製造に関する分野に有用である。

Claims (11)

  1.  一般式(1)で表される錯体と活性化用助触媒成分とを接触させてなる、炭素原子数3~10のオレフィン重合用触媒。
    Figure JPOXMLDOC01-appb-C000001
    (式中、RおよびRは、それぞれ独立して、
    水素原子、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数2~20のアルケニル基、
    炭素原子数2~20のアルキニル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数1~20のアルコキシ基、
    炭素原子数7~30のアラルキルオキシ基、
    炭素原子数6~30のアリールオキシ基、
    または、置換シリル基を表す。
    ~RおよびR~R12は、それぞれ独立して、
    水素原子、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数2~20のアルケニル基、
    炭素原子数2~20のアルキニル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    炭素原子数1~20のアルコキシ基、
    炭素原子数7~30のアラルキルオキシ基、
    炭素原子数6~30のアリールオキシ基、
    置換シリル基、
    または環を構成する炭素原子数が3~20のヘテロ環式化合物残基を表す。
    ~R12における上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アルキニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記ヘテロ環式化合物残基は置換基を有していてもよい。
    上記R~R12の定義に関わらず、RとR、RとR、RとR、RとR、RとR、RとR、RとR10、およびR11とR12とは、それぞれ独立に、互いに連結して環を形成してもよく、これらの環は置換基を有していてもよい。
    Xは、それぞれ独立して、
    水素原子、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数2~20のアルケニル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    炭素原子数1~20のアルコキシ基、
    炭素原子数7~30のアラルキルオキシ基、
    炭素原子数6~30のアリールオキシ基、
    置換シリル基、
    置換アミノ基、
    置換チオラート基、
    または炭素原子数1~20のカルボキシラート基を表す。
    Xにおける上記アルキル基、上記シクロアルキル基、上記アルケニル基、上記アラルキル基、上記アリール基、上記アルコキシ基、上記アラルキルオキシ基、上記アリールオキシ基および上記カルボキシラート基は置換基を有していてもよい。
    隣接するX同士は、相互に連結して環を形成してもよい。
    Lは中性のルイス塩基を表す。Lが複数ある場合は、複数のLは同一でも異なっていてもよい。lは、0、1、または2である。)
  2.  R~R12が、
    水素原子である、請求項1に記載の触媒。
  3.  活性化用助触媒成分がホウ素化合物および有機アルミニウム化合物の少なくともいずれか一方である、請求項1または2に記載の触媒。
  4.  RおよびRがそれぞれ独立に、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数7~30のアラルキル基、
    または置換シリル基であり、該アルキル基、該シクロアルキル基および該アラルキル基は置換基を有していてもよい、請求項1~3のいずれか1項に記載の触媒。
  5.  R~RおよびR~Rがそれぞれ独立に、
    水素原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基
    または置換シリル基であり、該アルキル基、該シクロアルキル基、該アラルキル基および該アリール基は置換基を有していてもよい、請求項1~4のいずれか1項に記載の触媒。
  6.  RおよびRがそれぞれ独立して、
    ハロゲン原子、
    炭素原子数1~20のアルキル基、
    環を構成する炭素原子数が3~10のシクロアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数6~30のアリール基、
    または置換シリル基であり、該アルキル基、該シクロアルキル基、該アラルキル基および該アリール基は置換基を有していてもよい、請求項1~5のいずれか1項に記載の触媒。
  7.  R、R、RおよびRが水素原子である請求項1~6のいずれか1項に記載のオレフィン重合用触媒。
  8.  Xが、ハロゲン原子、
    炭素原子数1~20のアルキル基、
    炭素原子数7~30のアラルキル基、
    炭素原子数1~20のアルコキシ基、
    炭素原子数7~30のアラルキルオキシ基、
    炭素原子数6~30のアリールオキシ基、
    または置換アミノ基であり、該アルキル基、該アラルキル基、該アルコキシ基、該アラルキルオキシ基および該アリールオキシ基は置換基を有していてもよい、請求項1~7のいずれか1項に記載のオレフィン重合用触媒。
  9.  炭素原子数3~6のオレフィン重合用である、請求項1~8のいずれか1項に記載の触媒。
  10.  炭素原子数3~6のオレフィンが、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセンおよび1,5-ヘキサジエンからなる群から選択される1種または2種以上である、請求項9に記載の触媒。
  11.  請求項1~10のいずれか1項に記載の重合用触媒を用いてオレフィンを単独重合または共重合する、オレフィン単独重合体またはオレフィン共重合体の製造方法。
PCT/JP2012/053728 2011-02-18 2012-02-16 オレフィン重合用触媒及びオレフィン重合体の製造方法 WO2012111777A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-033820 2011-02-18
JP2011033820 2011-02-18
JP2011176420 2011-08-11
JP2011-176420 2011-08-11

Publications (1)

Publication Number Publication Date
WO2012111777A1 true WO2012111777A1 (ja) 2012-08-23

Family

ID=46672689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053728 WO2012111777A1 (ja) 2011-02-18 2012-02-16 オレフィン重合用触媒及びオレフィン重合体の製造方法

Country Status (1)

Country Link
WO (1) WO2012111777A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10358397B2 (en) 2017-06-29 2019-07-23 Exxonmobil Chemical Patents Inc. Production of olefin dimers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238891A (ja) * 2006-03-13 2007-09-20 Sumitomo Chemical Co Ltd オレフィン重合用触媒及びオレフィン重合体の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007238891A (ja) * 2006-03-13 2007-09-20 Sumitomo Chemical Co Ltd オレフィン重合用触媒及びオレフィン重合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.AM.CHEM.SOC., vol. 131, no. 38, 2009, pages 13566 - 13567 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10358397B2 (en) 2017-06-29 2019-07-23 Exxonmobil Chemical Patents Inc. Production of olefin dimers

Similar Documents

Publication Publication Date Title
EP1153047B1 (en) Metallocene compounds, process for their preparation and their use in catalytic systems for the polymerization of olefins
EP1157027B1 (en) Heterocyclic metallocene compounds and use thereof in catalyst systems for producing olefin polymers
JP4383549B2 (ja) オレフィンの重合用触媒及びその方法
WO2011099583A1 (ja) 立体選択的オレフィン重合用触媒及び立体選択的ポリオレフィンの製造方法
WO2011040557A1 (ja) エチレン系重合体
US6642400B2 (en) Linked metallocene complexes, catalyst systems, and olefin polymerization processes using same
JPS60260602A (ja) ポリオレフィンの製造方法
JP2013053308A (ja) オレフィン重合体の製造方法、エチレン系重合体および成形体
KR20140049452A (ko) 신규한 메탈로센 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 올레핀계 중합체의 제조방법
WO2012111779A1 (ja) エチレン系重合用触媒及びエチレン系重合体の製造方法
TWI754776B (zh) 新穎之基於茚的過渡金屬複合物、包含其之催化組成物以及使用其製備乙烯均聚物或乙烯與α-烯烴之共聚物的方法
WO2012111780A1 (ja) オレフィン重合用触媒及びオレフィン重合体の製造方法
JP2013166898A (ja) オレフィン重合用触媒およびオレフィン重合体の製造方法
JP2013166735A (ja) 新規錯体、当該錯体を含む重合用触媒およびオリゴマー化用触媒、ならびにこれらの利用
WO2012111777A1 (ja) オレフィン重合用触媒及びオレフィン重合体の製造方法
WO2013022108A1 (ja) オレフィン重合用触媒及びオレフィン重合体の製造方法
WO2012111778A1 (ja) オレフィン重合用触媒及びオレフィン重合体の製造方法
WO2013022102A1 (ja) エチレン系重合用触媒およびエチレン系重合体の製造方法
WO2012169641A1 (ja) 錯体、オレフィン重合用触媒及びオレフィン重合体の製造方法
US20120264889A1 (en) Production process of olefin polymerization catalyst and olefin polymer
JP2013166897A (ja) オレフィン重合用触媒およびオレフィン重合体の製造方法
US8288490B2 (en) Process for producing catalyst component for addition polymerization
Williams Olefin polymerisation using group 4 permethylindenyl complexes
KR101579616B1 (ko) 프로필렌계 엘라스토머
JP2002308843A (ja) オレフィン類重合触媒及びオレフィン系重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12746799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP